1
|
Afacan B, Budak U, Altınyürek EE, Özden C, Çevik Ö, Köse T, Emingil G. Gingival crevicular fluid Bax, Bcl-xl, interleukin-22, and transforming growth factor beta 1 levels in stage III periodontitis. J Periodontol 2024. [PMID: 39692450 DOI: 10.1002/jper.24-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 11/09/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Intrinsic apoptosis plays a critical role in immune defense and inflammation. Its dysregulation is involved in various chronic diseases. The B-cell lymphoma 2 (Bcl-2) family primarily mediates this mitochondrial pathway. This study aimed to investigate the proapoptotic Bcl-2-associated X protein (Bax) and antiapoptotic B-cell lymphoma-extra large (Bcl-xl) levels and their association with interleukin-22 (IL-22) and transforming growth factor beta 1 (TGF-β1) in the gingival crevicular fluid (GCF) of patients with periodontitis. METHODS A total of 75 systemically healthy nonsmokers were enrolled, of whom 23 had stage III periodontitis, 26 had gingivitis, and 26 were periodontally healthy. Whole-mouth clinical periodontal measurements were recorded. Bax, Bcl-xl, IL-22, and TGF-β1 levels in the GCF were determined by enzyme-linked immunosorbent assay (ELISA). Data were analyzed using nonparametric statistical tests. RESULTS The periodontitis group had significantly lower GCF Bax levels than the gingivitis group (p < 0.05). The periodontitis and gingivitis groups had higher GCF Bcl-xl levels than the periodontally healthy group (p < 0.05). GCF IL-22 levels were similar in all groups (p > 0.05). The periodontitis group had lower GCF TGF-β1 levels than the gingivitis and periodontally healthy groups (p < 0.05). The diseased groups had a lower GCF Bax/Bcl-xl ratio than the healthy controls (p < 0.05). IL-22 was positively correlated with Bax (p < 0.05). CONCLUSIONS This is the first study investigating GCF Bax and Bcl-xl levels in periodontal health and disease. Increased GCF Bcl-xl levels and a decreased Bax/Bcl-xl ratio in stage III periodontitis implicate that those apoptotic proteins may be involved in the pathogenesis of periodontal disease. Further studies are needed to enlighten the possible role of Bax and Bcl-xl and their association with IL-22 and TGF-β1 in periodontal diseases. PLAIN LANGUAGE SUMMARY A type of cell death called intrinsic apoptosis plays an important role in the body's defense system, and its dysregulation is linked to different human diseases. The B-cell lymphoma 2-associated X protein (Bax) and B-cell lymphoma-extra large (Bcl-xl) are apoptosis-related proteins, which promote and inhibit cell death, respectively. This study aimed to investigate Bax and Bcl-xl levels and their association with the signaling proteins interleukin-22 (IL-22) and transforming growth factor beta 1 (TGF-β1) in the gingival crevicular fluid (GCF), which accumulates around the necks of the teeth of patients suffering from gum diseases such as gingivitis and periodontitis. Clinical parameters were recorded and GCF was collected. Bax, Bcl-xl, IL-22, and TGF-β1 levels were measured by biochemical assay in periodontally healthy individuals who had healthy gums (n = 26) and patients with periodontitis (n = 23) and gingivitis (n = 26). Periodontitis patients had lower Bax levels than gingivitis patients. Periodontitis and gingivitis patients had higher Bcl-xl levels and a lower Bax/Bcl-xl ratio than periodontally healthy individuals. IL-22 was positively correlated with Bax. The present findings suggest that the apoptotic regulatory molecules may be involved in the development of gum diseases, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Utkucan Budak
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ece Erdem Altınyürek
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Can Özden
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İstinye University, İstanbul, Turkey
| |
Collapse
|
2
|
Threatt AN, White J, Klepper N, Brier Z, Dean LS, Ibarra A, Harris M, Jones K, Wahl MJL, Barahona M, Oyewole EO, Pauly M, Moreno JA, Nordgren TM. Aspirin-triggered resolvin D1 modulates pulmonary and neurological inflammation in an IL-22 knock-out organic dust exposure mouse model. Front Immunol 2024; 15:1495581. [PMID: 39776904 PMCID: PMC11705093 DOI: 10.3389/fimmu.2024.1495581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Agriculture dust contains many organic immunogenic compounds, and organic dust exposure is strongly associated with the development of immune-mediated chronic pulmonary diseases such as chronic obstructive pulmonary disease (COPD). Chronic organic dust exposure from agriculture sources induces chronic lung inflammatory diseases and organic dust exposure has recently been linked to an increased risk of developing dementia. The cytokine interleukin-22 (IL-22) has been established as an important mediator in the resolution and repair of lung tissues. The omega-3 fatty acid metabolite aspirin-triggered Resolvin D1 (AT-RvD1) has shown efficacy in modulating the immune response in both pulmonary and neurological inflammation but has not been explored as a therapeutic in organic dust exposure-induced neuroinflammation. Investigating the link between IL-22 and AT-RvD1 may help in developing effective therapies for these immune-mediated diseases. We aimed to investigate the link between organic dust exposure and neuroinflammation, the role of IL-22 in the pulmonary and neurological immune response to organic dust exposure, and the immune-modulating therapeutic applications of AT-RvD1 in an IL-22 knock-out mouse model of organic dust exposure. C57BL/6J (WT) and IL-22 knock-out (KO) mice were repetitively exposed to aqueous agriculture organic dust extract (DE) 5 days per week for 3 weeks (15 total instillations) and treated with AT-RvD1 either once per week (3 total injections) or 5 times per week (15 total injections) for 3 weeks and allowed to recover for 3 days. We observed a significant pulmonary and neurological immune response to DE characterized by the development of inducible bronchus associated lymphoid tissue in the lung and gliosis in the frontal areas of the brain. We also observed that IL-22 knock-out increased pulmonary and neurological inflammation severity. Animals exposed to DE and treated with AT-RvD1 displayed reduced lung pathology severity and gliosis. Our data demonstrate that DE exposure contributes to neurological inflammation and that IL-22 is crucial to effective tissue repair processes. Our data further suggest that AT-RvD1 may have potential as a novel therapeutic for organic dust exposure-induced, immune-mediated pulmonary and neurological inflammation, improving outcomes of those with these diseases.
Collapse
Affiliation(s)
- Alissa N. Threatt
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jade White
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Nathan Klepper
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Zachary Brier
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Logan S. Dean
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Ash Ibarra
- Department of Chemistry, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Macallister Harris
- Experimental Pathology Facility, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kaylee Jones
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Maëlis J. L. Wahl
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Melea Barahona
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Emmanuel O. Oyewole
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Morgan Pauly
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Tara M. Nordgren
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Zhang M, Li D, Sun L, He Y, Liu Q, He Y, Li F. Lactobacillus reuteri Alleviates Hyperoxia-Induced BPD by Activating IL-22/STAT3 Signaling Pathway in Neonatal Mice. Mediators Inflamm 2024; 2024:4965271. [PMID: 39687635 PMCID: PMC11649352 DOI: 10.1155/mi/4965271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in preterm infants. Little is known about the regulatory effect of lung Lactobacillus and its mechanism in BPD. This study explored the effect of L. reuteri on hyperoxia-induced mice lung injuries and examined whether L. reuteri played a role via the IL-22/STAT3 pathway. We found that the intranasal administration of L. reuteri and its tryptophan metabolite indole-3-aldehyde (3-IAld) ameliorated hyperoxia-induced mice lung BPD-like changes, deceased proinflammatory cytokines (IL-1β, IL-6, and TNF-α), and increased the levels of surfactant-associated protein C (SPC), aquaporin 5 (AQP5), and vascular endothelial growth factor receptor 2 (VEGFR2, also known as FLK-1). Furthermore, L. reuteri and 3-IAld increased the expression of IL-22. IL-22 was also confirmed to ameliorate hyperoxia-induced mice lung pathological changes, and the protective effects of L. reuteri could be inhibited by anti-IL-22 neutralizing antibody. Finally, we confirmed STAT3 activation by IL-22 in MLE-12 cells. In summary, our study confirmed L. reuteri alleviated hyperoxia-induced lung BPD-like changes in mice by activating the IL-22/STAT3 signaling pathway via IL-22 production. Probiotics Lactobacillus is a potential treatment for hyperoxia-induced lung injury in newborns.
Collapse
Affiliation(s)
- Meiyu Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Department of Neonatology Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Decai Li
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Liujuan Sun
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Department of Neonatology Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Yu He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Department of Neonatology Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Qingqing Liu
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Yi He
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Fang Li
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
4
|
Diniz-Lima I, Gomes A, Medeiros M, Guimarães-de-Oliveira JC, Ferreira-dos-Santos IM, Barbosa da Silva-Junior E, Morrot A, Nascimento DO, Freire-de-Lima L, de Brito-Gitirana L, Cruz FF, Decote-Ricardo D, Leonel de Matos Guedes H, Freire-de-Lima CG. IL-22 and IL-23 regulate the anticryptococcal response during Cryptococcus deuterogattii infection. iScience 2024; 27:111054. [PMID: 39635124 PMCID: PMC11615251 DOI: 10.1016/j.isci.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
Cryptococcosis is a neglected fungal disease that causes many deaths annually, is primarily caused by Cryptococcus neoformans and Cryptococcus gattii species. They are environmental fungus that engages lung pneumonia and a severe systemic infection. The rising incidence of affected immunocompetent hosts, particularly by the aggressive Cryptococcus deuterogattii (R265), underscores the urgency to understand factors influencing its dissemination. The immunopathogenesis of R265 infection is incompletely understood. Therefore, we investigate the role of IL-22 and IL-23 cytokines during R265 cryptocococcosis. Our findings highlight the crucial role of IL-22 and IL-23 cytokines in lung barrier homeostasis, preventing excessive lung damage. IL-22 not only prevents neutrophil infiltration and IL-17A production but also facilitates eosinophil lung infiltration. Ultimately, this study contributes vital insights into the selective role of IL-22 and IL-23 cytokines in immune activation and tissue regulation during the aggressive R265 lung and systemic infection.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Ariel Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
| | - Mayck Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | | | | | - Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
- School of Medicine, Tuberculosis Research Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| |
Collapse
|
5
|
Guo C, Boulant S, Stanifer ML. The Role of Interleukin-22 in Controlling Virus Infections at Mucosal Surfaces. J Interferon Cytokine Res 2024; 44:349-354. [PMID: 38868897 DOI: 10.1089/jir.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan Lynn Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
7
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
8
|
Yang R, Chen J, Qu X, Liu H, Wang X, Tan C, Chen H, Wang X. Interleukin-22 Contributes to Blood-Brain Barrier Disruption via STAT3/VEGFA Activation in Escherichia coli Meningitis. ACS Infect Dis 2024; 10:988-999. [PMID: 38317607 PMCID: PMC10928716 DOI: 10.1021/acsinfecdis.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Escherichia coli continues to be the predominant Gram-negative pathogen causing neonatal meningitis worldwide. Inflammatory mediators have been implicated in the pathogenesis of meningitis and are key therapeutic targets. The role of interleukin-22 (IL-22) in various diseases is diverse, with both protective and pathogenic effects. However, little is understood about the mechanisms underlying the damaging effects of IL-22 on the blood-brain barrier (BBB) in E. coli meningitis. We observed that meningitic E. coli infection induced IL-22 expression in the serum and brain of mice. The tight junction proteins (TJPs) components ZO-1, Occludin, and Claudin-5 were degraded in the mouse brain and human brain microvascular endothelial cells (hBMEC) following IL-22 administration. Moreover, the meningitic E. coli-caused increase in BBB permeability in wild-type mice was restored by knocking out IL-22. Mechanistically, IL-22 activated the STAT3-VEGFA signaling cascade in E. coli meningitis, thus eliciting the degradation of TJPs to induce BBB disruption. Our data indicated that IL-22 is an essential host accomplice during E. coli-caused BBB disruption and could be targeted for the therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Qu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Hulin Liu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Chen Tan
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
9
|
Sun C, Zhu D, Zhu Q, He Z, Lou Y, Chen D. The significance of gut microbiota in the etiology of autoimmune hepatitis: a narrative review. Front Cell Infect Microbiol 2024; 14:1337223. [PMID: 38404291 PMCID: PMC10884129 DOI: 10.3389/fcimb.2024.1337223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver that is mediated by autoimmunity and has complex pathogenesis. Its prevalence has increased globally. Since the liver is the first organ to be exposed to harmful substances, such as gut-derived intestinal microbiota and its metabolites, gut health is closely related to liver health, and the "liver-gut axis" allows abnormalities in the gut microbiota to influence the development of liver-related diseases such as AIH. Changes in the composition of the intestinal microbiota and its resultant disruption of the intestinal barrier and microbial transport are involved in multiple ways in the disruption of immune homeostasis and inflammation, thereby influencing the development of AIH. In terms of the mechanisms involved in immune, the gut microbiota or its metabolites, which is decreased in secondary bile acids, short-chain fatty acids (SCFAs), and polyamines, and increased in lipopolysaccharide (LPS), branched-chain amino acids (BCAA), tryptophan metabolite, amino acid, and bile acid, can disrupt immune homeostasis by activating various immune cells and immune-related signaling pathways, resulting in aberrant activation of the immune system. Clarifying this mechanism has significant clinical implications for the treatment of AIH with drugs that target intestinal microbiota and related signaling pathways. Therefore, this narrative review summarizes the progress in exploring the involvement of gut microbiota in the pathogenesis of AIH, with the aim of helping to improve the precise targeting of therapeutic treatments against AIH for the benefit of clinical AIH treatment.
Collapse
Affiliation(s)
- Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongzi Zhu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Lou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Desheng Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Guo L, Bao W, Yang S, Liu Y, Lyu J, Wang T, Lu Y, Li H, Zhu H, Chen D. Rhei Radix et Rhizoma in Xuanbai-Chengqi decoction strengthens the intestinal barrier function and promotes lung barrier repair in preventing severe viral pneumonia induced by influenza A virus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117231. [PMID: 37783404 DOI: 10.1016/j.jep.2023.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai-Chengqi decoction (XCD) is a traditional prescription for treating multiple organ injuries, which has been used to manage pneumonia caused by various pathogens. However, the effects of XCD on repairing pulmonary/intestinal barrier damage remain unclear, and there is a need to understand the compatibility mechanism of rhubarb. AIM OF THE STUDY This work aims to investigate the protective effect and mechanism of XCD on the pulmonary/intestinal barrier guided by the theory of "gut-lung concurrent treatment". Moreover, we elucidate the compatibility mechanism of rhubarb in XCD. MATERIALS AND METHODS An H1N1 virus-infected mouse model was adopted to investigate the reparative effects of XCD on the lung-intestinal barrier by assessing lung-intestinal permeability. Additionally, the characterization of type I alveolar epithelial cells (AT1) and type II alveolar epithelial cells (AT2) was performed to evaluate the damage to the alveolar epithelial barrier. The specific barrier-protective mechanisms of XCD were elucidated by detecting tight junction proteins and the epithelial cell repair factor IL-22. The role of rhubarb in XCD to pneumonia treatment was investigated through lung tissue transcriptome sequencing and flow cytometry. RESULTS XCD significantly improved lung tissue edema, inflammation, and alveolar epithelial barrier damage by regulating IL-6, IL-10, and IL-22, which, could further improve pulmonary barrier permeability when combined with the protection of alveolar epithelial cells (AT1 and AT2) as well as inhibition of H1N1 virus replication. Simultaneously, XCD significantly reduced intestinal inflammation and barrier damage by regulating IL-6, IL-1β, and tight junction protein levels (Claudin-1 and ZO-1), improving intestinal barrier permeability. The role of rhubarb in the treatment of pneumonia is clarified for the first time. In the progression of severe pneumonia, rhubarb can significantly protect the intestinal barrier, promote the repair of AT2 cells, and inhibit the accumulation of CD11b+Ly6Gvariable aberrant neutrophils by regulating the S100A8 protein. CONCLUSION In summary, our findings suggest that rhubarb in XCD plays a critical role in protecting intestinal barrier function and promoting lung barrier repair in preventing severe viral pneumonia caused by influenza A virus.
Collapse
Affiliation(s)
- Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Shuiyuan Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Jiaren Lyu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Ting Wang
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, District, Shanghai, 201203, PR China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, Shanghai, 201203, PR China
| | - Haiyan Zhu
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, District, Shanghai, 201203, PR China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| |
Collapse
|
11
|
Huang Y, Zhang L, Tan L, Zhang C, Li X, Wang P, Gao L, Zhao C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023; 46:1871-1886. [PMID: 37310646 DOI: 10.1007/s10753-023-01847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.
Collapse
Affiliation(s)
- Yina Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Mansur F, Arshad T, Liska V, Manzoor S. Interleukin-22 promotes the proliferation and migration of hepatocellular carcinoma cells via the phosphoinositide 3-kinase (PI3K/AKT) signaling pathway. Mol Biol Rep 2023:10.1007/s11033-023-08542-x. [PMID: 37264148 DOI: 10.1007/s11033-023-08542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Interleukin-22 (IL-22) is a pro-inflammatory cytokine released during the immune response in chronic liver injury. Although IL-22 mediates tissue regeneration, its uncontrolled production may generate a carcinogenic environment resulting in hepatocellular carcinoma (HCC). This study aims to identify the effect of IL-22 on anti-apoptotic and metastatic genes and the molecular pathways responsible for IL-22-mediated hepatic carcinogenesis. METHODS AND RESULTS Three cancerous liver lines, HepG2, SNU-387, Huh7, and one normal liver line, THLE2, were treated with IL-22. RT-qPCR analysis was conducted to study the role of IL-22 in altering the expression levels of anti-apoptotic genes, MCL-1 and BCL-2, and metastatic genes, MMP-7 and MMP-9. A significant increase in expression levels of these genes was observed after IL-22 treatment. Furthermore, to explore the major pathways involved in IL-22-mediated upregulation of anti-apoptotic and metastatic genes, cells were treated with inhibitors of JAK/STAT and PI3K/AKT pathways along with IL-22. Resultantly, a significant decrease in expression levels of target genes was observed, indicating the involvement of JAK/STAT and PI3K/AKT signaling cascades in IL-22-mediated oncogenesis. Finally, Cell Scratch assay was performed to check the effect of IL-22 and inhibitors of JAK/STAT and PI3K/AKT on the metastatic potential of liver cells. While migration was observed in Huh7 and THLE2 cells treated with IL-22, no migration was observed in cells treated with IL-22 along with JAK/STAT and PI3K/AKT inhibitors. Results indicate that IL-22 encourages metastasis in HCC cells via the JAK/STAT and PI3K/AKT pathways. CONCLUSION Results showed that IL-22 upregulates anti-apoptotic and metastatic genes in HCC through JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia.
| |
Collapse
|
13
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
COVID-19 Heart Lesions in Children: Clinical, Diagnostic and Immunological Changes. Int J Mol Sci 2023; 24:ijms24021147. [PMID: 36674665 PMCID: PMC9866514 DOI: 10.3390/ijms24021147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In the beginning of COVID-19, the proportion of confirmed cases in the pediatric population was relatively small and there was an opinion that children often had a mild or asymptomatic course of infection. Our understanding of the immune response, diagnosis and treatment of COVID-19 is highly oriented towards the adult population. At the same time, despite the fact that COVID-19 in children usually occurs in a mild form, there is an incomplete understanding of the course as an acute infection and its subsequent manifestations such as Long-COVID-19 or Post-COVID-19, PASC in the pediatric population, correlations with comorbidities and immunological changes. In mild COVID-19 in childhood, some authors explain the absence of population decreasing T and B lymphocytes. Regardless of the patient's condition, they can have the second phase, related to the exacerbation of inflammation in the heart tissue even if the viral infection was completely eliminated-post infectious myocarditis. Mechanism of myocardial dysfunction development in MIS-C are not fully understood. It is known that various immunocompetent cells, including both resident inflammatory cells of peripheral tissues (for example macrophages, dendritic cells, resident memory T-lymphocytes and so on) and also circulating in the peripheral blood immune cells play an important role in the immunopathogenesis of myocarditis. It is expected that hyperproduction of interferons and the enhanced cytokine response of T cells 1 and 2 types contribute to dysfunction of the myocardium. However, the role of Th1 in the pathogenesis of myocarditis remains highly controversial. At the same time, the clinical manifestations and mechanisms of damage, including the heart, both against the background and after COVID-19, in children differ from adults. Further studies are needed to evaluate whether transient or persistent cardiac complications are associated with long-term adverse cardiac events.
Collapse
|
15
|
Meltendorf S, Vogel K, Thurm C, Prätsch F, Reinhold A, Färber J, Heuft H, Kaasch AJ, Hachenberg T, Weinzierl S, Schraven B, Reinhold D, Brunner‐Weinzierl MC, Lingel H. IL-13 determines specific IgE responses and SARS-CoV-2 immunity after mild COVID-19 and novel mRNA vaccination. Eur J Immunol 2022; 52:1972-1979. [PMID: 36271745 PMCID: PMC9874813 DOI: 10.1002/eji.202249951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 01/27/2023]
Abstract
After recovery, mild and severe COVID-19 diseases are associated with long-term effects on the host immune system, such as prolonged T-cell activation or accumulation of autoantibodies. In this study, we show that mild SARS-CoV-2 infections, but not SARS-CoV-2 spike mRNA vaccinations, cause durable atopic risk factors such as a systemic Th2- and Th17-type environment as well as activation of B cells responsive of IgE against aeroallergens from house dust mite and mold. At an average of 100 days post mild SARS-CoV-2 infections, anti-mold responses were associated with low IL-13 levels and increased pro-inflammatory IL-6 titers. Acutely severely ill COVID-19 patients instead showed no evidence of atopic reactions. Considering convalescents of mild COVID-19 courses and mRNA-vaccinated individuals together, IL-13 was the predominant significantly upregulated factor, likely shaping SARS-CoV-2 immunity. Application of multiple regression analysis revealed that the IL-13 levels of both groups were determined by the Th17-type cytokines IL-17A and IL-22. Taken together, these results implicate a critical role for IL-13 in the aftermath of SARS-CoV-2 mild infections and mRNA vaccinations, conferring protection against airway directed, atopic side reactions that occur in mildly experienced COVID-19.
Collapse
Affiliation(s)
- Stefan Meltendorf
- Department of Experimental PediatricsOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Katrin Vogel
- Department of Experimental PediatricsOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Christoph Thurm
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Florian Prätsch
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital MagdeburgMagdeburgGermany
| | - Annegret Reinhold
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Jacqueline Färber
- Institute of Medical Microbiology and Hospital HygieneOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Hans‐Gert Heuft
- Department of Transfusion Medicine and ImmunohematologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Achim J. Kaasch
- Institute of Medical Microbiology and Hospital HygieneOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Thomas Hachenberg
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital MagdeburgMagdeburgGermany
| | - Stefan Weinzierl
- Audio‐Communication GroupTechnical University BerlinBerlinGermany
| | - Burkhart Schraven
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Dirk Reinhold
- Institute of Molecular and Clinical ImmunologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | | | - Holger Lingel
- Department of Experimental PediatricsOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| |
Collapse
|
16
|
Biryukov SS, Cote CK, Klimko CP, Dankmeyer JL, Rill NO, Shoe JL, Hunter M, Shamsuddin Z, Velez I, Hedrick ZM, Rosario-Acevedo R, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Burtnick MN, Brett PJ, Welkos SL, DeShazer D. Evaluation of two different vaccine platforms for immunization against melioidosis and glanders. Front Microbiol 2022; 13:965518. [PMID: 36060742 PMCID: PMC9428723 DOI: 10.3389/fmicb.2022.965518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.
Collapse
Affiliation(s)
- Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- *Correspondence: Christopher K. Cote
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zain Shamsuddin
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Ivan Velez
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zander M. Hedrick
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- David DeShazer
| |
Collapse
|
17
|
Fang S, Ju D, Lin Y, Chen W. The role of interleukin-22 in lung health and its therapeutic potential for COVID-19. Front Immunol 2022; 13:951107. [PMID: 35967401 PMCID: PMC9364265 DOI: 10.3389/fimmu.2022.951107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although numerous clinical trials have been implemented, an absolutely effective treatment against coronavirus disease 2019 (COVID-19) is still elusive. Interleukin-22 (IL-22) has attracted great interest over recent years, making it one of the best-studied cytokines of the interleukin-10 (IL-10) family. Unlike most interleukins, the major impact of IL-22 is exclusively on fibroblasts and epithelial cells due to the restricted expression of receptor. Numerous studies have suggested that IL-22 plays a crucial role in anti-viral infections through significantly ameliorating the immune cell-mediated inflammatory responses, and reducing tissue injury as well as further promoting epithelial repair and regeneration. Herein, we pay special attention to the role of IL-22 in the lungs. We summarize the latest progress in our understanding of IL-22 in lung health and disease and further discuss maneuvering this cytokine as potential immunotherapeutic strategy for the effective manage of COVID-19.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yong Lin
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
18
|
Carbonnel M, Daclin C, Tarantino N, Groiseau O, Morin V, Rousseau A, Vasse M, Hertig A, Kennel T, Ayoubi JM, Vieillard V. Plasticity of natural killer cells in pregnant patients infected with SARS-CoV-2 and their neonates during childbirth. Front Immunol 2022; 13:893450. [PMID: 35911747 PMCID: PMC9335005 DOI: 10.3389/fimmu.2022.893450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
The COVID-19 pandemic has occurred due to infection caused by the SARS-CoV-2 coronavirus, which impacts gestation and pregnancy. In SARS-CoV-2 infection, only very rare cases of vertical transmission have been reported, suggesting that fetal immune imprinting due to a maternal infection is probably a result of changes in maternal immunity. Natural killer (NK) cells are the leading maternal immune cells that act as a natural defense system to fight infections. They also play a pivotal role in the establishment and maintenance of pregnancy. While peripheral NK cells display specific features in patients infected with SARS-CoV-2 in the general population, information remains elusive in pregnant mothers and neonates. In the present study, we analyzed the characteristics of NK cells isolated from both neonatal umbilical cord blood and maternal peripheral blood close to the time of delivery. Phenotype and functions were compared in 18 healthy pregnant women and 34 COVID-19 patients during pregnancy within an ongoing infection (PCR+; N = 15) or after recovery (IgG+PCR-; N = 19). The frequency of NK cells from infected women and their neonates was correlated with the production of inflammatory cytokines in the serum. The expression of NKG2A and NKp30, as well as degranulation of NK cells in pregnant women with ongoing infection, were both negatively correlated to estradiol level. Furthermore, NK cells from the neonates born to infected women were significantly decreased and also correlated to estradiol level. This study highlights the relationship between NK cells, inflammation, and estradiol in patients with ongoing infection, providing new insights into the impact of maternal SARS-CoV-2 infection on the neonate.
Collapse
Affiliation(s)
- Marie Carbonnel
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Camille Daclin
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Groiseau
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Véronique Morin
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alice Rousseau
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marc Vasse
- Department of Clinical Biology, Hôpital Foch, Suresnes, France
- INSERM UMRS-1176, University Paris-Sud, Orsay, France
| | - Alexandre Hertig
- Nephrology and Renal Transplantation Department, Hôpital Foch, Suresnes, France
| | - Titouan Kennel
- Department of Clinic Research, Hôpital Foch, Suresnes, France
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
19
|
Kudryavtsev IV, Golovkin AS, Totolian AA. T helper cell subsets and related target cells in acute COVID-19. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-thc-1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 24 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells basophiles and eosinophils were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased regulatory Tfh1 cell and increased pro-inflammatory Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of nave and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24 plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.
Collapse
|
20
|
Ulu A, Sveiven S, Bilg A, Velazquez JV, Diaz M, Mukherjee M, Yuil-Valdes AG, Kota S, Burr A, Najera A, Nordgren TM. IL-22 regulates inflammatory responses to agricultural dust-induced airway inflammation. Toxicol Appl Pharmacol 2022; 446:116044. [PMID: 35525330 PMCID: PMC9133182 DOI: 10.1016/j.taap.2022.116044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
IL-22 is a unique cytokine that is upregulated in many chronic inflammatory diseases, including asthma, and modulates tissue responses during inflammation. However, the role of IL-22 in the resolution of inflammation and how this contributes to lung repair processes are largely unknown. Here, we tested the hypothesis that IL-22 signaling is critical in inflammation resolution after repetitive exposure to agricultural dust. Using an established mouse model of organic dust extract-induced lung inflammation, we found that IL-22 knockout mice have an enhanced response to agricultural dust as evidenced by an exacerbated increase in infiltrating immune cells and lung pathology as compared to wild-type controls. We further identified that, in response to dust, IL-22 is expressed in airway epithelium and in Ym1+ macrophages found within the parenchyma in response to dust. The increase in IL-22 expression was accompanied by increases in IL-22 receptor IL-22R1 within the lung epithelium. In addition, we found that alveolar macrophages in vivo as well as THP-1 cells in vitro express IL-22, and this expression is modulated by dust exposure. Furthermore, subcellular localization of IL-22 appears to be in the Golgi of resting THP1 human monocytes, and treatment with dust extracts is associated with IL-22 release into the cytosolic compartment from the Golgi reservoirs during dust extract exposure. Taken together, we have identified a significant role for macrophage-mediated IL-22 signaling that is activated in dust-induced lung inflammation in mice.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Stefanie Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Amanpreet Bilg
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Marissa Diaz
- Riverside Community College, Riverside, CA 92521, USA
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santosh Kota
- Department of Preprofessional Biology, University of Florida, Gainesville, FL 32603, USA
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Aileen Najera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80521, USA.
| |
Collapse
|
21
|
Albrecht M, Halle O, Gaedcke S, Pallenberg ST, Camargo Neumann J, Witt M, Roediger J, Schumacher M, Jirmo AC, Warnecke G, Jonigk D, Braubach P, DeLuca D, Hansen G, Dittrich AM. Interleukin-17A and interleukin-22 production by conventional and non-conventional lymphocytes in three different end-stage lung diseases. Clin Transl Immunology 2022; 11:e1398. [PMID: 35757569 PMCID: PMC9202301 DOI: 10.1002/cti2.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives The contribution of adaptive vs. innate lymphocytes to IL-17A and IL-22 secretion at the end stage of chronic lung diseases remains largely unexplored. In order to uncover tissue- and disease-specific secretion patterns, we compared production patterns of IL-17A and IL-22 in three different human end-stage lung disease entities. Methods Production of IL-17A, IL-22 and associated cytokines was assessed in supernatants of re-stimulated lymphocytes by multiplex assays and multicolour flow cytometry of conventional T cells, iNKT cells, γδ T cells and innate lymphoid cells in bronchial lymph node and lung tissue from patients with emphysema (n = 19), idiopathic pulmonary fibrosis (n = 14) and cystic fibrosis (n = 23), as well as lung donors (n = 17). Results We detected secretion of IL-17A and IL-22 by CD4+ T cells, CD8+ T cells, innate lymphoid cells, γδ T cells and iNKT cells in all end-stage lung disease entities. Our analyses revealed disease-specific contributions of individual lymphocyte subpopulations to cytokine secretion patterns. We furthermore found the high levels of microbial detection in CF samples to associate with a more pronounced IL-17A signature upon antigen-specific and unspecific re-stimulation compared to other disease entities and lung donors. Conclusion Our results show that both adaptive and innate lymphocyte populations contribute to IL-17A-dependent pathologies in different end-stage lung disease entities, where they establish an IL-17A-rich microenvironment. Microbial colonisation patterns and cytokine secretion upon microbial re-stimulation suggest that pathogens drive IL-17A secretion patterns in end-stage lung disease.
Collapse
Affiliation(s)
- Melanie Albrecht
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Molecular Allergology Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines Langen Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Olga Halle
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Sophia T Pallenberg
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Julia Camargo Neumann
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marius Witt
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Johanna Roediger
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marina Schumacher
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Adan Chari Jirmo
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Department of Cardiac Surgery Heidelberg Medical School Heidelberg Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - David DeLuca
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gesine Hansen
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Anna-Maria Dittrich
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
22
|
Patel D, Challagundla N, Mandaliya D, Yadav S, Naik O, Dalai P, Shah D, Vora H, Agrawal-Rajput R. Caspase-1 inhibition by YVAD generates tregs pivoting IL-17 to IL-22 response in β-glucan induced airway inflammation. Immunopharmacol Immunotoxicol 2022; 44:316-325. [PMID: 35225131 DOI: 10.1080/08923973.2022.2043899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND During Aspergillus fumigatus mediated lung inflammation, NLRP3 inflammasome is rapidly activated that aggravates IL-1β production contributing to lung inflammation. Previously, we have shown the protective role of SYK-1 inhibition in inhibiting inflammasome activation during lung inflammation. In the current manuscript, we explored the protective role of direct caspase-1 inhibition during β-glucan-induced lung inflammation. METHODS We have mimicked the lung inflammation by administering intranasal β-glucan in mice model. YVAD was used for caspase-1 inhibition. RESULTS We have shown that caspase-1 inhibition by YVAD did not alter inflammasome independent inflammatory cytokines, while it significantly reduced inflammasome activation and IL-1β secretion. Caspase-1 inhibited bone marrow derived dendritic cells (BMDCs), co-cultured with T cells showed decreased T-cell proliferation and direct them to secrete high TGF-β and IL-10 compared to the T cells co-cultured with β-glucan primed dendritic cells. Caspase-1 inhibition in BMDCs also induced IL-22 secretion from CD4+T cells. Caspase-1 inhibition in intranasal β-glucan administered mice showed decreased tissue damage, immune cell infiltration and IgA secretion compared to control mice. Further, splenocytes challenged with β-glucan show high IL-10 secretion and increased FOXp3 and Ahr indicating an increase in regulatory T cells on caspase-1 inhibition. CONCLUSION Caspase-1 inhibition can thus be an attractive target to prevent inflammation mediated tissue damage during Aspergillus fumigatus mouse model and can be explored as an attractive therapeutic strategy.HIGHLIGHTSCaspase-1 inhibition protects lung damage from inflammation during β-glucan exposureCaspase-1 inhibition in dendritic cells decreases IL-1β production resulting in decreased pathogenic Th17Caspase-1 inhibition promotes regulatory T cells thereby inhibiting lung inflammation.
Collapse
Affiliation(s)
- Divyesh Patel
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Dipeeka Mandaliya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Omkar Naik
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Hima Vora
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
23
|
Kudryavtsev I, Rubinstein A, Golovkin A, Kalinina O, Vasilyev K, Rudenko L, Isakova-Sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses 2022; 14:1082. [PMID: 35632823 PMCID: PMC9147674 DOI: 10.3390/v14051082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in humans more than two years ago and caused an unprecedented socio-economic burden on all countries around the world. Since then, numerous studies have attempted to identify various mechanisms involved in the alterations of innate and adaptive immunity in COVID-19 patients, with the ultimate goal of finding ways to correct pathological changes and improve disease outcomes. State-of-the-art research methods made it possible to establish precise molecular mechanisms which the new virus uses to trigger multisystem inflammatory syndrome and evade host antiviral immune responses. In this review, we present a comprehensive analysis of published data that provide insight into pathological changes in T and B cell subsets and their phenotypes, accompanying the acute phase of the SARS-CoV-2 infection. This knowledge might help reveal new biomarkers that can be utilized to recognize case severity early as well as to provide additional objective information on the effective formation of SARS-CoV-2-specific immunity and predict long-term complications of COVID-19, including a large variety of symptoms termed the 'post-COVID-19 syndrome'.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Artem Rubinstein
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Alexey Golovkin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.G.); (O.K.)
| | - Olga Kalinina
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.G.); (O.K.)
| | - Kirill Vasilyev
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| |
Collapse
|
24
|
Albayrak N, Orte Cano C, Karimi S, Dogahe D, Van Praet A, Godefroid A, Del Marmol V, Grimaldi D, Bondue B, Van Vooren JP, Mascart F, Corbière V. Distinct Expression Patterns of Interleukin-22 Receptor 1 on Blood Hematopoietic Cells in SARS-CoV-2 Infection. Front Immunol 2022; 13:769839. [PMID: 35422799 PMCID: PMC9004465 DOI: 10.3389/fimmu.2022.769839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
The new pandemic virus SARS-CoV-2 is characterized by uncontrolled hyper-inflammation in severe cases. As the IL-22/IL-22R1 axis was reported to be involved in inflammation during viral infections, we characterized the expression of IL-22 receptor1, IL-22 and IL-22 binding protein in COVID-19 patients. Blood samples were collected from 19 non-severe and 14 severe patients on the day they presented (D0), at D14, and six months later, and from 6 non-infected controls. The IL-22R1 expression was characterized by flow cytometry. Results were related to HLA-DR expression of myeloid cells, to plasma concentrations of different cytokines and chemokines and NK cells and T lymphocytes functions characterized by their IFN-γ, IL-22, IL-17A, granzyme B and perforin content. The numbers of IL-22R1+ classical, intermediate, and non-classical monocytes and the proportions of IL-22R1+ plasmacytoid DC (pDC), myeloid DC1 and DC2 (mDC1, mDC2) were higher in patients than controls at D0. The proportions of IL-22R1+ classical and intermediate monocytes, and pDC and mDC2 remained high for six months. High proportions of IL-22R1+ non-classical monocytes and mDC2 displayed HLA-DRhigh expression and were thus activated. Multivariate analysis for all IL-22R1+ myeloid cells discriminated the severity of the disease (AUC=0.9023). However, correlation analysis between IL-22R1+ cell subsets and plasma chemokine concentrations suggested pro-inflammatory effects of some subsets and protective effects of others. The numbers of IL-22R1+ classical monocytes and pDC were positively correlated with pro-inflammatory chemokines MCP-1 and IP-10 in severe infections, whereas IL-22R1+ intermediate monocytes were negatively correlated with IL-6, IFN-α and CRP in non-severe infections. Moreover, in the absence of in vitro stimulation, NK and CD4+ T cells produced IFN-γ and IL-22, and CD4+ and CD8+ T cells produced IL-17A. CD4+ T lymphocytes also expressed IL-22R1, the density of its expression defining two different functional subsets. In conclusion, we provide the first evidence that SARS-CoV-2 infection is characterized by an abnormal expression of IL22R1 on blood myeloid cells and CD4+ T lymphocytes. Our results suggest that the involvement of the IL-22R1/IL-22 axis could be protective at the beginning of SARS-CoV-2 infection but could shift to a detrimental response over time.
Collapse
Affiliation(s)
- Nurhan Albayrak
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmen Orte Cano
- Department of Dermatology, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sina Karimi
- Department of Internal Medicine, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - David Dogahe
- Department of Internal Medicine, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Del Marmol
- Department of Dermatology, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - David Grimaldi
- Department of Intensive Care Unit, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- Department of Pneumology, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Paul Van Vooren
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium.,Immunodeficiency Unit, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
26
|
Cagan E, Tezcan G, Simsek A, Kizmaz MA, Dombaz F, Asan A, Demir HI, Bal H, Yoyen Ermis D, Gorek Dilektasli A, Kazak E, Akalin EH, Oral HB, Budak F. The Age-Dependent Role of Th22, Tc22, and Tc17 Cells in the Severity of Pneumonia in COVID-19 Immunopathogenesis. Viral Immunol 2022; 35:318-327. [PMID: 35363081 DOI: 10.1089/vim.2021.0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has clinical manifestations ranging from mild symptoms to respiratory failure, septic shock, and multi-organ failure. Lymphocytes are divided into different subtypes based on their cytokine production pattern. In this study, we investigated the role of cytokine expressions of CD4+ T (T helper [Th]1, Th2, Th17, Th22) and CD8+ T cell subtypes (T cytotoxic [Tc]1, Tc2, Tc17, Tc22) in the pathogenesis of COVID-19. Peripheral blood mononuclear cells (PBMCs) were extracted with Ficoll by density gradient centrifugation from blood samples of 180 COVID-19 patients (children and adults) and 30 healthy controls. PBMCs were stimulated with PMA and Ionomycin and treated with Brefeldin A in the fourth hour, and a 10-colored monoclonal antibody panel was evaluated at the end of the sixth hour using flow cytometry. According to our findings, the numbers of Th22 (CD3+, CD4+, and interleukin [IL]-22+) and Tc22 (CD3+, CD8+, IL-22+) cells increased in adult patients regardless of the level of pneumonia (mild, severe, or symptom-free) as compared with healthy controls (p < 0.05). In addition, the number of Tc17 (CD3+, CD8+, and IL-17A+) cells increased in low pneumonia and severe pneumonia groups compared with the healthy controls (p < 0.05). Both IL-22 and IL-17A production decreased during a follow-up within 6 weeks of discharge. Our findings suggest that the increase in only IL-22 expressed Tc22 cells in the 0-12 age group with a general symptom-free course and higher levels of Th22 and Tc22 in uncomplicated adult cases may indicate the protective effect of IL-22. On the contrary, the association between the severity of pneumonia and the elevation of Tc17 cells in adults may reveal the damaging effect of IL-22 when it is co-expressed with IL-17.
Collapse
Affiliation(s)
- Eren Cagan
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Pediatric Infectious Diseases, Bursa Yüksek Ihtisas Training and Research Hospital, Health Sciences University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Abdurrahman Simsek
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Fatma Dombaz
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Ali Asan
- Department of Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, Health Sciences University, Bursa, Turkey
| | - H Ibrahim Demir
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Haldun Bal
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Digdem Yoyen Ermis
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Aslı Gorek Dilektasli
- Department of Pulmonary Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Esra Kazak
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - E Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - H Barbaros Oral
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
27
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
28
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
29
|
Zenewicz LA. IL-22 Binding Protein (IL-22BP) in the Regulation of IL-22 Biology. Front Immunol 2021; 12:766586. [PMID: 34868019 PMCID: PMC8634938 DOI: 10.3389/fimmu.2021.766586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
Cytokines are powerful mediators of inflammation. Consequently, their potency is regulated in many ways to protect the host. Several cytokines, including IL-22, have coordinating binding proteins or soluble receptors that bind to the cytokine, block the interaction with the cellular receptor, and thus prevent cellular signaling. IL-22 is a critical cytokine in the modulation of tissue responses during inflammation and is highly upregulated in many chronic inflammatory disease patients, including those with psoriasis, rheumatoid arthritis, and inflammatory bowel disease (IBD). In healthy individuals, low levels of IL-22 are secreted by immune cells, mainly in the gastrointestinal (GI) tract. However, much of this IL-22 is likely not biologically active due to the high levels of IL-22 binding protein (IL-22BP) produced by intestinal dendritic cells (DCs). IL-22BP is a soluble receptor homolog that binds to IL-22 with greater affinity than the membrane spanning receptor. Much is known regarding the regulation and function of IL-22 in health and disease. However, less is known about IL-22BP. In this review, we will focus on IL-22BP, including its regulation, role in IL-22 biology and inflammation, and promise as a therapeutic. IL-22 can be protective or pathogenic, depending on the context of inflammation. IL-22BP also has divergent roles. Ongoing and forthcoming studies will expand our knowledge of IL-22BP and IL-22 biology, and suggest that IL-22BP holds promise as a way to regulate IL-22 biology in patients with chronic inflammatory disease.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
30
|
Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 2021; 21:739-751. [PMID: 33846604 DOI: 10.1038/s41577-021-00538-7] [Citation(s) in RCA: 486] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
There has been a steep increase in allergic and autoimmune diseases, reaching epidemic proportions and now affecting more than one billion people worldwide. These diseases are more common in industrialized countries, and their prevalence continues to rise in developing countries in parallel to urbanization and industrialization. Intact skin and mucosal barriers are crucial for the maintenance of tissue homeostasis as they protect host tissues from infections, environmental toxins, pollutants and allergens. A defective epithelial barrier has been demonstrated in allergic and autoimmune conditions such as asthma, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, coeliac disease and inflammatory bowel disease. In addition, leakiness of the gut epithelium is also implicated in systemic autoimmune and metabolic conditions such as diabetes, obesity, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and autoimmune hepatitis. Finally, distant inflammatory responses due to a 'leaky gut' and microbiome changes are suspected in Alzheimer disease, Parkinson disease, chronic depression and autism spectrum disorders. This article introduces an extended 'epithelial barrier hypothesis', which proposes that the increase in epithelial barrier-damaging agents linked to industrialization, urbanization and modern life underlies the rise in allergic, autoimmune and other chronic conditions. Furthermore, it discusses how the immune responses to dysbiotic microbiota that cross the damaged barrier may be involved in the development of these diseases.
Collapse
|
31
|
Taghavi S, Jackson-Weaver O, Abdullah S, Wanek A, Drury R, Packer J, Cotton-Betteridge A, Duchesne J, Pociask D, Kolls J. Interleukin-22 mitigates acute respiratory distress syndrome (ARDS). PLoS One 2021; 16:e0254985. [PMID: 34597299 PMCID: PMC8486146 DOI: 10.1371/journal.pone.0254985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The goal of this study was to determine if IL-22:Fc would Acute Respiratory Distress Syndrome (ARDS). SUMMARY BACKGROUND DATA No therapies exist for ARDS and treatment is purely supportive. Interleukin-22 (IL-22) plays an integral component in recovery of the lung from infection. IL-22:Fc is a recombinant protein with a human FC immunoglobulin that increases the half-life of IL-22. STUDY DESIGN ARDS was induced in C57BL/6 mice with intra-tracheal lipopolysaccharide (LPS) at a dose of 33.3 or 100 ug. In the low-dose LPS group (LDG), IL-22:FC was administered via tail vein injection at 30 minutes (n = 9) and compared to sham (n = 9). In the high-dose LPS group (HDG), IL-22:FC was administered (n = 11) then compared to sham (n = 8). Euthanasia occurred after bronchioalveolar lavage (BAL) on post-injury day 4. RESULTS In the LDG, IL-22:FC resulted in decreased protein leak (0.15 vs. 0.25 ug/uL, p = 0.02). BAL protein in animals receiving IL-22:Fc in the HDG was not different. For the HDG, animals receiving IL-22:Fc had lower BAL cell counts (539,636 vs 3,147,556 cells/uL, p = 0.02). For the HDG, IL-6 (110.6 vs. 527.1 pg/mL, p = 0.04), TNF-α (5.87 vs. 25.41 pg/mL, p = 0.04), and G-CSF (95.14 vs. 659.6, p = 0.01) levels were lower in the BAL fluid of IL-22:Fc treated animals compared to sham. CONCLUSIONS IL-22:Fc decreases lung inflammation and lung capillary leak in ARDS. IL-22:Fc may be a novel therapy for ARDS.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Alanna Wanek
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, United States of America
| | - Robert Drury
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jacob Packer
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Aaron Cotton-Betteridge
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, United States of America
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, United States of America
| |
Collapse
|
32
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary infection. Nat Commun 2020; 11:6319. [PMID: 33298930 PMCID: PMC7725958 DOI: 10.1038/s41467-020-20139-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship of SARS-CoV-2 pulmonary infection and severity of disease is not fully understood. Here we show analysis of autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter-patient and intra-patient heterogeneity of pulmonary virus infection. There is a spectrum of high and low virus cases associated with duration of disease. High viral cases have high activation of interferon pathway genes and a predominant M1-like macrophage infiltrate. Low viral cases are more heterogeneous likely reflecting inherent patient differences in the evolution of host response, but there is consistent indication of pulmonary epithelial cell recovery based on napsin A immunohistochemistry and RNA expression of surfactant and mucin genes. Using a digital spatial profiling platform, we find the virus corresponds to distinct spatial expression of interferon response genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.
Collapse
|
34
|
Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Wang J, Ye X, Zhu J, Shang L. IL-17 is a potential biomarker for predicting the severity and outcomes of pulmonary contusion in trauma patients. Biomed Rep 2020; 14:5. [PMID: 33235720 PMCID: PMC7678624 DOI: 10.3892/br.2020.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary contusion (PC) is very common in blunt chest trauma, and always results in negative pulmonary outcomes, such as pneumonia, acute respiratory distress syndrome (ARDS), respiratory failure or even death. However, there are no effective biomarkers which can be used to predict the outcomes in these patients. The present study aimed to determine the value of interleukin (IL)-17 and IL-22 in predicting the severity and outcomes of PC in trauma patients. All trauma patients admitted to The First Affiliated Hospital of Guangxi Medical University between January 2015 and December 2017, were studied. Patients aged >14 years old with a diagnosis of PC upon their admission to the emergency department were included. Patients with PC were enrolled as the PC group, patients without PC were enrolled as the non-PC group, and healthy individuals were selected as the control group. Clinical information, including sociodemographic parameters, clinical data, biological findings and therapeutic interventions were recorded for all patients who were enrolled. Blood samples were collected and stored according to the established protocols. PC volume was measured by computed tomography and plasma cytokine levels were assayed by ELISA. A total of 151 patients with PC (PC group) and 159 patients without PC (non-PC group) were included in the present study. In addition, 50 healthy individuals were used as the control group. The primary cause of PC was motor vehicle crashes. PC patients had more rib fractures, but similar injury severity scores compared with other patients. More patients received Pleurocan drainage treatment and had pneumonia complications in the PC group compared with the other two groups. PC patients had a high incidence of ARDS and admission to the intensive care unit (ICU). PC patients also experienced longer periods on mechanical ventilation and had longer stays in the ICU and hospital. PC volume was effective in predicting the outcomes of PC patients. IL-22 levels were similar in the PC group and non-PC group. However, IL-17 could be used as a biomarker to predict the severity of PC, and was strongly associated with PC volume. IL-17 was significantly associated with pro-inflammatory complications in PC patients and could be used as a biomarker for predicting in-patient outcomes of patients with PC. In conclusion, IL-17 is a potential biomarker for predicting the severity and outcomes of PC in trauma patients.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Junxuan Wang
- Department of Medical Records, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|