1
|
Tang M, Nunna N, Zhong Q. Amiodarone-Induced Anaphylaxis. J Pharm Pract 2025; 38:168-179. [PMID: 39137364 DOI: 10.1177/08971900241273241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Background: Amiodarone-induced anaphylaxis is seldom reported. The mechanism of this anaphylaxis is unknown. Methods: A literature search was carried out with keywords "Amiodarone" and "Anaphylaxis" and "polysorbate 80" or "hypotension." A search using "amiodarone" in the FDA Adverse Event Reporting System (FAERS) from 1969 to 2024 was also conducted. Results: There are a total of 10 cases of amiodarone-induced anaphylaxis in the literature. Six patients were male. Ages ranged from 15 to 86 years old. Nine cases were triggered by intravenous injection (IV) and one by oral administration. Eight patients did not have previous exposure to amiodarone. The trigger times for IV amiodarone were immediate to 90 minutes. All nine cases of IV amiodarone resulted in hypotension (90%), with an immeasurable blood pressure (70%). Presentations included bronchospasm or a skin rash (60%), angioedema (40%), and unconsciousness (20%). Only one patient had a history of allergy to penicillin and sulfonamide. An amiodarone skin test was positive on one patient. Increased blood tryptase (4 cases), positive basophil activation test to amiodarone (2 cases), increased eosinophil count (1 case), and increased serum IgE (1 case) were reported. Amiodarone was terminated in 80% of the patients. Epinephrine, norepinephrine, antihistamine-1, or steroids were used to rescue patients. Four patients were intubated. All patients fully recovered. In the FAERS database, 89 cases of amiodarone-associated anaphylaxis were reported, resulting in 14 deaths. Conclusions: Solvent polysorbate 80, amiodarone, and iodide may contribute to amiodarone-induced anaphylaxis. Prompt treatment is the key to saving patients.
Collapse
Affiliation(s)
- Michelle Tang
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Ivins, UT, USA
| | - Nitya Nunna
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Ivins, UT, USA
| | - Qing Zhong
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Ivins, UT, USA
| |
Collapse
|
2
|
Mallart S, Ingenito R, Magotti P, Bresciani A, Di Marco A, Esposito S, Monteagudo E, Caretti F, Orsatti L, Santoprete A, Roversi D, Tucci F, Veneziano M, Brasseur D, Chénedé X, Corbier A, Gauzy-Lazo L, Gervat V, Marguet F, Minoletti C, Pasquier O, Poirier B, Azam A, Maillère B, Bianchi E, Janiak P, Duclos O, Illiano S. Optimization of Single Relaxin B-Chain Peptide Leads to the Identification of R2R01, a Potent, Long-Acting RXFP1 Agonist for Cardiovascular and Renal Diseases. J Med Chem 2025. [PMID: 39888342 DOI: 10.1021/acs.jmedchem.4c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Peptide 1, a C18 fatty acid-modified single-chain relaxin analogue, was recently identified as a potent, selective, and long-lasting relaxin family peptide receptor 1 (RXFP1) agonist. Further advanced pharmacokinetic profiling of this compound highlighted elevated levels of oxidative metabolism occurring in dogs and mini pigs but only marginally in rats. This study aimed to design long-lasting relaxin analogues with increased stability against metabolic oxidation while securing subnanomolar RXFP1 potency. Key structural elements, including fatty acid chain length, attachment position, and linker structure, were modified to reduce oxidative metabolism and improve pharmacokinetic parameters. Additionally, incorporating α-methyl lysine (Mly) at position 30, alongside other selective sequence mutations, resulted in several analogues with subnanomolar RXFP1 potency and improved duration of action compared to 1. Compound 21 (R2R01) was then selected as a candidate for an in-depth characterization. It is currently undergoing phase 2 clinical development for renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Sergio Mallart
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Raffaele Ingenito
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Paola Magotti
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Annalise Di Marco
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Simone Esposito
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Edith Monteagudo
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Fulvia Caretti
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Laura Orsatti
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Alessia Santoprete
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Daniela Roversi
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Federica Tucci
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Maria Veneziano
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Denis Brasseur
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Xavier Chénedé
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Alain Corbier
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Laurence Gauzy-Lazo
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Vincent Gervat
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Frank Marguet
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Claire Minoletti
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Olivier Pasquier
- DMPK France, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Bruno Poirier
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Aurélien Azam
- CEA, INRAE, Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, SIMoS, Gif-sur-Yvette 91190, France
| | - Bernard Maillère
- CEA, INRAE, Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, SIMoS, Gif-sur-Yvette 91190, France
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Philip Janiak
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Olivier Duclos
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Stephane Illiano
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| |
Collapse
|
3
|
Jeimy S, Wong T, Ben-Shoshan M, Copaescu AM, Isabwe GAC, Ellis AK. Drug allergy. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2025; 20:78. [PMID: 39844329 PMCID: PMC11755868 DOI: 10.1186/s13223-024-00936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 01/24/2025]
Abstract
Drug allergy encompasses a spectrum of immunologically-mediated hypersensitivity reactions (HSRs) with varying mechanisms and clinical presentations. This type of adverse drug reaction (ADR) not only affects patient quality of life, but may also lead to delayed treatment, unnecessary investigations, and increased morbidity and mortality. Given the spectrum of symptoms associated with the condition, diagnosis can be challenging. Therefore, referral to an allergist experienced in the diagnosis and management of drug allergy is recommended if a drug-induced allergic reaction is suspected. Diagnosis relies on a careful history and physical examination and, in some instances, skin testing or in vitro testing and drug challenges. The most effective strategy for the management of allergist-confirmed drug allergy is avoidance or discontinuation of the offending drug. When available, alternative medications with unrelated chemical structures should be substituted. Cross-reactivity among drugs should also be taken into consideration when choosing alternative agents. Additional therapy for drug HSRs may include topical corticosteroids, oral antihistamines and, in severe cases, systemic corticosteroids and other immunomodulators. In the event of anaphylaxis, the treatment of choice is intramuscular epinephrine. If a patient with a history of anaphylaxis requires a specific drug and there is no acceptable alternative, desensitization to that drug may be considered. This article provides a background on drug allergy and strategies for the diagnosis and management of some of the most common drug-induced allergic reactions.
Collapse
Affiliation(s)
- Samira Jeimy
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada.
| | - Tiffany Wong
- Division of Allergy, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Moshe Ben-Shoshan
- Division of Pediatric Allergy Clinical Immunology and Dermatology, Department of Pediatrics, McGill University Health Center, Montreal, QC, Canada
| | - Ana Maria Copaescu
- Division of Allergy and Clinical Immunology, Department of Medicine, McGill University Health Centre (MUHC), McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Centre, , McGill University, McGill University Health Centre (MUHC), Montreal, QC, Canada
- Department of Infectious Diseases, Centre for Antibiotic Allergy and Research, Austin Health, Heidelberg, VIC, Australia
| | - Ghislaine A C Isabwe
- Division of Allergy and Clinical Immunology, Department of Medicine, McGill University Health Centre (MUHC), McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Centre, , McGill University, McGill University Health Centre (MUHC), Montreal, QC, Canada
| | - Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Bogart J, Otteson T. Substance Use Disorder as Risk Factor for Intubation in Angioedema: A Nationwide Cohort Study. Laryngoscope 2025; 135:45-49. [PMID: 39007365 PMCID: PMC11635145 DOI: 10.1002/lary.31644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES Individuals with angioedema (AE) are at high risk for airway compromise and often require endotracheal intubation. Patient factors predisposing one to airway compromise are not well described. The objective of this study is to examine whether substance use disorder (SUD) in patients with AE is associated with need for airway intervention. METHODS This population-based retrospective cohort study compared AE patients with SUD versus propensity-matched control groups. Outcomes were hospitalization, intubation, and tracheotomy. Using the TriNetX National Database, this study included 28,931 patients with SUD and 117,509 patients without SUD who presented with AE. RESULTS Among patients with AE, those with each subtype of SUD (alcohol, cannabis, cocaine, tobacco, and opioids) were found to have higher risk of severe AE compared to propensity-matched non-SUD cohorts. Rate of hospitalization after cohort matching ranged from 20.4% for tobacco use disorder to 30.4% for cocaine use disorder, all significantly higher than the 8.0% in a population without SUD. Each SUD subtype was associated with a higher rate of intubation compared with matched non-SUD groups, with cannabis use disorder having the highest relative risk (RR) of 3.67 (95% CI: 2.69-5.02). Tobacco (RR = 2.45, 95% CI: 1.79-3.34) and alcohol (RR = 2.82, 95% CI: 1.73-4.58) use disorders were both associated with significantly higher risk of tracheotomy. CONCLUSION These data suggest that patients with SUD, regardless of subtype, and after propensity matching for demographics and comorbidities are at higher risk for adverse outcomes when presenting with AE. This study highlights clinically relevant predictors of airway compromise. LEVEL OF EVIDENCE 3 Laryngoscope, 135:45-49, 2025.
Collapse
Affiliation(s)
- Joseph Bogart
- Case Western Reserve University School of MedicineClevelandOhioU.S.A.
- Department of Otolaryngology‐Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterClevelandOhioU.S.A.
| | - Todd Otteson
- Case Western Reserve University School of MedicineClevelandOhioU.S.A.
- Department of Otolaryngology‐Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterClevelandOhioU.S.A.
| |
Collapse
|
5
|
Ieven T, Goossens J, Roosens W, Jonckheere AC, Cremer J, Dilissen E, Persoons R, Dupont L, Schrijvers R, Vandenberghe P, Breynaert C, Bullens DMA. Functional MRGPRX2 expression on peripheral blood-derived human mast cells increases at low seeding density and is suppressed by interleukin-9 and fetal bovine serum. Front Immunol 2024; 15:1506034. [PMID: 39737168 PMCID: PMC11683848 DOI: 10.3389/fimmu.2024.1506034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Primary human mast cells (MC) obtained through culturing of blood-derived MC progenitors are the preferred model for the ex vivo study of MRGPRX2- vs. IgE-mediated MC activation. In order to assess the impact of culture conditions on functional MRGPRX2 expression, we cultured CD34+-enriched PBMC from peripheral whole blood (PB) and buffy coat (BC) samples in MethoCult medium containing stem cell factor (SCF) and interleukin (IL)-3, modified through variations in seeding density and adding or withholding IL-6, IL-9 and fetal bovine serum (FBS). Functional expression of MRGPRX2 was assessed after 4 weeks via flow cytometry. We found similar proportions of CD34+ MC-committed progenitors in BC and PB. Higher seeding densities (≥ 1x105 cells/mL) and exposure to IL-9 and FBS suppressed functional MRGPRX2 expression at 4 weeks, while leaving MC yield largely unaffected. IL-6 had no impact on MRGPRX2 expression. MRGPRX2-expressing MC upregulated CD63 upon stimulation with polyclonal anti-IgE, substance P and compound 48/80 at 4 weeks. Ketotifen and dasatinib but not cromolyn sodium inhibited both IgE- and MRGPRX2-dependent pathways. Our results confirm the feasibility of functional MC activation studies on PB-derived MC after a short 4-week culture and highlight the impact of culture conditions on functional MRGPRX2 expression.
Collapse
Affiliation(s)
- Toon Ieven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Division of General Internal Medicine, Allergy and Clinical Immunology, UZ Leuven, Leuven, Belgium
| | - Janne Goossens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Willem Roosens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Division of General Internal Medicine, Allergy and Clinical Immunology, UZ Leuven, Leuven, Belgium
| | - Anne-Charlotte Jonckheere
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Ellen Dilissen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Rune Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Lieven Dupont
- KU Leuven Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
- Division of Respiratory Diseases, UZ Leuven, Leuven, Belgium
| | - Rik Schrijvers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Division of General Internal Medicine, Allergy and Clinical Immunology, UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- KU Leuven Department of Human Genetics, Laboratory for Genetics of Malignant Disorders, KU Leuven, Leuven, Belgium
- Division of Hematology, UZ Leuven, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Division of General Internal Medicine, Allergy and Clinical Immunology, UZ Leuven, Leuven, Belgium
| | - Dominique M. A. Bullens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Division of Pediatrics, UZ Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Costanzo G, Marchetti M, Ledda AG, Sambugaro G, Bullita M, Paoletti G, Heffler E, Firinu D, Costanzo GAML. Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower. Int J Mol Sci 2024; 25:12615. [PMID: 39684326 DOI: 10.3390/ijms252312615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Mast cells are immune system cells with the most disparate functions, but are also among the least understood. Mast cells are implicated in several known pathological processes, tissue homeostasis, and wound repair. However, they owe their notoriety to allergic diseases, of which they represent the effector cell par excellence. In both allergic and not upper airway pathologies, mast cells play a key role. Exploring the mechanisms through which these cells carry out their physiological and pathological function may help us give a new perspective on existing therapies and identify new ones. A focus will be placed on non-allergic rhinitis, a poorly recognized and often neglected condition with complex management, where the role of the mast cell is crucial in the pathogenetic, clinical, and prognostic aspects.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Marta Marchetti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Andrea Giovanni Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Giada Sambugaro
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Martina Bullita
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | | |
Collapse
|
7
|
Lyu S, Oliver ET, Dispenza MC, Chichester KL, Hoffman J, MacGlashan DW, Adkinson NF, Phillips EJ, Alvarez-Arango S. A Skin Testing Strategy for Non-IgE-Mediated Reactions Associated With Vancomycin. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:3025-3033.e6. [PMID: 39117269 PMCID: PMC11560520 DOI: 10.1016/j.jaip.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Vancomycin infusion reaction (VIR), reportedly mediated through Mas-Related G Protein-Coupled Receptor-X2, is the primary vancomycin-induced immediate drug reaction. Clinically, distinguishing the underlying drug-induced immediate drug reaction mechanisms is crucial for future treatment strategies, including drug restriction, re-administration, and pretreatment considerations. However, the lack of validated diagnostic tests makes this challenging, often leading to unnecessary drug restriction. OBJECTIVE To determine whether intradermal tests (IDTs) and, separately, the basophil activation test (BAT) differentiate VIR from vancomycin-tolerant subjects. METHODS This was a cross-sectional study of vancomycin-exposed adults with and without a history of VIR. Data on demographics, allergy-related comorbidities, history of vancomycin exposures, and VIR characteristics were collected. IDT with vancomycin was performed. IDT dose-response EC50, IDT-related local symptoms, and BAT results were compared between groups. RESULTS A total of 11 VIR and 10 vancomycin-tolerant subjects were enrolled. The most reported VIR symptoms were pruritus (82%), flushing (82%), hives (46%), angioedema (27%), and dyspnea (19%). The IDT dose-response mean EC50 was 328 μg/mL (95% CI, 296-367) in the VIR versus 1166 μg/mL (95% CI, 1029-1379) in the tolerant group (P < .0001). All VIR subjects reported IDT-related local pruritus compared with 60% of tolerant subjects (P = .0185). The %CD63+ basophils were consistently less than 2%, without significant differences between groups (P < .54). CONCLUSIONS Variations in skin test methodologies could help identify other immediate drug reaction mechanisms beyond IgE. This skin test protocol holds the potential for identifying VIR, particularly in cases where patients have received multiple drugs while BAT is insufficient. Future studies will validate and delineate its predictive value, assessing the risk of VIR.
Collapse
Affiliation(s)
- Siyan Lyu
- Johns Hopkins University, Baltimore, Md
| | - Eric T Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Kristin L Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Jennifer Hoffman
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, Md
| | - Donald W MacGlashan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - N Franklin Adkinson
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Departments of Medicine, Dermatology, Pharmacology, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - Santiago Alvarez-Arango
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md; Division of Clinical Pharmacology, Departments of Medicine and Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, Md.
| |
Collapse
|
8
|
Jabaley T, Menon S, Bagley J, Tuskan J, Mazzola E, Costa J, Rompelman G, Servant J, Corbett M, Lynch DM. Using QI to develop a sustainable method for titrating taxane infusions to reduce hypersensitivity reactions. J Oncol Pharm Pract 2024:10781552241288775. [PMID: 39376119 DOI: 10.1177/10781552241288775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
OBJECTIVE To develop a sustainable three-step method for titrating first and second taxane exposures through integration of best practices in patient and environmental safety; and to evaluate the impact on immediate hypersensitivity rates. METHODS A quality improvement study was initiated at a large, NCI-designated comprehensive cancer center in the U.S. to determine a sustainable method of slow, upward titration for reducing taxane-related hypersensitivity reactions. Multidisciplinary collaboration led to the incorporation of best practices for safe preparation and administration of high risk, hazardous drugs. Retrospective data from the electronic health records of 690 patients who received 1221 taxane doses were analyzed. Non-titrated infusions were compared with infusions titrated using a method initially tested for efficacy; and infusions titrated using a method revised for greater compliance with safety standards. Two-sided Fisher's exact tests at a 0.1 level of significance were used to detect differences in the rate of HSR between the three groups. RESULTS A method of taxane titration that incorporated standardized, preprogrammed infusion rates and tubing primed with inert IV fluid showed a significant reduction in HSR incidence in comparison to non-titrated infusions (6% v. 19%, P = 0.001) and a similar decrease in the rate of HSR (6%) to the initial method previously studied (7%) (P = 0.659) which was not sustainable due to patient and environmental safety concerns. CONCLUSIONS A three-step titration method using standardized, preprogrammed infusion rates and tubing primed with inert IV fluid reduced taxane-related HSRs and was adopted as sustainable practice in ambulatory cancer care.
Collapse
Affiliation(s)
- Terri Jabaley
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Susanne Menon
- Division of Gyn Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Janet Bagley
- Nursing and Patient Care Services, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, Massachusetts, USA
| | - Jacqueline Tuskan
- Nursing and Patient Care Services, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, Massachusetts, USA
| | - Emanuele Mazzola
- Department of Data Science, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, Massachusetts, USA
| | - Jennifer Costa
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Garrett Rompelman
- Pharmacy Department, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, Massachusetts, USA
| | - Jennifer Servant
- Nursing and Patient Care Services, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, Massachusetts, USA
| | - Megan Corbett
- Nursing and Patient Care Services, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, Massachusetts, USA
| | - Donna-Marie Lynch
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, 75 Francis St, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Wollam J, Solomon M, Villescaz C, Lanier M, Evans S, Bacon C, Freeman D, Vasquez A, Vest A, Napora J, Charlot B, Cavarlez C, Kim A, Dvorak L, Selfridge B, Huang L, Nevarez A, Dedman H, Brooks J, Frischbutter S, Metz M, Serhan N, Gaudenzio N, Timony G, Martinborough E, Boehm MF, Viswanath V. Inhibition of mast cell degranulation by novel small molecule MRGPRX2 antagonists. J Allergy Clin Immunol 2024; 154:1033-1043. [PMID: 38971540 DOI: 10.1016/j.jaci.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Vest
- Escient Pharmaceuticals, San Diego, Calif
| | - Jim Napora
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | - Andrew Kim
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | | | | | | | | | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France; Genoskin SAS, Toulouse, France
| | | | | | | | | |
Collapse
|
10
|
Jiang Y, Guo N, Zhang Q, Xu X, Qiang M, Lv Y. MrgX2-targeted ligand screening from Artemisia capillaris Thunb. extract and receptor-ligand interaction analysis based on MrgX2-HALO-tag/CMC. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124252. [PMID: 39067315 DOI: 10.1016/j.jchromb.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Artemisia capillaris Thunb. (A. capillaris) is a well-known traditional Chinese herbal medicine with a wide range of pharmacological effects, such as soothing the liver and gallbladder, heat clearance, and detoxifying. Hence, its extract is commonly added to various traditional Chinese medicine formulas. Traditional Chinese medicine injection (TCMI) is a mature pharmaceutical dosage form developed using TCM theory combined with modern science and technology. Notably, allergic reactions, especially pseudo‑allergic reactions (PARs), greatly limited the use of these injections. Therefore, screening pseudo‑allergic components in A. capillaris extract is clinically significant. In the present study, we proposed a two-dimensional screening and identification system based on mas-related G protein-coupled receptor X2-HALO-tag/cell membrane chromatography (MrgX2-HALO-tag/CMC) high performance liquid chromatography mass spectrometry (HPLC-MS); seven potential active components were screened from 75 % ethanol extract of A. capillaris: NCA, CA, CCA, 1,3-diCQA, ICA-B, ICA-A, and ICA-C. The receptor-ligand interactions between these seven compounds and MrgX2 protein were analyzed using frontal analysis and molecular docking technology. Furthermore, a mast cell degranulation-related assay was used to assess the pseudo‑allergic activity of these compounds. The screened compounds can serve as ligands of MrgX2, and this study provides a research basis for pseudo‑allergic reactions caused by TCMIs containing A. capillaris.
Collapse
Affiliation(s)
- Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Na Guo
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Quan Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Xiaochan Xu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Mengyang Qiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China.
| |
Collapse
|
11
|
Olivieri B, Ghilarducci A, Nalin F, Bonadonna P. Mast cell conditions and drug allergy: when to suspect and how to manage. Curr Opin Allergy Clin Immunol 2024; 24:195-202. [PMID: 38814742 DOI: 10.1097/aci.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
PURPOSE OF REVIEW Patients with mast cell disorders frequently experience symptoms from excessive mediator release like histamine and tryptase, ranging from mild flushing to severe anaphylactic responses. Hypersensitivity reactions (HRs) to drugs are a major cause of anaphylaxis in these patients, who often worry about triggering mast cell degranulation when taking medications. The aim of this review is to explore the complex interactions between mast cell disorders and drug HRs, focusing on the clinical challenges of managing these conditions effectively to enhance understanding and guide safer clinical practices. RECENT FINDINGS Among the drugs most commonly associated with hypersensitivity reactions in patients with mast cell disorders are non-steroidal anti-inflammatory drugs, antibiotics, and perioperative agents. Recent studies have highlighted the role of Mas-related G-protein coupled receptor member X2 (MRGPRX2) - a receptor involved in non-immunoglobulin E mediated mast cell degranulation - in exacerbating HRs. Investigations reveal varied drug tolerance among patients, underscoring the need for individual risk assessments. SUMMARY Tailored diagnostic approaches are crucial for confirming drug allergies and assessing tolerance in patients with mastocytosis, preventing unnecessary medication avoidance and ensuring safety before acute situations arise.
Collapse
Affiliation(s)
- Bianca Olivieri
- Allergy Unit, University Hospital of Verona, Policlinico G.B. Rossi, Verona, Italy
| | | | | | | |
Collapse
|
12
|
Jordan J, Levy JH, Gonzalez-Estrada A. Perioperative anaphylaxis: updates on pathophysiology. Curr Opin Allergy Clin Immunol 2024; 24:183-188. [PMID: 38743470 DOI: 10.1097/aci.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PURPOSE OF REVIEW Perioperative anaphylaxis has historically been attributed to IgE/FcεRI-mediated reactions; there is now recognition of allergic and nonallergic triggers encompassing various reactions beyond IgE-mediated responses. This review aims to present recent advancements in knowledge regarding the mechanisms and pathophysiology of perioperative anaphylaxis. RECENT FINDINGS Emerging evidence highlights the role of the mast-cell related G-coupled protein receptor X2 pathway in direct mast cell degranulation, shedding light on previously unknown mechanisms. This pathway, alongside traditional IgE/FcεRI-mediated reactions, contributes to the complex nature of anaphylactic reactions. Investigations into the microbiota-anaphylaxis connection are ongoing, with potential implications for future treatment strategies. While serum tryptase levels serve as mast cell activation indicators, identifying triggers remains challenging. A range of mediators have been associated with anaphylaxis, including vasoactive peptides, proteases, lipid molecules, cytokines, chemokines, interleukins, complement components, and coagulation factors. SUMMARY Further understanding of clinical endotypes and the microenvironment where anaphylactic reactions unfold is essential for standardizing mediator testing and characterization in perioperative anaphylaxis. Ongoing research aims to elucidate the mechanisms, pathways, and mediators involved across multiple organ systems, including the cardiovascular, respiratory, and integumentary systems, which will be crucial for improving patient outcomes.
Collapse
Affiliation(s)
- Justin Jordan
- TMC Health Medical Education Program, Tucson, Arizona
| | - Jerrold H Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| | | |
Collapse
|
13
|
Qin Y, Huang Y, Ji X, Gong L, Luo S, Gao J, Liu R, Zhang T. N-demethylsinomenine metabolite and its prototype sinomenine activate mast cells via MRGPRX2 and aggravate anaphylaxis. Front Pharmacol 2024; 15:1389761. [PMID: 39144634 PMCID: PMC11322065 DOI: 10.3389/fphar.2024.1389761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Sinomenine hydrochloride (SH) is commonly used in the treatment of rheumatoid arthritis. It activates mast cells and induces anaphylaxis in the clinical setting. Adverse drug reactions can be caused by activation of MAS-associated G protein-coupled receptor X2 (MRGPRX2) on mast cells. Because the ligand binding site of MRGPRX2 is easily contacted in dilute solvents, it can be activated by many opioid drug structures. N-Demethylsinomenine (M-3) has a similar chemical structure to that of the opioid scaffold and is a major metabolite of SH. We sought to clarify whether M-3 induces anaphylaxis synergistically with its prototype in a mouse model. Molecular docking computer simulations suggested a similar binding effect between M-3 and SH. M-3 was chemically synthesized and analyzed by surface plasmon resonance to reveal its affinity for MRGPRX2. Temperature monitoring, in vivo hindlimb swelling and exudation test, and in vitro mast cell degranulation test were used to explore the mechanism of MRGPrx2 mediated allergic reaction triggered by M-3. Reduced M-3-induced inflammation was evident in MrgprB2 (the ortholog of MRGPRX2) conditional (Cpa3-Cre/MrgprB2flox) knockout (MrgprB2-CKO) mice. Additionally, LAD2 human mast cells with MRGPRX2 knockdown showed reduced degranulation. M-3 activated LAD2 cells synergistically with SH as regulated by GRK2 signaling and IP3R/PLC/PKC/P38 molecular signaling pathways. The results indicate that the M-3 metabolite can activate mast cells synergistically with its prototype SH via MRGPRX2 and aggravate anaphylaxis. These findings provide important insights into drug safety.
Collapse
Affiliation(s)
- Youfa Qin
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China
| | - Yihan Huang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xiaolan Ji
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ling Gong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Shiqiong Luo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jiapan Gao
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Rui Liu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Tao Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Poirier B, Pasquier O, Chenede X, Corbier A, Prigent P, Azam A, Bernard C, Guillotel M, Gillot F, Riva L, Briand V, Ingenito R, Gauzy-Lazo L, Duclos O, Philippo C, Maillere B, Bianchi E, Mallart S, Janiak P, Illiano S. R2R01: A long-acting single-chain peptide agonist of RXFP1 for renal and cardiovascular diseases. Br J Pharmacol 2024; 181:1993-2011. [PMID: 38450758 DOI: 10.1111/bph.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The therapeutic potential of relaxin for heart failure and renal disease in clinical trials is hampered by the short half-life of serelaxin. Optimization of fatty acid-acetylated single-chain peptide analogues of relaxin culminated in the design and synthesis of R2R01, a potent and selective RXFP1 agonist with subcutaneous bioavailability and extended half-life. EXPERIMENTAL APPROACH Cellular assays and pharmacological models of RXFP1 activation were used to validate the potency and selectivity of R2R01. Increased renal blood flow was used as a translational marker of R2R01 activity. Human mastocytes (LAD2 cells) were used to study potential pseudo-allergic reactions and CD4+ T-cells to study immunogenicity. The pharmacokinetics of R2R01 were characterized in rats and minipigs. KEY RESULTS In vitro, R2R01 had comparable potency and efficacy to relaxin as an agonist for human RXFP1. In vivo, subcutaneous administration of R2R01 increased heart rate and renal blood flow in normotensive and hypertensive rat and did not show evidence of tachyphylaxis. R2R01 also increased nipple length in rats, used as a chronic model of RXFP1 engagement. Pharmacokinetic studies showed that R2R01 has a significantly extended terminal half-life. The in vitro assays with LAD2 cells and CD4+ T-cells showed that R2R01 had low potential for pseudo-allergic and immunogenic reactions, respectively. CONCLUSION AND IMPLICATIONS R2R01 is a potent RXFP1 agonist with an extended half-life that increases renal blood flow in various settings including normotensive and hypertensive conditions. The preclinical efficacy and safety data supported clinical development of R2R01 as a potential new therapy for renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Bruno Poirier
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | | | - Xavier Chenede
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Alain Corbier
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Philippe Prigent
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | | | - Carine Bernard
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Michel Guillotel
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Florence Gillot
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Laurence Riva
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Veronique Briand
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Raffaele Ingenito
- Peptides and Small Molecules R&D Department, IRBM Spa, Pomezia, Rome, Italy
| | - Laurence Gauzy-Lazo
- Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Olivier Duclos
- Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | | | | | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa, Pomezia, Rome, Italy
| | - Sergio Mallart
- Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Philip Janiak
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Stephane Illiano
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
- Investigative Toxicology, Sanofi R&D, Chilly Mazarin, France
| |
Collapse
|
15
|
Lin EV, Suresh RV, Dispenza MC. Bruton's tyrosine kinase inhibition for the treatment of allergic disorders. Ann Allergy Asthma Immunol 2024; 133:33-42. [PMID: 38492772 PMCID: PMC11222055 DOI: 10.1016/j.anai.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
IgE signaling through its high-affinity receptor FcεRI is central to the pathogenesis of numerous allergic disorders. Oral inhibitors of Bruton's tyrosine kinase (BTKis), which are currently Food and Drug Administration-approved for treating B cell malignancies, broadly inhibit the FcεRI pathway in human mast cells and basophils, and therefore may be effective allergen-independent therapies for a variety of allergic diseases. The application of these drugs to the allergy space was previously limited by the low kinase selectivity and subsequent toxicities of early-generation compounds. Fortunately, next-generation, highly selective BTKis in clinical development appear to have more favorable risk-benefit profiles, and their likelihood of being Food and Drug Administration-approved for an allergy indication is increasing. Recent clinical trials have indicated the remarkable and rapid efficacy of the second-generation BTKi acalabrutinib in preventing clinical reactivity to peanut ingestion in adults with peanut allergy. In addition, next-generation BTKis including remibrutinib effectively reduce disease activity in patients with antihistamine-refractory chronic spontaneous urticaria. Finally, several BTKis are currently under investigation in early clinical trials for atopic dermatitis and asthma. In this review, we summarize recent data supporting the use of these drugs as novel therapies in food allergy, anaphylaxis, urticaria, and other allergic disorders. We also discuss safety data derived from trials using both short-term and chronic dosing of BTKis.
Collapse
Affiliation(s)
- Erica V Lin
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ragha V Suresh
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Lange RW, Bloch K, Heindl MR, Wollenhaupt J, Weiss MS, Brandstetter H, Klebe G, Falcone FH, Böttcher-Friebertshäuser E, Dahms SO, Steinmetzer T. Fragment-Based Design, Synthesis, and Characterization of Aminoisoindole-Derived Furin Inhibitors. ChemMedChem 2024; 19:e202400057. [PMID: 38385828 DOI: 10.1002/cmdc.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
A 1H-isoindol-3-amine was identified as suitable P1 group for the proprotein convertase furin using a crystallographic screening with a set of 20 fragments known to occupy the S1 pocket of trypsin-like serine proteases. Its binding mode is very similar to that observed for the P1 group of benzamidine-derived peptidic furin inhibitors suggesting an aminomethyl substitution of this fragment to obtain a couplable P1 residue for the synthesis of substrate-analogue furin inhibitors. The obtained inhibitors possess a slightly improved picomolar inhibitory potency compared to their benzamidine-derived analogues. The crystal structures of two inhibitors in complex with furin revealed that the new P1 group is perfectly suited for incorporation in peptidic furin inhibitors. Selected inhibitors were tested for antiviral activity against respiratory syncytial virus (RSV) and a furin-dependent influenza A virus (SC35M/H7N7) in A549 human lung cells and demonstrated an efficient inhibition of virus activation and replication at low micromolar or even submicromolar concentrations. First results suggest that the Mas-related G-protein coupled receptor GPCR-X2 could be a potential off-target for certain benzamidine-derived furin inhibitors.
Collapse
Affiliation(s)
- Roman W Lange
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
| | - Konstantin Bloch
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, Marburg, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, A-5020, Salzburg, Austria Phone
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
| | - Franco H Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392, Giessen, Germany
| | | | - Sven O Dahms
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, A-5020, Salzburg, Austria Phone
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
| |
Collapse
|
17
|
Mari DC, Banks TA. Removing penicillin allergy label in a hospitalized adolescent with a remote penicillin and recent cephalosporin allergy. Allergy Asthma Proc 2024; 45:207-210. [PMID: 38755784 DOI: 10.2500/aap.2024.45.240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background: β-Lactam antibiotics are widely used with increased utilization in hospitalized patients. Of this population, as high as 10-20% report an allergy to β-lactam antibiotics but <5% are at risk of developing clinically significant immunoglobulin E- or T-lymphocyte-mediated reactions. Most of the time, these reported allergies are present during an illness with no previous inquiry of their validity, which makes investigation and possible removal of this allergy label a challenge. Methods: We report a 16-year-old boy who presented with 1 week of night sweats, chills, headaches, and fatigue, followed by 1 day of fever and right knee swelling and who was diagnosed with septic bursitis. Due to concern of a penicillin allergy label, the patient was started on a cefepime infusion. Five minutes into the infusion, the patient reported puffy eyes and itchy throat, followed by a witnessed cascading flat nonpruritic erythematous rash from head to shoulders. This rash went away in 3 minutes after stopping the infusion and the patient being given 50 mg of intravenous diphenhydramine and 10 mg of oral dexamethasone. He was subsequently diagnosed with a cefepime allergy. Results: Allergy/immunology was the speciality consulted, and, by using a screening questionnaire, the patient's reported penicillin allergy was determined to be low risk. Subsequent 1-step oral challenge was the key to providing the patient with the necessary antibiotic course to resolve his infection. Conclusion: Multiple reported antibiotic allergies lead to poor antibiotic stewardship that causes impactful health and financial burden on the patient and health-care system. It is thus important to have an evidence-based systematic approach to de-label penicillin antibiotic allergy labels to reduce these potential harms.
Collapse
Affiliation(s)
- David C Mari
- From the Allergy and Immunology Department, Lackland Air Force Base, San Antonio, Texas, and
| | - Taylor A Banks
- Division of Pediatric Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia
| |
Collapse
|
18
|
Alvarez-Arango S, Kumar M, Chow TG, Sabato V. Non-IgE-Mediated Immediate Drug-Induced Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1109-1119. [PMID: 38423288 PMCID: PMC11081849 DOI: 10.1016/j.jaip.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Immediate drug-induced hypersensitivity reactions (IDHSRs) have conventionally been attributed to an immunoglobulin E (IgE)-mediated mechanism. Nevertheless, it has now been acknowledged that IDHSRs can also occur independently of IgE involvement. Non-IgE-mediated IDHSRs encompass the activation of effector cells, both mast cell-dependent and -independent and the initiation of inflammatory pathways through immunogenic and nonimmunogenic mechanisms. The IDHSRs involve inflammatory mediators beyond histamine, including the platelet-activating factor, which activates multiple cell types, including smooth muscle, endothelium, and MC, and evidence supports its importance in IgE-mediated reactions in humans. Clinically, distinguishing IgE from non-IgE mechanisms is crucial for future treatment strategies, including drug(s) restriction, readministration approaches, and pretreatment considerations. However, this presents significant challenges because certain drugs can trigger both mechanisms, and their presentations can appear similarly, ranging from mild to life-threatening symptoms. Thus, history alone is often inadequate for differentiation, and skin tests lack a standardized approach. Moreover, drug-specific IgE immunoassays have favorable specificity but low sensitivity, and the usefulness of the basophil activation test remains debatable. Lastly, no biomarker reliably differentiates between both mechanisms. Whereas non-IgE-mediated mechanisms likely predominate in IDHSRs, reclassifying most drug-related IDHSRs as non-IgE-mediated, with suggested prevention through dose administration adjustments, is premature and risky. Therefore, continued research and validated diagnostic tests are crucial to improving our capacity to distinguish between these mechanisms, ultimately enhancing patient care.
Collapse
Affiliation(s)
- Santiago Alvarez-Arango
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Mukesh Kumar
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR
| | - Timothy G Chow
- Division of Allergy and Immunology, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, Antwerp University Hospital, University Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Hsu HC, Chung WH, Lin YC, Yang TS, Chang JWC, Hsieh CH, Hung SI, Lu CW, Chen JS, Chou WC, Wang CW. Clinical characteristics and genetic HLA marker for patients with oxaliplatin-induced adverse drug reactions. Allergol Int 2024:S1323-8930(24)00041-8. [PMID: 38594174 DOI: 10.1016/j.alit.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Oxaliplatin is commonly used to treat gastrointestinal malignancies. However, its applications are limited due to potential adverse drug reactions (ADRs), particularly severe anaphylactic shock. There is no method to predict or prevent ADRs caused by oxaliplatin. Therefore, we aimed to investigate the genetic HLA predisposition and immune mechanism of oxaliplatin-induced ADRs. METHODS A retrospective review was performed for 154 patients with ADRs induced by oxaliplatin during 2016-2021 recorded in our ADR notification system. HLA genotyping was conducted for 47 patients with oxaliplatin-induced ADRs, 1100 general population controls, and 34 oxaliplatin-tolerant controls in 2019-2023. The in vitro basophil activation test (BAT) was performed and oxaliplatin-specific IgE levels were determined. RESULTS The incidence of oxaliplatin-induced ADRs and anaphylactic shock in our cohort was 7.1% and 0.15%, respectively. Of the 154 patients, 67.5% suffered rash/eruption; 26.0% of the patients who could not undergo oxaliplatin rechallenge were considered to show oxaliplatin-induced immune-mediated hypersensitivity reactions (HRs). The genetic study found that the HLA-DRB∗12:01 allele was associated with oxaliplatin-induced HRs compared to the general population controls (sensitivity = 42.9%; odds ratio [OR] = 3.4; 95% CI = 1.4-8.2; P = 0.008) and tolerant controls (OR = 12; 95% CI = 2.3-63.7; P = 0.001). The in vitro BAT showed higher activation of CD63+ basophils in patients with oxaliplatin-induced HRs compared to the tolerant controls (P < 0.05). Only four patients (8.5%) with oxaliplatin-induced ADRs were positive for oxaliplatin-specific IgE. CONCLUSIONS This study found that 26.0% of patients with oxaliplatin-induced ADRs could not undergo oxaliplatin rechallenge. HLA-DRB∗12:01 is regarded as a genetic marker for oxaliplatin-induced hypersensitivity.
Collapse
Affiliation(s)
- Hung-Chih Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Dermatology, Ruijin Hospital, Shanghai, China; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yung-Chang Lin
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Sheng Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Chun-Wei Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Jen-Shi Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
20
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Monahan R, Alfaro E, Ho H, Otani IM, Tsao LR. Hereditary alpha tryptasemia presenting as recurrent chemotherapy hypersensitivity reactions. Ann Allergy Asthma Immunol 2024; 132:270-273. [PMID: 38151098 DOI: 10.1016/j.anai.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Rose Monahan
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, UCSF Medical Center, San Francisco, California.
| | - Emely Alfaro
- UCSF School of Nursing, UCSF Adult Infusion Services, UCSF Medical Center, San Francisco, California
| | - Hansen Ho
- Department of Clinical Pharmacy, UCSF School of Pharmacy, UCSF Medical Center, San Francisco, California
| | - Iris M Otani
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, UCSF Medical Center, San Francisco, California
| | - Lulu R Tsao
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, UCSF Medical Center, San Francisco, California
| |
Collapse
|
22
|
Mayorga C, Ariza A, Muñoz-Cano R, Sabato V, Doña I, Torres MJ. Biomarkers of immediate drug hypersensitivity. Allergy 2024; 79:601-612. [PMID: 37947156 DOI: 10.1111/all.15933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Immediate drug hypersensitivity reactions (IDHRs) are a burden for patients and the health systems. This problem increases when taking into account that only a small proportion of patients initially labelled as allergic are finally confirmed after an allergological workup. The diverse nature of drugs involved will imply different interactions with the immunological system. Therefore, IDHRs can be produced by a wide array of mechanisms mediated by the drug interaction with specific antibodies or directly on effector target cells. These heterogeneous mechanisms imply an enhanced complexity for an accurate diagnosis and the identification of the phenotype and endotype at early stages of the reaction is of vital importance. Currently, several endophenotypic categories (type I IgE/non-IgE, cytokine release, Mast-related G-protein coupled receptor X2 (MRGPRX2) or Cyclooxygenase-1 (COX-1) inhibition and their associated biomarkers have been proposed. A precise knowledge of endotypes will permit to discriminate patients within the same phenotype, which is crucial in order to personalise diagnosis, future treatment and prevention to improve the patient's quality of life.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
| | - Rosa Muñoz-Cano
- Allergy Department, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer - IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology, Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Inmaculada Doña
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Maria J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| |
Collapse
|
23
|
Lerner L, Babina M, Zuberbier T, Stevanovic K. Beyond Allergies-Updates on The Role of Mas-Related G-Protein-Coupled Receptor X2 in Chronic Urticaria and Atopic Dermatitis. Cells 2024; 13:220. [PMID: 38334612 PMCID: PMC10854933 DOI: 10.3390/cells13030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Mast cells (MCs) are an important part of the immune system, responding both to pathogens and toxins, but they also play an important role in allergic diseases, where recent data show that non-IgE-mediated activation is also of relevance, especially in chronic urticaria (CU) and atopic dermatitis (AD). Skin MCs express Mas-related G-protein-coupled receptor X2 (MRGPRX2), a key protein in non-IgE-dependent MC degranulation, and its overactivity is one of the triggering factors for the above-mentioned diseases, making MRGPRX2 a potential therapeutic target. Reviewing the latest literature revealed our need to focus on the discovery of MRGPRX2 activators as well as the ongoing vast research towards finding specific MRGPRX2 inhibitors for potential therapeutic approaches. Most of these studies are in their preliminary stages, with one drug currently being investigated in a clinical trial. Future studies and improved model systems are needed to verify whether any of these inhibitors may have the potential to be the next therapeutic treatment for CU, AD, and other pseudo-allergic reactions.
Collapse
Affiliation(s)
- Liron Lerner
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| | - Katarina Stevanovic
- Institute of Allergology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (L.L.); (M.B.); (T.Z.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
24
|
Giannetti MP, Nicoloro-SantaBarbara J, Godwin G, Middlesworth J, Espeland A, Douvas JL, Castells MC. Challenges in Drug and Hymenoptera Venom Hypersensitivity Diagnosis and Management in Mastocytosis. Diagnostics (Basel) 2024; 14:123. [PMID: 38247999 PMCID: PMC10814166 DOI: 10.3390/diagnostics14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Mastocytosis is a myeloproliferative neoplasm characterized by abnormal proliferation and activation of clonal mast cells typically bearing the KITD816V mutation. Symptoms manifest due to the release of bioactive mediators and the tissue infiltration by neoplastic mast cells. Mast cell activation symptoms include flushing, pruritus, urticaria, abdominal cramping, diarrhea, wheezing, neuropsychiatric symptoms, and anaphylaxis. Up to 50% of patients with mastocytosis report a history of provoked and unprovoked anaphylaxis, with Hymenoptera venom and drugs the most common culprits. NSAIDs, antibiotics, vaccines, perioperative medications, and radiocontrast media are often empirically avoided without evidence of reactions, depriving patients of needed medications and placing them at risk for unfavorable outcomes. The purpose of this review is to highlight the most common agents responsible for adverse drug reactions in patients with mastocytosis, with a review of current epidemiology, diagnosis, and management of drug hypersensitivity and Hymenoptera venom allergy.
Collapse
Affiliation(s)
- Matthew P. Giannetti
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Nicoloro-SantaBarbara
- Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Grace Godwin
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia Middlesworth
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Andrew Espeland
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia L. Douvas
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mariana C. Castells
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Harris DE. Rocuronium-Induced Anaphylaxis in the Perioperative Period: A Clinical Review. AORN J 2024; 119:47-58. [PMID: 38149896 DOI: 10.1002/aorn.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 12/28/2023]
Abstract
Rocuronium, a nondepolarizing neuromuscular blocking agent used for muscle relaxation especially during endotracheal intubation, can cause hypersensitivity reactions. This article provides an overview of anaphylactic reactions; risk factors; and the pathophysiology, presentation, diagnosis, treatment, and nursing implications associated with rocuronium-induced anaphylaxis. Life-threatening anaphylaxis can be immunoglobulin E-mediated or non-immunoglobulin E-mediated and usually occurs after the first dose. Anaphylaxis can present with hypotension and bronchospasm; cutaneal symptoms, such as erythema, may not be obvious. Diagnosis is initially presumptive and may require a transesophageal echocardiogram to rule out other causes of hypotension (eg, pulmonary embolus). Emergency treatment begins with epinephrine administration and fluid boluses; cardiac support devices may be needed. Definitive diagnosis requires early measurement of histamine and tryptase levels and skin testing after the patient recovers from the reaction. Perioperative nurses should be prepared to participate in emergency treatment of anaphylaxis and advocate for testing for a definitive diagnosis.
Collapse
|
26
|
Lazki-Hagenbach P, Kleeblatt E, Fukuda M, Ali H, Sagi-Eisenberg R. The Underlying Rab Network of MRGPRX2-Stimulated Secretion Unveils the Impact of Receptor Trafficking on Secretory Granule Biogenesis and Secretion. Cells 2024; 13:93. [PMID: 38201297 PMCID: PMC10778293 DOI: 10.3390/cells13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
MRGPRX2, the human member of the MAS-related G-protein-coupled receptors (GPCRs), mediates the immunoglobulin E (IgE)-independent responses of a subset of mast cells (MCs) that are associated with itch, pain, neurogenic inflammation, and pseudoallergy to drugs. The mechanisms underlying the responses of MRGPRX2 to its multiple and diverse ligands are still not completely understood. Given the close association between GPCR location and function, and the key role played by Rab GTPases in controlling discrete steps along vesicular trafficking, we aimed to reveal the vesicular pathways that directly impact MRGPRX2-mediated exocytosis by identifying the Rabs that influence this process. For this purpose, we screened 43 Rabs for their functional and phenotypic impacts on MC degranulation in response to the synthetic MRGPRX2 ligand compound 48/80 (c48/80), which is often used as the gold standard of MRGPRX2 ligands, or to substance P (SP), an important trigger of neuroinflammatory MC responses. Results of this study highlight the important roles played by macropinocytosis and autophagy in controlling MRGPRX2-mediated exocytosis, demonstrating a close feedback control between the internalization and post-endocytic trafficking of MRGPRX2 and its triggered exocytosis.
Collapse
Affiliation(s)
- Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (P.L.-H.); (E.K.)
| | - Elisabeth Kleeblatt
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (P.L.-H.); (E.K.)
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (P.L.-H.); (E.K.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Pühringer V, Jilma B, Herkner H. Population-based incidence of all-cause anaphylaxis and its development over time: a systematic review and meta-analysis. FRONTIERS IN ALLERGY 2023; 4:1249280. [PMID: 38148907 PMCID: PMC10749935 DOI: 10.3389/falgy.2023.1249280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction It is extremely difficult to compare studies investigating the frequency of anaphylaxis making it challenging to satisfactorily assess the worldwide incidence rate. Using a systematic review and meta-analysis, this publication aims to determine the current incidence of all-cause anaphylaxis worldwide. Additionally, we investigated whether the incidence of anaphylaxis has changed over time and which factors influence the rates determined by individual studies. Methods A literature search was performed in four databases. All articles that reported relevant information on population-based incidence rates of all-cause anaphylaxis were included. The protocol was published on INPLASY, the International Platform of Registered Systematic Review and Meta-analysis Protocols. Results The database query and screening process resulted in 46 eligible articles on anaphylaxis. The current incidence worldwide was found to be approximately 46 cases per 100,000 population per year (95% CI 21-103). Evaluating confounding factors showed that studies using allergy clinics and hospitalizations as data source result in comparably low rates. Moreover, children are less prone to develop anaphylaxis compared to the general population. Using a random effects Poisson model we calculated a yearly increase of anaphylaxis incidence by 7.4% (95% CI 7.3-7.6, p < 0.05). Discussion This seems to be the first approach to analyze every reported all-cause anaphylaxis incidence rate until 2017 for an at most accurate determination of its epidemiology. Based on these results, future research could investigate the underlying causes for the rising incidence in order find ways to decrease the condition's frequency. Systematic Review Registration inplasy.com, identifier [INPLASY202330047].
Collapse
Affiliation(s)
- Vanessa Pühringer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Franke K, Li Z, Bal G, Zuberbier T, Babina M. Synergism between IL-33 and MRGPRX2/FcεRI Is Primarily Due to the Complementation of Signaling Modules, and Only Modestly Supplemented by Prolonged Activation of Selected Kinases. Cells 2023; 12:2700. [PMID: 38067128 PMCID: PMC10705352 DOI: 10.3390/cells12232700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Skin mast cells (MCs) express high levels of MRGPRX2, FcεRI, and ST2, and vigorously respond to their ligands when triggered individually. IL-33/ST2 also potently synergizes with other receptors, but the molecular underpinnings are poorly understood. Human skin-derived MCs were stimulated via different receptors individually or jointly in the presence/absence of selective inhibitors. TNF was quantified by ELISA. Signaling cascades were studied by immunoblot. TNF was stimulated by FcεRI ≈ ST2 > MRGPRX2. Surprisingly, neither FcεRI nor MRGPRX2 stimulation elicited NF-κB activation (IκB degradation, p65 phosphorylation) in stark contrast to IL-33. Accordingly, TNF production did not depend on NF-κB in FcεRI- or MRGPRX2-stimulated MCs, but did well so downstream of ST2. Conversely, ERK1/2 and PI3K were the crucial modules upon FcεRI/MRGPRX2 stimulation, while p38 was key to the IL-33-elicited route. The different signaling prerequisites were mirrored by their activation patterns with potent pERK/pAKT after FcεRI/MRGPRX2, but preferential induction of pp38/NF-κB downstream of ST2. FcεRI/MRGPRX2 strongly synergized with IL-33, and some synergy was still observed upon inhibition of each module (ERK1/2, JNK, p38, PI3K, NF-κB). IL-33's contribution to synergism was owed to p38 > JNK > NF-κB, while the partner receptor contributed through ERK > PI3K ≈ JNK. Concurrent IL-33 led to slightly prolonged pERK (downstream of MRGPRX2) or pAKT (activated by FcεRI), while the IL-33-elicited modules (pp38/NF-κB) remained unaffected by co-stimulation of FcεRI/MRGPRX2. Collectively, the strong synergistic activity of IL-33 primarily results from the complementation of highly distinct modules following co-activation of the partner receptor rather than by altered signal strength of the same modules.
Collapse
Affiliation(s)
- Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
29
|
Baldo BA. MRGPRX2, drug pseudoallergies, inflammatory diseases, mechanisms and distinguishing MRGPRX2- and IgE/FcεRI-mediated events. Br J Clin Pharmacol 2023; 89:3232-3246. [PMID: 37430437 DOI: 10.1111/bcp.15845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
MRGPRX2, a novel Gaq -coupled human mast cell receptor, mediates non-immune adverse reactions without the involvement of antibody priming. Constitutively expressed by human skin mast cells, MRGPRX2 modulates cell degranulation producing pseudoallergies manifesting as itch, inflammation and pain. The term pseudoallergy is defined in relation to adverse drug reactions in general and immune/non-immune-mediated reactions in particular. A list of drugs with MRGPRX2 activity is presented, including a detailed examination of three important and widely used approved therapies: neuromuscular blockers, quinolones and opioids. For the clinician, the significance of MRGPRX2 is considered as an aid in distinguishing and ultimately identifying specific immune and non-immune inflammatory reactions. Anaphylactoid/anaphylactic reactions, neurogenic inflammation and inflammatory diseases with a clear or strongly suspected association with MRGPRX2 activation are examined. Inflammatory diseases include chronic urticaria, rosacea, atopic dermatitis, allergic contact dermatitis, mastocytosis, allergic asthma, ulcerative colitis and rheumatoid arthritis. MRGPRX2- and allergic IgE/FcεRI-mediated reactions may be clinically similar. Importantly, the usual testing procedures do not distinguish the two mechanisms. Currently, identification of MRGPRX2 activation and diagnosis of pseudoallergic reactions is generally viewed as a process of exclusion once other non-immune and immune processes, particularly IgE/FcεRI-mediated degranulation of mast cells, are ruled out. This does not take into account that MRGPRX2 signals via β-arrestin, which can be utilized to detect MRGPRX2 activation by employing MRGPRX2 transfected cells to assess MRGPRX2 activation via two pathways, the G-protein-independent β-arrestin pathway and the G-protein-dependent Ca2+ pathway. Testing procedures, interpretations for distinguishing mechanisms, patient diagnosis, agonist identification and drug safety evaluations are addressed.
Collapse
Affiliation(s)
- Brian A Baldo
- Royal North Shore Hospital of Sydney, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Yang BC. Biologics to treat anaphylaxis. Curr Opin Allergy Clin Immunol 2023; 23:370-375. [PMID: 37527059 DOI: 10.1097/aci.0000000000000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to review the latest use of biologics in the management of anaphylaxis. The methodology was to highlight both the nonbiologic management of anaphylaxis and the biologic management and how they can be used in conjunction with each other. RECENT FINDINGS As the phenotypes and endotypes of anaphylaxis are better portrayed, it furthers our understanding of the mechanisms of anaphylaxis. New applications of existing biologics to the prevention of anaphylaxis are described. SUMMARY Anaphylaxis is a potentially life-threatening acute hypersensitivity reaction affecting up to 16.8% of the U.S. population. Acute management entails swift identification, removal of the causative agent, and the prevention of cardiovascular collapse, firstly with epinephrine. Adjunctive treatments such as antihistamines work to prevent anaphylaxis from recurring. Biologic management of anaphylaxis involves the use of large-molecule drugs such as monoclonal antibodies. Omalizumab, an IgG1 monoclonal antibody targeting unbound IgE, is the most prevalent and widely studied biologic in the prevention of anaphylaxis. Other monoclonal antibodies in development or approved for other indications, such as ligelizumab, quilizumab, MEDI4212, and dupilumab, may also have potential for preventing anaphylaxis through various mechanisms.
Collapse
|
31
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
32
|
Pałgan K. Mast Cells and Basophils in IgE-Independent Anaphylaxis. Int J Mol Sci 2023; 24:12802. [PMID: 37628983 PMCID: PMC10454702 DOI: 10.3390/ijms241612802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Anaphylaxis is a life-threatening or even fatal systemic hypersensitivity reaction. The incidence of anaphylaxis has risen at an alarming rate in the past decades in the majority of countries. Generally, the most common causes of severe or fatal anaphylaxis are medication, foods and Hymenoptera venoms. Anaphylactic reactions are characterized by the activation of mast cells and basophils and the release of mediators. These cells express a variety of receptors that enable them to respond to a wide range of stimulants. Most studies of anaphylaxis focus on IgE-dependent reactions. The mast cell has long been regarded as the main effector cell involved in IgE-mediated anaphylaxis. This paper reviews IgE-independent anaphylaxis, with special emphasis on mast cells, basophils, anaphylactic mediators, risk factors, triggers, and management.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
33
|
Mertes PM, Tacquard C. Perioperative anaphylaxis: when the allergological work-up goes negative. Curr Opin Allergy Clin Immunol 2023; 23:287-293. [PMID: 37357801 DOI: 10.1097/aci.0000000000000912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
PURPOSE OF REVIEW Perioperative anaphylaxis (POA) is rare but is associated with significant morbidity and mortality. Patients are referred to the allergist to identify the mechanism of the reaction, the causative agent and make recommendations regarding subsequent anaesthesia. Despite a well conducted allergological evaluation, the causative agent is not found in 30-60% of these reactions, leaving patients without a well established diagnosis. RECENT FINDINGS Several mechanisms can induce POA. In addition to the well known IgE-mediated reactions, IgG-mediated reaction, MRGPR-X2-related reaction or nonspecific histamine release may be involved. These situations are not easily assessed by the allergological workup. SUMMARY When the allergological workup is negative, the situation should be reassessed with the team present at the time of the reaction to confirm the reality of the hypersensitivity reaction and to search for a possible differential diagnosis. If POA is confirmed, the allergological evaluation should be repeated, ensuring proper execution according to current guidelines and including the search for hidden allergens. Specific IgE assays or basophil activation tests may be of interest. In case of negative results, a closely monitored drug challenge test, in coordination with the anaesthesia teams, may be useful to avoid the exclusion of any drug injected during the reaction.
Collapse
Affiliation(s)
- Paul-Michel Mertes
- Department of Anesthesia and Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Team EFS-INSERM U1255, EFS Grand-Est, Strasbourg, France
| | | |
Collapse
|
34
|
Dispenza MC, Metcalfe DD, Olivera A. Research Advances in Mast Cell Biology and Their Translation Into Novel Therapies for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2032-2042. [PMID: 36958519 PMCID: PMC10330051 DOI: 10.1016/j.jaip.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Anaphylaxis is an acute, potentially life-threatening systemic allergic reaction for which there are no known reliable preventative therapies. Its primary cell mediator, the mast cell, has several pathophysiologic roles and functions in IgE-mediated reactions that continue to be poorly understood. Recent advances in the understanding of allergic mechanisms have identified novel targets for inhibiting mast cell function and activation. The prevention of anaphylaxis is within reach with new drugs that could modulate immune tolerance, mast cell proliferation and differentiation, and IgE regulation and production. Several US Food and Drug Administration-approved drugs for chronic urticaria, mastocytosis, and cancer are also being repurposed to prevent anaphylaxis. New therapeutics have not only shown promise in potential efficacy for preventing IgE-mediated reactions, but in some cases, they are able to inform us about mast cell mechanisms in vivo. This review summarizes the most recent advances in the treatment of anaphylaxis that have arisen from new pharmacologic tools and our current understanding of mast cell biology.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
35
|
Lynch DM, Menon S, Mazzola E, Costa J, Jabaley T. A Three-Step Taxane Titration Protocol Decreases Hypersensitivity Reactions During First and Second Exposures. JCO Oncol Pract 2023:OP2200845. [PMID: 37058683 DOI: 10.1200/op.22.00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
INTRODUCTION Patients receiving taxanes are at risk for developing hypersensitivity reactions (HSRs) primarily during first and second lifetime exposures. Immediate HSRs require emergency care and can interfere with the continuation of preferred treatment. Although different approaches to slow titration have been used successfully for desensitization after HSR occurrence, there are no standardized recommendations for taxane titration to prevent HSRs. PURPOSE To determine if a gradual, three-step infusion rate titration decreases the rate and severity of immediate HSRs during first and second lifetime exposures to paclitaxel and docetaxel. METHODS We used a prospective, interventional design with historical comparisons to evaluate a sample of 222 first and second lifetime exposure paclitaxel and docetaxel infusions. The intervention was a three-step infusion rate titration provided at the initiation of first and second lifetime exposures. Ninety-nine titrated infusions were compared with 123 historical records of nontitrated infusions. RESULTS Compared with the nontitrated group (n = 123), the titrated group (n = 99) had significantly less HSRs (19% v 7%; P = .017). No significant difference in HSR severity was found between groups (P = 1.00). However, four nontitrated patients received epinephrine, and one required transfer to the emergency department (ED) because of reaction severity. In contrast, no titrated patients received epinephrine or required transfer to the ED. In the nontitrated group, seven patients did not complete their infusions versus one patient in the titrated group. CONCLUSION A standardized, three-step infusion rate titration prevented HSR occurrence. Significant issues affecting practice feasibility and sustainability were addressed.
Collapse
|
36
|
Ebo DG, Vlaeminck N, van der Poorten MLM, Elst J, Toscano A, Van Gasse AL, Hagendorens MM, Aerts S, Adriaensens I, Saldien V, Sabato V. A quarter of a century fundamental and translational research in perioperative hypersensitivity and anaphylaxis at the Antwerp university hospital, a Belgian Centre of Excellence of the World Allergy Organization. World Allergy Organ J 2023; 16:100759. [PMID: 37025251 PMCID: PMC10070178 DOI: 10.1016/j.waojou.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 04/03/2023] Open
Abstract
Perioperative hypersensitivity constitutes an important health issue, with potential dramatic consequences of diagnostic mistakes. However, safe and correct diagnosis is not always straightforward, mainly because of the application of incorrect nomenclature, absence of easy accessible in-vitro/ex-vivo tests and uncertainties associated with the non-irritating skin test concentrations. In this editorial we summarize the time line, seminal findings, and major realizations of 25 years of research on the mechanisms, diagnosis, and management of perioperative hypersensitivity.
Collapse
|
37
|
Kunimura K, Akiyoshi S, Uruno T, Matsubara K, Sakata D, Morino K, Hirotani K, Fukui Y. DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug-induced anaphylaxis. J Allergy Clin Immunol 2023:S0091-6749(23)00209-9. [PMID: 36804596 DOI: 10.1016/j.jaci.2023.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Sayaka Akiyoshi
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Matsubara
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Morino
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Hirotani
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Kolkhir P, Ali H, Babina M, Ebo D, Sabato V, Elst J, Frischbutter S, Pyatilova P, Maurer M. MRGPRX2 in drug allergy: What we know and what we do not know. J Allergy Clin Immunol 2023; 151:410-412. [PMID: 36089079 PMCID: PMC9905269 DOI: 10.1016/j.jaci.2022.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Pavel Kolkhir
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Didier Ebo
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Jessy Elst
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Stefan Frischbutter
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Pyatilova
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology, Allergology and Immunology, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Baldo BA, Pham NH. Opioid toxicity: histamine, hypersensitivity, and MRGPRX2. Arch Toxicol 2023; 97:359-375. [PMID: 36344690 DOI: 10.1007/s00204-022-03402-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Insights into the pathophysiology of many non-immune-mediated drug reactions referred to as toxicities, sensitivities, intolerances, or pseudoallergies have resulted from research identifying the mastocyte-related G-protein-coupled receptor (GPCR) member X2 (MRGPRX2), a human mast cell receptor mediating adverse reactions without the involvement of antibody priming. Opioid-induced degranulation of mast cells, particularly morphine, provoking release of histamine and other preformed mediators and causing hemodynamic and cutaneous changes seen as flushing, headache and wheal and flare reactions in the skin, is an example of results of MRGPRX2 activation. Opioids including morphine, codeine, dextromethorphan and metazocine as well as endogenous prodynorphin opioid peptides activate MRGPRX2 at concentrations causing mast cell degranulation. Unlike the canonical opioid receptors, MRGPRX2 shows stereochemical recognition preference for dextro rather than levo opioid enantiomers. Opioid analgesic drugs (OADs) display a range of histamine-releasing potencies from the strong releaser morphine to doubtful releasers like hydromorphone and the non-releaser fentanyl. Whether there is a correlation between histamine release by individual OADs, MRGPRX2 activation, and presence or absence of adverse cutaneous effects is not known. To investigate the question, ongoing research with recently pursued methodologies and strategies employing basophil and mast cell tests resulting from MRGPRX2 insights should help to elucidate whether or not an opioid's histamine-releasing potency, and its property of provoking an adverse reaction, are each a reflection of its activation of MRGPRX2.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia. .,Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia.
| | - Nghia H Pham
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia.,Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
40
|
Dejoux A, de Chaisemartin L, Bruhns P, Longrois D, Gouel-Chéron A. Neuromuscular blocking agent induced hypersensitivity reaction exploration: an update. Ugeskr Laeger 2023; 40:95-104. [PMID: 36301083 DOI: 10.1097/eja.0000000000001765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acute hypersensitivity reactions (AHRs) occurring in present-day anaesthesia can have severe, sometimes fatal, consequences and their incidence is increasing. The most frequent allergens responsible for AHR during anaesthesia are neuromuscular blocking agents (NMBAs) (70% of the cases) followed by antibiotics (18%), patent blue dye and methylene blue dye (5%), and latex (5%). Following an AHR, strategies for subsequent anaesthetic procedures (especially the choice of an NMBA) may be difficult to formulate due to inconclusive diagnostic analysis in up to 30% of AHRs. Current diagnosis of AHR relies on the detection of mast cell degranulation products and drug-specific type E immunoglobulins (IgE) in order to document an IgE-mediated anaphylaxis (IgE endotype). Nonetheless, other IgE-independent pathways can be involved in AHR, but their detection is not currently available in standard situations. The different mechanisms (endotypes) involved in peri-operative AHR may contribute to the inconclusive diagnostic work-up and this generates uncertainty concerning the culpable drug and strategy for subsequent anaesthetic procedures. This review provides details on the IgE endotype; an update on non-IgE related endotypes and the novel diagnostic tools that could characterise them. This detailed update is intended to provide explicit clinical reasoning tools to the anaesthesiologist faced with an incomplete AHR diagnostic work-up and to facilitate the decision-making process regarding anaesthetic procedures following an AHR to NMBAs.
Collapse
Affiliation(s)
- Alice Dejoux
- From the Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222 (AD, LdC, PB, AGC), Immunology Department, DMU BIOGEM, Bichat Hospital, AP-HP (LdC), Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Châtenay-Malabry (LdC), Anaesthesiology and Critical Care Medicine Department, DMU PARABOL, Bichat Hospital, AP-HP (DL, AGC), Université de Paris, FHU PROMICE (DL), Anaesthesiology and Critical Care Medicine Department, DMU PARABOL, Bichat-Claude Bernard and Louis Mourier Hospitals, APHP (DL), INSERM1148, Paris, France (DL), and Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA (AGC)
| | | | | | | | | |
Collapse
|
41
|
Konantz M, Merkel T, Meyer SC, Hartmann K. MRGPRX2: A novel biomarker in mastocytosis? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:669-671. [PMID: 36759088 DOI: 10.1016/j.jaip.2022.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 02/10/2023]
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tamara Merkel
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sara C Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karin Hartmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland; Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Sabato V, Ebo DG, Van Der Poorten MLM, Toscano A, Van Gasse AL, Mertens C, Van Houdt M, Beyens M, Elst J. Allergenic and Mas-Related G Protein-Coupled Receptor X2-Activating Properties of Drugs: Resolving the Two. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:395-404. [PMID: 36581077 DOI: 10.1016/j.jaip.2022.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Since the seminal description implicating occupation of the Mas-related G protein-coupled receptor X2 (MRGPRX2) in mast cell (MC) degranulation by drugs, many investigations have been undertaken into this potential new endotype of immediate drug hypersensitivity reaction. However, current evidence for this mechanism predominantly comes from (mutant) animal models or in vitro studies, and irrefutable clinical evidence in humans is still missing. Moreover, translation of these preclinical findings into clinical relevance in humans is difficult and should be critically interpreted. Starting from our clinical priorities and experience with flow-assisted functional analyses of basophils and cultured human MCs, the objectives of this rostrum are to identify some of these difficulties, emphasize the obstacles that might hamper translation from preclinical observations into the clinics, and highlight differences between IgE- and MRPGRX2-mediated reactions. Inevitably, as with any subject still beset by many questions, alternative interpretations, hypotheses, or explanations expressed here may not find universal acceptance. Nevertheless, we believe that for the time being, many questions remain unanswered. Finally, a theoretical mechanistic algorithm is proposed that might advance discrimination between MC degranulation from MRGPRX2 activation and cross-linking of membrane-bound drug-reactive IgE antibodies.
Collapse
Affiliation(s)
- Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | - Didier G Ebo
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium.
| | - Marie-Line M Van Der Poorten
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp, Belgium, and Paediatrics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Alessandro Toscano
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Athina L Van Gasse
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp, Belgium, and Paediatrics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Christel Mertens
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Michel Van Houdt
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Michiel Beyens
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Jessy Elst
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Baldo BA. Allergic and other adverse reactions to drugs used in anesthesia and surgery. ANESTHESIOLOGY AND PERIOPERATIVE SCIENCE 2023; 1:16. [PMCID: PMC10264870 DOI: 10.1007/s44254-023-00018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 11/13/2023]
Abstract
The list of drugs patients may be exposed to during the perioperative and postoperative periods is potentially extensive. It includes induction agents, neuromuscular blocking drugs (NMBDs), opioids, antibiotics, sugammadex, colloids, local anesthetics, polypeptides, antifibrinolytic agents, heparin and related anticoagulants, blue dyes, chlorhexidine, and a range of other agents depending on several factors related to individual patients’ clinical condition and progress in the postoperative recovery period. To avoid poor or ultrarapid metabolizers to a particular drug (for example tramadol and codeine) or possible adverse drug reactions (ADRs), some drugs may need to be avoided during or after surgery. This will be the case for patients with a history of anaphylaxis or other adverse events/intolerances to a known drug. Other drugs may be ceased for a period before surgery, e.g., anticoagulants that increase the chance of bleeding; diuretics for patients with acute renal failure; antihypertensives relative to kidney injury after major vascular surgery; and serotonergic drugs that together with some opioids may rarely induce serotonin toxicity. Studies of germline variations shown by genotyping and phenotyping to identify a predisposition of genetic factors to ADRs offer an increasingly important approach to individualize drug therapy. Studies of associations of human leukocyte antigen (HLA) genes with some serious delayed immune-mediated reactions are ongoing and variations of drug-metabolizing cytochrome CYP450 enzymes, P-glycoprotein, and catechol-O -methyltransferase show promise for the assessment of ADRs and non-responses to drugs, particularly opioids and other analgesics. Surveys of ADRs from an increasing number of institutions often cover small numbers of patients, are retrospective in nature, fail to clearly identify culprit drugs, and do not adequately distinguish immune-mediated from non-immune-mediated anaphylactoid reactions. From the many surveys undertaken, the large list of agents identified during and after anesthesia and surgery are examined for their ADR involvement. Drugs are classified into those most often involved, (NMBD and antibiotics); drugs that are becoming more frequently implicated, namely antibiotics (particularly teicoplanin), and blue dyes; those becoming less frequently involved; and drugs more rarely involved in perioperative, and postoperative adverse reactions but still important and necessary to keep in mind for the occasional potential sensitive patient. Clinicians should be aware of the similarities between drug-induced true allergic type I IgE/FcεRI- and pseudoallergic MRGPRX2-mediated ADRs, the clinical features of each, and their distinguishing characteristics. Procedures for identifying MRGPRX2 agonists and diagnosing and distinguishing pseudoallergic from allergic reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Brian A. Baldo
- Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, St Leonards, Australia
- Department of Medicine, University of Sydney, Sydney, NSW Australia
- Lindfield, Australia
| |
Collapse
|
44
|
Han J, Pan C, Tang X, Li Q, Zhu Y, Zhang Y, Liang A. Hypersensitivity reactions to small molecule drugs. Front Immunol 2022; 13:1016730. [PMID: 36439170 PMCID: PMC9684170 DOI: 10.3389/fimmu.2022.1016730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2024] Open
Abstract
Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
P2X4 receptor stimulation enhances MrgprB2-mediated mast cell activation and pseudoallergic reactions in mice. Sci Rep 2022; 12:18613. [PMID: 36329102 PMCID: PMC9633816 DOI: 10.1038/s41598-022-21667-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Pseudoallergies caused by drugs make disease treatment difficult. Mas-relate G protein-coupled receptor X2 (MRGPRX2), which is specifically expressed in mast cells (MCs), has been implicated in pseudoallergies. High concentrations of therapeutic agents are typically required to stimulate MRGPRX2. Although regulatory mechanisms may enhance this response, the factors involved in this regulation are not well-understood. In this study, the effects of extracellular ATP on MC activation induced by MrgprB2, the mouse ortholog of human MRGPRX2, were examined in mouse peritoneal MCs (PMCs). ATP alone induced minimal PMC degranulation but markedly enhanced degranulation induced by the MrgprB2 agonist compound 48/80 (CP48/80), substance P, PAMP-12, and vancomycin. ATP promoted CP48/80-induced increase in intracellular Ca2+ in PMCs. This enhancement effect of ATP was absent in PMCs prepared from P2X4 receptor (P2X4R)-deficient mice and inhibited by the PI3K inhibitor wortmannin. In addition, P2X4R deficiency reduced the skin-specific and systemic anaphylactic responses to CP48/80 in vivo. In MC-deficient KitW-sh/W-sh mice, reconstitution with MCs obtained from wild-type mice led to a more severe anaphylactic response to CP48/80 compared to that from P2X4R-deficient mice. P2X4R-mediated effect may be involved in MrgprB2-mediated MC activation in vivo and is a potential target for alleviating pseudoallergic reactions.
Collapse
|
46
|
Bawazir M, Amponnawarat A, Hui Y, Oskeritzian CA, Ali H. Inhibition of MRGPRX2 but not FcεRI or MrgprB2-mediated mast cell degranulation by a small molecule inverse receptor agonist. Front Immunol 2022; 13:1033794. [PMID: 36275683 PMCID: PMC9582160 DOI: 10.3389/fimmu.2022.1033794] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mas-related G protein-coupled receptor-X2 (MRGPRX2) expressed on mast cells (MCs) contributes to hypersensitivity reactions to cationic US-Food and Drug Administration (FDA) approved drugs such as the neuromuscular blocking agent, rocuronium. In addition, activation of MRGPRX2 by the neuropeptide substance P (SP) and the pro-adrenomedullin peptide (PAMP-12) is associated with a variety of cutaneous conditions such as neurogenic inflammation, pain, atopic dermatitis, urticaria, and itch. Thus, small molecules aimed at blocking MRGPRX2 constitute potential options for modulating IgE-independent MC-mediated disorders. Two inverse MRGPRX2 agonists, named C9 and C9-6, have recently been identified, which inhibit basal G protein activation and agonist-induced calcium mobilization in transfected HEK293 cells. Substance P serves as a balanced agonist for MRGPRX2 whereby it activates both G protein-mediated degranulation and β-arrestin-mediated receptor internalization. The purpose of this study was to determine if C9 blocks MRGPRX2's G protein and β-arrestin-mediated signaling and to determine its specificity. We found that C9, but not its inactive analog C7, inhibited degranulation in RBL-2H3 cells stably expressing MRGPRX2 in response to SP, PAMP-12 and rocuronium with an IC50 value of ~300 nM. C9 also inhibited degranulation as measured by cell surface expression of CD63, CD107a and β-hexosaminidase release in LAD2 cells and human skin-derived MCs in response to SP but not the anaphylatoxin, C3a or FcϵRI-aggregation. Furthermore, C9 inhibited β-arrestin recruitment and MRGPRX2 internalization in response to SP and PAMP-12. We found that a G protein-coupling defective missense MRGPRX2 variant (V282M) displays constitutive activity for β-arrestin recruitment, and that this response was significantly inhibited by C9. Rocuronium, SP and PAMP-12 caused degranulation in mouse peritoneal MCs and these responses were abolished in the absence of MrgprB2 or cells treated with pertussis toxin but C9 had no effect. These findings suggest that C9 could provide an important framework for developing novel therapeutic approaches for the treatment of IgE-independent MC-mediated drug hypersensitivity and cutaneous disorders.
Collapse
Affiliation(s)
- Maram Bawazir
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Thapaliya M, Amponnawarat A, Tesmer JJG, Ali H. GRK2 inhibitors, paroxetine and CCG258747, attenuate IgE-mediated anaphylaxis but activate mast cells via MRGPRX2 and MRGPRB2. Front Immunol 2022; 13:1032497. [PMID: 36275707 PMCID: PMC9583242 DOI: 10.3389/fimmu.2022.1032497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2), which phosphorylates agonist-occupied GPCRs to promote their desensitization, has been investigated as an attractive therapeutic target for cardiovascular and metabolic diseases. Several GRK2-targeted inhibition strategies have been reported including the use of direct pharmacological inhibitors such as paroxetine (a widely prescribed antidepressant) and its analogs such as compound CCG258747. Cross-linking of high affinity IgE receptor (FcϵRI) on mast cells (MCs) and the resulting degranulation causes anaphylaxis and allergic asthma. Using gene silencing strategy, we recently showed that GRK2 contributes to FcεRI signaling and MC degranulation. The purpose of this study was to determine if the GRK2 inhibitors paroxetine and CCG258747 modulate FcεRI-mediated MC responses in vitro and in vivo. Utilizing rat basophilic leukemia (RBL-2H3) cells and primary mouse lung MCs (LMCs), we found that paroxetine and CCG258747 inhibit FcϵRI-mediated calcium mobilization and degranulation. Furthermore, intravenous administration of paroxetine and CCG258747 in mice resulted in substantial reduction of IgE-mediated passive cutaneous anaphylaxis. Unlike LMCs, human cutaneous MCs abundantly express a novel GPCR known as MRGPRX2 (mouse; MRGPRB2). We found that in contrast to their inhibitory effects on FcεRI-mediated MC responses, both paroxetine and CCG258747 induce calcium mobilization and degranulation in RBL-2H3 cells stably expressing MRGPRX2 but not in untransfected cells. Furthermore, paroxetine and CCG258747 induced degranulation in peritoneal MCs from Wild-type (WT) mice in vitro and caused increased cutaneous vascular permeability in vivo, but these responses were substantially reduced in Mrgprb2-/- mice. Additionally, upon intradermal injection, paroxetine also induced neutrophil recruitment in WT but not Mrgprb2-/- mice. These findings suggest that in addition to their potential therapeutic utility against cardiovascular and metabolic disorders, paroxetine-based GRK2-inhibitors may serve to modulate IgE-mediated anaphylaxis and to enhance cutaneous host defense by harnessing MC's immunomodulatory property through the activation of MRGPRX2/MRGPRB2.
Collapse
Affiliation(s)
- Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States,Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States,*Correspondence: Hydar Ali,
| |
Collapse
|
48
|
Caffeic acid phenethyl ester inhibits pseudo-allergic reactions via inhibition of MRGPRX2/MrgprB2-dependent mast cell degranulation. Arch Pharm Res 2022; 45:644-657. [PMID: 36183260 DOI: 10.1007/s12272-022-01405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
Mast cells play essential role in allergic reactions through the process called mast cell degranulation. Recent studies have found that a basic secretagogue compound 48/80 (C48/80) induces non-IgE-mediated mast cell degranulation via activation of human Mas-related G protein-coupled receptor X2 (MRGPRX2) and mouse MrgprB2. Although previous studies have revealed that caffeic acid (CA) and its derivatives possess anti-allergic effects via IgE-dependent manner, it is largely elusive whether these compounds have impact on MRGPRX2/MrgprB2 to exert inhibitory effects. Therefore, the present study investigated whether CA as well as its derivatives - rosmarinic acid (RA) and caffeic acid phenethyl ester (CAPE) - has the ability to inhibit the activity of MRGPRX2/MrgprB2 to evoke pseudo-allergic effects. As a result, it was found that CAPE inhibits C48/80-induced activation of MRGPRX2/MrgprB2, but neither CA nor RA showed discernible inhibition. Furthermore, the β-hexosaminidase release assay showed that CAPE inhibits mouse peritoneal mast cell degranulation in both IgE-dependent and MrgprB2-dependent manners. Additionally, mouse paw edema induced by C48/80 was dramatically suppressed by co-treatment of CAPE, suggesting that CAPE possesses a protective effect on C48/80-evoked pseudo-allergic reactions. The pretreatment of CAPE also significantly decreased scratching bouts of mice evoked by C48/80, demonstrating that CAPE also has an anti-pruritic effect. Therefore, these data implicate that CAPE can suppress pseudo-allergic reactions evoked by C48/80 via MrgprB2-dependent manner. Finally, molecular docking analysis showed that CAPE is predicted to bind to human MRGPRX2 in the region where C48/80 also binds, implying that CAPE can be a competitive inhibitor of MRGPRX2. In conclusion, it is found that CAPE has the ability to inhibit MRGPRX2/MrgprB2, leading to the prevention of mast cell degranulation and further to the alleviation of mast cell reactions. These results indicate that CAPE as a CA derivative could be developed as a new protective agent that exerts dual inhibition of mast cell degranulation mediated by IgE and MRGPRX2/MrgprB2.
Collapse
|
49
|
Sadleir PHM, Clarke RC, Goddard CE, Mickle P, Platt PR. Agreement of a clinical scoring system with allergic anaphylaxis in suspected perioperative hypersensitivity reactions: prospective validation of a new tool. Br J Anaesth 2022; 129:670-678. [PMID: 36085094 DOI: 10.1016/j.bja.2022.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A clinical scoring system to estimate the likelihood that a reaction represents a perioperative immediate hypersensitivity reaction has been devised using a Delphi consensus process. Agreement of this clinical scoring system with the outcome of allergological assessment would allow the use of this tool in post-resuscitation and subsequent management of suspected perioperative immediate hypersensitivity reaction and potentially as a new standard reference for clinical investigations. METHODS We prospectively scored 301 cases of suspected perioperative immediate hypersensitivity reaction according to the Hypersensitivity Clinical Scoring Scheme. Classification of cases was by allergological workup based on immediate and delayed investigations. The discrimination and calibration of the Hypersensitivity Clinical Scoring Scheme was compared with results from an expert panel of allergologists, skin testing, mast cell tryptase ratios, and specific IgE assays, as was agreement by Cohen's kappa coefficient. RESULTS The Hypersensitivity Clinical Scoring Scheme predicted cases of allergic perioperative immediate hypersensitivity reaction with comparable discrimination to an expert panel, mast cell tryptase formula, and specific IgE assays in anaphylaxis to neuromuscular blocking drugs. Using a score threshold of 15 or greater to indicate allergic perioperative immediate hypersensitivity reaction, the sensitivity was 88.9%, with a specificity of 79.4%. Prospectively, the Hypersensitivity Clinical Scoring Scheme correctly classified a greater number of subjects than the expert panel and the optimal post hoc binary logistic regression model (86% vs 85% vs 84%), however it was inferior to skin testing. CONCLUSION The Hypersensitivity Clinical Scoring Scheme predicts allergic perioperative immediate hypersensitivity using features of the acute syndrome. This approach could guide algorithms for the post-resuscitative management of suspected perioperative immediate hypersensitivity, and identify patients requiring drug provocation challenge.
Collapse
Affiliation(s)
- Paul H M Sadleir
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Western Australian Anaesthetic Allergy Clinic, Perth, Western Australia, Australia.
| | - Russell C Clarke
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Western Australian Anaesthetic Allergy Clinic, Perth, Western Australia, Australia
| | - Catherine E Goddard
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Western Australian Anaesthetic Allergy Clinic, Perth, Western Australia, Australia
| | - Peri Mickle
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Peter R Platt
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Western Australian Anaesthetic Allergy Clinic, Perth, Western Australia, Australia
| |
Collapse
|
50
|
Wang Z, Li Z, Bal G, Franke K, Zuberbier T, Babina M. β-arrestin-1 and β-arrestin-2 Restrain MRGPRX2-Triggered Degranulation and ERK1/2 Activation in Human Skin Mast Cells. FRONTIERS IN ALLERGY 2022; 3:930233. [PMID: 35910860 PMCID: PMC9337275 DOI: 10.3389/falgy.2022.930233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
As a novel receptor that efficiently elicits degranulation upon binding to one of its numerous ligands, MRGPRX2 has moved to the center of attention in mast cell (MC) research. Indeed, MRGPRX2 is believed to be a major component of pseudo-allergic reactions to drugs and of neuropeptide-elicited MC activation in skin diseases alike. MRGPRX2 signals via G proteins which organize downstream events ultimately leading to granule discharge. Skin MCs require both PI3K and ERK1/2 cascades for efficient exocytosis. β-arrestins act as opponents of G proteins and lead to signal termination with or without subsequent internalization. We recently demonstrated that ligand-induced internalization of MRGPRX2 requires the action of β-arrestin-1, but not of β-arrestin-2. Here, by using RNA interference, we find that both isoforms counter skin MC degranulation elicited by three MRGPRX2 agonists but not by FcεRI-aggregation. Analyzing whether this occurs through MRGPRX2 stabilization under β-arrestin attenuation, we find that reduction of β-arrestin-1 indeed leads to increased MRGPRX2 abundance, while this is not observed for β-arrestin-2. This led us speculate that β-arrestin-2 is involved in signal termination without cellular uptake of MRGPRX2. This was indeed found to be the case, whereby interference with β-arrestin-2 has an even stronger positive effect on ERK1/2 phosphorylation compared to β-arrestin-1 perturbation. Neither β-arrestin-1 nor β-arrestin-2 had an impact on AKT phosphorylation nor affected signaling via the canonical FcεRI-dependent route. We conclude that in skin MCs, β-arrestin-2 is chiefly involved in signal termination, whereas β-arrestin-1 exerts its effects by controlling MRGPRX2 abundance.
Collapse
Affiliation(s)
- Zhao Wang
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|