1
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2024:1-27. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Rainer H, Goretzki A, Lin YJ, Schiller HR, Krause M, Döring S, Strecker D, Junker AC, Wolfheimer S, Toda M, Scheurer S, Schülke S. Characterization of the Immune-Modulating Properties of Different β-Glucans on Myeloid Dendritic Cells. Int J Mol Sci 2024; 25:9914. [PMID: 39337403 PMCID: PMC11433108 DOI: 10.3390/ijms25189914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In allergen-specific immunotherapy, adjuvants are explored for modulating allergen-specific Th2 immune responses to re-establish clinical tolerance. One promising class of adjuvants are β-glucans, which are naturally derived sugar structures and components of dietary fibers that activate C-type lectin (CLR)-, "Toll"-like receptors (TLRs), and complement receptors (CRs). We characterized the immune-modulating properties of six commercially available β-glucans, using immunological (receptor activation, cytokine secretion, and T cell modulating potential) as well as metabolic parameters (metabolic state) in mouse bone marrow-derived myeloid dendritic cells (mDCs). All tested β-glucans activated the CLR Dectin-1a, whereas TLR2 was predominantly activated by Zymosan. Further, the tested β-glucans differentially induced mDC-derived cytokine secretion and activation of mDC metabolism. Subsequent analyses focusing on Zymosan, Zymosan depleted, β-1,3 glucan, and β-1,3 1,6 glucan revealed robust mDC activation with the upregulation of the cluster of differentiation 40 (CD40), CD80, CD86, and MHCII to different extents. β-glucan-induced cytokine secretion was shown to be, in part, dependent on the activation of the intracellular Dectin-1 adapter molecule Syk. In co-cultures of mDCs with Th2-biased CD4+ T cells isolated from birch allergen Bet v 1 plus aluminum hydroxide (Alum)-sensitized mice, these four β-glucans suppressed allergen-induced IL-5 secretion, while only Zymosan and β-1,3 glucan significantly suppressed allergen-induced interferon gamma (IFNγ) secretion, suggesting the tested β-glucans to have distinct effects on mDC T cell priming capacity. Our experiments indicate that β-glucans have distinct immune-modulating properties, making them interesting adjuvants for future allergy treatment.
Collapse
Affiliation(s)
- Hannah Rainer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Alexandra Goretzki
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Hannah Ruth Schiller
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Maren Krause
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Sascha Döring
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Daniel Strecker
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Sonja Wolfheimer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Stephan Scheurer
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
- Section Research Allergology, Division of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
3
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Stanca L, Bilteanu L, Bujor OC, Ion VA, Petre AC, Bădulescu L, Geicu OI, Pisoschi AM, Serban AI, Ghimpeteanu OM. Development of Functional Foods: A Comparative Study on the Polyphenols and Anthocyanins Content in Chokeberry and Blueberry Pomace Extracts and Their Antitumor Properties. Foods 2024; 13:2552. [PMID: 39200479 PMCID: PMC11353723 DOI: 10.3390/foods13162552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Developing of functional foods is a promising strategy to reduce the increasing burden of colorectal cancer worldwide. Fruit pomace, particularly polyphenol and anthocyanin-rich chokeberry and blueberry, is a valuable ingredient for functional foods and nutraceuticals. Our study aimed to evaluate the anti-inflammatory and antiproliferative effects of chokeberry and blueberry pomace extracts on C2BBe1 colorectal carcinoma cells and explore the underlying signaling pathways. We analyzed both pomace extracts for total polyphenols and anthocyanins using Folin-Ciocalteu method and ultra-performance liquid chromatography, while antioxidative activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. We evaluated the in vitro anti-inflammatory and antiproliferative effects using trypan blue exclusion, MTT and LDH assays, and assessed protein levels of p-Erk1/2, Akt-1, STAT1, STAT3, occludin, oxidized proteins, and MDA-protein adducts through western blotting, as well as analysis of a 37-plex panel of inflammatory markers. Chokeberry extracts exhibited higher total polyphenol content, anthocyanin levels, and antioxidative activity compared to blueberry extracts, however, blueberry extracts effects on cell viability and proliferation in C2BBe1 cells were stronger. Both fruit pomaces induced non-inflammatory cell death characterized by membrane integrity loss, beneficial in cancer therapy. Our data suggests chokeberry's cytotoxicity may be mediated by Erk signaling and Akt-1 inhibition, while blueberry uniquely decreased occludin levels. These berries pomaces' potential to mitigate cancer risks and enhance treatment efficacy is promising, warranting further investigation for functional foods development.
Collapse
Affiliation(s)
- Loredana Stanca
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 105 Blvd, Splaiul Independenței, 050097 Bucharest, Romania; (L.S.); (L.B.); (O.I.G.); (A.M.P.); (O.-M.G.)
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 105 Blvd, Splaiul Independenței, 050097 Bucharest, Romania; (L.S.); (L.B.); (O.I.G.); (A.M.P.); (O.-M.G.)
| | - Oana Crina Bujor
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvb, 011464 Bucharest, Romania; (O.C.B.); (V.A.I.); (A.C.P.); (L.B.)
| | - Violeta Alexandra Ion
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvb, 011464 Bucharest, Romania; (O.C.B.); (V.A.I.); (A.C.P.); (L.B.)
| | - Andrei Cătălin Petre
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvb, 011464 Bucharest, Romania; (O.C.B.); (V.A.I.); (A.C.P.); (L.B.)
| | - Liliana Bădulescu
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvb, 011464 Bucharest, Romania; (O.C.B.); (V.A.I.); (A.C.P.); (L.B.)
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 105 Blvd, Splaiul Independenței, 050097 Bucharest, Romania; (L.S.); (L.B.); (O.I.G.); (A.M.P.); (O.-M.G.)
| | - Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 105 Blvd, Splaiul Independenței, 050097 Bucharest, Romania; (L.S.); (L.B.); (O.I.G.); (A.M.P.); (O.-M.G.)
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 105 Blvd, Splaiul Independenței, 050097 Bucharest, Romania; (L.S.); (L.B.); (O.I.G.); (A.M.P.); (O.-M.G.)
- Faculty of Biology, University of Bucharest, 91-95 Blvd, Splaiul Independenței, 050095 Bucharest, Romania
| | - Oana-Mărgărita Ghimpeteanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 105 Blvd, Splaiul Independenței, 050097 Bucharest, Romania; (L.S.); (L.B.); (O.I.G.); (A.M.P.); (O.-M.G.)
| |
Collapse
|
5
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
6
|
Korobova ZR, Arsentieva NA, Santoni A, Totolian AA. Role of IL-27 in COVID-19: A Thin Line between Protection and Disease Promotion. Int J Mol Sci 2024; 25:7953. [PMID: 39063193 PMCID: PMC11276726 DOI: 10.3390/ijms25147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokine storm is usually described as one of the main reasons behind COVID-associated mortality. Cytokines are essential protein molecules engaged in immune responses; they play a critical role in protection against infections. However, they also contribute to inflammatory reactions and tissue damage, becoming a double-edged sword in the context of COVID-19. Recent studies have suggested various cytokines and chemokines that play a crucial role in the immune response to SARS-CoV-2 infection. One such cytokine is interleukin 27 (IL-27), which has been found to be elevated in the blood plasma of patients with COVID-19. Within this study, we will explore the role of IL-27 in immune responses and analyze both the existing literature and our own prior research findings on this cytokine in the context of COVID-19. It affects a wide variety of immune cells. Regardless of the pathological process it is involved in, IL-27 is critical for upholding the necessary balance between tissue damage and cytotoxicity against infectious agents and/or tumors. In COVID-19, it is involved in multiple processes, including antiviral cytotoxicity via CD8+ cells, IgG subclass switching, and even the activation of Tregs.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| |
Collapse
|
7
|
Elmasry MF, Obaid YA, El-Samanoudy SI, Nour ZA, Doss SS. Estimation of the tissue and serum levels of IL-35 in Mycosis fungoides: a case-control study. Arch Dermatol Res 2024; 316:349. [PMID: 38850434 PMCID: PMC11162372 DOI: 10.1007/s00403-024-03115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma (CTCL) with its etiology not yet fully understood. Interleukin (IL)-35 is an inhibitory cytokine that belongs to the IL-12 family. Elevated IL-35 in the plasma and the tumor microenvironment increases tumorigenesis and indicates poor prognosis in different types of malignancies. The objective of this study is to estimate the expression levels of IL-35 in tissue and serum of MF patients versus healthy controls. This case-control study included 35 patients with patch, plaque, and tumor MF as well as 30 healthy controls. Patients were fully assessed, and serum samples and lesional skin biopsies were taken prior to starting treatment. The IL-35 levels were measured in both serum and tissue biopsies by ELISA technique. Both tissue and serum IL-35 levels were significantly higher in MF patients than in controls (P < 0.001) and tissue IL-35 was significantly higher than serum IL-35 in MF patients (P < 0.001). Tissue IL-35 was significantly higher in female patients and patients with recurrent MF compared to male patients and those without recurrent disease (P < 0.001). Since both tissue and serum IL-35 levels are increased in MF, IL-35 is suggested to have a possible role in MF pathogenesis. IL-35 can be a useful diagnostic marker for MF. Tissue IL-35 can also be an indicator of disease recurrence.
Collapse
Affiliation(s)
- Maha Fathy Elmasry
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Zeinab Ahmed Nour
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sally Sameh Doss
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Ji K, Chen Y, Pan X, Chen L, Wang X, Wen B, Bao J, Zhong J, Lv Z, Zheng Z, Liu H. Single-cell and spatial transcriptomics reveal alterations in trophoblasts at invasion sites and disturbed myometrial immune microenvironment in placenta accreta spectrum disorders. Biomark Res 2024; 12:55. [PMID: 38831319 PMCID: PMC11149369 DOI: 10.1186/s40364-024-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Placenta accreta spectrum disorders (PAS) are a severe complication characterized by abnormal trophoblast invasion into the myometrium. The underlying mechanisms of PAS involve a complex interplay of various cell types and molecular pathways. Despite its significance, both the characteristics and intricate mechanisms of this condition remain poorly understood. METHODS Spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq), were performed on the tissue samples from four PAS patients, including invasive tissues (ST, n = 3; scRNA-seq, n = 4), non-invasive normal placenta samples (ST, n = 1; scRNA-seq, n = 2). Three healthy term pregnant women provided normal myometrium samples (ST, n = 1; scRNA-seq, n = 2). ST analysis characterized the spatial expression landscape, and scRNA-seq was used to identify specific cellular components in PAS. Immunofluorescence staining was conducted to validate the findings. RESULTS ST slices distinctly showed the myometrium in PAS was invaded by three subpopulations of trophoblast cells, extravillous trophoblast cells, cytotrophoblasts, and syncytiotrophoblasts, especially extravillous trophoblast cells. The pathways enriched by genes in trophoblasts, smooth muscle cells (SMC), and immune cells of PAS were mainly associated with immune and inflammation. We identified elevated expression of the angiogenesis-stimulating gene PTK2, alongside the cell proliferation-enhancing gene EGFR, within the trophoblasts of PAS group. Trophoblasts mainly contributed the enhancement of HLA-G and EBI3 signaling, which is crucial in establishing immune escape. Meanwhile, SMC regions in PAS exhibited upregulation of immunomodulatory markers such as CD274, HAVCR2, and IDO1, with CD274 expression experimentally verified to be increased in the invasive SMC areas of the PAS group. CONCLUSIONS This study provided information of cellular composition and spatial organization in PAS at single-cell and spatial level. The dysregulated expression of genes in PAS revealed a complex interplay between enhanced immune escape in trophoblasts and immune tolerance in SMCs during invasion in PAS. These findings will enhance our understanding of PAS pathogenesis for developing potential therapeutic strategies.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Junmin Zhong
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Zi Lv
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Zheng Zheng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China.
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China.
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Sun H, Ge Y, Liu J, Li Z, Li H, Zhao T, Wang X, Feng Y, Wang H, Gao S, Shi L, Yang S, Sun P, Chang A, Hao J, Huang C. Tumor-derived interleukin 35 mediates the dissemination of gemcitabine resistance in pancreatic adenocarcinoma. Oncogene 2024; 43:776-788. [PMID: 38243080 DOI: 10.1038/s41388-024-02938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Rapid development of drug resistance after chemotherapy is a major cause of treatment failure in individuals with pancreatic ductal adenocarcinoma (PDAC). In this study, we illustrate that tumor-derived interleukin 35 (IL-35) mediates the accelerated resistance of PDAC to gemcitabine (GEM). We observe that GEM resistance can spread from GEM-resistant PDAC cells to GEM-sensitive cells, and that IL-35 is responsible for the propagation of chemoresistance, which is supported by sequencing and experimental data. Additionally, we discover that GEM-resistant cells have significantly higher levels of IL-35 expression. Mechanistically, aberrantly expressed IL-35 triggers transcriptional activation of SOD2 expression via GP130-STAT1 signaling, scavenging reactive oxygen species (ROS) and leading to GEM resistance. Furthermore, GEM treatment stimulates IL-35 expression through activation of the NF-κB pathway, resulting in acquired chemoresistance. In the mouse model, a neutralizing antibody against IL-35 enhances the tumor suppressive effect of GEM. Collectively, our data suggests that IL-35 is critical in mediating GEM resistance in pancreatic cancer, and therefore could be a valuable therapeutic target in overcoming PDAC chemoresistance.
Collapse
Affiliation(s)
- Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yi Ge
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengyu Yang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
11
|
Yi P, Yu W, Xiong Y, Dong Y, Huang Q, Lin Y, Du Y, Hua F. IL-35: New Target for Immunotherapy Targeting the Tumor Microenvironment. Mol Cancer Ther 2024; 23:148-158. [PMID: 37988561 DOI: 10.1158/1535-7163.mct-23-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Interleukin 35(IL-35) is a newly discovered inhibitory cytokine of the IL12 family. More recently, IL-35 was found to be increased in the tumor microenvironment (TME) and peripheral blood of many patients with cancer, indicating that it plays an important role in the TME. Tumors secrete cytokines that recruit myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) into the TME to promote malignant progression, which is a great challenge for cancer treatment. Radiotherapy causes serious adverse effects, and tumor resistance to immune checkpoint inhibitors is still an unsolved challenge. Thus, new cancer therapy approaches are urgently needed. Numerous studies have shown that IL-35 can recruit immunosuppressive cells to enable tumor immune escape by promoting the conversion of immune cells into a tumor growth-promoting phenotype as well as facilitating tumor angiogenesis. IL-35-neutralizing antibodies were found to boost the chemotherapeutic effect of gemcitabine and considerably reduce the microvascular density of pancreatic cancer in mice. Therefore, targeting IL-35 in the TME provides a promising cancer treatment target. In addition, IL-35 may be used as an independent prognostic factor for some tumors in the near future. This review intends to reveal the interplay of IL-35 with immune cells in the TME, which may provide new options for the treatment of cancer.
Collapse
Affiliation(s)
- Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wenjun Yu
- Fuzhou First People's Hospital of Jiangxi Province, Fuzhou City, Jiangxi Province, P.R. China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Qiang Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yunfei Du
- Department of Anesthesiology, Nanchang Central Hospital, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
12
|
Jin L, Duan Y, Li X, Li Z, Hu J, Shi H, Su Z, Li Z, Du B, Chen Y, Tan Y. High expression ITGA2 affects the expression of MET, PD-L1, CD4 and CD8 with the immune microenvironment in pancreatic cancer patients. Front Immunol 2023; 14:1209367. [PMID: 37881431 PMCID: PMC10594995 DOI: 10.3389/fimmu.2023.1209367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Pancreatic cancer is characterized by a grim prognosis and is regarded as one of the most formidable malignancies. Among the genes exhibiting high expression in different tumor tissues, ITGA2 stands out as a promising candidate for cancer therapy. The promotion of cancer in pancreatic cancer is not effective. The objective of this study is to assess the presence of ITGA2, EMT and PD-L1 in pancreatic cancer. Experimental design We examined the expression of ITGA2, MET, E-cadherin, PD-L1, CD4, and CD8 proteins in 62 pancreatic cancer tissue samples using multi-tissue immunofluorescence and immunohistochemistry techniques. Functional assays, such as the cell migration assay and transwell assay, were used to determine the biological role of ITGA2 in pancreatic cancer. The relationship of ITGA2,EMT and PD-L1 were examined using Western blot analysis and RT-qPCR assay. Results In our study, we observed the expression of ITGA2, E-cadherin, and PD-L1 in both tumor and stroma tissues of pancreatic cancer. Additionally, a positive correlation between ITGA2, E-cadherin, and PD-L1 in the tumor region (r=0.559, P<0.001 and r=0.511, P<0.001), and PD-L1 in the stroma region (r=0.512, P<0.001).The expression levels of ITGA2, CD4, and CD8 were found to be higher in pancreatic cancer tissues compared to adjacent tissues (P < 0.05). Additionally, ITGA2 was negatively correlated with CD4 and CD8 (r = -0.344, P < 0.005 and r = -0.398, P < 0.005).Furthermore, ITGA2, CD4, and CD8 were found to be correlated with the survival time of patients (P < 0.05). Blocking ITGA2 inhibited the proliferation and invasion ability of pancreatic cancer cells significantly, Additionally, sh-ITGA2 can down-regulate the expression of EMT and PD-L1. Conclusions We identified a novel mechanism in which ITGA2 plays a crucial role in the regulation of pancreatic cancer growth and invasion. This mechanism involves the upregulation of MET and PD-L1 expression in pancreatic cancer cells. Additionally, we found that increased expression of ITGA2 is associated with a poor prognosis in pancreatic cancer patients. Furthermore, ITGA2 also affects immune regulation in these patients. Therefore, targeting ITGA2 is an effective method to enhance the efficacy of checkpoint immunotherapy and prohibiting tumor growth against pancreatic cancer.
Collapse
Affiliation(s)
- Liquan Jin
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yaoqiang Duan
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Xiaoxi Li
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Zhenqi Li
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Jifu Hu
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Hongbo Shi
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Ziting Su
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Zhe Li
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Bilian Du
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Yiming Chen
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yunbo Tan
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
13
|
Xinyuan T, Lei Y, Jianping S, Rongwei Z, Ruiwen S, Ye Z, Jing Z, Chunfang T, Hongwei C, Haibin G. Advances in the role of gut microbiota in the regulation of the tumor microenvironment (Review). Oncol Rep 2023; 50:181. [PMID: 37615187 PMCID: PMC10485805 DOI: 10.3892/or.2023.8618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
As a protector of human health, the gut microbiota plays an important role in the development of the immune system during childhood, and the regulation of dietary habits, metabolism and immune system during adulthood. Dysregulated gut flora is not pathogenic, but it can weaken the protective effect of the immune system and cause various diseases. The tumor microenvironment is a physiological environment formed during tumor growth, which provides nutrients and growth factors necessary for tumor growth. As an important factor affecting the tumor microenvironment, the intestinal microflora affects the development of tumors through the mechanisms of gut and microflora metabolites, gene toxins and signaling pathways. The present article aimed to review the components and mechanisms of action, clinical applications, and biological targets of gut microbiota in the regulation of the tumor microenvironment. The present review provides novel insights for the future use of intestinal flora, to regulate the tumor microenvironment, to intervene in the occurrence, development, treatment and prognosis of tumors.
Collapse
Affiliation(s)
- Tian Xinyuan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Yu Lei
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Shi Jianping
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhao Rongwei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Shi Ruiwen
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhang Ye
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhao Jing
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Tian Chunfang
- Department of Oncology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Cui Hongwei
- Department of Scientific Research, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Guan Haibin
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| |
Collapse
|
14
|
Reynolds L, Luo Z, Singh K. Diabetic complications and prospective immunotherapy. Front Immunol 2023; 14:1219598. [PMID: 37483613 PMCID: PMC10360133 DOI: 10.3389/fimmu.2023.1219598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The incidence of Diabetes Mellitus is increasing globally. Individuals who have been burdened with diabetes for many years often develop complications as a result of hyperglycemia. More and more research is being conducted highlighting inflammation as an important factor in disease progression. In all kinds of diabetes, hyperglycemia leads to activation of alternative glucose metabolic pathways, resulting in problematic by-products including reactive oxygen species and advanced glycation end products. This review takes a look into the pathogenesis of three specific diabetic complications; retinopathy, nephropathy and neuropathy as well as their current treatment options. By considering recent research papers investigating the effects of immunotherapy on relevant conditions in animal models, multiple strategies are suggested for future treatment and prevention of diabetic complications with an emphasis on molecular targets associated with the inflammation.
Collapse
|
15
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
17
|
Wen J, Huang Q, Yao J, Wei W, Li Z, Zhang H, Chang S, Pei H, Cao Y, Li H. Focusing on scRNA-seq-Derived T Cell-Associated Genes to Identify Prognostic Signature and Immune Microenvironment Status in Low-Grade Glioma. Mediators Inflamm 2023; 2023:3648946. [PMID: 37292257 PMCID: PMC10247320 DOI: 10.1155/2023/3648946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/10/2023] Open
Abstract
Background The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution of heterogeneous T cell types remains unclear. Method To study the different functions of T cells in LGG, we mapped the single-cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709, GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results The Human Primary Cell Atlas was used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better clinical effects of immunotherapy. Conclusion This single-cell RNA sequencing combined with bulk RNA sequencing may elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.
Collapse
Affiliation(s)
- Jiayu Wen
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100020, China
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Qiaoyi Huang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100020, China
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Jiuxiu Yao
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Wei Wei
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
| | - Zehui Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Huiqin Zhang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Surui Chang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
| |
Collapse
|
18
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
19
|
Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 2023; 45:329-346. [PMID: 36469056 PMCID: PMC10239790 DOI: 10.1007/s00281-022-00975-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell-cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively developing in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aditi Junagade
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Fan Z, Wu S, Sang H, Li Q, Cheng S, Zhu H. Identification of GPD1L as a Potential Prognosis Biomarker and Associated with Immune Infiltrates in Lung Adenocarcinoma. Mediators Inflamm 2023; 2023:9162249. [PMID: 37035759 PMCID: PMC10079383 DOI: 10.1155/2023/9162249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent pathological kinds of lung cancer, which is a common form of cancer that has a high death rate. Over the past several years, growing studies have indicated that GPD1L was involved in the advancement of a number of different cancers. However, its clinical significance in LUAD has not been investigated. In this study, following an examination of the TGCA datasets, we found that GPD1L displayed a dysregulated state in a wide variety of cancers; this led us to believe that GPD1L is an essential regulator in the progression of malignancies. In addition, we found that the expression of GPD1L was much lower in LUAD tissues when compared with nontumor specimens. According to the findings of ROC tests, GPD1L was able to effectively identify LUAD specimens from nontumor samples with an AUC value of 0.828 (95% confidence interval: 0.793 to 0.863). On the basis of the clinical study, a low expression of GPD1L was clearly related with both the N stage and the clinical stage. Moreover, based on the findings of a Kaplan-Meier survival study, elevated GPD1L expression was a strong indicator of considerably improved overall survival (OS) and disease-specific survival (DSS). GPD1L expression and clinical stages were found to be independent prognostic indicators for overall survival and disease-free survival in LUAD patients, according to multivariate analyses. Based on multivariate analysis, the C-indexes and calibration plots of the nomogram demonstrated an effective prediction performance for LUAD patients. Besides, the expression of GPD1L was positively related to mast cells, eosinophils, Tcm, TFH, iDC, DC, and macrophages, while negatively associated with Th2 cells, NK CD56dim cells, Tgd, Treg, and neutrophils. Finally, qRT-PCR was able to demonstrate that GPD1L had a significant amount of expression in LUAD. Additionally, according to the results of functional tests, overexpression of GPD1L had a significant inhibiting effect on the proliferation of LUAD cells. In general, the results of our study suggested that GPD1L had the potential to serve as a diagnostic and prognostic marker for LUAD.
Collapse
|
21
|
Moreira H, Dobosz A, Cwynar-Zając Ł, Nowak P, Czyżewski M, Barg M, Reichert P, Królikowska A, Barg E. Unraveling the role of Breg cells in digestive tract cancer and infectious immunity. Front Immunol 2022; 13:981847. [PMID: 36618354 PMCID: PMC9816437 DOI: 10.3389/fimmu.2022.981847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Over the past two decades, regulatory B cells (Breg cells or Bregs) have emerged as an immunosuppressive subset of B lymphocytes playing a key role in inflammation, infection, allergy, transplantation, and cancer. However, the involvement of Bregs in various pathological conditions of the gastrointestinal tract is not fully understood and is the subject of much recent research. In this review, we aimed to summarize the current state of knowledge about the origin, phenotype, and suppressive mechanisms of Bregs. The relationship between the host gut microbiota and the function of Bregs in the context of the disturbance of mucosal immune homeostasis is also discussed. Moreover, we focused our attention on the role of Bregs in certain diseases and pathological conditions related to the digestive tract, especially Helicobacter pylori infection, parasitic diseases (leishmaniasis and schistosomiasis), and gastrointestinal neoplasms. Increasing evidence points to a relationship between the presence and number of Bregs and the severity and progression of these pathologies. As the number of cases is increasing year by year, also among young people, it is extremely important to understand the role of these cells in the digestive tract.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Agnieszka Dobosz
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Łucja Cwynar-Zając
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Nowak
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Czyżewski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Barg
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Reichert
- Department of Trauma Surgery, Clinical Department of Trauma and Hand Surgery, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Królikowska
- Ergonomics and Biomedical Monitoring Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
22
|
Zysk W, Gleń J, Trzeciak M. Current Insight into the Role of IL-35 and Its Potential Involvement in the Pathogenesis and Therapy of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms232415709. [PMID: 36555351 PMCID: PMC9779445 DOI: 10.3390/ijms232415709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Interleukin 35 (IL-35), a new member of the IL-12 family of heterodimeric cytokines, could induce two different types of regulatory cells including regulatory T and B cells such as IL-35-induced regulatory T cells and IL-10-producing regulatory B cells (IL-10+Bregs), and IL-35-producing regulatory B cells (IL-35+Bregs). These cells appear to play an important role in modulating the immune system in numerous diseases. Several findings suggested that the expression of IL-35 is dysregulated in many autoimmune, inflammatory, and allergic diseases. Due to the functions of IL-35, it seems that this cytokine may act as an efficient therapeutic strategy for numerous conditions including atopic dermatitis (AD). We aimed to provide a comprehensive overview of the role of IL-35 in modulating the immune system. Additionally, we highlight IL-35 as a specific immunological target, discuss its possible involvement in the pathogenesis of AD, and hypothesize that IL-35 may become a novel target for the treatment of AD. However, further studies are required to evaluate this hypothesis.
Collapse
Affiliation(s)
- Weronika Zysk
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-584-40-10
| |
Collapse
|
23
|
Ma Y, Su H, Wang X, Niu X, Che Y, Hambly BD, Bao S, Wang X. The role of IL-35 and IL-37 in breast cancer - potential therapeutic targets for precision medicine. Front Oncol 2022; 12:1051282. [PMID: 36483045 PMCID: PMC9723453 DOI: 10.3389/fonc.2022.1051282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
Breast cancer is still a major concern due to its relatively poor prognosis in women, although there are many approaches being developed for the management of breast cancer. Extensive studies demonstrate that the development of breast cancer is determined by pro versus anti tumorigenesis factors, which are closely related to host immunity. IL-35 and IL-37, anti-inflammatory cytokines, play an important role in the maintenance of immune homeostasis. The current review focuses on the correlation between clinical presentations and the expression of IL-35 and IL-37, as well as the potential underlying mechanism during the development of breast cancer in vitro and in vivo. IL-35 is inversely correlated the differentiation and prognosis in breast cancer patients; whereas IL-37 shows dual roles during the development of breast cancer, and may be breast cancer stage dependent. Such information might be useful for both basic scientists and medical practitioners in the management of breast cancer patients.
Collapse
Affiliation(s)
- Yuntao Ma
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - He Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xuyun Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiangdong Niu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yang Che
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Brett D Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaopeng Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
25
|
Venkatraman R, De Nardo D. Removing the B (cell)
STING
to improve cancer immunotherapy. Immunol Cell Biol 2022; 100:753-756. [DOI: 10.1111/imcb.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program Monash University Clayton VIC Australia
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program Monash University Clayton VIC Australia
| |
Collapse
|
26
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
27
|
Muntinga CLP, de Vos van Steenwijk PJ, Bekkers RLM, van Esch EMG. Importance of the Immune Microenvironment in the Spontaneous Regression of Cervical Squamous Intraepithelial Lesions (cSIL) and Implications for Immunotherapy. J Clin Med 2022; 11:jcm11051432. [PMID: 35268523 PMCID: PMC8910829 DOI: 10.3390/jcm11051432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Cervical high-grade squamous intraepithelial lesions (cHSILs) develop as a result of a persistent high-risk human papilloma virus (hrHPV) infection. The natural course of cHSIL is hard to predict, depending on a multitude of viral, clinical, and immunological factors. Local immunity is pivotal in the pathogenesis, spontaneous regression, and progression of cervical dysplasia; however, the underlying mechanisms are unknown. The aim of this review is to outline the changes in the immune microenvironment in spontaneous regression, persistence, and responses to (immuno)therapy. In lesion persistence and progression, the immune microenvironment of cHSIL is characterized by a lack of intraepithelial CD3+, CD4+, and CD8+ T cell infiltrates and Langerhans cells compared to the normal epithelium and by an increased number of CD25+FoxP3+ regulatory T cells (Tregs) and CD163+ M2 macrophages. Spontaneous regression is characterized by low numbers of Tregs, more intraepithelial CD8+ T cells, and a high CD4+/CD25+ T cell ratio. A ‘hot’ immune microenvironment appears to be essential for spontaneous regression of cHSIL. Moreover, immunotherapy, such as imiquimod and therapeutic HPV vaccination, may enhance a preexisting pro-inflammatory immune environment contributing to lesion regression. The preexisting immune composition may reflect the potential for lesion regression, leading to a possible immune biomarker for immunotherapy in cHSILs.
Collapse
Affiliation(s)
- Caroline L. P. Muntinga
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands; (C.L.P.M.); (R.L.M.B.)
- GROW—School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Peggy J. de Vos van Steenwijk
- GROW—School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department of Gynecology and Obstetrics, Maastricht Universitair Medisch Centrum, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Ruud L. M. Bekkers
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands; (C.L.P.M.); (R.L.M.B.)
- GROW—School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Edith M. G. van Esch
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands; (C.L.P.M.); (R.L.M.B.)
- Correspondence: ; Tel.: +31-402-399-111
| |
Collapse
|