1
|
L'Eplattenier M, Pontrelli G, Loscalzo C. Triple inhaler therapy in adolescents and adults with moderate or severe persistent asthma. JAAPA 2025; 38:e13-e15. [PMID: 39699325 DOI: 10.1097/01.jaa.0000000000000153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
ABSTRACT Expert guidelines, meta-analyses, and multiple randomized controlled trials have demonstrated the effectiveness of long-acting inhaled antimuscarinic agents (LAMAs) as an additive medication for patients with poorly controlled moderate or severe persistent asthma. LAMAs play an essential role in blocking acetylcholine binding to muscarinic receptors and reducing bronchoconstriction and mucus production. By adding this medication to other combination inhalers, patients can use a triple inhaler to improve FEV1 values and reduce exacerbations.
Collapse
Affiliation(s)
- Mark L'Eplattenier
- Mark L'Eplattenier, Gina Pontrelli, and Carina Loscalzo are assistant professors in the PA program at Hofstra University in Hempstead, N.Y. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
2
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
3
|
Pezzella-Ferreira GN, Pão CRR, Bellas I, Luna-Gomes T, Muniz VS, Paiva LA, Amorim NRT, Canetti C, Bozza PT, Diaz BL, Bandeira-Melo C. Endogenous PGD2 acting on DP2 receptor counter regulates Schistosoma mansoni infection-driven hepatic granulomatous fibrosis. PLoS Pathog 2024; 20:e1011812. [PMID: 39173086 PMCID: PMC11386465 DOI: 10.1371/journal.ppat.1011812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/10/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Identifying new molecular therapies targeted at the severe hepatic fibrosis associated with the granulomatous immune response to Schistosoma mansoni infection is essential to reduce fibrosis-related morbidity/mortality in schistosomiasis. In vitro cell activation studies suggested the lipid molecule prostaglandin D2 (PGD2) as a potential pro-fibrotic candidate in schistosomal context, although corroboratory in vivo evidence is still lacking. Here, to investigate the role of PGD2 and its cognate receptor DP2 in vivo, impairment of PGD2 synthesis by HQL-79 (an inhibitor of the H-PGD synthase) or DP2 receptor inhibition by CAY10471 (a selective DP2 antagonist) were used against the fibrotic response of hepatic eosinophilic granulomas of S. mansoni infection in mice. Although studies have postulated PGD2 as a fibrogenic molecule, HQL-79 and CAY10471 amplified, rather than attenuated, the fibrotic response within schistosome hepatic granulomas. Both pharmacological strategies increased hepatic deposition of collagen fibers - an unexpected outcome accompanied by further elevation of hepatic levels of the pro-fibrotic cytokines TGF-β and IL-13 in infected animals. In contrast, infection-induced enhanced LTC4 synthesis in the schistosomal liver was reduced after HQL-79 and CAY10471 treatments, and therefore, inversely correlated with collagen production in granulomatous livers. Like PGD2-directed maneuvers, antagonism of cysteinyl leukotriene receptors CysLT1 by MK571 also promoted enhancement of TGF-β and IL-13, indicating a key down-regulatory role for endogenous LTC4 in schistosomiasis-induced liver fibrosis. An ample body of data supports the role of S. mansoni-driven DP2-mediated activation of eosinophils as the source of LTC4 during infection, including: (i) HQL-79 and CAY10471 impaired systemic eosinophilia, drastically decreasing eosinophils within peritoneum and hepatic granulomas of infected animals in parallel to a reduction in cysteinyl leukotrienes levels; (ii) peritoneal eosinophils were identified as the only cells producing LTC4 in PGD2-mediated S. mansoni-induced infection; (iii) the magnitude of hepatic granulomatous eosinophilia positively correlates with S. mansoni-elicited hepatic content of cysteinyl leukotrienes, and (iv) isolated eosinophils from S. mansoni-induced hepatic granuloma synthesize LTC4 in vitro in a PGD2/DP2 dependent manner. So, our findings uncover that granulomatous stellate cells-derived PGD2 by activating DP2 receptors on eosinophils does stimulate production of anti-fibrogenic cysLTs, which endogenously down-regulates the hepatic fibrogenic process of S. mansoni granulomatous reaction - an in vivo protective function which demands caution in the future therapeutic attempts in targeting PGD2/DP2 in schistosomiasis.
Collapse
Affiliation(s)
- Giovanna N. Pezzella-Ferreira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila R. R. Pão
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isaac Bellas
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Luna-Gomes
- Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdirene S. Muniz
- Laboratório de Imunofarmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia A. Paiva
- Laboratório de Imunofarmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia R. T. Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Tattersall MC, Jarjour NN, Busse PJ. Systemic Inflammation in Asthma: What Are the Risks and Impacts Outside the Airway? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:849-862. [PMID: 38355013 PMCID: PMC11219096 DOI: 10.1016/j.jaip.2024.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Airway inflammation in asthma has been well recognized for several decades, with general agreement on its role in asthma pathogenesis, symptoms, propensity toward exacerbation, and decline in lung function. This has led to universal recommendation in asthma management guidelines to incorporate the use of inhaled corticosteroid as an anti-inflammatory therapy for all patients with persistent asthma symptoms. However, there has been limited attention paid to the presence and potential impact of systemic inflammation in asthma. Accumulating evidence from epidemiological observations and cohort studies points to a host of downstream organ dysfunction in asthma especially among patients with longstanding or more severe disease, frequent exacerbations, and underlying risk factors for organ dysfunction. Most studies to date have focused on cognitive impairment, depression/anxiety, metabolic syndrome, and cardiovascular abnormalities. In this review, we summarize some of the evidence demonstrating these abnormalities and highlight the proposed mechanisms and potential benefits of treatment in limiting these extrapulmonary abnormalities in patients with asthma. The goal of this commentary is to raise awareness of the importance of recognizing potential extrapulmonary conditions associated with systemic inflammation of asthma. This area of treatment of patients with asthma is a large unmet need.
Collapse
Affiliation(s)
- Matthew C Tattersall
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Paula J Busse
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
6
|
Ahmed BM, Mansour NO, Sallam RA, Soliman MM. Efficacy of montelukast as an adjuvant therapy in rheumatoid arthritis patients: A randomized controlled study. Int Immunopharmacol 2023; 124:110959. [PMID: 37725847 DOI: 10.1016/j.intimp.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of montelukast in conjunction with non-biologic disease modifying anti-rheumatic drugs (nDMARDs) in rheumatoid arthritis (RA) patients. METHODS This study was a single-center randomized double-blinded placebo-controlled study. Adult RA patients were included if they had moderate to severe disease activity and were receiving monotherapy or combination of nDMARDs. Eligible patients were randomized, in 1:1 ratio, to receive either 10 mg montelukast or placebo, once daily for 16 weeks. The primary endpoint was the change in the 28-joints disease activity score (DAS28) 16 weeks after treatment. The patients' quality of life (QoL) was assessed by the Arabic version of the Health Assessment Questionnaire-Disability Index. Moreover, serum levels of vascular adhesion molecule-1 (VCAM-1) were measured. RESULTS A total of 87 patients completed the study; 44 in the montelukast arm and 43 in the control arm. After 16 weeks of treatment, disease activity decreased significantly in the montelukast arm with mean change in DAS28 (95% CIs) of -1.5 (-1.7, -1.2) while the control arm showed no improvement (0.2 (0.0, 0.4), p < 0.01). The QoL of the patients improved significantly from baseline in the montelukast arm (p < 0.01) but not in the control arm (p = 0.08). The median (IQR) serum levels of VCAM-1 were significantly lower in the montelukast arm (22.8 (15.0-32.7)) than in the control arm (28.9 (15.4-42.8), p = 0.004). CONCLUSION The co-administration of montelukast with nDMARDs in RA patients enhanced the anti-rheumatic effect which was reflected clinically by decreased disease activity.
Collapse
Affiliation(s)
- Basma M Ahmed
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Rehab A Sallam
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Moetaza M Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
7
|
Reina-Couto M, Roboredo-Madeira M, Pereira-Terra P, Silva-Pereira C, Martins S, Teixeira-Santos L, Pinho D, Dias A, Cordeiro G, Dias CC, Sarmento A, Tavares M, Guimarães JT, Roncon-Albuquerque R, Paiva JA, Albino-Teixeira A, Sousa T. Evaluation of urinary cysteinyl leukotrienes as biomarkers of severity and putative therapeutic targets in COVID-19 patients. Inflamm Res 2023; 72:475-491. [PMID: 36617343 PMCID: PMC9826622 DOI: 10.1007/s00011-022-01682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLT) are potent inflammation-promoting mediators, but remain scarcely explored in COVID-19. We evaluated urinary CysLT (U-CysLT) relationship with disease severity and their usefulness for prognostication in hospitalized COVID-19 patients. The impact on U-CysLT of veno-venous extracorporeal membrane oxygenation (VV-ECMO) and of comorbidities such as hypertension and obesity was also assessed. METHODS Blood and spot urine were collected in "severe" (n = 26), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) patients with COVID-19 at days 1-2 (admission), 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. U-CysLT were measured by ELISA. Routine markers, prognostic scores and outcomes were also evaluated. RESULTS U-CysLT did not differ between groups at admission, but significantly increased along hospitalization only in critical groups, being markedly higher in VV-ECMO patients, especially in hypertensives. U-CysLT values during the first week were positively associated with ICU and total hospital length of stay in critical groups and showed acceptable area under curve (AUC) for prediction of 30-day mortality (AUC: 0.734, p = 0.001) among all patients. CONCLUSIONS U-CysLT increase during hospitalization in critical COVID-19 patients, especially in hypertensives on VV-ECMO. U-CysLT association with severe outcomes suggests their usefulness for prognostication and as therapeutic targets.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal.
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal.
| | - Mariana Roboredo-Madeira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | | | - Luísa Teixeira-Santos
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Andreia Dias
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal
| | | | - Cláudia Camila Dias
- Departamento de Medicina da Comunidade, Informação e Decisão em Saúde, FMUP, Porto, Portugal
- CINTESIS-Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, CHUSJ, Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - Margarida Tavares
- Serviço de Doenças Infecciosas, CHUSJ, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João T Guimarães
- Serviço de Patologia Clínica, CHUSJ, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina-Unidade de Bioquímica, FMUP, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Departamento de Cirurgia e Fisiologia, FMUP, Porto, Portugal
| | - José-Artur Paiva
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal.
| |
Collapse
|
8
|
Goretzki A, Zimmermann J, Rainer H, Lin YJ, Schülke S. Immune Metabolism in TH2 Responses: New Opportunities to Improve Allergy Treatment - Disease-Specific Findings (Part 1). Curr Allergy Asthma Rep 2023; 23:29-40. [PMID: 36441389 PMCID: PMC9832111 DOI: 10.1007/s11882-022-01057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Recent high-level publications have shown an intricate connection between immune effector function and the metabolic state of the respective cells. In the last years, studies have begun analyzing the metabolic changes associated with allergies. As the first part of a two-article series, this review will briefly summarize the basics of immune metabolism and then focus on the recently published studies on metabolic changes observed in allergic patients. RECENT FINDINGS In the last 3 years, immune-metabolic research in allergology had a clear focus on asthma with some studies also reporting findings in food allergy and atopic dermatitis. Current results suggest asthma to be associated with a shift in cellular metabolism towards increased aerobic glycolysis (Warburg metabolism), while also displaying substantial changes in fatty acid- and amino acid metabolism (depending on investigated patient collective, asthma phenotype, and disease severity). Understanding immune-metabolic changes in allergies will allow us to (I) better understand allergic disease pathology and (II) modulate immune-metabolic pathways to improve allergy treatment.
Collapse
Affiliation(s)
- A. Goretzki
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - J. Zimmermann
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - H. Rainer
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Y.-J. Lin
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Stefan Schülke
- Vice President's Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| |
Collapse
|
9
|
Baicalin Ameliorates Radiation-Induced Lung Injury by Inhibiting the CysLTs/CysLT1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2765354. [PMID: 35783527 PMCID: PMC9249482 DOI: 10.1155/2022/2765354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Objective Radiation-induced lung injury (RILI) is a common complication of radiotherapy for thoracic tumors. This study investigated the alleviating effect of baicalin (BA) on RILI and its possible mechanism. Methods RILI model was established by chest irradiation (IR) of C57BL/6 mice for 16 weeks. Different concentrations of BA were administered, and dexamethasone (DXM) was used as a positive control. Then, the lung pathological changes were observed by HE and Masson staining. The levels of TGF-β, TNF-α, IL-1β, IL-6, CysLT, LTC4, and LTE4 were measured by ELISA. The CysLT1 expression was detected by qPCR, immunohistochemistry, and western blot. Type II AEC cells were pretreated with LTD-4 to establish the RILI cell model and intervened with different concentrations of BA. Then, the collagen I protein level was measured by ELISA. The CysLT1 and α-SMA expression were detected by qPCR, immunofluorescence, and western blot. Results BA could effectively improve lung histopathological changes and pulmonary fibrosis. In vivo, BA could inhibit the levels of TGF-β, TNF-α, IL-1β, and IL-6 and reduce the levels of CysLT, LTC4, and LTE4. In vitro, different concentrations of LTD4 could reduce the viability of type II AEC cells, which could be reversed by the administration of different concentrations of BA. In addition, BA could reduce CysLT1 mRNA, as well as CysLT1 and α-SMA protein levels in vitro and in vivo. Conclusion BA attenuated lung inflammation and pulmonary fibrosis by inhibiting the CysLTs/CysLT1 pathway, thereby protecting against RILI.
Collapse
|
10
|
Gaur P, Zaffran I, George T, Alekberli FR, Ben-Zimra M, Levi-Schaffer F. The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clin Exp Immunol 2022; 209:72-82. [PMID: 35467728 PMCID: PMC9307229 DOI: 10.1093/cei/uxac038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Eosinophils are innate immune cells typically associated with allergic and parasitic diseases. However, in recent years, eosinophils have also been ascribed a role in keeping homeostasis and in fighting several infectious diseases. Indeed, these cells circulate as mature cells in the blood and can be quickly recruited to the infected tissue. Moreover, eosinophils have all the necessary cellular equipment such as pattern recognition receptors (PRRs), pro-inflammatory cytokines, anti-bacterial proteins, and DNA traps to fight pathogens and promote an efficient immune response. This review summarizes some of the updated information on the role of eosinophils' direct and indirect mediated interactions with pathogens.
Collapse
Affiliation(s)
- Pratibha Gaur
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tresa George
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Fidan Rahimli Alekberli
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Micha Ben-Zimra
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
11
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
12
|
da Cunha AA, Silveira JS, Antunes GL, Abreu da Silveira K, Benedetti Gassen R, Vaz Breda R, Márcio Pitrez P. Cysteinyl leukotriene induces eosinophil extracellular trap formation via cysteinyl leukotriene 1 receptor in a murine model of asthma. Exp Lung Res 2021; 47:355-367. [PMID: 34468256 DOI: 10.1080/01902148.2021.1923864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Eosinophils are one of the main cells responsible to the inflammatory response in asthma by the release of inflammatory molecules such as cytokines, reactive oxygen species (ROS), cytotoxic granule, eosinophil extracellular trap (EET), and lipid mediators as cysteinyl leukotriene (cysLT). The interconnections between these molecules are not fully understood. Here, we attempted to investigate the cysLT participation in the mechanisms of EET formation in an asthma model of OVA challenge. MATERIALS AND METHODS Before intranasal challenge with OVA, BALB/cJ mice were treated with a 5-lipoxygenase-activating protein (FLAP) inhibitor (MK-886), or with a cysLT1 receptor antagonist (MK-571) and the lung and bronchoalveolar lavage fluid (BALF) were analyzed. RESULTS We showed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in inflammatory cells, goblet cells hyperplasia, and eosinophil peroxidase (EPO) activity in the airway. However, only OVA-challenged mice treated with MK-571 had an improvement in lung function. Also, treatments with MK-886 or MK-571 decreased Th2 cytokines levels in the airway. Moreover, we observed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in EET formation in BALF. We also verified that EET release was not due to cell death because the cell viability remained the same among the groups. CONCLUSION We revealed that the decrease in cysLT production or cysLT1 receptor inhibition by MK-886 or/and MK-571 treatments, respectively reduced EET formation in BALF, showing that cysLT regulates the activation process of EET release in asthma.
Collapse
Affiliation(s)
| | - Josiane Silva Silveira
- Laboratory of Pediatric Respirology, Infant Center, Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Géssica Luana Antunes
- Laboratory of Pediatric Respirology, Infant Center, Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Keila Abreu da Silveira
- Laboratory of Pediatric Respirology, Infant Center, Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Benedetti Gassen
- Laboratory of Cellular and Molecular Immunology, Science School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Ricardo Vaz Breda
- Institute of the Brain (BraIns), Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | |
Collapse
|
13
|
Baker JR, Donnelly LE. Leukocyte Function in COPD: Clinical Relevance and Potential for Drug Therapy. Int J Chron Obstruct Pulmon Dis 2021; 16:2227-2242. [PMID: 34354348 PMCID: PMC8331105 DOI: 10.2147/copd.s266394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung condition affecting 10% of the global population over 45 years. Currently, there are no disease-modifying treatments, with current therapies treating only the symptoms of the disease. COPD is an inflammatory disease, with a high infiltration of leukocytes being found within the lung of COPD patients. These leukocytes, if not kept in check, damage the lung, leading to the pathophysiology associated with the disease. In this review, we focus on the main leukocytes found within the COPD lung, describing how the release of chemokines from the damaged epithelial lining recruits these cells into the lung. Once present, these cells become active and may be driven towards a more pro-inflammatory phenotype. These cells release their own subtypes of inflammatory mediators, growth factors and proteases which can all lead to airway remodeling, mucus hypersecretion and emphysema. Finally, we describe some of the current therapies and potential new targets that could be utilized to target aberrant leukocyte function in the COPD lung. Here, we focus on old therapies such as statins and corticosteroids, but also look at the emerging field of biologics describing those which have been tested in COPD already and potential new monoclonal antibodies which are under review.
Collapse
Affiliation(s)
- Jonathan R Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
14
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
15
|
Khurana N, Pulsipher A, Ghandehari H, Alt JA. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. J Control Release 2021; 330:878-888. [PMID: 33144181 PMCID: PMC7906912 DOI: 10.1016/j.jconrel.2020.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic inflammation is known to cause alterations in vascular homeostasis that directly affects blood vessel morphogenesis, angiogenesis, and tissue permeability. These phenomena have been investigated and exploited for targeted drug delivery applications in the context of cancers and other disease processes. Vascular pathophysiology and its associated genes and signaling pathways, however, have not been systematically investigated in patients with chronic rhinosinusitis (CRS). Understanding the interplay between key vascular signaling pathways and top biomarkers associated with CRS may facilitate the development of new targeted delivery strategies and treatment paradigms. Herein, we report findings from a gene meta-analysis to identify key vascular pathways and top genes involved in CRS. METHODS Proprietary software (Illumina BaseSpace Correlation Engine) and open-access data sets were used to perform a gene meta-analysis to systematically determine significant differences between key vascular biomarkers and vascular signaling pathways expressed in sinonasal tissue biopsies of controls and patients with CRS. RESULTS Thirteen studies were initially identified, and then reduced to five after applying exclusion principle algorithms. Genes associated with vasculature development and blood vessel morphogenesis signaling pathways were identified to be overexpressed among the top 15 signaling pathways. Out of many significantly upregulated genes, the levels of pro angiogenic genes such as early growth response (EGR3), platelet endothelial cell adhesion molecule (PECAM1) and L-selectin (SELL) were particularly significant in patients with CRS compared to controls. DISCUSSION Key vascular biomarkers and signaling pathways were significantly overexpressed in patients with CRS compared to controls, suggesting a contribution of vascular dysfunction in CRS pathophysiology. Vascular dysregulation and permeability may afford opportunities to develop drug delivery systems to improve efficacy and reduce toxicity of CRS treatment.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
16
|
Choi Y, Sim S, Park HS. Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications. Korean J Intern Med 2020; 35:823-833. [PMID: 32460456 PMCID: PMC7373972 DOI: 10.3904/kjim.2020.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is commonly recognized as a heterogeneous condition with a complex pathophysiology. With advances in the development of multiple medications for patients with asthma, most asthma symptoms are well managed. Nevertheless, 5% to 10% of adult asthmatic patients (called severe asthma) are in uncontrolled or partially controlled status despite intensive treatment. Especially, severe eosinophilic asthma is one of the severe asthma phenotypes characterized by eosinophilia in sputum/blood driven by type 2 immune responses. Eosinophils have been widely accepted as a central effector cell in the lungs. Some evidence has demonstrated that persistent eosinophilia in upper and lower airway mucosa contributes to asthma severity by producing various mediators including cytokines, chemokines and granule proteins. Moreover, extracellular traps released from eosinophils have been revealed to enhance type 2 inflammation in patients with severe asthma. These novel molecules have the ability to induce airway inf lammation and hyperresponsiveness through enhancing innate and type 2 immune responses. In this review, we highlight recent insight into the function of eosinophil extracellular traps in patients with severe asthma. In addition, the role of eosinophil extracellular vesicles in severe asthma is also proposed. Finally, current biologics are suggested as a potential strategy for effective management of severe eosinophilic asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 World cup-ro, Yeongtonggu, Suwon 16499, Korea Tel: +82-31-219-5196, Fax: +82-31-219-5154, E-mail:
| |
Collapse
|
17
|
Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, Heffler E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol 2019; 10:1514. [PMID: 31920718 PMCID: PMC6927944 DOI: 10.3389/fphys.2019.01514] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin-5 (IL-5) exerts a central pathogenic role in differentiation, recruitment, survival, and degranulation of eosinophils. Indeed, during the last years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the powerful actions of IL-5 finalized to the induction, maintenance, and amplification of eosinophilic inflammation. Therefore, IL-5 is a suitable target for add-on biological therapies based on either IL-5 inhibition (mepolizumab, reslizumab) or blockade of its receptor (benralizumab). These modern treatments can result in being definitely beneficial for patients with severe type 2 (T2)-high eosinophilic asthma, refractory to conventional anti-inflammatory drugs such as inhaled and even systemic corticosteroids.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Francesca Puggioni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Francesca Racca
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| |
Collapse
|
18
|
Hu X, Mao J, Zhou B, Zhang H, Li B, Pang P, Shan H. Generation and phenotype analysis of CysLTR1 L118F mutant mice. J Cell Biochem 2019; 121:2372-2384. [PMID: 31742746 DOI: 10.1002/jcb.29460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/04/2019] [Indexed: 11/06/2022]
Abstract
Cysteinyl leukotrienes (CysLTs) are a group of eicosanoids that regulate the pathogenesis of various human diseases, mainly by signaling through the cysteinyl leukotriene receptor 1 (CysLTR1). The aim of this study was to generate and examine the phenotype of CysLTR1 L118F mutant mice. CysLTR1 L118F mutant mice were generated by the simultaneous microinjection of single guide RNA, Cas9 messenger RNA, and donor plasmid into fertilized mouse eggs. The morphological and behavioral characteristics of the resultant CysLTR1 L118F mutant mice were analyzed using an animal phenotype analysis platform, which included the assessment of body length, tail length, grip strength, and locomotor activity. Immunoprecipitation coupled with mass spectrometry was performed to identify CysLTR1-interacting proteins, and the intracellular calcium levels were determined using fluorometric imaging plate reader assays. The body length and tail length of CysLTR1 L118F mutant mice were significantly increased compared with wild-type mice. In addition, the grip strength and locomotor activity were remarkably elevated in L118F mutant mice compared with wild-type mice. Only three proteins were found to interact with both wild-type and CysLTR1 L118F proteins, whereas 4 and 13 additional proteins interacted exclusively with wild-type and mutant CysLTR1, respectively. Lastly, the responsiveness of cardiac muscle cells to CysLTs were significantly impaired by the L118F substitution in CysLTR1 proteins. The CysLTR1 L118F point mutation induced significant changes in the mouse morphology and behavior, which might be mediated by alterations of its protein interaction profile.
Collapse
Affiliation(s)
- Xiaojun Hu
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Junjie Mao
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bin Zhou
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Huitao Zhang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bing Li
- Department of Ophthalmology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
19
|
Matucci A, Maggi E, Vultaggio A. Eosinophils, the IL-5/IL-5Rα axis, and the biologic effects of benralizumab in severe asthma. Respir Med 2019; 160:105819. [PMID: 31734469 DOI: 10.1016/j.rmed.2019.105819] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bronchial asthma is a chronic inflammatory disease characterized, in a percentage of patients, as an eosinophilic inflammation of the airways. Eosinophils are recognized as a proinflammatory granulocyte playing a major role in the T2-high phenotype, which includes severe eosinophilic asthma. Eosinophilic asthma represents the majority of the phenotypic variants clinically characterized by severity and frequent exacerbations. For patients with severe uncontrolled asthma, monoclonal antibodies are used as add-on treatments. Among them, in addition to anti-immunoglobulin E therapy, biologic agents directed toward the interleukin (IL)-5/IL-5Rα axis and, thus, interfering with the pathologic functions of eosinophils, are now available. Unlike the other anti‒IL-5 monoclonal antibodies which exert an indirect effect on eosinophils, benralizumab, an afucosylated IgG1 kappa antibody directed against the α subunit of IL-5R, directly depletes eosinophils and their associated bone marrow progenitor cells through induction of antibody-dependent cell-mediated cytotoxicity, through recruitment of natural killer cells. This article reviews the role of eosinophils in the pathogenesis of bronchial asthma and discusses the potential advantageous biologic effects of benralizumab in comparison with other monoclonal antibodies targeting the IL-5 ligand.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | - Enrico Maggi
- IRCCS Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
20
|
Jo-Watanabe A, Okuno T, Yokomizo T. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int J Mol Sci 2019; 20:ijms20143580. [PMID: 31336653 PMCID: PMC6679143 DOI: 10.3390/ijms20143580] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators that play pivotal roles in acute and chronic inflammation and allergic diseases. They exert their biological effects by binding to specific G-protein-coupled receptors. Each LT receptor subtype exhibits unique functions and expression patterns. LTs play roles in various allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma), allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis. This review summarizes the biology of LTs and their receptors, recent developments in the area of anti-LT strategies (in settings such as ongoing clinical studies), and prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
21
|
Kordulewska NK, Cieślińska A, Fiedorowicz E, Jarmołowska B, Kostyra E. High Expression of IL-1RI and EP₂ Receptors in the IL-1β/COX-2 Pathway, and a New Alternative to Non-Steroidal Drugs-Osthole in Inhibition COX-2. Int J Mol Sci 2019; 20:E186. [PMID: 30620999 PMCID: PMC6337662 DOI: 10.3390/ijms20010186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Osthole (7-methoxy-8-isopentenylcoumarin) is natural coumarin isolated from the fruit of Cnidium monnieri (L.) Cusson, which is commonly used in medical practice of traditional Chinese medicine (TCM) in various diseases including allergies and asthma disorders. PURPOSE Osthole was tested for the anti-histamine, anti-allergic, and inhibitory effects of COX-2 (cyclooxygenase-2) in children with diagnosed allergies. Additionally, we hypothesize that stated alterations in children with diagnosed allergies including increased expression of interleukin 1-β receptor type 1 (IL-1 type I) and E-prostanoid (EP) 2 receptors, as well as raised expression, production, and activity of COX-2 and IL-1β in incubated medium are approximately connected. Furthermore, we establish the mechanisms included in the changed regulation of the COX-2 pathway and determine whether osthole may be COX-2 inhibitor in peripheral blood mononuclear cells (PBMCs). METHOD PBMCs were obtained from peripheral blood of healthy children (control, n = 28) and patients with diagnosed allergies (allergy, n = 30). Expression of the autocrine loop components regulating PGE₂ production and signaling namely IL-1 type I receptor (IL-1RI), cyclooksygenaze-2 (COX-2), E-prostanoid (EP) 2, and also histamine receptor-1 (HRH-1) was assessed at baseline and after stimulation with histamine, osthole, and a mixture of histamine/osthole 1:2 (v/v). This comprised the expression of histamine receptor 1 (HRH-1), IL-1RI, COX-2, EP₂ receptor, and the secretion of IL-1β and COX-2 in cultured media and sera. RESULTS Compared with control group, basal mRNA expression levels of HRH-1, IL-1RI, COX-2, and EP₂ were higher in the allergy group. Histamine-induced EP₂ and COX-2 expression mRNA levels were also increased. CONCLUSIONS Osthole successively inhibits PGE₂ and COX-2 mRNA expression. Furthermore, osthole reduces the secretion of COX-2 protein in signaling cellular mechanisms. Changed EP₂ expression in children with allergies provides higher IL-1RI induction, increasing IL-1β capacity to increase COX-2 expression. This effects in higher PGE₂ production, which in turn increases its capability to induce IL-1RI.
Collapse
MESH Headings
- Case-Control Studies
- Child
- Child, Preschool
- Coumarins/chemistry
- Coumarins/pharmacology
- Cyclooxygenase 2/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Histamine/chemistry
- Histamine/pharmacology
- Humans
- Hypersensitivity/genetics
- Hypersensitivity/pathology
- Interleukin-1beta/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Male
- Models, Biological
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Anna Cieślińska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Ewa Fiedorowicz
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Beata Jarmołowska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Elżbieta Kostyra
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| |
Collapse
|
22
|
Matucci A, Maggi E, Vultaggio A. WITHDRAWN: Eosinophils, the IL-5/IL-5Rα axis, and the biologic effects of benralizumab in severe asthma. RESPIRATORY MEDICINE: X 2019. [DOI: 10.1016/j.yrmex.2019.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
23
|
Liao JY, Zhang T. [Effects of montelukast sodium and bacterial lysates on airway remodeling and expression of transforming growth factor-β1 and Smad7 in guinea pigs with bronchial asthma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:1063-1069. [PMID: 30572999 PMCID: PMC7389502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the effect of montelukast sodium (MK), a leukotriene receptor antagonist, and bacterial lysates (OM-85BV), used alone or in combination, on airway remodeling and the expression of transforming growth factor-β1 (TGF-β1) and Smad7 in guinea pigs with bronchial asthma and their correlation. METHODS A total of 40 male Hartley guinea pigs were randomly divided into normal control group, asthma group, MK group, OM-85BV group, and MK+OM-85BV group, with 8 guinea pigs in each group. Intraperitoneal injection of 10% ovalbumin (OVA) for sensitization and aerosol inhalation of 1% OVA for challenge were performed to establish a model of airway remodeling of asthma in all of the groups apart from the normal control group, which were treated with normal saline. In the stage of challenge by aerosol inhalation, the guinea pigs in the MK, OM-85BV, and MK+OM-85BV groups were given corresponding suspension by gavage, and those in the normal control and asthma groups were given an equal volume of normal saline by gavage. Bronchoalveolar lavage fluid (BALF) of the guinea pigs was collected within 24 hours after challenge, and ELISA was used to measure the levels of TGF-β1 and Smad7 in BALF. The guinea pigs were sacrificed and the pathological section of lung tissue was prepared to observe the degree of airway remodeling. An image analysis technique was used to measure perimeter of the basement membrane (Pbm), total bronchial wall area (Wat), and airway bronchial smooth muscle area (Wam). Pearson linear regression was used to investigate the correlation between two variables. RESULTS According to the lung pathological section, compared with the normal control group, the asthma, MK, OM-85BV, and MK+OM-85BV groups had significant thickening of bronchial smooth muscle and alveolar wall, significantly higher Wat/Pbm and Wam/Pbm, a significantly higher level of TGF-β1, and a significantly lower level of Smad7 (P<0.05). Compared with the asthma group, the MK, OM-85BV, and MK+OM-85BV groups had a significant improvement in pathological injury, significantly lower Wat/Pbm and Wam/Pbm, a significantly lower level of TGF-β1, and a significantly higher level of Smad7 (P<0.05). The MK+OM-85BV group had significantly greater improvements than the MK group and the OM-85BV group (P<0.05). The expression of TGF-β1 was negatively correlated with that of Smad7 and positively correlated with Wat/Pbm and Wam/Pbm, and the expression of Smad7 was negatively correlated with Wat/Pbm and Wam/Pbm (P<0.01). CONCLUSIONS MK and OM-85BV, used alone or in combination, can reduce airway remodeling in guinea pigs with asthma, and MK combined with OM-85BV has the best effect, possibly by reducing TGF-β1 expression, increasing Smad7 expression, and improving the TGF-β1/Smad7 imbalance.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Department of Respiration, Guangzhou Yuexiu District Children's Hospital, Guangzhou 510115, China.
| | | |
Collapse
|
24
|
Liao JY, Zhang T. [Effects of montelukast sodium and bacterial lysates on airway remodeling and expression of transforming growth factor-β1 and Smad7 in guinea pigs with bronchial asthma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:1063-1069. [PMID: 30572999 PMCID: PMC7389502 DOI: 10.7499/j.issn.1008-8830.2018.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effect of montelukast sodium (MK), a leukotriene receptor antagonist, and bacterial lysates (OM-85BV), used alone or in combination, on airway remodeling and the expression of transforming growth factor-β1 (TGF-β1) and Smad7 in guinea pigs with bronchial asthma and their correlation. METHODS A total of 40 male Hartley guinea pigs were randomly divided into normal control group, asthma group, MK group, OM-85BV group, and MK+OM-85BV group, with 8 guinea pigs in each group. Intraperitoneal injection of 10% ovalbumin (OVA) for sensitization and aerosol inhalation of 1% OVA for challenge were performed to establish a model of airway remodeling of asthma in all of the groups apart from the normal control group, which were treated with normal saline. In the stage of challenge by aerosol inhalation, the guinea pigs in the MK, OM-85BV, and MK+OM-85BV groups were given corresponding suspension by gavage, and those in the normal control and asthma groups were given an equal volume of normal saline by gavage. Bronchoalveolar lavage fluid (BALF) of the guinea pigs was collected within 24 hours after challenge, and ELISA was used to measure the levels of TGF-β1 and Smad7 in BALF. The guinea pigs were sacrificed and the pathological section of lung tissue was prepared to observe the degree of airway remodeling. An image analysis technique was used to measure perimeter of the basement membrane (Pbm), total bronchial wall area (Wat), and airway bronchial smooth muscle area (Wam). Pearson linear regression was used to investigate the correlation between two variables. RESULTS According to the lung pathological section, compared with the normal control group, the asthma, MK, OM-85BV, and MK+OM-85BV groups had significant thickening of bronchial smooth muscle and alveolar wall, significantly higher Wat/Pbm and Wam/Pbm, a significantly higher level of TGF-β1, and a significantly lower level of Smad7 (P<0.05). Compared with the asthma group, the MK, OM-85BV, and MK+OM-85BV groups had a significant improvement in pathological injury, significantly lower Wat/Pbm and Wam/Pbm, a significantly lower level of TGF-β1, and a significantly higher level of Smad7 (P<0.05). The MK+OM-85BV group had significantly greater improvements than the MK group and the OM-85BV group (P<0.05). The expression of TGF-β1 was negatively correlated with that of Smad7 and positively correlated with Wat/Pbm and Wam/Pbm, and the expression of Smad7 was negatively correlated with Wat/Pbm and Wam/Pbm (P<0.01). CONCLUSIONS MK and OM-85BV, used alone or in combination, can reduce airway remodeling in guinea pigs with asthma, and MK combined with OM-85BV has the best effect, possibly by reducing TGF-β1 expression, increasing Smad7 expression, and improving the TGF-β1/Smad7 imbalance.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Department of Respiration, Guangzhou Yuexiu District Children's Hospital, Guangzhou 510115, China.
| | | |
Collapse
|
25
|
Amorim NRT, Luna-Gomes T, Gama-Almeida M, Souza-Almeida G, Canetti C, Diaz BL, Weller PF, Torres Bozza P, Maya-Monteiro CM, Bandeira-Melo C. Leptin Elicits LTC 4 Synthesis by Eosinophils Mediated by Sequential Two-Step Autocrine Activation of CCR3 and PGD 2 Receptors. Front Immunol 2018; 9:2139. [PMID: 30298073 PMCID: PMC6160734 DOI: 10.3389/fimmu.2018.02139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Leptin is a cytokine, produced mainly by mature adipocytes, that regulates the central nervous system, mainly to suppress appetite and stimulate energy expenditure. Leptin also regulates the immune response by controlling activation of immunomodulatory cells, including eosinophils. While emerging as immune regulatory cells with roles in adipose tissue homeostasis, eosinophils have a well-established ability to synthesize pro-inflammatory molecules such as lipid mediators, a key event in several inflammatory pathologies. Here, we investigated the impact and mechanisms involved in leptin-driven activation of eicosanoid-synthesizing machinery within eosinophils. Direct in vitro activation of human or mouse eosinophils with leptin elicited synthesis of lipoxygenase as well as cyclooxygenase products. Displaying selectivity, leptin triggered synthesis of LTC4 and PGD2, but not PGE2, in parallel to dose-dependent induction of lipid body/lipid droplets biogenesis. While dependent on PI3K activation, leptin-driven eosinophil activation was also sensitive to pertussis toxin, indicating the involvement of G-protein coupled receptors on leptin effects. Leptin-induced lipid body-driven LTC4 synthesis appeared to be mediated through autocrine activation of G-coupled CCR3 receptors by eosinophil-derived CCL5, inasmuch as leptin was able to trigger rapid CCL5 secretion, and neutralizing anti-RANTES or anti-CCR3 antibodies blocked lipid body assembly and LTC4 synthesis induced by leptin. Remarkably, autocrine activation of PGD2 G-coupled receptors DP1 and DP2 also contributes to leptin-elicited lipid body-driven LTC4 synthesis by eosinophils in a PGD2-dependent fashion. Blockade of leptin-induced PGD2 autocrine/paracrine activity by a specific synthesis inhibitor or DP1 and DP2 receptor antagonists, inhibited both lipid body biogenesis and LTC4 synthesis induced by leptin stimulation within eosinophils. In addition, CCL5-driven CCR3 activation appears to precede PGD2 receptor activation within eosinophils, since neutralizing anti-CCL5 or anti-CCR3 antibodies inhibited leptin-induced PGD2 secretion, while it failed to alter PGD2-induced LTC4 synthesis. Altogether, sequential activation of CCR3 and then PGD2 receptors by autocrine ligands in response to leptin stimulation of eosinophils culminates with eosinophil activation, characterized here by assembly of lipidic cytoplasmic platforms synthesis and secretion of the pleiotropic lipid mediators, PGD2, and LTC4.
Collapse
Affiliation(s)
- Natália R T Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Gama-Almeida
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Souza-Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz-IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno L Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter F Weller
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Patricia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz-IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Pelaia C, Vatrella A, Bruni A, Terracciano R, Pelaia G. Benralizumab in the treatment of severe asthma: design, development and potential place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:619-628. [PMID: 29606855 PMCID: PMC5868576 DOI: 10.2147/dddt.s155307] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Asthma is a widespread and heterogeneous inflammatory disease of the airways, which is characterized by several different phenotypes and endotypes. In particular, eosinophilic airway inflammation is a common pathologic trait of both allergic and nonallergic asthma. The key cytokine responsible for maturation, activation, recruitment, and survival of eosinophils is interleukin (IL)-5, which is mainly produced by T helper 2 (Th2) lymphocytes and group 2 innate lymphoid cells. Therefore, for uncontrolled patients with severe eosinophilic asthma, who are not fully responsive to corticosteroids, IL-5 represents a very important molecular target for add-on biological therapies. Among these new treatments, anti-IL-5 monoclonal antibodies such as mepolizumab and reslizumab have been developed and clinically evaluated. Furthermore, benralizumab is currently the only available biologic drug that specifically binds to the IL-5 receptor, thus preventing the interaction with its ligand and the consequent pro-inflammatory effects. The effectiveness of benralizumab in improving severe eosinophilic asthma has been well-documented by many randomized controlled trials.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, Section of Respiratory Diseases, University of Salerno, Salerno, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Sciences, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
27
|
Abstract
Eosinophils are the prominent cells in asthma, allergic bronchopulmonary mycosis (ABPMs), and fungal-sensitization-associated asthma, but their roles in the immunopathology of these disorders are not well understood. Moreover, the immunological mechanisms underlying the molecular direct effector interactions between fungi and eosinophils are rare and not fully known. Here, we provide an overview of eosinophil contributions to allergic asthma and ABPMs. We also revise the major general mechanisms of fungal recognition by eosinophils and consider past and recent advances in our understanding of the molecular mechanisms associated with eosinophil innate effector responses to different fungal species relevant to ABPMs (Alternaria alternata, Candida albicans, and Aspergillus fumigatus). We further examine and speculate about the therapeutic relevance of these findings in fungus-associated allergic pulmonary diseases.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Institute of Biomedical Sciences/Unit of Xerem, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|