1
|
Hamilton E, Galsky MD, Ochsenreither S, Del Conte G, Martín M, De Miguel MJ, Yu EY, Williams A, Gion M, Tan AR, Agrawal L, Rutten A, Machiels JP, Cresta S, Debruyne PR, Hennequin A, Moreno V, Minchom A, Valdes-Albini F, Petrylak D, Li L, Tsuchihashi Z, Suto F, Cheng FC, Kandil M, Barrios D, Hurvitz S. Trastuzumab Deruxtecan with Nivolumab in HER2-Expressing Metastatic Breast or Urothelial Cancer: Analysis of the Phase Ib DS8201-A-U105 Study. Clin Cancer Res 2024; 30:5548-5558. [PMID: 39405343 DOI: 10.1158/1078-0432.ccr-24-1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE This multicenter phase Ib study investigated trastuzumab deruxtecan (T-DXd) plus nivolumab in patients with HER2-expressing metastatic breast cancer (mBC) and metastatic urothelial cancer (mUC). PATIENTS AND METHODS Part 1 determined the recommended dose for expansion of T-DXd plus nivolumab. Part 2 evaluated efficacy and safety; the primary endpoint was confirmed objective response rate by independent central review. RESULTS In part 1, seven patients with mBC were enrolled and received T-DXd 3.2 mg/kg (four patients) or 5.4 mg/kg (three patients) plus nivolumab. The recommended dose for expansion for T-DXd was 5.4 mg/kg plus nivolumab 360 mg intravenously every 3 weeks. In part 2, 32 patients with HER2-positive mBC (cohort 1; inclusive of three administered 5.4 mg/kg in part 1), 16 with HER2-low mBC (cohort 2), 30 with HER2-high mUC (cohort 3), and four with HER2-low mUC (cohort 4) were enrolled. At data cutoff (July 22, 2021), the confirmed objective response rates (95% confidence interval) for cohorts 1 to 4 were 65.6% (46.8%-81.4%), 50.0% (24.7%-75.3%), 36.7% (19.9%-56.1%), and not assessed due to small sample size, respectively. The median treatment duration (range) with T-DXd in cohorts 1 to 4 was 8.9 (1-23) months, 6.9 (1-21) months, 3.9 (1-21) months, and not assessed, respectively; the most common treatment-emergent adverse event was nausea (55.2%, 62.5%, 73.3%, and 75.0%, respectively). Adjudicated drug-related interstitial lung disease/pneumonitis rates (cohorts 1-3) were 20.7%, 0%, and 20.0%, respectively (one grade 5 each, cohorts 1 and 3). CONCLUSIONS T-DXd plus nivolumab demonstrated promising antitumor activity in HER2-expressing mBC or mUC and safety consistent with the known profile of T-DXd. Interstitial lung disease/pneumonitis is an important risk and requires careful monitoring and prompt intervention.
Collapse
Affiliation(s)
- Erika Hamilton
- Department of Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Cancer Immunology, Charité Comprehensive Cancer Center, Berlin, Germany
| | - Gianluca Del Conte
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miguel Martín
- Department of Medical Oncology, Hospital Gregorio Maranon, Madrid, Spain
| | - Maria José De Miguel
- Early Phase Clinical Trial Unit, START Madrid CIOCC HM Sanchinarro, Madrid, Spain
| | - Evan Y Yu
- Department of Medicine, Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington
| | - Anja Williams
- Clinical Research, Sarah Cannon Research Institute, London, United Kingdom
| | - Maria Gion
- Department of Medical Oncology, Hospital Ruber International, Madrid, Spain
- Ramón y Cajal University Hospital, Madrid, Spain
| | - Antoinette R Tan
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Laila Agrawal
- Department of Medical Oncology, Norton Cancer Institute, Louisville, Kentucky
| | - Annemie Rutten
- Department of Medical Oncology, GZA Hospitals Campus Sint-Augustinus, Antwerp, Belgium
| | - Jean-Pascal Machiels
- Department of Medical Oncology, Institut Roi Albert II Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (UC Louvain, IREC), Brussels, Belgium
| | - Sara Cresta
- Division of Medical Oncology, Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Philip R Debruyne
- Kortrijk Cancer Centre, General Hospital AZ Groeninge, Kortrijk, Belgium
- Medical Technology Research Centre (MTRC), School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- School of Nursing and Midwifery, University of Plymouth, Plymouth, United Kingdom
| | - Audrey Hennequin
- Department of Medical Oncology, Centre Georges Francois Leclerc, Dijon, France
| | - Victor Moreno
- Early Phase Trials Unit, START Madrid-FJD, Fundacion Jimenez Diaz, Madrid, Spain
| | - Anna Minchom
- Drug Development Unit, Royal Marsden Hospital, Sutton, United Kingdom
| | - Frances Valdes-Albini
- Division of Medical Oncology, Department of Medicine, University of Miami Hospital & Clinics, Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Daniel Petrylak
- Division of Genitourinary Oncology, Yale University, New Haven, Connecticut
| | - Li Li
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Zenta Tsuchihashi
- Department of Translational Science, Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Fumitaka Suto
- Department of Translational Science, Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Fu-Chih Cheng
- Biostatistics and Data Management, Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Maha Kandil
- CSPV, Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Daniel Barrios
- Department of Global Oncology R&D, Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Sara Hurvitz
- Department of Medicine, Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
2
|
Han HS, Aldrich AL, Garg SK, Weinfurtner RJ, Nguyen JV, Mo Q, Whiting J, Childress J, Soliman H, Costa R, Armaghani A, Soyano A, Kiluk J, Hoover S, Lee MC, Khakpour N, Shenoi N, Jameel Z, Koski GK, Czerniecki BJ. Alteration of the Tumor Microenvironment With Intratumoral Dendritic Cells Before Chemotherapy in ERBB2 Breast Cancer: A Nonrandomized Clinical Trial. JAMA Oncol 2024:2827238. [PMID: 39636623 PMCID: PMC11622104 DOI: 10.1001/jamaoncol.2024.5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/12/2024] [Indexed: 12/07/2024]
Abstract
Importance Current chemotherapy regimens for patients with ERBB2 (formerly HER2)-positive breast cancer are associated with considerable morbidity. These patients may benefit from more effective and less toxic therapies. Objective To evaluate the safety, immunogenicity, and preliminary efficacy of intratumoral (IT) delivery of conventional type 1 dendritic cells (cDC1) in combination with ERBB2-targeted therapies. Design, Setting, and Participants This phase 1 (lead-in phase of a single-center phase 2 trial) nonrandomized clinical trial was conducted at Moffitt Cancer Center (Tampa, Florida). Patients were enrolled from October 2021 to October 2022. Data were analyzed in 2023 Patients with early-stage ERBB2-positive breast cancer with tumors 1 cm or larger were eligible. Interventions Treatment included IT delivery of cDC1, 6 times weekly, followed by paclitaxel, 80 mg/m2, intravenously, 12 times weekly. Trastuzumab (8 mg/kg loading dose, then 6 mg/kg) and pertuzumab (840 mg loading dose, then 420 mg) were administered intravenously every 3 weeks for 6 cycles starting from day 1 of cDC1 injections. Two dose levels (DLs) of IT cDC1 (DL1 = 50 million and DL2 = 100 million cells) were evaluated, including 6 patients in each DL. Main Outcomes and Measures The primary outcomes were the safety and immune response, and the secondary outcomes were the antitumor efficacy as measured by breast magnetic resonance imaging and residual cancer burden at surgery following neoadjuvant therapy. Results Twelve ERBB2-positive patients were enrolled and received treatment (DL1 = 6 and DL2 = 6). Nine patients had hormone receptor-positive disease and 3 had hormone receptor-negative disease, with clinical stage I (n = 5), II (n = 4), and III (n = 3). The most frequently observed adverse events with cDC1 were grade 1 to 2 chills (50%), fatigue (41.7%), headache (33%), and injection site reactions (33%). DL2 was associated with a diminished anti-ERBB2 CD4 T-helper 1 blood response with a concomitant increase in innate and adaptive responses within the tumor. Preimmunotherapy and postimmunotherapy breast magnetic resonance imaging results showed 9 objective responses, 6 partial responses, 3 complete responses, and 3 stable diseases. Following surgery, 7 patients had a pathologic complete response. Conclusions and Relevance In this nonrandomized clinical trial, the addition of IT cDC1 and trastuzumab/pertuzumab before neoadjuvant chemotherapy was well tolerated with manageable adverse effects. Based on safety and immunogenicity, DL2 was selected for the phase 2 dose. Trial Registration ClinicalTrials.gov Identifier: NCT05325632.
Collapse
Affiliation(s)
- Hyo S. Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amy L. Aldrich
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Saurabh K. Garg
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - R. Jared Weinfurtner
- Diagnostic Imaging, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Junmin Whiting
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jennifer Childress
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hatem Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ricardo Costa
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avan Armaghani
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aixa Soyano
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John Kiluk
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Susan Hoover
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Marie C. Lee
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nazanin Khakpour
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nithin Shenoi
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zena Jameel
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gary K. Koski
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Brian J. Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
3
|
Yohannes M, Desalegn Z, Bauer M, Stückrath K, Anberbir E, Bekuretsion Y, Assefa M, Wakuma T, Worku Y, Santos PSC, Taylor L, Adissie A, Wickenhauser C, Massa C, Vetter M, Kantelhardt EJ, Seliger B, Abebe T. Immune landscape of the tumour microenvironment in Ethiopian breast cancer patients. Breast Cancer Res 2024; 26:162. [PMID: 39587630 PMCID: PMC11587711 DOI: 10.1186/s13058-024-01916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The clinical management of breast cancer (BC) is mainly based on the assessment of receptor expression by tumour cells. However, there is still an unmet need for novel biomarkers important for prognosis and therapy. The tumour immune microenvironment (TIME) is thought to play a key role in prognosis and therapy selection, therefore this study aimed to describe the TIME in Ethiopian BC patients. METHODS RNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue from 82 women with BC. Expression of PAM50 and 54 immune genes was analysed using the Nanostring platform and differentially expressed genes (DEGs) were determined using ROSALIND®. The abundance of different cell populations was estimated using Nanostring's cell type profiling module, while tumour infiltrating lymphocytes (TILs) were analysed using haematoxylin and eosin (H&E) staining. In addition, the PIK3CA gene was genotyped for three hotspot mutations using qPCR. Kaplan-Meier survival analysis and log-rank test were performed to compare the prognostic relevance of immune subgroups. RESULTS Four discrete immune phenotypes (IP1-4) were identified through hierarchical clustering of immune gene expression data. These IPs were characterized by DEGs associated with both immune activation and inhibition as well as variations in the extent of immune infiltration. However, there were no significant differences regarding PIK3CA mutations between the IPs. A downregulation of immune suppressive and activating genes and the lowest number of infiltrating immune cells were found in IP2, which was associated with luminal tumours. In contrast, IP4 displayed an active TME chracterized by an upregulation of cytotoxic genes and the highest density of immune cell infiltrations, independent of the specific intrinsic subtype. IP1 and IP3 exhibited intermediate characteristics. The IPs had a prognostic relevance and patients with an active TME had improved overall survival compared to IPs with a significant downregulation of the majority of immune genes. CONCLUSION Immune gene expression profiling identified four distinct immune contextures of the TME with unique gene expression patterns and immune infiltration. The classification into distinct immune subgroups may provide important information regarding prognosis and the selection of patients undergoing conventional treatments or immunotherapies.
Collapse
Affiliation(s)
- Meron Yohannes
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Marcus Bauer
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Endale Anberbir
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Yasin Worku
- School of Medicine, Wollo University, Wollo, Ethiopia
| | - Pablo S C Santos
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Lesley Taylor
- City of Hope National Medical Center, Duarte, CA, USA
| | - Adamu Adissie
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Medical School Theodor Fontane, Faculty of Health Research Institute for Translational Immunology, Brandenburg an der Havel, Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia.
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
4
|
Matossian MD, Shiang C, Dolcen DN, Dreyer M, Hatogai K, Hall K, Saha P, Biernacka A, Sweis RF, Karrison T, Chen N, Nanda R, Conzen SD. High tumor glucocorticoid receptor expression in early-stage, triple-negative breast cancer is associated with increased T-regulatory cell infiltration. Breast Cancer Res Treat 2024:10.1007/s10549-024-07515-3. [PMID: 39579248 DOI: 10.1007/s10549-024-07515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE In early-stage, triple-negative breast cancer (TNBC), immune cell infiltration contributes to cancer cell survival, tumor invasion, and metastasis. High TNBC glucocorticoid receptor (GR) expression in early-stage TNBC is associated with poor long-term outcomes; it is unknown if high GR expression is associated with an immunosuppressed tumor microenvironment. We hypothesized that high tumor GR expression would be associated with an immune-suppressed tumor microenvironment, which could thus account for the poor prognosis observed in GR-positive TNBC. METHODS Formalin fixed-paraffin embedded tissue (n = 47) from patients diagnosed with early-stage TNBC from The University of Chicago (2002-2014) were evaluated for both tumor cell anti-GR immunohistochemistry and for infiltrating immune cells by immunofluorescence. Multiplexed antibodies were used to enumerate CD8+, FOXP3+, and BATF3+ immune cells infiltrating within pan-cytokeratin positive tumor cell regions of interest, and nonparametric tests compared absolute counts of each of these tumor-infiltrating immune cell types. RESULTS The average age of patients represented in this study was 52 years, and 63% self-identified as Black. There was no significant association between tumor GR expression and age, race, or clinical stage at diagnosis. Compared to GR-low tumors, high GR expression in early-stage, treatment-naïve TNBC was associated with relatively increased numbers of immunosuppressive FOXP3 + regulatory T cells (p = 0.046) and BATF3+immune cells (p = 0.021). While there was a positive correlation with high GR expression and CD8+ cell infiltration, it was not significant (p = 0.068). The ratio of CD8+/FOXP3+cells was also not significant (p = 0.24). CONCLUSIONS These data support the hypothesis that in early-stage TNBC, high GR expression is significantly associated with infiltration of immunosuppressive regulatory T cells, suggesting a tumor-intrinsic role in shaping the immunosuppressive immune cell milieu. Furthermore, suppression of GR activity may regulate the tumor immune microenvironment and improve long-term outcomes in GR-high TNBC.
Collapse
Affiliation(s)
- Margarite D Matossian
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Christine Shiang
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deniz Nesli Dolcen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Marie Dreyer
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ken Hatogai
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Katie Hall
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Poornima Saha
- Division of Hematology and Oncology, Department of Medicine, Endeavor Health, Evanston, IL, 60201, USA
| | - Anna Biernacka
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Randy F Sweis
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Suzanne D Conzen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Shahhiran MAA, Abdul Kadir MF, Nor Rashid N, Abdul-Rahman PS, Othman S. Mechanisms of S-phase arrest and mitochondrial dysfunction in complex III by DHODH inhibitors in tumorigenic TNBC cells. Histochem Cell Biol 2024; 163:3. [PMID: 39557682 DOI: 10.1007/s00418-024-02339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/20/2024]
Abstract
Dihydroorotate dehydrogenase (DHODH) inhibitors have recently gained increasing research interest owing to their potential for treating breast cancers. We explored their effects in different breast cancer subtypes, focusing on mitochondrial dysfunction. The sensitivity of different subtypes to the inhibitors was investigated with respect to DHODH expression, tumorigenic, and receptor status. Analysis of respiratory complexes, cell cycle, reactive oxygen species (ROS), and cell differentiation were performed. Four cell lines with different receptor status were included, namely MCF-7, MDAMB-231, SKBR-3, and MCF-10A. We showed that MCF-7 and MDAMB-231 cells of the subtypes (ER+/PR+/HER2-) and (ER-/PR-/HER2-), respectively, were responsive to brequinar. Brequinar (BQR) caused cell cycle arrest in the S-phase in sensitive subtypes of breast cells but induced cell differentiation only in poorly differentiated breast cells. All cell subtypes showed increased generation of ROS, both intracellular and mitochondrial ROS with a greater increase seen in mitochondrial ROS in response to DHODH inhibitor, subsequently contributing to mitochondrial dysfunction. BQR also disrupts the function of complex III in ER+/PR+ and triple negative breast cancer (TNBC) subtypes. Collectively, we have found that MDAMB-231 TNBC cell was the most affected by DHODH inhibition in terms of sensitivity, cell cycle arrest, induction of cell differentiation, production of ROS, and mitochondrial complexes disruption. In conclusion, these findings suggest that DHODH inhibitors can potentially become a valuable targeted therapy for TNBC subtype and further consolidates its therapeutic potential as part of the combinatorial therapy against this resilient breast cancer subtype.
Collapse
Affiliation(s)
- Muhammad Aiman Akmal Shahhiran
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohamad Fairus Abdul Kadir
- Aurigene Discovery Technology (M) Sdn Bhd, Level 2 Research Management and Innovation Complex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Lok V, Olson-McPeek S, Spiegelhoff G, Cortez J, Detz D, Czerniecki B. Immunotherapies in breast cancer: harnessing the cancer immunity cycle. Expert Opin Ther Targets 2024; 28:925-935. [PMID: 39523444 DOI: 10.1080/14728222.2024.2427038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immunotherapies have found limited success in breast cancerdue to significant challenges within the tumor that block T-cell activity and function. AREAS COVERED The current review discusses clinically relevant immunotherapeutics and trials within the framework of the cancer-immunity cycle. EXPERT OPINION Current therapies such as antibody-drug conjugates and immune checkpoint blockade require proper biomarker selection, such as PD1 expression and the degree of tumor-infiltrating lymphocyte (TIL) infiltration to subset potential responders. HER2 and other tumor-associated antigens have served as valuable benchmarks for developing novel therapies, such as antibody engagers and CAR T-cells. However, further research is essential to identify and validate new target antigens that can enhance therapeutic efficacy and broaden the clinical applicability of these approaches.
Collapse
Affiliation(s)
- Vincent Lok
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Sy Olson-McPeek
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Grace Spiegelhoff
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Jaqueline Cortez
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - David Detz
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Brian Czerniecki
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
7
|
Carleton N, Lee S, Li R, Zou J, Brown DD, Hooda J, Chang A, Kumar R, Klei LR, Rigatti LH, Newsome J, John Mary DJS, Atkinson JM, West RE, Nolin TD, Oberly PJ, Huang Z, Poirier D, Diego EJ, Lucas PC, Tseng G, Lotze MT, McAuliffe PF, Zervantonakis IK, Oesterreich S, Lee AV. Systemic and local chronic inflammation and hormone disposition promote a tumor-permissive environment for breast cancer in older women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.616978. [PMID: 39484485 PMCID: PMC11526964 DOI: 10.1101/2024.10.18.616978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common subtype of breast cancer and is an age-related disease. The peak incidence of diagnosis occurs around age 70, even though these post-menopausal patients have low circulating levels of estradiol (E2). Despite the hormone sensitivity of age-related tumors, we have a limited understanding of the interplay between systemic and local hormones, chronic inflammation, and immune changes that contribute to the growth and development of these tumors. Here, we show that aged F344 rats treated with the dimethylbenz(a)anthracene / medroxyprogestrone acetate (DMBA/MPA) carcinogen develop more tumors at faster rates than their younger counterparts, suggesting that the aged environment promotes tumor initiation and impacts growth. Single-nuclei RNA-seq (snRNA-seq) of the tumors showed broad local immune dysfunction that was associated with circulating chronic inflammation. Across a broad cohort of specimens from patients with ER+ breast cancer and age-matched donors of normal breast tissue, we observe that even with an estrone (E1)-predominant estrogen disposition in the systemic circulation, tumors in older patients increase HSD17B7 expression to convert E1 to E2 in the tumor microenvironment (TME) and have local E2 levels similar to pre-menopausal patients. Concurrently, trackable increases in several chemokines, defined most notably by CCL2, promote a chronically inflamed but immune dysfunctional TME. This unique milieu in the aged TME, characterized by high local E2 and chemokine-enriched chronic inflammation, promotes both accumulation of tumor-associated macrophages (TAMs), which serve as signaling hubs, as well as polarization of TAMs towards a CD206+/PD-L1+, immunosuppressive phenotype. Pharmacologic targeting of estrogen signaling (either by HSD17B7 inhibition or with fulvestrant) and chemokine inflammation both decrease local E2 and prevent macrophage polarization. Overall, these findings suggest that chronic inflammation and hormonal disposition are critical contributors to the age-related nature of ER+ breast cancer development and growth and offer potential therapeutic insight to treat these patients. Translational Summary We uncover the unique underpinnings establishing how the systemic host environment contributes to the aged breast tumor microenvironment, characterized by high local estradiol and chronic inflammation with immune dysregulation, and show that targeting avenues of estrogen conversion and chronic inflammation work to restore anti-tumor immunity.
Collapse
|
8
|
Parsons A, Colon ES, Spasic M, Kurt BB, Swarbrick A, Freedman RA, Mittendorf EA, van Galen P, McAllister SS. Cell Populations in Human Breast Cancers are Molecularly and Biologically Distinct with Age. RESEARCH SQUARE 2024:rs.3.rs-5167339. [PMID: 39483921 PMCID: PMC11527348 DOI: 10.21203/rs.3.rs-5167339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging is associated with increased breast cancer risk and outcomes are worse for the oldest and youngest patients, regardless of subtype. It is not known how cells in the breast tumor microenvironment are impacted by age and how they might contribute to age-related disease pathology. Here, we discover age-associated differences in cell states and interactions in human estrogen receptor-positive (ER+) and triple-negative breast cancers (TNBC) using new computational analyses of existing single-cell gene expression data. Age-specific program enrichment (ASPEN) analysis reveals age-related changes, including increased tumor cell epithelial-mesenchymal transition, cancer-associated fibroblast inflammatory responses, and T cell stress responses and apoptosis in TNBC. ER+ breast cancer is dominated by increased cancer cell estrogen receptor 1 (ESR1) and luminal cell activity, reduced immune cell metabolism, and decreased vascular and extracellular matrix (ECM) remodeling with age. Cell interactome analysis reveals candidate signaling pathways that drive many of these cell states. This work lays a foundation for discovery of age-adapted therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Adrienne Parsons
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Sauras Colon
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Oncological Pathology and Bioinformatics Research Group, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tortosa, Tarragona, Spain
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Busem Binboga Kurt
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel A. Freedman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Altman JE, Olex AL, Zboril EK, Walker CJ, Boyd DC, Myrick RK, Hairr NS, Koblinski JE, Puchalapalli M, Hu B, Dozmorov MG, Chen XS, Chen Y, Perou CM, Lehmann BD, Visvader JE, Harrell JC. Single-cell transcriptional atlas of human breast cancers and model systems. Clin Transl Med 2024; 14:e70044. [PMID: 39417215 PMCID: PMC11483560 DOI: 10.1002/ctm2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Breast cancer's complex transcriptional landscape requires an improved understanding of cellular diversity to identify effective treatments. The study of genetic variations among breast cancer subtypes at single-cell resolution has potential to deepen our insights into cancer progression. METHODS In this study, we amalgamate single-cell RNA sequencing data from patient tumours and matched lymph metastasis, reduction mammoplasties, breast cancer patient-derived xenografts (PDXs), PDX-derived organoids (PDXOs), and cell lines resulting in a diverse dataset of 117 samples with 506 719 total cells. These samples encompass hormone receptor positive (HR+), human epidermal growth factor receptor 2 positive (HER2+), and triple-negative breast cancer (TNBC) subtypes, including isogenic model pairs. Herein, we delineated similarities and distinctions across models and patient samples and explore therapeutic drug efficacy based on subtype proportions. RESULTS PDX models more closely resemble patient samples in terms of tumour heterogeneity and cell cycle characteristics when compared with TNBC cell lines. Acquired drug resistance was associated with an increase in basal-like cell proportions within TNBC PDX tumours as defined with SCSubtype and TNBCtype cell typing predictors. All patient samples contained a mixture of subtypes; compared to primary tumours HR+ lymph node metastases had lower proportions of HER2-Enriched cells. PDXOs exhibited differences in metabolic-related transcripts compared to PDX tumours. Correlative analyses of cytotoxic drugs on PDX cells identified therapeutic efficacy was based on subtype proportion. CONCLUSIONS We present a substantial multimodel dataset, a dynamic approach to cell-wise sample annotation, and a comprehensive interrogation of models within systems of human breast cancer. This analysis and reference will facilitate informed decision-making in preclinical research and therapeutic development through its elucidation of model limitations, subtype-specific insights and novel targetable pathways. KEY POINTS Patient-derived xenografts models more closely resemble patient samples in tumour heterogeneity and cell cycle characteristics when compared with cell lines. 3D organoid models exhibit differences in metabolic profiles compared to their in vivo counterparts. A valuable multimodel reference dataset that can be useful in elucidating model differences and novel targetable pathways.
Collapse
Affiliation(s)
- Julia E. Altman
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amy L. Olex
- C. Kenneth and Diane Wright Center for Clinical and Translational ResearchVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Emily K. Zboril
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of BiochemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Carson J. Walker
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - David C. Boyd
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rachel K. Myrick
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Nicole S. Hairr
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jennifer E. Koblinski
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Madhavi Puchalapalli
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Bin Hu
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mikhail G. Dozmorov
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - X. Steven Chen
- Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Yunshun Chen
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Charles M. Perou
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Brian D. Lehmann
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jane E. Visvader
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - J. Chuck Harrell
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Center for Pharmaceutical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
10
|
Cha SM, Park JW, Lee YJ, Lee HJ, Lee H, Lee IW, Gong G, Park SH, Lee HJ, Jeong BK. SPP1+ macrophages in HR+ breast cancer are associated with tumor-infiltrating lymphocytes. NPJ Breast Cancer 2024; 10:83. [PMID: 39349495 PMCID: PMC11442831 DOI: 10.1038/s41523-024-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024] Open
Abstract
Breast cancer categorized into hormone receptor-positive (HR+), HER2-positive (HER2+), and triple-negative (TNBC) subtypes, exhibits varied outcomes based on the number of tumor-infiltrating lymphocytes (TILs). To explore the divergent roles of TIL levels across different subtypes, we employed single-cell RNA sequencing on 31 patients with breast cancer. HR+ breast cancer with high TIL levels (TIL-high) revealed increased SPP1+ macrophages, increased SPP1 expression in other monocytes/macrophages (mono/macro) subgroups, and enriched pathways associated with extracellular matrix (ECM) remodeling in mono/macro. Moreover, cell-cell interaction analyses revealed enhanced SPP1, MIF, and FN1 signaling in the interaction between SPP1+ macrophages and T-cells in TIL-high HR+ breast cancer. Spatial transcriptomics data highlighted the close proximity of SPP1+ macrophages, CD8+ T-cells, and CD4+ T-cells in TIL-high HR+ breast cancer. Our findings unveil the novel influence of SPP1+ macrophages on T-cells in TIL-high HR+ breast cancer, potentially explaining the poor prognosis and offering insights for targeted interventions.
Collapse
Grants
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Su Min Cha
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Yoon Jae Lee
- University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Hee Park
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul, South Korea.
- NeogenTC Corp., Seoul, South Korea.
| | - Byung-Kwan Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
11
|
de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol 2024:10.1007/s12094-024-03661-8. [PMID: 39154313 DOI: 10.1007/s12094-024-03661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) presents a clinical challenge as an aggressive tumor, correlated with unfavorable prognosis. Tumor-infiltrating lymphocytes (TILs) have garnered interest as a potential prognostic biomarker. However, the disparity in outcomes between varying TILs rates remains inadequately explored. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were searched for studies about the prognostic value of TILs in patients with TNBC receiving neoadjuvant chemotherapy. The hazard ratios (HRs) or odds ratios (ORs) were computed for binary endpoints, with 95% confidence intervals (CIs). RESULTS Twenty-nine studies were included, involving a population of six thousand one hundred sixty-one (80.41%) with TNBC. The cut-off TILs value ranged from 10 to 60%, with 50% being the most related value. Compared with the low-TIL expression group, the disease-free survival (DFS) (HR 0.71; 95% CI 0.61-0.82; p < 0.00001) and overall survival (OS) (HR 0.76; 95% CI 0.63-0.90; p = 0.002) rates showed significant improvement with higher TIL infiltrations. In the subgroup analyses of the lymphocyte subtypes CD4 + and CD8 + , there was statistical significance favoring higher TILs rates in both subtypes, each associated with improved DFS (HR 0.48; 95% CI 0.33-0.71; p = 0.0002) and OS (HR 0.53; 95% CI 0.36-0.78; p = 0.001), regardless of which cell subtype was predominantly infiltrated. The complete pathological response analysis showed better rates for the higher TIL group than the control for both the TIL (OR 1.29; 95% CI 1.13-1.48; p = 0.0003) and Ki-67 (OR 2.74; 95% CI 2.01-3.73; p < 0.00001) analyses. CONCLUSION Higher expressions of TILs in patients with TNBC were associated with improved significantly DFS, OS, and pCR outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ana C Melo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
12
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
13
|
Langouo Fontsa M, Padonou F, Willard-Gallo K. Tumor-associated tertiary lymphoid structures in cancer: implications for immunotherapy. Expert Rev Clin Immunol 2024; 20:839-847. [PMID: 39007892 DOI: 10.1080/1744666x.2024.2380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Tertiary lymphoid structures (TLS) arise at chronic inflammatory sites where they function as miniature lymph nodes to generate immune responses, which can be beneficial or detrimental, in diseases as diverse as autoimmunity, chronic infections and cancer. A growing number of studies show that a TLS presence in tumors from cancer patients treated with immune checkpoint inhibitors is closely linked with improved clinical outcomes. TLS may foster the generation of specific anti-tumor immune responses and immunological memory that recognizes a patient's own tumor. Due to repeated rounds of chronic inflammation, some tumor-associated TLS may be immunologically inactive, with immune checkpoint inhibitors functioning to revitalize them through pathway activation. AREAS COVERED This review summarizes work on TLS and how they mediate immune responses in human tumors. We also explore TLS as potential prognostic and predictive biomarkers for immunotherapy. EXPERT OPINION The presence of TLS in human tumors has been linked with a better clinical prognosis, response to treatment(s) and overall survival. TLS provide a structured microenvironment for the activation, expansion and maturation of immune cells at the tumor site. These activities can enhance the efficacy of immunotherapeutic treatments such as checkpoint inhibitors and cancer vaccines by revitalizing local anti-tumor immunity.
Collapse
Affiliation(s)
- Mireille Langouo Fontsa
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Francine Padonou
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Dvir K, Giordano S, Leone JP. Immunotherapy in Breast Cancer. Int J Mol Sci 2024; 25:7517. [PMID: 39062758 PMCID: PMC11276856 DOI: 10.3390/ijms25147517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is a disease encompassing a spectrum of molecular subtypes and clinical presentations, each with distinct prognostic implications and treatment responses. Breast cancer has traditionally been considered an immunologically "cold" tumor, unresponsive to immunotherapy. However, clinical trials in recent years have found immunotherapy to be an efficacious therapeutic option for select patients. Breast cancer is categorized into different subtypes ranging from the most common positive hormone receptor (HR+), human epidermal growth factor receptor 2 (HER2)-negative type, to less frequent HER2- positive breast cancer and triple-negative breast cancer (TNBC), highlighting the necessity for tailored treatment strategies aimed at maximizing patient outcomes. Despite notable progress in early detection and new therapeutic modalities, breast cancer remains the second leading cause of cancer death in the USA. Moreover, in recent decades, breast cancer incidence rates have been increasing, especially in women younger than the age of 50. This has prompted the exploration of new therapeutic approaches to address this trend, offering new therapeutic prospects for breast cancer patients. Immunotherapy is a class of therapeutic agents that has revolutionized the treatment landscape of many cancers, namely melanoma, lung cancer, and gastroesophageal cancers, amongst others. Though belatedly, immunotherapy has entered the treatment armamentarium of breast cancer, with the approval of pembrolizumab in combination with chemotherapy in triple-negative breast cancer (TNBC) in the neoadjuvant and advanced settings, thereby paving the path for further research and integration of immune checkpoint inhibitors in other subtypes of breast cancer. Trials exploring various combination therapies to harness the power of immunotherapy in symbiosis with various chemotherapeutic agents are ongoing in hopes of improving response rates and prolonging survival for breast cancer patients. Biomarkers and precise patient selection for the utilization of immunotherapy remain cardinal and are currently under investigation, with some biomarkers showing promise, such as Program Death Lignat-1 (PDL-1) Combined Positive Score, Tumor Mutation Burden (TMB), and Tumor Infiltrating Lymphocytes (TILs). This review will present the current landscape of immunotherapy, particularly checkpoint inhibitors, in different types of breast cancer.
Collapse
Affiliation(s)
- Kathrin Dvir
- Dana Farber Cancer Institute, Boston, MA 02215, USA; (K.D.)
- St. Elizabeth’s Medical Center, Boston, MA 02111, USA
| | - Sara Giordano
- Dana Farber Cancer Institute, Boston, MA 02215, USA; (K.D.)
- St. Elizabeth’s Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
15
|
Pu W, Ma C, Wang B, Zhu W, Chen H. The "Heater" of "Cold" Tumors-Blocking IL-6. Adv Biol (Weinh) 2024; 8:e2300587. [PMID: 38773937 DOI: 10.1002/adbi.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/13/2024] [Indexed: 05/24/2024]
Abstract
The resolution of inflammation is not simply the end of the inflammatory response but rather a complex process that involves various cells, inflammatory factors, and specialized proresolving mediators following the occurrence of inflammation. Once inflammation cannot be cleared by the body, malignant tumors may be induced. Among them, IL-6, as an immunosuppressive factor, activates a variety of signal transduction pathways and induces tumorigenesis. Monitoring IL-6 can be used for the diagnosis, efficacy evaluation and prognosis of tumor patients. In terms of treatment, improving the efficacy of targeted and immunotherapy remains a major challenge. Blocking IL-6 and its mediated signaling pathways can regulate the tumor immune microenvironment and enhance immunotherapy responses by activating immune cells. Even transform "cold" tumors that are difficult to respond to immunotherapy into immunogenic "hot" tumors, acting as a "heater" for "cold" tumors, restarting the tumor immune cycle, and reducing immunotherapy-related toxic reactions and drug resistance. In clinical practice, the combined application of IL-6 inhibition with targeted therapy and immunotherapy may produce synergistic results. Nevertheless, additional clinical trials are imperative to further validate the safety and efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Weigao Pu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Weidong Zhu
- General Surgery Department of Lintao County People's Hospital in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, Gansu, 730030, China
| |
Collapse
|
16
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Chaudhary P, Yadav K, Lee HJ, Kang KW, Mo J, Kim JA. siRNA treatment targeting integrin α11 overexpressed via EZH2-driven axis inhibits drug-resistant breast cancer progression. Breast Cancer Res 2024; 26:72. [PMID: 38664825 PMCID: PMC11046805 DOI: 10.1186/s13058-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets. METHODS Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target. RESULTS Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours. CONCLUSION Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ho Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongseo Mo
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
18
|
Luo Z, Huang X, Xu X, Wei K, Zheng Y, Gong K, Li W. Decreased LDHB expression in breast tumor cells causes NK cell activation and promotes tumor progression. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0382. [PMID: 38525901 PMCID: PMC11208901 DOI: 10.20892/j.issn.2095-3941.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE Abnormal metabolism is the underlying reason for breast cancer progression. Decreased lactate dehydrogenase B (LDHB) has been detected in breast cancer but the function of LDHB remains unknown. METHODS Western blot was used to analyze LDHB expression in breast cancer cells. The impact of LDHB on tumor cell migration and invasion was determined using Transwell assays, wound healing assays, and a mouse lung metastasis model. Subcutaneous tumor formation, a natural killer (NK) cell cytotoxicity assay, and flow cytometry evaluated NK cell activation. Immunofluorescence and quantitative real-time PCR detected NK cell activation markers. Kaplan-Meier analysis evaluated the effect of immune cell infiltration on prognosis. Single-sample gene set enrichment analysis determined NK cell activation scores. A support vector machine predicted the role of LDHB in NK cell activation. RESULTS In this study we showed that LDHB inhibits the breast cancer cell metastasis and orchestrates metabolic reprogramming within tumor cells. Our results revealed that LDHB-mediated lactic acid clearance in breast cancer cells triggers NK cell activation within the tumor microenvironment. Our findings, which were confirmed in a murine model, demonstrated that LDHB in tumor cells promotes NK cell activation and ultimately results in the eradication of malignant cells. Clinically, our study further validated that LDHB affects immune cell infiltration and function. Specifically, its expression has been linked to enhanced NK cell-mediated cytotoxicity and improved patient survival. Furthermore, we identified LDHB expression in tumors as an important predictor of NK cell activation, with strong predictive ability in some cancers. CONCLUSIONS Our results suggest that LDHB is a promising target for activating the tumor immune microenvironment in breast cancer, where LDHB-associated lactic acid clearance leads to increased NK cell activity. This study highlights the critical role of LDHB in regulating immune responses and its potential as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Zhihong Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiaohua Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinyi Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kefeng Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518107, China
| | - Ke Gong
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
19
|
Nicolini A, Ferrari P, Silvestri R, Gemignani F. The breast cancer tumor microenvironment and precision medicine: immunogenicity and conditions favoring response to immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:14-24. [PMID: 39036381 PMCID: PMC11256721 DOI: 10.1016/j.jncc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 07/23/2024] Open
Abstract
Some main recent researches that have dissected tumor microenvironment (TME) by imaging mass cytometry (IMC) in different subtypes of primary breast cancer samples were considered. The many phenotypic variants, clusters of epithelial tumor and immune cells, their structural features as well as the main genetic aberrations, sub-clonal heterogeneity and their systematic classification also have been examined. Mutational evolution has been assessed in primary and metastatic breast cancer samples. Overall, based on these findings the current concept of precision medicine is questioned and challenged by alternative therapeutic strategies. In the last two decades, immunotherapy as a powerful and harmless tool to fight cancer has received huge attention. Thus, the tumor immune microenvironment (TIME) composition, its prognostic role for clinical course as well as a novel definition of immunogenicity in breast cancer are proposed. Investigational clinical trials carried out by us and other findings suggest that G0-G1 state induced in endocrine-dependent metastatic breast cancer is more suitable for successful immune manipulation. Residual micro-metastatic disease seems to be another specific condition that can significantly favor the immune response in breast and other solid tumors.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
20
|
Lee S, Kang BH, Lee HB, Jang BS, Han W, Kim IA. B-Cell-Mediated Immunity Predicts Survival of Patients With Estrogen Receptor-Positive Breast Cancer. JCO Precis Oncol 2024; 8:e2300263. [PMID: 38452311 DOI: 10.1200/po.23.00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE The estrogen receptor-positive (ER+) breast cancer (BC), which constitutes the majority of BC cases, exhibits highly heterogeneous clinical behavior. To aid precision treatments, we aimed to find molecular subtypes of ER+ BC representing the tumor microenvironment and prognosis. METHODS We analyzed RNA-seq data of 113 patients with BC and classified them according to the PAM50 intrinsic subtypes using gene expression profiles. Among them, we further focused on 44 patients with luminal-type (ER+) BC for subclassification. The Cancer Genome Atlas (TCGA) data of patients with BC were used as a validation data set to verify the new classification. We estimated the immune cell composition using CIBERSORT and further analyzed its association with clinical or molecular parameters. RESULTS Principal component analysis clearly divided the patients into two subgroups separately from the luminal A and B classification. The top differentially expressed genes between the subgroups were distinctly characterized by immunoglobulin and B-cell-related genes. We could also cluster a separate cohort of patients with luminal-type BC from TCGA into two subgroups on the basis of the expression of a B-cell-specific gene set, and patients who were predicted to have high B-cell immune activity had better prognoses than other patients. CONCLUSION Our transcriptomic approach emphasize a molecular phenotype of B-cell immunity in ER+ BC that may help to predict disease prognosis. Although further researches are required, B-cell immunity for patients with ER+ BC may be helpful for identifying patients who are good responders to chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Hee Kang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Radiation Oncology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Radiation Oncology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Andresen NK, Røssevold AH, Quaghebeur C, Gilje B, Boge B, Gombos A, Falk RS, Mathiesen RR, Julsrud L, Garred Ø, Russnes HG, Lereim RR, Chauhan SK, Lingjærde OC, Dunn C, Naume B, Kyte JA. Ipilimumab and nivolumab combined with anthracycline-based chemotherapy in metastatic hormone receptor-positive breast cancer: a randomized phase 2b trial. J Immunother Cancer 2024; 12:e007990. [PMID: 38242720 PMCID: PMC10806573 DOI: 10.1136/jitc-2023-007990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have shown minimal clinical activity in hormone receptor-positive metastatic breast cancer (HR+mBC). Doxorubicin and low-dose cyclophosphamide are reported to induce immune responses and counter regulatory T cells (Tregs). Here, we report the efficacy and safety of combined programmed cell death protein-1/cytotoxic T-lymphocyte-associated protein 4 blockade concomitant with or after immunomodulatory chemotherapy for HR+mBC. METHODS Patients with HR+mBC starting first-/second- line chemotherapy (chemo) were randomized 2:3 to chemotherapy (pegylated liposomal doxorubicin 20 mg/m2 every second week plus cyclophosphamide 50 mg by mouth/day in every other 2-week cycle) with or without concomitant ipilimumab (ipi; 1 mg/kg every sixth week) and nivolumab (nivo; 240 mg every second week). Patients in the chemo-only arm were offered cross-over to ipi/nivo without chemotherapy. Co-primary endpoints were safety in all patients starting therapy and progression-free survival (PFS) in the per-protocol (PP) population, defined as all patients evaluated for response and receiving at least two treatment cycles. Secondary endpoints included objective response rate, clinical benefit rate, Treg changes during therapy and assessment of programmed death-ligand 1 (PD-L1), mutational burden and immune gene signatures as biomarkers. RESULTS Eighty-two patients were randomized and received immune-chemo (N=49) or chemo-only (N=33), 16 patients continued to the ipi/nivo-only cross-over arm. Median follow-up was 41.4 months. Serious adverse events occurred in 63% in the immune-chemo arm, 39% in the chemo-only arm and 31% in the cross-over-arm. In the PP population (N=78) median PFS in the immune-chemo arm was 5.1 months, compared with 3.6 months in the chemo-only arm, with HR 0.94 (95% CI 0.59 to 1.51). Clinical benefit rates were 55% (26/47) and 48% (15/31) in the immune-chemo and chemo-only arms, respectively. In the cross-over-arm (ipi/nivo-only), objective responses were observed in 19% of patients (3/16) and clinical benefit in 25% (4/16). Treg levels in blood decreased after study chemotherapy. High-grade immune-related adverse events were associated with prolonged PFS. PD-L1 status and mutational burden were not associated with ipi/nivo benefit, whereas a numerical PFS advantage was observed for patients with a high Treg gene signature in tumor. CONCLUSION The addition of ipi/nivo to chemotherapy increased toxicity without improving efficacy. Ipi/nivo administered sequentially to chemotherapy was tolerable and induced clinical responses. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier: NCT03409198.
Collapse
Affiliation(s)
- Nikolai Kragøe Andresen
- Department of Clinical Cancer Research and Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Hagen Røssevold
- Department of Clinical Cancer Research and Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claire Quaghebeur
- Department of Oncology, CHU UCL Namur - Site Sainte-Elisabeth, Namur, Belgium
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Beate Boge
- Center for Cancer Treatment, Sørlandet Hospital Kristiansand, Kristiansand, Norway
| | - Andrea Gombos
- Department of Medical Oncology, Institut Jules Bordet, Bruxelles, Belgium
| | - Ragnhild Sørum Falk
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | - Lars Julsrud
- Department of Radiology and Nuclear medicine, Oslo University Hospital, Oslo, Norway
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Hege G Russnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology and Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Ragnhild Reehorst Lereim
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sudhir Kumar Chauhan
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Naume
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Clinical Cancer Research and Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
22
|
Guerriero JL, Lin JR, Pastorello RG, Du Z, Chen YA, Townsend MG, Shimada K, Hughes ME, Ren S, Tayob N, Zheng K, Mei S, Patterson A, Taneja KL, Metzger O, Tolaney SM, Lin NU, Dillon DA, Schnitt SJ, Sorger PK, Mittendorf EA, Santagata S. Qualification of a multiplexed tissue imaging assay and detection of novel patterns of HER2 heterogeneity in breast cancer. NPJ Breast Cancer 2024; 10:2. [PMID: 38167908 PMCID: PMC10761880 DOI: 10.1038/s41523-023-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Emerging data suggests that HER2 intratumoral heterogeneity (ITH) is associated with therapy resistance, highlighting the need for new strategies to assess HER2 ITH. A promising approach is leveraging multiplexed tissue analysis techniques such as cyclic immunofluorescence (CyCIF), which enable visualization and quantification of 10-60 antigens at single-cell resolution from individual tissue sections. In this study, we qualified a breast cancer-specific antibody panel, including HER2, ER, and PR, for multiplexed tissue imaging. We then compared the performance of these antibodies against established clinical standards using pixel-, cell- and tissue-level analyses, utilizing 866 tissue cores (representing 294 patients). To ensure reliability, the CyCIF antibodies were qualified against HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) data from the same samples. Our findings demonstrate the successful qualification of a breast cancer antibody panel for CyCIF, showing high concordance with established clinical antibodies. Subsequently, we employed the qualified antibodies, along with antibodies for CD45, CD68, PD-L1, p53, Ki67, pRB, and AR, to characterize 567 HER2+ invasive breast cancer samples from 189 patients. Through single-cell analysis, we identified four distinct cell clusters within HER2+ breast cancer exhibiting heterogeneous HER2 expression. Furthermore, these clusters displayed variations in ER, PR, p53, AR, and PD-L1 expression. To quantify the extent of heterogeneity, we calculated heterogeneity scores based on the diversity among these clusters. Our analysis revealed expression patterns that are relevant to breast cancer biology, with correlations to HER2 ITH and potential relevance to clinical outcomes.
Collapse
Affiliation(s)
- Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA.
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA.
| | - Jia-Ren Lin
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Ricardo G Pastorello
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Hospital Sírio Libanês, São Paulo, SP, 01308-050, Brazil
| | - Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Madeline G Townsend
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kenichi Shimada
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Melissa E Hughes
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Siyang Ren
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kelly Zheng
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shaolin Mei
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa Patterson
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Krishan L Taneja
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Otto Metzger
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Nancy U Lin
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter K Sorger
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA
| | - Sandro Santagata
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, 02215, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Singh K, Agrawal L, Gupta R, Singh D, Kathpalia M, Kaur N. Lectins as a promising therapeutic agent for breast cancer: A review. Breast Dis 2024; 43:193-211. [PMID: 38905027 PMCID: PMC11307042 DOI: 10.3233/bd-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Efficient treatment of cancer has been a subject of research by scientists for many years. Current treatments for cancer, such as radiotherapy, chemotherapy and surgery have been used in traditional combination therapy, but they have major setbacks like non-specificity, non-responsiveness in certain cancer types towards treatment, tumor recurrence, etc. Epidemiological data has shown that breast cancer accounts for 14% of cancer cases occurring in Indian women. In recent years, scientists have started to focus on the use of natural compounds like lectins obtained from various sources to counter the side effects of traditional therapy. Lectins like Sambucus nigra Agglutinin, Maackia amurensis lectin, Okra lectins, Haliclona caerulea lectin, Sclerotium rolfsii lectin, etc., have been discovered to have both diagnostic and therapeutic potential for breast cancer patients. Lectins have been found to have inhibitory effects on various cancer cell activities such as neo-angiogenesis, causing cell cycle arrest at the G1 phase, and inducing apoptosis. The major idea behind the use of lectins in cancer diagnostics and therapeutics is their capability to bind to glycosylated proteins that are expressed on the cell surface. This review focuses on an exploration of the roles of post-translational modification in cancer cells, especially glycosylation, and the potential of lectins in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Keerti Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Lokita Agrawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rhea Gupta
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Divyam Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meghavi Kathpalia
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
24
|
Shaheer K, Prabhu BS, Ali HS, Lakshmanan-M D. Breast cancer cells are sensitized by piperine to radiotherapy through estrogen receptor-α mediated modulation of a key NHEJ repair protein- DNA-PK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155126. [PMID: 37913642 DOI: 10.1016/j.phymed.2023.155126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Non-homologous end joining, an important DNA-double-stranded break repair pathway, plays a prominent role in conferring resistance to radiotherapeutic agents, resulting in cancer progression and relapse. PURPOSE The molecular players involved in the radio-sensitizing effects of piperine and many other phytocompounds remain evasive to a great extent. The study is designed to assess if piperine, a plant alkaloid can alter the radioresistance by modulating the expression of non-homologous end-joining machinery. METHODS AND MATERIALS Estrogen receptor-positive/negative, breast cancer cells were cultured to understand the synergetic effects of piperine with radiotherapy. Cisplatin and Bazedoxifene were used as positive controls. Cells were exposed to γ- radiation using Low Dose gamma Irradiator-2000. The piperine effect on Estrogen receptor modulation, DNA-Damage, DNA-Damage-Response, and apoptosis was done by western blotting, immunofluorescence, yeast-based-estrogen-receptor-LacZ-reporter assay, and nuclear translocation analysis. Micronuclei assay was done for DNA damage and genotoxicity, and DSBs were quantified by γH2AX-foci-staining using confocal microscopy. Flow cytometry analysis was done to determine the cell cycle, mitochondrial membrane depolarization, and Reactive oxygen species generation. Pharmacophore analysis and protein-ligand interaction studies were done using Schrodinger software. Synergy was computed by compusyn-statistical analysis. Standard errors/deviation/significance were computed with GraphPad prism. RESULTS Using piperine, we propose a new strategy for overcoming acquired radioresistance through estrogen receptor-mediated modulation of the NHEJ pathway. This is the first comprehensive study elucidating the mechanism of radio sensitizing potential of piperine. Piperine enhanced the radiation-induced cell death and enhanced the expression and activation of Estrogen receptor β, while Estrogen receptor α expression and activation were reduced. In addition, piperine shares common pharmacophore features with most of the known estrogen agonists and antagonists. It altered the estrogen receptor α/β ratio and the expression of estrogen-responsive proteins of DDR and NHEJ pathway. Enhanced expression of DDR proteins, ATM, p53, and P-p53 with low DNA-PK repair complex (comprising of DNA-PKcs/Ku70/Ku80), resulted in the accumulation of radiation-induced DNA double-stranded breaks (as evidenced by MNi and γH2AX-foci) culminating in cell cycle arrest and mitochondrial-pathway of apoptosis. CONCLUSION In conclusion, our study for the first time reported that piperine sensitizes breast cancer cells to radiation by accumulating DNA breaks, through altering the expression of DNA-PK Complex, and DDR proteins, via selective estrogen receptor modulation, offering a novel strategy for combating radioresistance.
Collapse
Affiliation(s)
- Koniyan Shaheer
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Br Swathi Prabhu
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - H Shabeer Ali
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Divya Lakshmanan-M
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
25
|
Morganti S, Marra A, Gandini S, Ascione L, Ivanova M, Venetis K, Sajjadi E, Zagami P, Giugliano F, Taurelli Salimbeni B, Berton Giachetti PPM, Corti C, De Camilli E, Curigliano G, Fusco N, Criscitiello C. Clinicopathological features and survival outcomes of luminal-like breast tumors with estrogen receptor loss at metastatic recurrence: A case-control study. Eur J Cancer 2023; 195:113397. [PMID: 37890353 DOI: 10.1016/j.ejca.2023.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Estrogen receptor (ER) loss at metastatic relapse occurs in up to 20% of luminal-like primary breast tumors. Data about clinicopathological features associated with ER loss and its prognostic significance are limited. METHODS In a nested-case-control study, we compared clinicopathological characteristics and clinical outcomes between a cohort of 51 patients with primary ER+ /HER2- and paired triple-negative metastasis (LUM-TN) and two control cohorts of paired early-metastatic ER+ /HER2- (LUM-LUM, n = 50) and triple-negative (TN-TN, n = 49) breast cancers. Stromal tumor-infiltrating lymphocytes (TILs) were assessed according to the TILs Working Group recommendations as continuous and discrete variables with cutoffs (20%, 40%). RESULTS LUM-TN tumors had lower ER expression than LUM-LUM tumors, but lower grade and Ki67 than TN-TN cases. Median distant-metastasis free survival was similar for LUM-TN and LUM-LUM cohorts, but significantly longer than in TN-TN cases (log-rank P < 0.001). LUM-TN and TN-TN cohorts had a comparable survival from the time of metastatic recurrence, which was significantly shorter than in patients with LUM-LUM tumors (log-rank P < 0.001). High TILs were associated with worse outcomes in patients with ER loss (P < 0.001). CONCLUSIONS Breast tumors with ER loss at metastatic relapse have intermediate features and outcomes compared with metastatic luminal-like and ab initio triple-negative tumors. Further investigation on the biological mechanisms underpinning the loss of ER expression is ongoing.
Collapse
Affiliation(s)
- Stefania Morganti
- Breast Oncology Center, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; INSERM U981 - Molecular Predictors and New Targets in Oncology, PRISM Center for Precision Medicine, Gustave Roussy, Villejuif, France
| | | | - Pier Paolo Maria Berton Giachetti
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Corti
- Breast Oncology Center, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elisa De Camilli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Trotter TN, Dagotto CE, Serra D, Wang T, Yang X, Acharya CR, Wei J, Lei G, Lyerly HK, Hartman ZC. Dormant tumors circumvent tumor-specific adaptive immunity by establishing a Treg-dominated niche via DKK3. JCI Insight 2023; 8:e174458. [PMID: 37847565 PMCID: PMC10721325 DOI: 10.1172/jci.insight.174458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Approximately 30% of breast cancer survivors deemed free of disease will experience locoregional or metastatic recurrence even up to 30 years after initial diagnosis, yet how residual/dormant tumor cells escape immunity elicited by the primary tumor remains unclear. We demonstrate that intrinsically dormant tumor cells are indeed recognized and lysed by antigen-specific T cells in vitro and elicit robust immune responses in vivo. However, despite close proximity to CD8+ killer T cells, dormant tumor cells themselves support early accumulation of protective FoxP3+ T regulatory cells (Tregs), which can be targeted to reduce tumor burden. These intrinsically dormant tumor cells maintain a hybrid epithelial/mesenchymal state that is associated with immune dysfunction, and we find that the tumor-derived, stem cell/basal cell protein Dickkopf WNT signaling pathway inhibitor 3 (DKK3) is critical for Treg inhibition of CD8+ T cells. We also demonstrate that DKK3 promotes immune-mediated progression of proliferative tumors and is significantly associated with poor survival and immunosuppression in human breast cancers. Together, these findings reveal that latent tumors can use fundamental mechanisms of tolerance to alter the T cell microenvironment and subvert immune detection. Thus, targeting these pathways, such as DKK3, may help render dormant tumors susceptible to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - H. Kim Lyerly
- Department of Surgery, and
- Department of Pathology/Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Zachary C. Hartman
- Department of Surgery, and
- Department of Pathology/Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
27
|
Wong RSJ, Ong RJM, Lim JSJ. Immune checkpoint inhibitors in breast cancer: development, mechanisms of resistance and potential management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:768-787. [PMID: 38263984 PMCID: PMC10804393 DOI: 10.20517/cdr.2023.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024]
Abstract
The use of immune checkpoint inhibitors (ICIs) has increased exponentially in the past decade, although its progress specifically for breast cancer has been modest. The first U.S. Food and Drug Administration approval for ICI in breast cancer came in 2019, eight years after the first-ever approval of an ICI. At present, current indications for ICIs are relevant only to a subset of patients with triple-negative breast cancer, or those displaying high microsatellite instability or deficiency in the mismatch repair protein pathway. With an increasing understanding of the limitations of using ICIs, which stem from breast cancer being innately poorly immunogenic, as well as the presence of various intrinsic and acquired resistance pathways, ongoing trials are evaluating different combination therapies to overcome these barriers. In this review, we aim to describe the development timeline of ICIs and resistance mechanisms limiting their utility, and summarise the available approaches and ongoing trials relevant to overcoming each resistance mechanism.
Collapse
Affiliation(s)
- Rachel SJ Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Rebecca JM Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joline SJ Lim
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
28
|
Makhlouf S, Wahab N, Toss M, Ibrahim A, Lashen AG, Atallah NM, Ghannam S, Jahanifar M, Lu W, Graham S, Mongan NP, Bilal M, Bhalerao A, Snead D, Minhas F, Raza SEA, Rajpoot N, Rakha E. Evaluation of tumour infiltrating lymphocytes in luminal breast cancer using artificial intelligence. Br J Cancer 2023; 129:1747-1758. [PMID: 37777578 PMCID: PMC10667537 DOI: 10.1038/s41416-023-02451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative (ER + /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a large well-characterised cohort of luminal BC. METHODS Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs (tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were assessed. The association of TILs with clinicopathological parameters and patient outcome was determined. RESULTS A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis. CONCLUSION AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs beyond eyeballing assessment.
Collapse
Affiliation(s)
- Shorouk Makhlouf
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Noorul Wahab
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK
| | - Michael Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Asmaa Ibrahim
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ayat G Lashen
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Nehal M Atallah
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Suzan Ghannam
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histology and cell biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Wenqi Lu
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK
| | - Simon Graham
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK
| | - Nigel P Mongan
- Biodiscovery Institute, School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mohsin Bilal
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK
| | - Abhir Bhalerao
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK
| | - David Snead
- University Hospital Coventry and Warwickshire, Coventry, UK
| | - Fayyaz Minhas
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK
| | | | - Nasir Rajpoot
- Tissue Image Analytics Centre, University of Warwick, Coventry, UK.
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
29
|
Lau HSH, Tan VKM, Tan BKT, Sim Y, Quist J, Thike AA, Tan PH, Pervaiz S, Grigoriadis A, Sabapathy K. Adipose-enriched peri-tumoral stroma, in contrast to myofibroblast-enriched stroma, prognosticates poorer survival in breast cancers. NPJ Breast Cancer 2023; 9:84. [PMID: 37863888 PMCID: PMC10589339 DOI: 10.1038/s41523-023-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Despite our understanding of the genetic basis of intra-tumoral heterogeneity, the role of stromal heterogeneity arising from an altered tumor microenvironment in affecting tumorigenesis is poorly understood. In particular, extensive study on the peri-tumoral stroma in the morphologically normal tissues surrounding the tumor is lacking. Here, we examine the heterogeneity in tumors and peri-tumoral stroma from 8 ER+/PR+/HER2- invasive breast carcinomas, through multi-region transcriptomic profiling by microarray. We describe the regional heterogeneity observed at the intrinsic molecular subtype, pathway enrichment, and cell type composition levels within each tumor and its peri-tumoral region, up to 7 cm from the tumor margins. Moreover, we identify a pro-inflammatory adipose-enriched peri-tumoral subtype which was significantly associated with poorer overall survival in breast cancer patients, in contrast to an adaptive immune cell- and myofibroblast-enriched subtype. These data together suggest that peri-tumoral heterogeneity may be an important determinant of the evolution and treatment of breast cancers.
Collapse
Affiliation(s)
- Hannah Si Hui Lau
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Veronique Kiak Mien Tan
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
| | - Benita Kiat Tee Tan
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
- Department of General Surgery, Sengkang General Hospital, Singapore, 544886, Singapore
| | - Yirong Sim
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
| | - Jelmar Quist
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kanaga Sabapathy
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
30
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
31
|
Moisand A, Madéry M, Boyer T, Domblides C, Blaye C, Larmonier N. Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity. Int J Mol Sci 2023; 24:15048. [PMID: 37894728 PMCID: PMC10606577 DOI: 10.3390/ijms242015048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.
Collapse
Affiliation(s)
- Alexandra Moisand
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Mathilde Madéry
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Thomas Boyer
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Céline Blaye
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
32
|
Liu J, He Y, Zhou W, Tang Z, Xiao Z. A glycosylation risk score comprehensively assists the treatment of bladder neoplasm in the real-world cohort, including the tumor microenvironment, molecular and clinical prognosis. Front Pharmacol 2023; 14:1280428. [PMID: 37818187 PMCID: PMC10560734 DOI: 10.3389/fphar.2023.1280428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Background: Bladder cancer is a common urological cancer associated high significant morbidity and mortality rates. Immunotherapy has emerged as a promising treatment option, although response rates vary among patients. Glycosylation has been implicated in tumorigenesis and immune regulation. However, our current comprehensive understanding of the role of glycosylation in bladder cancer and its clinical implications is limited. Methods: We constructed a training cohort based on the downloaded TCGA-BLCA dataset, while additional datasets (Xiangya cohort, GSE32894, GSE48075, GSE31684, GSE69795 and E-MTAB-1803) from Xiangya hospital, GEO and ArrayExpress database were obtained and used as validation cohorts. To identify glycosylation-related genes associated with prognosis, univariate Cox regression and LASSO regression were performed. A Cox proportional hazards regression model was then constructed to develop a risk score model. The performance of the risk score was assessed in the training cohort using Kaplan-Meier survival curves and ROC curves, and further validated in multiple validation cohorts. Results: We classified patients in the training cohort into two groups based on glycosylation-related gene expression patterns: Cluster 1 and Cluster 2. Prognostic analysis revealed that Cluster 2 had poorer survival outcomes. Cluster 2 also showed higher levels of immune cell presence in the tumor microenvironment and increased activation in key steps of the cancer immune response cycle. We developed an independent prognostic risk score (p < 0.001) and used it to construct an accurate prognostic prediction nomogram. The high glycosylation risk score group exhibited higher tumor immune cell infiltration, enrichment scores in immune therapy-related pathways, and a tendency towards a basal subtype. Conversely, the low-risk score group had minimal immune cell infiltration and tended to have a luminal subtype. These findings were consistent in our real-world Xiangya cohort. Conclusion: This multi-omics glycosylation score based on these genes reliably confirmed the heterogeneity of bladder cancer tumors, predicted the efficacy of immunotherapy and molecular subtypes, optimizing individual treatment decisions.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weimin Zhou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoming Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Zhang G, Zhan M, Zhang C, Wang Z, Sun H, Tao Y, Shi Q, He M, Wang H, Rodrigues J, Shen M, Shi X. Redox-Responsive Dendrimer Nanogels Enable Ultrasound-Enhanced Chemoimmunotherapy of Pancreatic Cancer via Endoplasmic Reticulum Stress Amplification and Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301759. [PMID: 37350493 PMCID: PMC10460845 DOI: 10.1002/advs.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Developing a multifunctional nanoplatform to achieve efficient theranostics of tumors through multi-pronged strategies remains to be challenging. Here, the design of the intelligent redox-responsive generation 3 (G3) poly(amidoamine) dendrimer nanogels (NGs) loaded with gold nanoparticles (Au NPs) and chemotherapeutic drug toyocamycin (Au/Toy@G3 NGs) for ultrasound-enhanced cancer theranostics is showcased. The constructed hybrid NGs with a size of 193 nm possess good colloidal stability under physiological conditions, and can be dissociated to release Au NPs and Toy in the reductive glutathione-rich tumor microenvironment (TME). The released Toy can promote the apoptosis of cancer cells through endoplasmic reticulum stress amplification and cause immunogenic cell death to maturate dendritic cells. The loaded Au NPs can induce the conversion of tumor-associated macrophages from M2-type to antitumor M1-type to remodulate the immunosuppressive TME. Combined with antibody-mediated immune checkpoint blockade, effective chemoimmunotherapy of a pancreatic tumor mouse model can be realized, and the chemoimmunotherapy effect can be further ultrasound enhanced due to the sonoporation-improved tumor permeability of NGs. The developed Au/Toy@G3 NGs also enable Au-mediated computed tomography imaging of tumors. The constructed responsive dendrimeric NGs tackle tumors through a multi-pronged chemoimmunotherapy strategy targeting both cancer cells and immune cells, which hold a promising potential for clinical translations.
Collapse
Affiliation(s)
- Guizhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yuchen Tao
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Qiusheng Shi
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Meijuan He
- Department of RadiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Han Wang
- Department of RadiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - João Rodrigues
- CQM – Centro de Química da MadeiraMMRGUniversidade da MadeiraCampus Universitário da PenteadaFunchal9020‐105Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
- CQM – Centro de Química da MadeiraMMRGUniversidade da MadeiraCampus Universitário da PenteadaFunchal9020‐105Portugal
| |
Collapse
|
34
|
O'Leary KA, Bates AM, Jin WJ, Burkel BM, Sriramaneni RN, Emma SE, Nystuen EJ, Sumiec EG, Ponik SM, Morris ZS, Schuler LA. Estrogen receptor blockade and radiation therapy cooperate to enhance the response of immunologically cold ER+ breast cancer to immunotherapy. Breast Cancer Res 2023; 25:68. [PMID: 37312163 PMCID: PMC10265911 DOI: 10.1186/s13058-023-01671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Most patients with estrogen receptor positive (ER+) breast cancer do not respond to immune checkpoint inhibition (ICI); the tumor microenvironment (TME) of these cancers is generally immunosuppressive and contains few tumor-infiltrating lymphocytes. Radiation therapy (RT) can increase tumor inflammation and infiltration by lymphocytes but does not improve responses to ICIs in these patients. This may result, in part, from additional effects of RT that suppress anti-tumor immunity, including increased tumor infiltration by myeloid-derived suppressor cells and regulatory T cells. We hypothesized that anti-estrogens, which are a standard of care for ER+ breast cancer, may ameliorate these detrimental effects of RT by reducing the recruitment/ activation of suppressive immune populations in the radiated TME, increasing anti-tumor immunity and responsiveness to ICIs. METHODS To interrogate the effect of the selective estrogen receptor downregulator, fulvestrant, on the irradiated TME in the absence of confounding growth inhibition by fulvestrant on tumor cells, we used the TC11 murine model of anti-estrogen resistant ER+ breast cancer. Tumors were orthotopically transplanted into immunocompetent syngeneic mice. Once tumors were established, we initiated treatment with fulvestrant or vehicle, followed by external beam RT one week later. We examined the number and activity of tumor infiltrating immune cells using flow cytometry, microscopy, transcript levels, and cytokine profiles. We tested whether fulvestrant improved tumor response and animal survival when added to the combination of RT and ICI. RESULTS Despite resistance of TC11 tumors to anti-estrogen therapy alone, fulvestrant slowed tumor regrowth following RT, and significantly altered multiple immune populations in the irradiated TME. Fulvestrant reduced the influx of Ly6C+Ly6G+ cells, increased markers of pro-inflammatory myeloid cells and activated T cells, and augmented the ratio of CD8+: FOXP3+ T cells. In contrast to the minimal effects of ICIs when co-treated with either fulvestrant or RT alone, combinatorial treatment with fulvestrant, RT and ICIs significantly reduced tumor growth and prolonged survival. CONCLUSIONS A combination of RT and fulvestrant can overcome the immunosuppressive TME in a preclinical model of ER+ breast cancer, enhancing the anti-tumor response and increasing the response to ICIs, even when growth of tumor cells is no longer estrogen sensitive.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Amber M Bates
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Won Jong Jin
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghava N Sriramaneni
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Emma
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin J Nystuen
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth G Sumiec
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Linda A Schuler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Perez-Lanzon M, Carbonnier V, Cordier P, De Palma FDE, Petrazzuolo A, Klein C, Arbaretaz F, Mangane K, Stoll G, Martins I, Fohrer Ting H, Paillet J, Mouillet-Richard S, Le Corre D, Xiao W, Sroussi M, Desdouets C, Laurent-Puig P, Pol J, Lopez-Otin C, Maiuri MC, Kroemer G. New hormone receptor-positive breast cancer mouse cell line mimicking the immune microenvironment of anti-PD-1 resistant mammary carcinoma. J Immunother Cancer 2023; 11:e007117. [PMID: 37344100 PMCID: PMC10314679 DOI: 10.1136/jitc-2023-007117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Progress in breast cancer (BC) research relies on the availability of suitable cell lines that can be implanted in immunocompetent laboratory mice. The best studied mouse strain, C57BL/6, is also the only one for which multiple genetic variants are available to facilitate the exploration of the cancer-immunity dialog. Driven by the fact that no hormone receptor-positive (HR+) C57BL/6-derived mammary carcinoma cell lines are available, we decided to establish such cell lines. METHODS BC was induced in female C57BL/6 mice using a synthetic progesterone analog (medroxyprogesterone acetate, MPA) combined with a DNA damaging agent (7,12-dimethylbenz[a]anthracene, DMBA). Cell lines were established from these tumors and selected for dual (estrogen+progesterone) receptor positivity, as well as transplantability into C57BL/6 immunocompetent females. RESULTS One cell line, which we called B6BC, fulfilled these criteria and allowed for the establishment of invasive estrogen receptor-positive (ER+) tumors with features of epithelial to mesenchymal transition that were abundantly infiltrated by myeloid immune populations but scarcely by T lymphocytes, as determined by single-nucleus RNA sequencing and high-dimensional leukocyte profiling. Such tumors failed to respond to programmed cell death-1 (PD-1) blockade, but reduced their growth on treatment with ER antagonists, as well as with anthracycline-based chemotherapy, which was not influenced by T-cell depletion. Moreover, B6BC-derived tumors reduced their growth on CD11b blockade, indicating tumor sustainment by myeloid cells. The immune environment and treatment responses recapitulated by B6BC-derived tumors diverged from those of ER+ TS/A cell-derived tumors in BALB/C mice, and of ER- E0771 cell-derived and MPA/DMBA-induced tumors in C57BL/6 mice. CONCLUSIONS B6BC is the first transplantable HR+ BC cell line derived from C57BL/6 mice and B6BC-derived tumors recapitulate the complex tumor microenvironment of locally advanced HR+ BC naturally resistant to PD-1 immunotherapy.
Collapse
Affiliation(s)
- Maria Perez-Lanzon
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Vincent Carbonnier
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Pierre Cordier
- Team 'Proliferation, Stress and Liver Physiopathology', Centre de Recherche des Cordeliers, Paris, France
| | - Fatima Domenica Elisa De Palma
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Adriana Petrazzuolo
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie cellulaire et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, Paris, France, UMRS1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie cellulaire et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, Paris, France, UMRS1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
| | - Khady Mangane
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Gautier Stoll
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Isabelle Martins
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Helene Fohrer Ting
- Centre d'Histologie, d'Imagerie cellulaire et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, Paris, France, UMRS1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
| | - Juliette Paillet
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Sophie Mouillet-Richard
- Team 'Personalized medicine, pharmacogenomics, therapeutic optimization', Centre de Recherche des Cordeliers, Paris, France
| | - Delphine Le Corre
- Team 'Personalized medicine, pharmacogenomics, therapeutic optimization', Centre de Recherche des Cordeliers, Paris, France
| | - Wenjjin Xiao
- Team 'Personalized medicine, pharmacogenomics, therapeutic optimization', Centre de Recherche des Cordeliers, Paris, France
| | - Marine Sroussi
- Team 'Personalized medicine, pharmacogenomics, therapeutic optimization', Centre de Recherche des Cordeliers, Paris, France
| | - Chantal Desdouets
- Team 'Proliferation, Stress and Liver Physiopathology', Centre de Recherche des Cordeliers, Paris, France
| | - Pierre Laurent-Puig
- Team 'Personalized medicine, pharmacogenomics, therapeutic optimization', Centre de Recherche des Cordeliers, Paris, France
- Institut du Cancer Paris CARPEM, Institut Universitaire de France, Hôpital Européen Georges Pompidou, France-HP, Paris, France
| | - Jonathan Pol
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquimica y Biologia Molecular, Instituto Universitario de Oncologia (IUOPA), University of Oviedo, Oviedo, Spain
| | - Maria Chiara Maiuri
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Guido Kroemer
- Team "Metabolism, Cancer & Immunity", Centre de Recherche des Cordeliers, UMRS 1138, Inserm, Université Paris Cité, Sorbonne Université, Paris, France
- Gustave Roussy Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Institut Universitaire de France, Hôpital Européen Georges Pompidou, France-HP, Paris, France
| |
Collapse
|
36
|
García-Torralba E, Navarro Manzano E, Luengo-Gil G, De la Morena Barrio P, Chaves Benito A, Pérez-Ramos M, Álvarez-Abril B, Ivars Rubio A, García-Garre E, Ayala de la Peña F, García-Martínez E. A new prognostic model including immune biomarkers, genomic proliferation tumor markers ( AURKA and MYBL2) and clinical-pathological features optimizes prognosis in neoadjuvant breast cancer patients. Front Oncol 2023; 13:1182725. [PMID: 37313470 PMCID: PMC10258327 DOI: 10.3389/fonc.2023.1182725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Background Up to 30% of breast cancer (BC) patients treated with neoadjuvant chemotherapy (NCT) will relapse. Our objective was to analyze the predictive capacity of several markers associated with immune response and cell proliferation combined with clinical parameters. Methods This was a single-center, retrospective cohort study of BC patients treated with NCT (2001-2010), in whom pretreatment biomarkers were analyzed: neutrophil-to-lymphocyte ratio (NLR) in peripheral blood, CD3+ tumor-infiltrating lymphocytes (TILs), and gene expression of AURKA, MYBL2 and MKI67 using qRT-PCR. Results A total of 121 patients were included. Median followup was 12 years. In a univariate analysis, NLR, TILs, AURKA, and MYBL2 showed prognostic value for overall survival. In multivariate analyses, including hormone receptor, HER2 status, and response to NCT, NLR (HR 1.23, 95% CI 1.01-1.75), TILs (HR 0.84, 95% CI 0.73-0.93), AURKA (HR 1.05, 95% CI 1.00-1.11) and MYBL2 (HR 1.19, 95% CI 1.05-1.35) remained as independent predictor variables. Conclusion Consecutive addition of these biomarkers to a regression model progressively increased its discriminatory capacity for survival. Should independent cohort studies validate these findings, management of early BC patients may well be changed.
Collapse
Affiliation(s)
- Esmeralda García-Torralba
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Esther Navarro Manzano
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Gines Luengo-Gil
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Pilar De la Morena Barrio
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | - Miguel Pérez-Ramos
- Department of Pathology, University Hospital Morales Meseguer, Murcia, Spain
| | - Beatriz Álvarez-Abril
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alejandra Ivars Rubio
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Elisa García-Garre
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Francisco Ayala de la Peña
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Elena García-Martínez
- Department of Haematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- Medical School, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
37
|
Halim F, Azhar Y, Suwarman S, Wahjoepramono EJ, Hernowo B. Positive p53 Expression Is Associated with Primary Endocrine Therapy Resistance in Locally Advanced Stage Luminal B HER2-Negative Breast Cancer Patients: A Cross-Sectional Study in Indonesia. Diagnostics (Basel) 2023; 13:diagnostics13111838. [PMID: 37296690 DOI: 10.3390/diagnostics13111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Luminal B HER2-negative breast cancer (BC) is the most common type in Indonesian BC patients, and frequently manifests with locally advanced staging. Recurrence often occurs within two years of the endocrine therapy course (primary endocrine therapy (ET) resistance). p53 mutation often exists in luminal B HER2-negative BC, but its application as an ET resistance predictor in those populations is still limited. The primary purpose of this research is to evaluate p53 expression and its association with primary ET resistance in luminal B HER2-negative BC. This cross-sectional study compiled 67 luminal B HER2-negative patients' clinical data during their pre-treatment period until they completed a two-year course of endocrine therapy. They were divided into two groups: 29 patients with primary ET resistance and 38 without primary ET resistance. Pre-treatment paraffin blocks from each patient were retrieved, and the p53 expression difference between the two groups was analyzed. Positive p53 expression was significantly higher in patients with primary ET resistance [odds ratio (OR) of 11.78 (95% CI: 3.72-37.37, p-value < 0.0001)]. We conclude that p53 expression could be a beneficial marker for primary ET resistance in locally advanced luminal B HER2-negative BC.
Collapse
Affiliation(s)
- Freda Halim
- Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
- Department of Surgery, Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Banten, Indonesia
| | - Yohana Azhar
- Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
- Department of Surgery, Oncology, Head and Neck Division, Hasan Sadikin Hospital, Bandung 40161, West Java, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| | - Eka Julianta Wahjoepramono
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Banten, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| |
Collapse
|
38
|
Man Y, Dai C, Guo Q, Jiang L, Shi Y. A novel PD-1/PD-L1 pathway molecular typing-related signature for predicting prognosis and the tumor microenvironment in breast cancer. Discov Oncol 2023; 14:59. [PMID: 37154982 PMCID: PMC10167089 DOI: 10.1007/s12672-023-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Currently, the development of breast cancer immunotherapy based on the PD-1/PD-L1 pathway is relatively slow, and the specific mechanism affecting the immunotherapy efficacy in breast cancer is still unclear. METHODS Weighted correlation network analysis (WGCNA) and the negative matrix factorization (NMF) were used to distinguish subtypes related to the PD-1/PD-L1 pathway in breast cancer. Then univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were used to construct the prognostic signature. A nomogram was established based on the signature. The relationship between the signature gene IFNG and breast cancer tumor microenvironment was analyzed. RESULTS Four PD-1/PD-L1 pathway-related subtypes were distinguished. A prognostic signature related to PD-1/PD-L1 pathway typing was constructed to evaluate breast cancer's clinical characteristics and tumor microenvironment. The nomogram based on the RiskScore could be used to accurately predict breast cancer patients' 1-year, 3-year, and 5-year survival probability. The expression of IFNG was positively correlated with CD8+ T cell infiltration in the breast cancer tumor microenvironment. CONCLUSION A prognostic signature is constructed based on the PD-1/PD-L1 pathway typing in breast cancer, which can guide the precise treatment of breast cancer. The signature gene IFNG is positively related to CD8+ T cell infiltration in breast cancer.
Collapse
Affiliation(s)
- Yuxin Man
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qian Guo
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
39
|
Onkar S, Cui J, Zou J, Cardello C, Cillo AR, Uddin MR, Sagan A, Joy M, Osmanbeyoglu HU, Pogue-Geile KL, McAuliffe PF, Lucas PC, Tseng GC, Lee AV, Bruno TC, Oesterreich S, Vignali DAA. Immune landscape in invasive ductal and lobular breast cancer reveals a divergent macrophage-driven microenvironment. NATURE CANCER 2023; 4:516-534. [PMID: 36927792 PMCID: PMC11194444 DOI: 10.1038/s43018-023-00527-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
T cell-centric immunotherapies have shown modest clinical benefit thus far for estrogen receptor-positive (ER+) breast cancer. Despite accounting for 70% of all breast cancers, relatively little is known about the immunobiology of ER+ breast cancer in women with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). To investigate this, we performed phenotypic, transcriptional and functional analyses for a cohort of treatment-naive IDC (n = 94) and ILC (n = 87) tumors. We show that macrophages, and not T cells, are the predominant immune cells infiltrating the tumor bed and the most transcriptionally diverse cell subset between IDC and ILC. Analysis of cellular neighborhoods revealed an interplay between macrophages and T cells associated with longer disease-free survival in IDC but not ILC. Our datasets provide a rich resource for further interrogation into immune cell dynamics in ER+ IDC and ILC and highlight macrophages as a potential target for ER+ breast cancer.
Collapse
Affiliation(s)
- Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Zou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mostofa Rafid Uddin
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - April Sagan
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- NSABP Foundation, Pittsburgh, PA, USA
| | - Hatice U Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Priscilla F McAuliffe
- Section of Breast Surgery, Division of Surgical Oncology, Department of Surgery, University of Pittsburgh College of Medicine, Magee Women's Hospital of UPMC, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Lucas
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- NSABP Foundation, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Torres MA. POLARized Risk for Local Recurrence on the Basis of Tumor Biology: Is It That Simple? J Clin Oncol 2023; 41:1511-1513. [PMID: 36603181 DOI: 10.1200/jco.22.02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Mylin A Torres
- Department of Radiation Oncology, Emory Glenn Family Breast Center, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
41
|
Riaz N, Jeen T, Whelan TJ, Nielsen TO. Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers (Basel) 2023; 15:1260. [PMID: 36831598 PMCID: PMC9954587 DOI: 10.3390/cancers15041260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adjuvant whole breast irradiation after breast-conserving surgery is a well-established treatment standard for early invasive breast cancer. Screening, early diagnosis, refinement in surgical techniques, the knowledge of new and specific molecular prognostic factors, and now the standard use of more effective neo/adjuvant systemic therapies have proven instrumental in reducing the rates of locoregional relapses. This underscores the need for reliably identifying women with such low-risk disease burdens in whom elimination of radiation from the treatment plan would not compromise oncological safety. This review summarizes the current evidence for radiation de-intensification strategies and details ongoing prospective clinical trials investigating the omission of adjuvant whole breast irradiation in molecularly defined low-risk breast cancers and related evidence supporting the potential for radiation de-escalation in HER2+ and triple-negative clinical subtypes. Furthermore, we discuss the current evidence for the de-escalation of regional nodal irradiation after neoadjuvant chemotherapy. Finally, we also detail the current knowledge of the clinical value of stromal tumor-infiltrating lymphocytes and liquid-based biomarkers as prognostic factors for locoregional relapse.
Collapse
Affiliation(s)
- Nazia Riaz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tiffany Jeen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J. Whelan
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of Radiation Oncology, Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, ON L8V 5C2, Canada
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
42
|
Radiosensitivity is associated with antitumor immunity in estrogen receptor-negative breast cancer. Breast Cancer Res Treat 2023; 197:479-488. [PMID: 36515748 DOI: 10.1007/s10549-022-06818-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE This study evaluated radiosensitivity and the tumor microenvironment (TME) to identify characteristics of breast cancer patients who would benefit most from radiation therapy. METHODS We analyzed 1903 records from the Molecular Taxonomy of Breast Cancer International Consortium cohort using the radiosensitivity index and gene expression deconvolution algorithms, CIBERSORT and xCell, that estimates the TME composition of tumor samples. In this study, patients were stratified according to TME and radiosensitivity. We performed integrative analyses of clinical and immuno-genomic data to characterize molecular features associated with radiosensitivity. RESULTS Radiosensitivity was significantly associated with activation of antitumor immunity. In contrast, radioresistance was associated with a reactive stromal microenvironment. The immuno-genomic analysis revealed that estrogen receptor (ER) pathway activity was correlated with suppression of antitumor immunity. In ER-negative disease, the best prognosis was shown in the immune-high and radiosensitive group patients, and the lowest was in the immune-low and radioresistant group patients. In ER-positive disease, immune signature and radiosensitivity had no prognostic significance. CONCLUSION Taken together, these results suggest that tumor radiosensitivity is associated with activation of antitumor immunity and a better prognosis, particularly in patients with ER-negative breast cancer.
Collapse
|
43
|
Hanamura T, Kitano S, Kagamu H, Yamashita M, Terao M, Okamura T, Kumaki N, Hozumi K, Iwamoto T, Honda C, Kurozumi S, Niikura N. Expression of hormone receptors is associated with specific immunological profiles of the breast cancer microenvironment. Breast Cancer Res 2023; 25:13. [PMID: 36721218 PMCID: PMC9887885 DOI: 10.1186/s13058-023-01606-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Elucidating the unique immunoregulatory mechanisms in breast cancer microenvironment may help develop new therapeutic strategies. Some studies have suggested that hormone receptors also have immune regulatory functions, but their mechanisms are not fully understood. In this study, we have comprehensively analyzed the relationship between the expressions of estrogen (ER), progesterone (PgR), and androgen receptors (AR), and the immunological profile in breast cancer. METHODS Using publicly available gene expression profile datasets, METABRIC and SCAN-B, the associations between the expressions of hormone receptors and the immune cell compositions in breast cancer tissue, estimated by CIBERSORTx algorithm, were analyzed. We histologically evaluated tumor-infiltrating lymphocytes (hTIL), PD-L1 (hPD-L1) expression, and the infiltration of 11 types of immune cells by flow cytometry (FCM) for 45 breast cancer tissue samples. The relationships between them and the expressions of ER, PgR, and AR of tumor tissues, evaluated immunohistochemically, were analyzed. RESULTS Expressions of ESR1, PGR, and AR were negatively correlated with overall immune composition. Expressions of ER and AR, but not that of PgR, were inversely associated with hTIL and hPD-L1 expression. FCM analysis showed that the expressions of ER and AR, but not that of PgR, were associated with decreased total leukocyte infiltration. Both CIBERSORTx and FCM analysis showed that ER expression was associated with reduced infiltration of macrophages and CD4+ T cells and that of AR with reduced macrophage infiltration. CONCLUSION Hormone receptor expression correlates with specific immunological profiles in the breast cancer microenvironment both at the gene and protein expression levels.
Collapse
Affiliation(s)
- Toru Hanamura
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Center for Advanced Medical Development, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Hiroshi Kagamu
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama Prefecture, 350-1298, Japan
| | - Makiko Yamashita
- Division of Cancer Immunotherapy Development, Center for Advanced Medical Development, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Mayako Terao
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Takuho Okamura
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Nobue Kumaki
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa Prefecture, 259-1193, Japan
| | - Takayuki Iwamoto
- Breast and Endocrine Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kitaku, Okayama Prefecture, 700-8558, Japan
| | - Chikako Honda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 39-22, Showa-machi 3-chome, Maebashi-shi, Gunma Prefecture, 371-8511, Japan
| | - Sasagu Kurozumi
- Department of Breast Surgery, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba Prefecture, 286-8686, Japan
| | - Naoki Niikura
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan.
| |
Collapse
|
44
|
Valenza C, Rizzo G, Passalacqua MI, Boldrini L, Corti C, Trapani D, Curigliano G. Evolving treatment landscape of immunotherapy in breast cancer: current issues and future perspectives. Ther Adv Med Oncol 2023; 15:17588359221146129. [PMID: 36743524 PMCID: PMC9893403 DOI: 10.1177/17588359221146129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) deeply changed the treatment landscape of breast cancer (BC). In particular, anti-programmed-death (ligand) 1 antibodies were approved for the treatment of triple-negative breast cancer (TNBC), both in first line for metastatic disease and in neoadjuvant setting, on the basis of a demonstrated improvement of the survival outcomes. In light of these results, current clinical trials aim at improving this benefit investigating novel combinations and strategies, at exploring the role of ICIs beyond TNBC, and at better selecting the patients in order to spare non-responders from avoidable toxicities. This narrative review aims at summarizing and discussing the evolving landscape of immunotherapeutic treatments for BC, highlighting the current challenges and the future perspectives.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Graziella Rizzo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| |
Collapse
|
45
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA, Oesterreich S. The Great Immune Escape: Understanding the Divergent Immune Response in Breast Cancer Subtypes. Cancer Discov 2023; 13:23-40. [PMID: 36620880 PMCID: PMC9833841 DOI: 10.1158/2159-8290.cd-22-0475] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer, the most common type of cancer affecting women, encompasses a collection of histologic (mainly ductal and lobular) and molecular subtypes exhibiting diverse clinical presentation, disease trajectories, treatment options, and outcomes. Immunotherapy has revolutionized treatment for some solid tumors but has shown limited promise for breast cancers. In this review, we summarize recent advances in our understanding of the complex interactions between tumor and immune cells in subtypes of breast cancer at the cellular and microenvironmental levels. We aim to provide a perspective on opportunities for future immunotherapy agents tailored to specific features of each subtype of breast cancer. SIGNIFICANCE Although there are currently over 200 ongoing clinical trials testing immunotherapeutics, such as immune-checkpoint blockade agents, these are largely restricted to the triple-negative and HER2+ subtypes and primarily focus on T cells. With the rapid expansion of new in vitro, in vivo, and clinical data, it is critical to identify and highlight the challenges and opportunities unique for each breast cancer subtype to drive the next generation of treatments that harness the immune system.
Collapse
Affiliation(s)
- Sayali S. Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neil M. Carleton
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Lucas
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Attalla S, Taifour T, Muller W. Tailoring therapies to counter the divergent immune landscapes of breast cancer. Front Cell Dev Biol 2023; 11:1111796. [PMID: 36910138 PMCID: PMC9992199 DOI: 10.3389/fcell.2023.1111796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer remains a significant clinical concern affecting millions of women worldwide. Immunotherapy is a rapidly growing drug class that has revolutionized cancer treatment but remains marginally successful in breast cancer. The success of immunotherapy is dependent on the baseline immune responses as well as removing the brakes off pre-existing anti-tumor immunity. In this review, we summarize the different types of immune microenvironment observed in breast cancer as well as provide approaches to target these different immune subtypes. Such approaches have demonstrated pre-clinical success and are currently under clinical evaluation. The impact of combination of these approaches with already approved chemotherapies and immunotherapies may improve patient outcome and survival.
Collapse
Affiliation(s)
- Sherif Attalla
- Department Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Goodman Cancer Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tarek Taifour
- Goodman Cancer Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Department Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - William Muller
- Department Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Goodman Cancer Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Department Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Borges PCC, Spencer HB, Barbosa C, Costa V, Furtado A, Leal MC, Lopes C, Ferreira D, Carvalho AL, Dos-Santos-Silva I, Santos LL. XPERT ® breast cancer STRAT4 as an alternative method of identifying breast cancer phenotype in Cape Verde (preliminary results). Ecancermedicalscience 2023; 17:1530. [PMID: 37138965 PMCID: PMC10151082 DOI: 10.3332/ecancer.2023.1530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 05/05/2023] Open
Abstract
Introduction Breast cancer (BC) is a public health problem in developing countries, including Cape Verde. Immunohistochemistry (IHC) is the gold standard technique used for BC phenotypic characterisation to support efficient therapeutic decisions. However, IHC is a demanding technique that requires knowledge, trained technicians, expensive antibodies and reagents, controls, and results validation. The low number of cases in Cape Verde increases the risk of expiring the validity of the antibodies, and manual procedures often jeopardise the quality of the results. Thus, IHC is limited in Cape Verde, and an alternative technically easy solution is needed. A point-of-care messenger RNA (mRNA) STRAT4 BC assay to assess estrogen (ER), progesterone (PR), hormone growth factor 2 receptor (HER2), and Ki67, using the GeneXpert platform, has been recently validated on tissues from internationally accredited laboratories, showing excellent concordance with IHC results.To assess whether this technology can be implemented in Cape Verde to guide BC treatment we decided to study the level of agreement between the findings yielded by BC STRAT4 and the results are the same cases obtained by IHC. Methods Formalin-fixed and paraffin-embedded (FFPE) tissue samples from 29 Cabo Verdean BC patients diagnosed in Agostinho Neto University Hospital were analysed by applying IHC and BC STRAT4 assay. The time between sample collection and pre-analytic procedures is unknown. All the samples were pre-processed in Cabo Verde (fixed in formalin and embedded in paraffin). IHC studies were performed in referenced laboratories in Portugal. STRAT4 and IHC result concordance was assessed by calculating the percentage of results agreement and Cohen's Kappa (K) statistics. Results STRAT4 assay failed in 2 out of the 29 analysed samples. Of the 27 successfully analysed samples, STRAT4/IHC results for ER, PR, HER2, and Ki67 were concordant in 25, 24, 25, and 18 cases, respectively. Ki67 was indeterminate in three cases, and PR was indeterminate once.The percentage of agreement between STRAT4 and IHC results for ER, PR, HER2, and Ki67 was 92.59%, 92.31%, 92.59% and 81.82%, respectively. The Cohen's K statistic coefficients for each biomarker were 0.809, 0.845, 0.757 and 0.506, respectively. Conclusions According to our preliminary results, a point-of-care mRNA STRAT4 BC assay may be an alternative in laboratories unable to provide quality and/or cost-efficient IHC services. However, more data and improvement on sample pre-analytic processes are required to implement this BC STRAT4 Assay in Cape Verde.
Collapse
Affiliation(s)
- Pamela C C Borges
- Laboratório Biologia Molecular, Hospital Universitário Agostinho Neto, Praia, Plateau 112, Cabo Verde
| | | | - Carla Barbosa
- Hospital Universitário Agostinho Neto, Praia, Plateau 112, Cabo Verde
| | - Victor Costa
- Hospital Universitário Agostinho Neto, Praia, Plateau 112, Cabo Verde
| | - Antónia Furtado
- IMP Diagnostics, Molecular and Anatomic Pathology Lab, 4150-146, Porto, Portugal
| | - Maria Conceição Leal
- Anatomia Patológica, Instituto Português de Oncologia, 4200-072, Porto, Portugal
| | - Carlos Lopes
- Unilabs | Laboratório Anatomia Patológica, 4250-170, Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
| | | | | | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- Surgical Oncology Department, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| |
Collapse
|
48
|
Chen Y, Sun J, Luo Y, Liu J, Wang X, Feng R, Huang J, Du H, Li Q, Tan J, Ren G, Wang X, Li H. Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer. J Transl Med 2022; 20:615. [PMID: 36564797 PMCID: PMC9783715 DOI: 10.1186/s12967-022-03807-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is a complex disease with a highly immunosuppressive tumor microenvironment, and has limited clinical response to immune checkpoint blockade (ICB) therapy. T-helper 2 (Th2) cells, an important component of the tumor microenvironment (TME), play an essential role in regulation of tumor immunity. However, the deep relationship between Th2-mediated immunity and immune evasion in breast cancer remains enigmatic. METHODS Here, we first used bioinformatics analysis to explore the correlation between Th2 infiltration and immune landscape in breast cancer. Suplatast tosilate (IPD-1151 T, IPD), an inhibitor of Th2 function, was then employed to investigate the biological effects of Th2 blockade on tumor growth and immune microenvironment in immunocompetent murine breast cancer models. The tumor microenvironment was analyzed by flow cytometry, mass cytometry, and immunofluorescence staining. Furthermore, we examined the efficacy of IPD combination with ICB treatment by evaluating TME, tumor growth and mice survival. RESULTS Our bioinformatics analysis suggested that higher infiltration of Th2 cells indicates a tumor immunosuppressive microenvironment in breast cancer. In three murine breast cancer models (EO771, 4T1 and EMT6), IPD significantly inhibited the IL-4 secretion by Th2 cells, promoted Th2 to Th1 switching, remodeled the immune landscape and inhibited tumor growth. Remarkably, CD8+ T cell infiltration and the cytotoxic activity of cytotoxic T lymphocyte (CTL) in tumor tissues were evidently enhanced after IPD treatment. Furthermore, increased effector CD4+ T cells and decreased myeloid-derived suppressor cells and M2-like macrophages were also demonstrated in IPD-treated tumors. Importantly, we found IPD reinforced the therapeutic response of ICB without increasing potential adverse effects. CONCLUSIONS Our findings demonstrate that pharmaceutical inhibition of Th2 cell function improves ICB response via remodeling immune landscape of TME, which illustrates a promising combinatorial immunotherapy.
Collapse
Affiliation(s)
- Yuru Chen
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiazheng Sun
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yachan Luo
- grid.452206.70000 0004 1758 417XDepartment of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiazhou Liu
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaoyu Wang
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Rui Feng
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jing Huang
- grid.452206.70000 0004 1758 417XDepartment of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Huimin Du
- grid.452206.70000 0004 1758 417XDepartment of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Qin Li
- grid.411610.30000 0004 1764 2878Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| | - Jinxiang Tan
- grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Guosheng Ren
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaoyi Wang
- grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Hongzhong Li
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
49
|
Hong J, Lee JH, Zhang Z, Wu Y, Yang M, Liao Y, de la Rosa R, Scheirer J, Pechacek D, Zhang N, Xu Z, Curiel T, Tan X, Huang THM, Xu K. PRC2-Mediated Epigenetic Suppression of Type I IFN-STAT2 Signaling Impairs Antitumor Immunity in Luminal Breast Cancer. Cancer Res 2022; 82:4624-4640. [PMID: 36222718 PMCID: PMC9772098 DOI: 10.1158/0008-5472.can-22-0736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
The immunosuppressive tumor microenvironment in some cancer types, such as luminal breast cancer, supports tumor growth and limits therapeutic efficacy. Identifying approaches to induce an immunostimulatory environment could help improve cancer treatment. Here, we demonstrate that inhibition of cancer-intrinsic EZH2 promotes antitumor immunity in estrogen receptor α-positive (ERα+) breast cancer. EZH2 is a component of the polycomb-repressive complex 2 (PRC2) complex, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). A 53-gene PRC2 activity signature was closely associated with the immune responses of ERα+ breast cancer cells. The stimulatory effects of EZH2 inhibition on immune surveillance required specific activation of type I IFN signaling. Integrative analysis of PRC2-repressed genes and genome-wide H3K27me3 landscape revealed that type I IFN ligands are epigenetically silenced by H3K27me3. Notably, the transcription factor STAT2, but not STAT1, mediated the immunostimulatory functions of type I IFN signaling. Following EZH2 inhibition, STAT2 was recruited to the promoters of IFN-stimulated genes even in the absence of the cytokines, suggesting the formation of an autocrine IFN-STAT2 axis. In patients with luminal breast cancer, high levels of EZH2 and low levels of STAT2 were associated with the worst antitumor immune responses. Collectively, this work paves the way for the development of an effective therapeutic strategy that may reverse immunosuppression in cancer. SIGNIFICANCE Inhibition of EZH2 activates a type I IFN-STAT2 signaling axis and provides a therapeutic strategy to stimulate antitumor immunity and therapy responsiveness in immunologically cold luminal breast cancer.
Collapse
Affiliation(s)
- Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanming Wu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Richard de la Rosa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jessica Scheirer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Douglas Pechacek
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tyler Curiel
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
50
|
Monteiro FL, Stepanauskaite L, Williams C, Helguero LA. SETD7 Expression Is Associated with Breast Cancer Survival Outcomes for Specific Molecular Subtypes: A Systematic Analysis of Publicly Available Datasets. Cancers (Basel) 2022; 14:cancers14246029. [PMID: 36551516 PMCID: PMC9775934 DOI: 10.3390/cancers14246029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
SETD7 is a lysine N-methyltransferase that targets many proteins important in breast cancer (BC). However, its role and clinical significance remain unclear. Here, we used online tools and multiple public datasets to explore the predictive potential of SETD7 expression (high or low quartile) considering BC subtype, grade, stage, and therapy. We also investigated overrepresented biological processes associated with its expression using TCGA-BRCA data. SETD7 expression was highest in the Her2 (ERBB2)-enriched molecular subtype and lowest in the basal-like subtype. For the basal-like subtype specifically, higher SETD7 was consistently correlated with worse recurrence-free survival (p < 0.009). High SETD7-expressing tumours further exhibited a higher rate of ERBB2 mutation (20% vs. 5%) along with a poorer response to anti-Her2 therapy. Overall, high SETD7-expressing tumours showed higher stromal and lower immune scores. This was specifically related to higher counts of cancer-associated fibroblasts and endothelial cells, but lower B and T cell signatures, especially in the luminal A subtype. Genes significantly associated with SETD7 expression were accordingly overrepresented in immune response processes, with distinct subtype characteristics. We conclude that the prognostic value of SETD7 depends on the BC subtype and that SETD7 may be further explored as a potential treatment-predictive marker for immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lina Stepanauskaite
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Stockholm, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Stockholm, Sweden
| | - Luisa A. Helguero
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
- Correspondence:
| |
Collapse
|