1
|
Vilmane A, Kolesova O, Nora-Krukle Z, Kolesovs A, Pastare D, Jaunozolina L, Kande L, Egle J, Kromane D, Micule M, Liepina S, Zeltina E, Gravelsina S, Rasa-Dzelzkaleja S, Viksna L, Karelis G. Association of Baseline Lipopolysaccharide-Binding Protein with Expanded Disability Status Score Dynamics in Patients with Relapsing-Remitting Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 26:298. [PMID: 39796152 PMCID: PMC11720422 DOI: 10.3390/ijms26010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated. The disability of the patients was evaluated using EDSS at baseline and follow-up; enzyme-linked immunosorbent assays (ELISAs) were also used to determine the level of blood-based inflammation markers in plasma at baseline. The main results demonstrated that the baseline level of LBP was correlated with an increase in EDSS in a short (8-10 months) follow-up period. Furthermore, the prognostic significance of LBP was only observed in patients who received disease-modifying treatment (DMT) before the study. Our results suggest that the baseline level of LBP may be among the predictors of disability progression in RRMS over short follow-up periods, particularly in those receiving treatment. It highlights the effect of endotoxins in the pathogenesis of RRMS.
Collapse
Affiliation(s)
- Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Oksana Kolesova
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | | | - Daina Pastare
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Liga Jaunozolina
- Center of Radiology, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Radiology, Rīga Stradiņš University, LV-1079 Riga, Latvia
| | - Linda Kande
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Jelena Egle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Daniela Kromane
- Faculty of Medicine, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Micule
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Sintija Liepina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Estere Zeltina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Santa Rasa-Dzelzkaleja
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Guntis Karelis
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| |
Collapse
|
2
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Spalding VA, Fellenstein BA, Ahodantin J, Jeyarajan AJ, Wang Y, Khan SK, Xu M, Lin W, Alatrakchi N, Su L, Chung RT, Salloum S. YAP mediates HIV-related liver fibrosis. JHEP Rep 2024; 6:101163. [PMID: 39524207 PMCID: PMC11544392 DOI: 10.1016/j.jhepr.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background & Aims HIV accelerates liver fibrosis attributable to multiple etiologies, including HCV, HBV, and steatotic liver disease. Evidence also suggests that HIV infection itself is associated with liver fibrogenesis. Recent studies have implicated Yes-associated protein 1 (YAP1) and the upstream lysophosphatidic acid (LPA)/PI3K/AKT pathway as critical regulators of hepatic fibrogenesis, and suggest a connection to HIV-related liver fibrosis. However, the relationship between YAP/PI3K/AKT pathway activation and HIV-related liver fibrosis remains uncertain. Methods qPCR, western blot, immunofluorescence, and ELISA (replicates n ≥3) were performed in an unbiased humanized mouse model (NRG-hu HSC mice, n = 6), the precision cut liver slice ex vivo model, and both traditional in vitro models as well as a 3D spheroid system. Results YAP target gene mRNA and protein levels (ANKRD, CTGF, CYR61) were upregulated across all models exposed to HIV. Humanized mice infected with HIV had significant increases in the percentage of YAP-positive nuclei (2.2-fold) and the percentage area of Sirius Red collagen staining (3.3-fold) compared to control mice. Serum concentrations of LPA were increased 5.8-fold in people living with HIV compared to healthy controls. Modulation of LPAR1, PI3K, and AKT by either inhibitors or small-interfering RNAs abrogated the fibrotic effects of HIV exposure and downregulated YAP target genes within cultured liver cells. Conclusions The LPAR/PI3K/AKT axis is vital for the activation of YAP and hepatic fibrogenesis due to HIV infection. This novel mechanistic insight suggests new pharmacologic targets for treatment of liver fibrosis in people living with HIV. Impact and implications There are currently no FDA-approved treatments for cirrhosis, while liver disease is the second leading cause of mortality among people living with HIV after AIDS. Increased lysophosphatidic acid concentrations and AKT activation after HIV infection found in recent work suggest that the Hippo pathway may be a key regulator of HIV-related fibrogenesis. By linking lysophosphatidic acid signaling, YAP activation, and HIV-related fibrogenesis, this mechanism presents a target for future research into therapeutic interventions for not only HIV but also other liver diseases, e.g. metabolic dysfunction- or alcohol-associated liver disease.
Collapse
Affiliation(s)
- Volney A. Spalding
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Brian A. Fellenstein
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - James Ahodantin
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andre J. Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Yongtao Wang
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sanjoy K. Khan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Min Xu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Nadia Alatrakchi
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
4
|
Xu Y, Hu P, Chen W, Chen J, Liu C, Zhang H. Testicular fibrosis pathology, diagnosis, pathogenesis, and treatment: A perspective on related diseases. Andrology 2024. [PMID: 39330621 DOI: 10.1111/andr.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Testicular fibrosis is a chronic and progressive condition characterized by the excessive deposition of extracellular matrix proteins. This process leads to fibrotic remodeling, damage to testicular tissue, and the irreversible loss of male reproductive function. However, there is currently a lack of comprehensive reviews systematically elucidating the pathology, diagnosis, pathogenesis, and treatment of testicular fibrosis from the perspectives of different related diseases. This review addresses these aspects of testicular fibrosis, with a particular emphasis on elucidating the underlying mechanisms of testicular cells. It provides insights that can be relevant for future research and clinical interventions.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Shera S, Katzka W, Yang JC, Chang C, Arias-Jayo N, Lagishetty V, Balioukova A, Chen Y, Dutson E, Li Z, Mayer EA, Pisegna JR, Sanmiguel C, Pawar S, Zhang D, Leitman M, Hernandez L, Jacobs JP, Dong TS. Bariatric-induced microbiome changes alter MASLD development in association with changes in the innate immune system. Front Microbiol 2024; 15:1407555. [PMID: 39184030 PMCID: PMC11342267 DOI: 10.3389/fmicb.2024.1407555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 25% of the population and is the leading cause for liver-related mortality. Bariatric surgery is a well-known treatment for MASLD and obesity. Understanding the fundamental mechanisms by which bariatric surgery can alter MASLD can lead to new avenues of therapy and research. Previous studies have identified the microbiome's role in bariatric surgery and in inflammatory immune cell populations. The host innate immune system modulates hepatic inflammation and fibrosis, and thus the progression of MASLD. The precise role of immune cell types in the pathogenesis of MASLD remains an active area of investigation. The aim of this study was to understand the interplay between microbiota composition post-bariatric surgery and the immune system in MASLD. Methods Eighteen morbidly obese females undergoing sleeve gastrectomy were followed pre-and post-surgery. Stool from four patients, showing resolved MASLD post-surgery with sustained weight loss, was transplanted into antibiotic treated mice. Mice received pre-or post-surgery stool and were fed a standard or high-fat diet. Bodyweight, food intake, and physiological parameters were tracked weekly. Metabolic parameters were measured post-study termination. Results The human study revealed that bariatric surgery led to significant weight loss (p > 0.05), decreased inflammatory markers, and improved glucose levels six months post-surgery. Patients with weight loss of 20% or more showed distinct changes in blood metabolites and gut microbiome composition, notably an increase in Bacteroides. The mouse model confirmed surgery-induced microbiome changes to be a major factor in the reduction of markers and attenuation of MASLD progression. Mice receiving post-surgery fecal transplants had significantly less weight gain and liver steatosis compared to pre-surgery recipients. There was also a significant decrease in inflammatory cytokines interferon gamma, interleukin 2, interleukin 15, and mig. This was accompanied by alterations in liver immunophenotype, including an increase in natural killer T cells and reduction of Kupfer cells in the post-surgery transplant group. Discussion Our findings suggest surgery induced microbial changes significantly reduce inflammatory markers and fatty liver progression. The results indicate a potential causal link between the microbiome and the host immune system, possibly mediated through modulation of liver NKT and Kupffer cells.
Collapse
Affiliation(s)
- Simer Shera
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - William Katzka
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Julianne C. Yang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Candace Chang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nerea Arias-Jayo
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anna Balioukova
- Department of Surgery, UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yijun Chen
- Department of Surgery, UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Erik Dutson
- Department of Surgery, UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Zhaoping Li
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- UCLA Center for Human Nutrition, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emeran A. Mayer
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph R. Pisegna
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Claudia Sanmiguel
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shrey Pawar
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David Zhang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Madelaine Leitman
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Laura Hernandez
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tien S. Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Zhu Y, Yu M, Aisikaer M, Zhang C, He Y, Chen Z, Yang Y, Han R, Li Z, Zhang F, Ding J, Lu X. Contriving a novel of CHB therapeutic vaccine based on IgV_CTLA-4 and L protein via immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6323-6341. [PMID: 37424209 DOI: 10.1080/07391102.2023.2234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chronic infection induced by immune tolerance to hepatitis B virus (HBV) is one of the most common causes of hepatic cirrhosis and hepatoma. Fortunately, the application of therapeutic vaccine can not only reverse HBV-tolerance, but also serve a potentially effective therapeutic strategy for treating chronic hepatitis B (CHB). However, the clinical effect of the currently developed CHB therapeutic vaccine is not optimistic due to the weak immunogenicity. Given that the human leukocyte antigen CTLA-4 owns strong binding ability to the surface B7 molecules (CD80 and CD86) of antigen presenting cell (APCs), the immunoglobulin variable region of CTLA-4 (IgV_CTLA-4) was fused with the L protein of HBV to contrive a novel therapeutic vaccine (V_C4HBL) for CHB in this study. We found that the addition of IgV_CTLA-4 did not interfere with the formation of L protein T cell and B cell epitopes after analysis by means of immunoinformatics approaches. Meanwhile, we also found that the IgV_CTLA-4 had strong binding force to B7 molecules through molecular docking and molecular dynamics (MD) simulation. Notably, our vaccine V_C4HBL showed good immunogenicity and antigenicity by in vitro and in vivo experiments. Therefore, the V_C4HBL is promising to again effectively activate the cellular and humoral immunity of CHB patients, and provides a potentially effective therapeutic strategy for the treatment of CHB in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Maierhaba Aisikaer
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Chuntao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Yinyin Yang
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Rui Han
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Xiaobo Lu
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Spera AM, Pagliano P, Conti V. Hepatitis C virus eradication in people living with human immunodeficiency virus: Where are we now? World J Hepatol 2024; 16:661-666. [PMID: 38818300 PMCID: PMC11135269 DOI: 10.4254/wjh.v16.i5.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Hepatitis C virus (HCV)/human immunodeficiency virus (HIV) co-infection still involves 2.3 million patients worldwide of the estimated 37.7 million living with HIV, according to World Health Organization. People living with HIV (PLWH) are six times greater affected by HCV, compared to HIV negative ones; the greater prevalence is encountered among people who inject drugs and men who have sex with men: the risk of HCV transmission through sexual contact in this setting can be increased by HIV infection. These patients experience a high rate of chronic hepatitis, which if left untreated progresses to end-stage liver disease and hepatocellular carcinoma (HCC) HIV infection increases the risk of mother to child vertical transmission of HCV. No vaccination against both infections is still available. There is an interplay between HIV and HCV infections. Treatment of HCV is nowadays based on direct acting antivirals (DAAs), HCV treatment plays a key role in limiting the progression of liver disease and reducing the risk of HCC development in mono- and coinfected individuals, especially when used at an early stage of fibrosis, reducing liver disease mortality and morbidity. Since the sustained virological response at week 12 rates were observed in PLWH after HCV eradication, the AASLD has revised its simplified HCV treatment algorithm to also include individuals living with HIV. HCV eradication can determine dyslipidemia, since HCV promotes changes in serum lipid profiles and may influence lipid metabolism. In addition to these apparent detrimental effects on the lipid profile, the efficacy of DAA in HCV/HIV patients needs to be considered in light of its effects on glucose metabolism mediated by improvements in liver function. The aim of the present editorial is to describe the advancement in HCV treatment among PLWH.
Collapse
Affiliation(s)
- Anna Maria Spera
- Infectious Disease Unit, Universitary Hospital OORR San Giovanni di Dio e Ruggi d'Aragona, Salerno 84131, Italy.
| | - Pasquale Pagliano
- Department of Infectious Diseases, University of Salerno, Salerno 84131, Italy
| | - Valeria Conti
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno 84131, Italy
| |
Collapse
|
8
|
Johansson E, Nazziwa J, Freyhult E, Hong MG, Lindman J, Neptin M, Karlson S, Rezeli M, Biague AJ, Medstrand P, Månsson F, Norrgren H, Esbjörnsson J, Jansson M. HIV-2 mediated effects on target and bystander cells induce plasma proteome remodeling. iScience 2024; 27:109344. [PMID: 38500818 PMCID: PMC10945182 DOI: 10.1016/j.isci.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Despite low or undetectable plasma viral load, people living with HIV-2 (PLWH2) typically progress toward AIDS. The driving forces behind HIV-2 disease progression and the role of viremia are still not known, but low-level replication in tissues is believed to play a role. To investigate the impact of viremic and aviremic HIV-2 infection on target and bystander cell pathology, we used data-independent acquisition mass spectrometry to determine plasma signatures of tissue and cell type engagement. Proteins derived from target and bystander cells in multiple tissues, such as the gastrointestinal tract and brain, were detected at elevated levels in plasma of PLWH2, compared with HIV negative controls. Moreover, viremic HIV-2 infection appeared to induce enhanced release of proteins from a broader range of tissues compared to aviremic HIV-2 infection. This study expands the knowledge on the link between plasma proteome remodeling and the pathological cell engagement in tissues during HIV-2 infection.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jacob Lindman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Neptin
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Sara Karlson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Melinda Rezeli
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | | | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marianne Jansson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - for the SWEGUB CORE group
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
- National Public Health Laboratory, Bissau, Guinea-Bissau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Ferreira EA, Clements JE, Veenhuis RT. HIV-1 Myeloid Reservoirs - Contributors to Viral Persistence and Pathogenesis. Curr HIV/AIDS Rep 2024; 21:62-74. [PMID: 38411842 DOI: 10.1007/s11904-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.
Collapse
Affiliation(s)
- Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
10
|
Lei Y, Yu H, Ding S, Liu H, Liu C, Fu R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024; 10:e25937. [PMID: 38434326 PMCID: PMC10907738 DOI: 10.1016/j.heliyon.2024.e25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Activating transcription factor 6 (ATF6), an important signaling molecule in unfolded protein response (UPR), plays a role in the pathogenesis of several diseases, including diseases such as congenital retinal disease, liver fibrosis and ankylosing spondylitis. After endoplasmic reticulum stress (ERS), ATF6 is activated after separation from binding immunoglobulin protein (GRP78/BiP) in the endoplasmic reticulum (ER) and transported to the Golgi apparatus to be hydrolyzed by site 1 and site 2 proteases into ATF6 fragments, which localize to the nucleus and regulate the transcription and expression of ERS-related genes. In these diseases, ERS leads to the activation of UPR, which ultimately lead to the occurrence and development of diseases by regulating the physiological state of cells through the ATF6 signaling pathway. Here, we discuss the evidence for the pathogenic importance of ATF6 signaling in different diseases and discuss preclinical results.
Collapse
Affiliation(s)
| | | | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
11
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
12
|
Yendewa GA, Khazan A, Jacobson JM. Risk Stratification of Advanced Fibrosis in Patients With Human Immunodeficiency Virus and Hepatic Steatosis Using the Fibrosis-4, Nonalcoholic Fatty Liver Disease Fibrosis, and BARD Scores. Open Forum Infect Dis 2024; 11:ofae014. [PMID: 38379565 PMCID: PMC10878060 DOI: 10.1093/ofid/ofae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) and subsequent progression to fibrosis is increasingly prevalent in people with HIV (PWH). We used noninvasive methods to stratify risk and identify associated factors of advanced fibrosis in PWH with NAFLD. Methods We conducted a retrospective study of PWH in our clinic from 2005 to 2022. We used liver imaging or biopsy reports to identify cases of hepatic steatosis after excluding specified etiologies. We used the Fibrosis-4 (FIB-4), NAFLD Fibrosis (NFS), and body mass index, aspartate transaminase/alanine transaminase ratio, and diabetes score scores to stratify fibrosis. We used logistic regression to identify factors associated with advanced fibrosis. Results Among 3959 PWH in care, 1201 had available imaging or liver biopsies. After exclusions, 114 of 783 PWH had evidence of hepatic steatosis (14.6%). Most were male (71.1%), with a median age of 47 years, and median body mass index of 30.1 kg/m2. Approximately 24% had lean NAFLD (ie, body mass index < 25 kg/m2). Based on the FIB-4 and NFS, 34 (29.8%) and 36 (31.6%) had advanced fibrosis, whereas 1 in 4 had low risk of fibrosis based on FIB-4, NFS, and BARD scores. In adjusted analysis using FIB-4, advanced fibrosis was associated with age > 45 years (adjusted odds ratio, 6.29; 95% confidence interval, 1.93-20.50) and hypoalbuminemia (adjusted odds ratio, 9.45; 95% confidence interval, 2.45-32.52) in addition to elevated transaminases and thrombocytopenia, whereas using the NFS did not identify associations with advanced fibrosis. Conclusions We found 14.6% of PWH had NAFLD, with 1 in 3 having advanced fibrosis. Our study provides practical insights into fibrosis risk stratification in HIV primary care settings.
Collapse
Affiliation(s)
- George A Yendewa
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ana Khazan
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeffrey M Jacobson
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
15
|
Kim JM, Jung IA, Kim JM, Choi MH, Yang JH. Anti-Inflammatory Effect of Cinnamomum japonicum Siebold's Leaf through the Inhibition of p38/JNK/AP-1 Signaling. Pharmaceuticals (Basel) 2023; 16:1402. [PMID: 37895873 PMCID: PMC10610235 DOI: 10.3390/ph16101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Cinnamomum japonicum Siebold (CJ) branch bark, commonly known as Japanese cinnamon, has been used for various culinary and medicinal applications for many centuries. Although the efficacy of CJ branch bark's anti-inflammatory and antioxidant activity for the treatment of various diseases has been confirmed, the efficacy of CJ leaves (CJLs) has not been examined. We therefore investigated whether CJL3, an ethyl acetate extract of a 70% ethanol CJL extract, exerts anti-inflammatory effects on lipopolysaccharide (LPS)-activated Kupffer cells, specialized macrophages found in the liver. Liver inflammation can activate Kupffer cells, inducing the release of pro-inflammatory molecules that contribute to tissue damage. We found that CJL3 has high 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical-scavenging activity. Among the CJL extracts, CJL3 exhibited the greatest polyphenol content, with protocatechuic acid and 4-hydroxybenzoic acid being the most abundant. In addition, we verified that CJL3, which has strong antioxidant properties, ameliorates LPS-induced pro-inflammatory responses by inhibiting p38/JNK/AP-1 signaling. CJL3 therefore has potential for treating liver disease, including hepatitis.
Collapse
Affiliation(s)
- Ji Min Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea; (J.M.K.); (I.A.J.); (J.M.K.)
| | - In A Jung
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea; (J.M.K.); (I.A.J.); (J.M.K.)
| | - Jae Min Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea; (J.M.K.); (I.A.J.); (J.M.K.)
| | - Moon-Hee Choi
- Department of Biochemical Engineering, College of Engineering, Chosun University, Gwangju 61452, Republic of Korea
- Sumsumbio Co., Ltd., Jangseong-gun 57248, Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea; (J.M.K.); (I.A.J.); (J.M.K.)
| |
Collapse
|
16
|
Seo HY, Lee SH, Park JY, Han E, Han S, Hwang JS, Kim MK, Jang BK. Lobeglitazone inhibits LPS-induced NLRP3 inflammasome activation and inflammation in the liver. PLoS One 2023; 18:e0290532. [PMID: 37616215 PMCID: PMC10449201 DOI: 10.1371/journal.pone.0290532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Liver inflammation is a common feature of chronic liver disease and is often associated with increased exposure of the liver to lipopolysaccharide (LPS). Kupffer cells (KCs) are macrophages in the liver and produce various cytokines. Activation of KCs through the NLRP3 inflammasome pathway leads to release of proinflammatory cytokines and induces hepatocyte injury and hepatic stellate cell (HSC) activation. Lobeglitazone is a peroxisome proliferator-activated receptor gamma ligand and a type of thiazolidinedione that elicits anti-inflammatory effects. However, there is no clear evidence that it has direct anti-inflammatory effects in the liver. This study showed that lobeglitazone reduces LPS-induced NLPR3 inflammasome activation and production of proinflammatory cytokines in primary KCs and hepatocytes. Cytokines secreted by activated KCs increased hepatocyte inflammation and HSC activation, and lobeglitazone inhibited these responses. In addition, lobeglitazone suppressed liver fibrosis by inhibiting LPS-induced transforming growth factor (TGF)-β secretion and TGF-β-induced CTGF expression. The inhibitory effect of lobeglitazone on inflammasome activation was associated with suppression of liver fibrosis. These results suggest that lobeglitazone may be a treatment option for inflammation and fibrosis in the liver.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Ji Yeon Park
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Eugene Han
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Sol Han
- Department of Physiology, University of Washington, Seattle, WA, United States of America
| | - Jae Seok Hwang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| |
Collapse
|
17
|
YENDEWA GA, KHAZAN A, JACOBSON JM. Risk Stratification of Advanced Fibrosis in HIV Patients With Hepatic Steatosis Using the NAFLD Fibrosis and BARD Scores. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.07.23292294. [PMID: 37461460 PMCID: PMC10350145 DOI: 10.1101/2023.07.07.23292294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is increasingly prevalent in people with HIV (PWH), yet the risk factors for disease progression are poorly understood, due to inadequate surveillance. We employed non-invasive methods to estimate the prevalence and associated factors of advanced NAFLD in PWH. Methods We conducted a retrospective study of PWH enrolled in our clinic from 2005 to 2022. We employed imaging (ultrasound, computer tomography, magnetic resonance imaging, and transient elastography) or biopsy reports to identify cases of hepatic steatosis. We excluded patients with harmful alcohol use, hepatitis B or C infection, and other specified etiologies. We used the NAFLD Fibrosis Score (NFS), BARD Score, AST to Platelet Index (APRI), and Fibrosis-4 (FIB-4) Score to stratify fibrosis. We used logistic regression to identify predictors of advanced fibrosis. Results Among 3959 PWH in care, 1201 had available imaging or liver biopsies. After exclusions, 114 of the remaining 783 had evidence of hepatic steatosis (prevalence 14.6%). The majority were male (71.1%), with mean age 46.1 years, and mean body mass index (BMI) 31.4 ± 8.1 kg/m2. About 24% had lean NAFLD (BMI < 25 kg/m2). Based on the NFS, 27.2% had advanced fibrosis, which was corroborated by estimates from the other scores. In adjusted regression analysis, advanced fibrosis was associated with BMI > 35 kg/m2 (4.43, 1.27-15.48), thrombocytopenia (4.85, 1.27-18.62) and hypoalbuminemia (9.01, 2.39-33.91). Conclusion We found a NAFLD prevalence of 14.6%, with 27.2% of cases having advanced fibrosis. Our study provides practical insights into the surveillance of NAFLD in PWH.
Collapse
Affiliation(s)
- George A. YENDEWA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ana KHAZAN
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeffrey M. JACOBSON
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci 2023; 24:ijms24119677. [PMID: 37298632 DOI: 10.3390/ijms24119677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of metabolic-related disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (DM2), has been increasing. Therefore, developing improved methods for the prevention, treatment, and detection of these two conditions is also necessary. In this study, our primary focus was on examining the role of chronic inflammation as a potential link in the pathogenesis of these diseases and their interconnections. A comprehensive search of the PubMed database using keywords such as "non-alcoholic fatty liver disease", "type 2 diabetes mellitus", "chronic inflammation", "pathogenesis", and "progression" yielded 177 relevant papers for our analysis. The findings of our study revealed intricate relationships between the pathogenesis of NAFLD and DM2, emphasizing the crucial role of inflammatory processes. These connections involve various molecular functions, including altered signaling pathways, patterns of gene methylation, the expression of related peptides, and up- and downregulation of several genes. Our study is a foundational platform for future research into the intricate relationship between NAFLD and DM2, allowing for a better understanding of the underlying mechanisms and the potential for introducing new treatment standards.
Collapse
Affiliation(s)
- Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Mateusz Kobierecki
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Andrzej Wittczak
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kasper Sipowicz
- Department of Interdisciplinary Disability Studies, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
19
|
Ruta S, Grecu L, Iacob D, Cernescu C, Sultana C. HIV-HBV Coinfection-Current Challenges for Virologic Monitoring. Biomedicines 2023; 11:biomedicines11051306. [PMID: 37238976 DOI: 10.3390/biomedicines11051306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
HIV-HBV coinfected patients have higher rates of liver-related morbidity, hospitalizations, and mortality compared to HBV or HIV mono-infected ones. Clinical studies have shown an accelerated progression of liver fibrosis and an increased incidence of HCC, resulting from the combined action of HBV replication, immune-mediated hepatocytolysis, and HIV-induced immunosuppression and immunosenescence. Antiviral therapy based on dually active antiretrovirals is highly efficient, but late initiation, global disparities in accessibility, suboptimal regimens, and adherence issues may limit its impact on the development of end-stage liver disease. In this paper, we review the mechanisms of liver injuries in HIV-HBV coinfected patients and the novel biomarkers that can be used for treatment monitoring in HIV-HBV coinfected persons: markers that assess viral suppression, markers for liver fibrosis evaluation, and predictors of oncogenesis.
Collapse
Affiliation(s)
- Simona Ruta
- Virology Discipline, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Emerging Viral Diseases, "Stefan S. Nicolau" Institute of Virology, 030304 Bucharest, Romania
| | - Laura Grecu
- Department of Emerging Viral Diseases, "Stefan S. Nicolau" Institute of Virology, 030304 Bucharest, Romania
| | - Diana Iacob
- Department for the Prevention and Control of Healthcare Associated Infections, Emergency University Hospital, 050098 Bucharest, Romania
| | | | - Camelia Sultana
- Virology Discipline, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Emerging Viral Diseases, "Stefan S. Nicolau" Institute of Virology, 030304 Bucharest, Romania
| |
Collapse
|
20
|
Oliveria decumbens Extract Exhibits Hepatoprotective Effects Against Bile Duct Ligation-Induced Liver Injury in Rats by Reducing Oxidative Stress. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Cholestasis is described as a disease in which bile flow from the liver is reduced or stopped, and due to its oxidative effects, irreversible consequences may occur. Due to the remarkable antioxidant properties of Oliveria decumbens (OD) and the contribution of oxidants to the progression of bile duct ligation (BDL)-induced cholestasis, Objectives: This research aimed to examine how the OD ethanolic extract affected liver damage and oxidant-antioxidant balance markers in BDL-induced cholestasis. Methods: Forty male Wistar rats weighing 200 - 250 g were used. Cholestasis was induced using the BDL approach. The rats were categorized into four groups: Group 1, sham control (SC); group 2, cholestatic; group 3, SC + OD; and group 4, cholestatic + OD. A dose of OD ethanolic extract was administered orally (500 mg/kg/day) to rats for seven days. Seven days following surgery, the rats’ blood samples were collected; after sacrifice, a part of the liver tissue was isolated. A histopathological examination was performed, while the rest was stored at -70°C in liquid nitrogen. Heparin-containing tubes were used to gather blood samples. In plasma and hepatic tissue, biochemical tests, histopathological evaluations, and oxidative stress markers staining levels were performed. Results: Our findings showed that OD could effectively reduce liver injury by reducing the activity of liver function enzymes (AST and ALP). At the same time, it did not affect total bilirubin and protein. Bile duct ligation-induced hepatic markers of protein oxidation (PCO) and reactive nitrogen species (NO) were significantly decreased by OD, and it also promoted liver antioxidant capacity by enhancing superoxide dismutase (SOD) activities. Moreover, OD treatment prevented liver bile duct proliferative changes in histopathologic analysis. Conclusions: Our study confirmed that OD exerts substantial hepatoprotective activities against BDL-induced cholestasis by improving liver damage markers and regulating oxidative stress. It may be a beneficial therapeutic agent for managing cholestasis. Bioassay-guided isolation and identification of bioactive OD secondary metabolites can further direct the discovery of potential natural-based drug candidates.
Collapse
|
21
|
CX08005, a Protein Tyrosine Phosphatase 1B Inhibitor, Attenuated Hepatic Lipid Accumulation and Microcirculation Dysfunction Associated with Nonalcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2023; 16:ph16010106. [PMID: 36678603 PMCID: PMC9863901 DOI: 10.3390/ph16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the common metabolic diseases characterized by hepatic lipid accumulation. Insulin resistance and microcirculation dysfunction are strongly associated with NAFLD. CX08005, an inhibitor of PTP1B with the IC50 of 0.75 ± 0.07 μM, has been proven to directly enhance insulin sensitivity. The present study aimed to investigate the effects of CX08005 on hepatic lipid accumulation and microcirculation dysfunction in both KKAy mice and diet-induced obesity (DIO) mice. Hepatic lipid accumulation was evaluated by hepatic triglyceride determination and B-ultrasound analysis in KKAy mice. Insulin sensitivity and blood lipids were assessed by insulin tolerance test (ITT) and triglyceride (TG)/total cholesterol (TC) contents, respectively. In addition, the hepatic microcirculation was examined in DIO mice by in vivo microscopy. The results showed that CX08005 intervention significantly reduced the TG and echo-intensity attenuation coefficient in the livers of KKAy mice. Furthermore, we found that CX08005 treatment significantly enhanced insulin sensitivity, and decreased plasma TG and/or TC contents in KKAy and DIO mice, respectively. In addition, CX08005 treatment ameliorated hepatic microcirculation dysfunction in DIO mice, as evidenced by increased RBCs velocity and shear rate of the blood flow in central veins and in the interlobular veins, as well as enhanced rate of perfused hepatic sinusoids in central vein area. Additionally, CX08005 administration decreased the adhered leukocytes both in the center veins and in the hepatic sinusoids area. Taken together, CX08005 exhibited beneficial effects on hepatic lipid accumulation and microcirculation dysfunction associated with NAFLD, which was involved with modulating insulin sensitivity and leukocyte recruitment, as well as restoration of normal microcirculatory blood flow.
Collapse
|
22
|
Yang Zhou J. Innate immunity and early liver inflammation. Front Immunol 2023; 14:1175147. [PMID: 37205101 PMCID: PMC10187146 DOI: 10.3389/fimmu.2023.1175147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The innate system constitutes a first-line defence mechanism against pathogens. 80% of the blood supply entering the human liver arrives from the splanchnic circulation through the portal vein, so it is constantly exposed to immunologically active substances and pathogens from the gastrointestinal tract. Rapid neutralization of pathogens and toxins is an essential function of the liver, but so too is avoidance of harmful and unnecessary immune reactions. This delicate balance of reactivity and tolerance is orchestrated by a diverse repertoire of hepatic immune cells. In particular, the human liver is enriched in many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells - namely Natural Killer T cells (NKT), γδ T cells and Mucosal-associated Invariant T cells (MAIT). These cells reside in the liver in a memory-effector state, so they respond quickly to trigger appropriate responses. The contribution of aberrant innate immunity to inflammatory liver diseases is now being better understood. In particular, we are beginning to understand how specific innate immune subsets trigger chronic liver inflammation, which ultimately results in hepatic fibrosis. In this review, we consider the roles of specific innate immune cell subsets in early inflammation in human liver disease.
Collapse
Affiliation(s)
- Jordi Yang Zhou
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- *Correspondence: Jordi Yang Zhou,
| |
Collapse
|
23
|
Joseph J, Daley W, Lawrence D, Lorenzo E, Perrin P, Rao VR, Tsai SY, Varthakavi V. Role of macrophages in HIV pathogenesis and cure: NIH perspectives. J Leukoc Biol 2022; 112:1233-1243. [PMID: 36073341 DOI: 10.1002/jlb.4mr0722-619r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages play a significant role in HIV infection and contribute to pathogenesis of comorbidities as well as establishment of the viral reservoir in people living with HIV. While CD4+ T cells are considered the main targets of HIV infection, infected macrophages resist the cytopathic effects of infection, contributing to the persistent HIV reservoir. Furthermore, activated macrophages drive inflammation and contribute to the development of comorbidities, including HIV-associated CNS dysfunction. Better understanding the role of macrophages in HIV infection, persistence, and comorbidities can lead to development of innovative therapeutic strategies to address HIV-related outcomes in people living with HIV. In October 2021, the National Institute of Mental Health and the Ragon Institute of MGH, MIT, and Harvard conducted a virtual meeting on role of macrophages in HIV infection, pathogenesis, and cure. This review article captures the key highlights from this meeting and provides an overview of interests and activities of various NIH institutes involved in supporting research on macrophages and HIV.
Collapse
Affiliation(s)
- Jeymohan Joseph
- Division of AIDS Research, National Institute of Mental Health, 5601 Fishers Lane, Bethesda, MD, USA
| | - William Daley
- Neuroscience Center, National Institute of Neurological Disorders and Stroke, Room 6001 Executive Blvd., Bethesda, MD, 20892-9521, USA.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Diane Lawrence
- National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, Bethesda, MD, 20892, USA
| | - Eric Lorenzo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Peter Perrin
- National Institute of Diabetes and Digestive and Kidney Diseases, 6707 Democracy Boulevard, Bethesda, MD, 20892, USA
| | - Vasudev R Rao
- Division of AIDS Research, National Institute of Mental Health, 5601 Fishers Lane, Bethesda, MD, USA
| | - Shang-Yi Tsai
- National Institute on Drug Abuse, 3WFN, 11601 Landsdown Street, North Bethesda, MD, 20852, USA
| | - Vasundhara Varthakavi
- National Institute on Drug Abuse, 3WFN, 11601 Landsdown Street, North Bethesda, MD, 20852, USA
| |
Collapse
|
24
|
Lee J, Kim CM, Cha JH, Park JY, Yu YS, Wang HJ, Sung PS, Jung ES, Bae SH. Multiplexed Digital Spatial Protein Profiling Reveals Distinct Phenotypes of Mononuclear Phagocytes in Livers with Advanced Fibrosis. Cells 2022; 11:3387. [PMID: 36359782 PMCID: PMC9654480 DOI: 10.3390/cells11213387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 07/29/2023] Open
Abstract
Background and Aims: Intrahepatic mononuclear phagocytes (MPs) are critical for the initiation and progression of liver fibrosis. In this study, using multiplexed digital spatial protein profiling, we aimed to derive a unique protein signature predicting advanced liver fibrosis. Methods: Snap-frozen liver tissues from various chronic liver diseases were subjected to spatially defined protein-based multiplexed profiling (Nanostring GeoMXTM). A single-cell RNA sequencing analysis was performed using Gene Expression Omnibus (GEO) datasets from normal and cirrhotic livers. Results: Sixty-four portal regions of interest (ROIs) were selected for the spatial profiling. Using the results from the CD68+ area, a highly sensitive and specific immune-related protein signature (CD68, HLA-DR, OX40L, phospho-c-RAF, STING, and TIM3) was developed to predict advanced (F3 and F4) fibrosis. A combined analysis of single-cell RNA sequencing data from GEO datasets (GSE136103) and spatially-defined, protein-based multiplexed profiling revealed that most proteins upregulated in F0-F2 livers in portal CD68+ cells were specifically marked in tissue monocytes, whereas proteins upregulated in F3 and F4 livers were marked in scar-associated macrophages (SAMacs) and tissue monocytes. Internal validation using mRNA expression data with the same cohort tissues demonstrated that mRNA levels for TREM2, CD9, and CD68 are significantly higher in livers with advanced fibrosis. Conclusions: In patients with advanced liver fibrosis, portal MPs comprise of heterogeneous populations composed of SAMacs, Kupffer cells, and tissue monocytes. This is the first study that used spatially defined protein-based multiplexed profiling, and we have demonstrated the critical difference in the phenotypes of portal MPs between livers with early- or late-stage fibrosis.
Collapse
Affiliation(s)
- Jaejun Lee
- Department of Internal Medicine, Armed Forces Goyang Hospital, Goyang 10267, Korea
- The Catholic University Liver Research Center, Department of Biomedical Science, The Graduates School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Jung Hoon Cha
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Yun Suk Yu
- CbsBioscience, Inc., Daejeon 34036, Korea
| | - Hee Jung Wang
- Department of Surgery, Inje University Haeundae Paik Hospital, Busan 48108, Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Sun Jung
- Department of Hospital pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03383, Korea
| |
Collapse
|
25
|
Seo HY, Lee SH, Han E, Hwang JS, Han S, Kim MK, Jang BK. Evogliptin Directly Inhibits Inflammatory and Fibrotic Signaling in Isolated Liver Cells. Int J Mol Sci 2022; 23:ijms231911636. [PMID: 36232933 PMCID: PMC9569597 DOI: 10.3390/ijms231911636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic liver inflammation can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Kupffer cells (KC) secrete proinflammatory and fibrogenic cytokines in response to lipopolysaccharide (LPS), and so play an important role in liver inflammation, where they induce hepatocellular damage. LPS also activates hepatic stellate cells and induces extracellular matrix deposition. In this study, we used isolated primary KC, primary hepatocytes, and primary hepatic stellate cells (HSC) to investigate whether evogliptin directly inhibits inflammatory and fibrotic signaling. We found that evogliptin inhibited LPS-induced secretion of inducible nitric oxide synthase and transforming growth factor β (TGF-β) from KC. Moreover, evogliptin inhibited inflammatory mediator release from hepatocytes and hepatic stellate cell activation that were induced by KC-secreted cytokines. In hepatocytes, evogliptin also inhibited LPS-induced expression of proinflammatory cytokines and fibrotic TGF-β. In addition, evogliptin inhibited TGF-β-induced increases in connective tissue growth factor levels and HSC activation. These findings indicate that evogliptin inhibits inflammatory and fibrotic signaling in liver cells. We also showed that the inhibitory effect of evogliptin on inflammatory and fibrotic signaling is associated with the induction of autophagy.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - Eugene Han
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - Jae Seok Hwang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - Sol Han
- Department of Physiology, University of Washington, Seattle, WA 98195, USA
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
- Correspondence: (M.K.K.); (B.K.J.); Tel.: +82-53-258-7730 (M.K.K.); +82-53-258-7720 (B.K.J.)
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
- Correspondence: (M.K.K.); (B.K.J.); Tel.: +82-53-258-7730 (M.K.K.); +82-53-258-7720 (B.K.J.)
| |
Collapse
|
26
|
Improvement of liver metabolic activity in people with advanced HIV after antiretroviral therapy initiation. AIDS 2022; 36:1655-1664. [PMID: 35730393 PMCID: PMC9444912 DOI: 10.1097/qad.0000000000003302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Evaluating hepatic metabolic changes in people with HIV (PWH) with advanced disease, before and after antiretroviral therapy (ART) initiation, using [ 18 F]-fluorodeoxyglucose (FDG) PET-computed tomography (PET/CT). FDG PET/CT noninvasively quantifies glucose metabolism in organs. DESIGN/METHODS Forty-eight viremic PWH (CD4 + cell counts <100 cells/μl) underwent FDG PET/CT at baseline and approximately 6 weeks after ART initiation (short-term). Twenty-seven PWH participants underwent follow-up scans 2 years after treatment (long-term). FDG PET/CT scans from 20 healthy controls were used for comparison. Liver FDG uptake was quantified from the PET/CT scans. Imaging findings as well as clinical, laboratory, and immune markers were compared longitudinally and cross-sectionally to healthy controls. RESULTS Liver FDG uptake was lower at baseline and short-term in PWH compared with controls ( P < 0.0001). At the long-term scan, liver FDG uptake of PWH increased relative to baseline and short-term ( P = 0.0083 and 0.0052) but remained lower than controls' values ( P = 0.004). Changes in FDG uptake correlated negatively with levels of glucagon, myeloperoxidase, sCD14, and MCP-1 and positively with markers of recovery (BMI, albumin, and CD4 + cell counts) ( P < 0.01). In multivariable analyses of PWH values across timepoints, BMI and glucagon were the best set of predictors for liver FDG uptake ( P < 0.0001). CONCLUSION Using FDG PET/CT, we found decreased liver glucose metabolism in PWH that could reflect hepatocytes/lymphocytes/myeloid cell loss and metabolic dysfunction because of inflammation. Although long-term ART seems to reverse many hepatic abnormalities, residual liver injury may still exist within 2 years of treatment initiation, especially in PWH who present with low nadir CD4 + cell counts.
Collapse
|
27
|
He J, Shi R, Duan S, Ye R, Yang Y, Wang J, Zu Z, Tang R, Gao J, Liu X, He N. Microbial translocation is associated with advanced liver fibrosis among people with HIV. HIV Med 2022; 23:947-958. [PMID: 35301782 DOI: 10.1111/hiv.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The prevalence of liver complications is increasing among people living with HIV, and microbial translocation (MT) might play a vital role. We conducted a prospective cohort study to evaluate the association between plasma biomarkers of MT and liver fibrosis (LF) among people living with HIV in southwest China. METHOD A total of 665 people living with HIV were enrolled at baseline and had at least one follow-up visit during the 3-year study period. We calculated the Liver Fibrosis Index (FIB-4) to evaluate LF and measured plasma soluble CD14 (sCD14) and lipopolysaccharide-binding protein (LBP) as surrogate biomarkers for MT. We used ordinal logistic regression to investigate correlates of LF at baseline and used a linear mixed model to examine the association between dynamic changes in MT biomarkers and LF. RESULTS Of the participants, 61 (9.17%) had advanced LF (FIB-4 >3.25), and 193 (29.02%) had moderate LF (1.45 ≤ FIB-4 ≤ 3.25). Patients with advanced LF had higher plasma levels of sCD14 and LBP than those with moderate or no LF, both at baseline and at follow-up. The following factors were significantly associated with advanced LF: the highest quartile of LBP (adjusted odds ratio [aOR] = 1.69; 95% confidence interval [CI] 1.02~2.81), current intravenous drug use (aOR = 1.82; 95% CI 1.06~3.12), baseline CD4 <200 cells/μl (aOR = 3.25; 95% CI 2.13~4.95), hepatitis C virus coinfection (aOR = 2.52; 95% CI 1.41~4.51) and age >50 years (aOR = 32.66; 95% CI 15.89~66.36). LF progression (increasing FIB-4) was significantly associated with increasing sCD14 level (β = 1.11; 95% CI 0.97~1.26; p < 0.001) with covariate adjustment. CONCLUSION The significant relationship between MT and LF may reveal pathogenic mechanisms and potential intervention targets of liver complications among people living with HIV in China.
Collapse
Affiliation(s)
- Jiayu He
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Ruizi Shi
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Song Duan
- Dehong Prefecture Center for Disease Control and Prevention, Shanghai, China
| | - Runhua Ye
- Dehong Prefecture Center for Disease Control and Prevention, Shanghai, China
| | - Yuecheng Yang
- Dehong Prefecture Center for Disease Control and Prevention, Shanghai, China
| | - Jibao Wang
- Dehong Prefecture Center for Disease Control and Prevention, Shanghai, China
| | - Zhipeng Zu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Renhai Tang
- Dehong Prefecture Center for Disease Control and Prevention, Shanghai, China
| | - Jie Gao
- Dehong Prefecture Center for Disease Control and Prevention, Shanghai, China
| | - Xing Liu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Na He
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- Yi-Wu Research Institute, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. Int J Mol Sci 2022; 23:ijms23179868. [PMID: 36077265 PMCID: PMC9456487 DOI: 10.3390/ijms23179868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence:
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
29
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
30
|
Circulating MicroRNAs as a Tool for Diagnosis of Liver Disease Progression in People Living with HIV-1. Viruses 2022; 14:v14061118. [PMID: 35746590 PMCID: PMC9227922 DOI: 10.3390/v14061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding specific cell mRNA targets, preventing their translation. miRNAs are implicated in the regulation of important physiological and pathological pathways. Liver disease, including injury, fibrosis, metabolism dysregulation, and tumor development disrupts liver-associated miRNAs. In addition to their effect in the originating tissue, miRNAs can also circulate in body fluids. miRNA release is an important form of intercellular communication that plays a role in the physiological and pathological processes underlying multiple diseases. Circulating plasma levels of miRNAs have been identified as potential disease biomarkers. One of the main challenges clinics face is the lack of available noninvasive biomarkers for diagnosing and predicting the different stages of liver disease (e.g., nonalcoholic fatty liver disease and nonalcoholic steatohepatitis), particularly among individuals infected with human immunodeficiency virus type 1 (HIV-1). Liver disease is a leading cause of death unrelated to acquired immunodeficiency syndrome (AIDS) among people living with HIV-1 (PLWH). Here, we review and discuss the utility of circulating miRNAs as biomarkers for early diagnosis, prognosis, and assessment of liver disease in PLWH. Remarkably, the identification of dysregulated miRNA expression may also identify targets for new therapeutics.
Collapse
|
31
|
Kouroumalis E, Voumvouraki A. Hepatitis C virus: A critical approach to who really needs treatment. World J Hepatol 2022; 14:1-44. [PMID: 35126838 PMCID: PMC8790391 DOI: 10.4254/wjh.v14.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction of effective drugs in the treatment of hepatitis C virus (HCV) infection has prompted the World Health Organization to declare a global eradication target by 2030. Propositions have been made to screen the general population and treat all HCV carriers irrespective of the disease status. A year ago the new severe acute respiratory syndrome coronavirus 2 virus appeared causing a worldwide pandemic of coronavirus disease 2019 disease. Huge financial resources were redirected, and the pandemic became the first priority in every country. In this review, we examined the feasibility of the World Health Organization elimination program and the actual natural course of HCV infection. We also identified and analyzed certain comorbidity factors that may aggravate the progress of HCV and some marginalized subpopulations with characteristics favoring HCV dissemination. Alcohol consumption, HIV coinfection and the presence of components of metabolic syndrome including obesity, hyperuricemia and overt diabetes were comorbidities mostly responsible for increased liver-related morbidity and mortality of HCV. We also examined the significance of special subpopulations like people who inject drugs and males having sex with males. Finally, we proposed a different micro-elimination screening and treatment program that can be implemented in all countries irrespective of income. We suggest that screening and treatment of HCV carriers should be limited only in these particular groups.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, University of Crete Medical School, Heraklion 71500, Crete, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
32
|
Ouyang J, Zaongo SD, Zhang X, Qi M, Hu A, Wu H, Chen Y. Microbiota-Meditated Immunity Abnormalities Facilitate Hepatitis B Virus Co-Infection in People Living With HIV: A Review. Front Immunol 2022; 12:755890. [PMID: 35069530 PMCID: PMC8770824 DOI: 10.3389/fimmu.2021.755890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) co-infection is fairly common in people living with HIV (PLWH) and affects millions of people worldwide. Identical transmission routes and HIV-induced immune suppression have been assumed to be the main factors contributing to this phenomenon. Moreover, convergent evidence has shown that people co-infected with HIV and HBV are more likely to have long-term serious medical problems, suffer more from liver-related diseases, and have higher mortality rates, compared to individuals infected exclusively by either HIV or HBV. However, the precise mechanisms underlying the comorbid infection of HIV and HBV have not been fully elucidated. In recent times, the human gastrointestinal microbiome is progressively being recognized as playing a pivotal role in modulating immune function, and is likely to also contribute significantly to critical processes involving systemic inflammation. Both antiretroviral therapy (ART)-naïve HIV-infected subjects and ART-treated individuals are now known to be characterized by having gut microbiomic dysbiosis, which is associated with a damaged intestinal barrier, impaired mucosal immunological functioning, increased microbial translocation, and long-term immune activation. Altered microbiota-related products in PLWH, such as lipopolysaccharide (LPS) and short-chain fatty acids (SCFA), have been associated with the development of leaky gut syndrome, favoring microbial translocation, which in turn has been associated with a chronically activated underlying host immune response and hence the facilitated pathogenesis of HBV infection. Herein, we critically review the interplay among gut microbiota, immunity, and HIV and HBV infection, thus laying down the groundwork with respect to the future development of effective strategies to efficiently restore normally diversified gut microbiota in PLWH with a dysregulated gut microbiome, and thus potentially reduce the prevalence of HBV infection in this population.
Collapse
Affiliation(s)
- Jing Ouyang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Miaomiao Qi
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Aizhen Hu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hao Wu
- Department of Infectious Diseases, You'an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
33
|
Reno TA, Tarnus L, Tracy R, Landay AL, Sereti I, Apetrei C, Pandrea I. The Youngbloods. Get Together. Hypercoagulation, Complement, and NET Formation in HIV/SIV Pathogenesis. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.795373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic, systemic T-cell immune activation and inflammation (IA/INFL) have been reported to be associated with disease progression in persons with HIV (PWH) since the inception of the AIDS pandemic. IA/INFL persist in PWH on antiretroviral therapy (ART), despite complete viral suppression and increases their susceptibility to serious non-AIDS events (SNAEs). Increased IA/INFL also occur during pathogenic SIV infections of macaques, while natural hosts of SIVs that control chronic IA/INFL do not progress to AIDS, despite having persistent high viral replication and severe acute CD4+ T-cell loss. Moreover, natural hosts of SIVs do not present with SNAEs. Multiple mechanisms drive HIV-associated IA/INFL, including the virus itself, persistent gut dysfunction, coinfections (CMV, HCV, HBV), proinflammatory lipids, ART toxicity, comorbidities, and behavioral factors (diet, smoking, and alcohol). Other mechanisms could also significantly contribute to IA/INFL during HIV/SIV infection, notably, a hypercoagulable state, characterized by elevated coagulation biomarkers, including D-dimer and tissue factor, which can accurately identify patients at risk for thromboembolic events and death. Coagulation biomarkers strongly correlate with INFL and predict the risk of SNAE-induced end-organ damage. Meanwhile, the complement system is also involved in the pathogenesis of HIV comorbidities. Despite prolonged viral suppression, PWH on ART have high plasma levels of C3a. HIV/SIV infections also trigger neutrophil extracellular traps (NETs) formation that contribute to the elimination of viral particles and infected CD4+ T-cells. However, as SIV infection progresses, generation of NETs can become excessive, fueling IA/INFL, destruction of multiple immune cells subsets, and microthrombotic events, contributing to further tissue damages and SNAEs. Tackling residual IA/INFL has the potential to improve the clinical course of HIV infection. Therefore, therapeutics targeting new pathways that can fuel IA/INFL such as hypercoagulation, complement activation and excessive formation of NETs might be beneficial for PWH and should be considered and evaluated.
Collapse
|
34
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
35
|
Mostafa TM, El-Azab GA, Badra GA, Abdelwahed AS, Elsayed AA. Effect of Candesartan and Ramipril on Liver Fibrosis in Patients with Chronic Hepatitis C Viral Infection: A Randomized Controlled Prospective Study. Curr Ther Res Clin Exp 2021; 95:100654. [PMID: 34925649 PMCID: PMC8649584 DOI: 10.1016/j.curtheres.2021.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/04/2021] [Indexed: 10/28/2022] Open
Abstract
Objective: This study aimed at evaluating the effects of candesartan and ramipril on liver fibrosis in patients with chronic hepatitis C. Methods: This randomized controlled prospective study involved 64 patients with chronic hepatitis C and liver fibrosis. Participants were randomized into 3 groups: group I (control group; n = 21), members of which received traditional therapy only; group 2 (ramipril group; n = 21), members of which received traditional therapy plus 1.25 mg/d oral ramipril; and group 3 (candesartan group; n = 22), members of which received traditional therapy plus 8 mg/d oral candesartan. Patients were assessed at baseline and 6 months after intervention through measuring of liver stiffness (Fibro-Scan; Echosens, Paris, France); evaluation of the serum levels of hyaluronic acid and transforming growth factor beta-1; and calculation of indices of liver fibrosis, including fibrosis index based on the 4 factors and aspartate transaminase-to-platelet-ratio index. Data were analyzed using paired t test and 1-way ANOVA followed by Tukey's honest significant difference test for multiple pairwise comparisons. Results: At baseline, the 3 study groups were statistically similar in demographic and laboratory data. After treatment, the 3 study groups showed significant decrease in liver stiffness, serum levels of hyaluronic acid and transforming growth factor beta-1, and indices of liver fibrosis compared with baseline data (P < 0.001). Six months after treatment, patients taking ramipril and candesartan showed significant improvement in all measured parameters compared with the control group. Additionally, the candesartan-treated group showed significant decrease in liver stiffness, biomarkers, and indices of liver fibrosis compared with ramipril recipients. Conclusions: The administration of ramipril and candesartan in patients with chronic hepatitis C with hepatic fibrosis was well tolerated and effective in improving liver fibrosis. angiotensin II receptor 1 (AT1) antagonist candesartan maintained antifibrotic effects more effectively than ramipril and may represent a safe and effective therapeutic strategy for liver fibrosis in patients with chronic liver diseases. ClinicalTrials.gov identifier: NCT03770936. (Curr Ther Res Clin Exp. 2022; 83:XXX-XXX) © 2022 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Tarek M Mostafa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal A El-Azab
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal A Badra
- National Liver Institute, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Alyaa S Abdelwahed
- National Liver Institute, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Abeer A Elsayed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| |
Collapse
|
36
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
38
|
Wang Q, Zhu X, Li Z, Feng M, Liu X. ATF6 promotes liver fibrogenesis by regulating macrophage-derived interleukin-1α expression. Cell Immunol 2021; 367:104401. [PMID: 34229282 DOI: 10.1016/j.cellimm.2021.104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Macrophages contribute to liver fibrogenesis by the production of a large variety of cytokines. ATF6 is associated with the activation of macrophages. The present study aimed to investigate the role of ATF6 in the expression of macrophage-derived cytokines and liver fibrogenesis after acute liver injury. Following thioacetamide (TAA)-induced acute liver injury, the characteristics of the occurrence of liver fibrosis and the secretion of cytokines by macrophages were first described. Then, the role of various cytokines secreted by macrophages in activating hepatic stellate cells (HSCs) was tested in vitro. Finally, endoplasmic reticulum stress (ER-stress) signals in macrophages were detected following liver injury. siRNA was used to interfere with the expression of ATF6 in macrophages to verify the influence of ATF6 on cytokine expression and liver fibrogenesis after liver injury. A single intraperitoneal injection of TAA induced acute liver injury. The depletion of macrophages attenuated acute liver injury, while it inhibited liver fibrogenesis. During acute liver injury, macrophages secrete a variety of cytokines. Most of these cytokines promoted the activation of HSCs, but the effect of IL-1α was most significant. In the early stage of acute liver injury, ER-stress signals in macrophages were activated. Interference of ATF6 expression suppressed the secretion of cytokines by macrophages and attenuated liver fibrogenesis. Overall, in the early stage of acute liver injury, ATF6 signals promoted the expression of macrophage-derived cytokines to participate in liver fibrogenesis, and IL-1α exhibited the most significant role in promoting the activation of HSCs and liver fibrogenesis.
Collapse
Affiliation(s)
- Quanrongzi Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinya Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zijian Li
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Xisheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|