1
|
De Melo RN, de Souza Hassemer do G, Nascimento LH, Colet R, Steffens C, Junges A, Valduga E. Kinetic and stoichiometric parameters in the fed-batch bioreactor production of poly(3-hydroxybutyrate) by Bacillus megaterium using different carbon sources. Bioprocess Biosyst Eng 2023; 46:1791-1799. [PMID: 37882827 DOI: 10.1007/s00449-023-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigates the effects of different strategies on poly(3-hydroxybutyrate)-P(3HB) production in a fed-batch bioreactor by Bacillus megaterium using candy industry effluent (CIE), sucrose, and rice parboiled water (RPW) as carbon sources. In biosynthesis, kinetic and stoichiometric parameters of substrate conversion into products and/or cells, productivity, instantaneous, and specific conversion rates were evaluated. The maximum concentration of P(3HB) was 4.00 g.L-1 (77% of the total dry mass) in 42 h of cultivation in minimal medium/RPW added with a carbon source based on CIE, demonstrating that the fed-batch provided an increase of approximately 22% in the polymer concentration and 32% in the overall productivity in relation to medium based on commercial sucrose. Fed-batch cultivation also had the advantage of avoiding the extra time required for inoculum preparation and sterilization of the bioreactor during the batch, which thereby increased the overall industrial importance of the process. Effluents from the candy, confectionery, and/or rice parboiling industries can be used as alternative substrates for P(3HB) production at a low cost.
Collapse
Affiliation(s)
- Rafaela Nery De Melo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | | | - Lucas Henrique Nascimento
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| | - Alexander Junges
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| |
Collapse
|
2
|
Ljungqvist E, Daga-Quisbert J, van Maris A, Gustavsson M. Insights into the rapid metabolism of Geobacillus sp. LC300: unraveling metabolic requirements and optimal growth conditions. Extremophiles 2023; 28:6. [PMID: 38036917 PMCID: PMC10689506 DOI: 10.1007/s00792-023-01319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
This study investigated the metabolism of Geobacillus sp. LC300, a promising biorefinery host organism with high substrate utilization rates. A new defined medium was designed and tested that allows for exponential growth to elevated cell densities suitable for quantitative physiological studies. Screening of the metabolic requirements of G. sp. LC300 revealed prototrophy for all essential amino acids and most vitamins and only showed auxotrophy for vitamin B12 and biotin. The effect of temperature and pH on growth rate was investigated, adjusting the optimal growth temperature to several degrees lower than previously reported. Lastly, studies on carbon source utilization revealed a capability for fast growth on several common carbon sources, including monosaccharides, oligosaccharides, and polysaccharides, and the highest ever reported growth rate in defined medium on glucose (2.20 h-1) or glycerol (1.95 h-1). These findings provide a foundation for further exploration of G. sp. LC300's physiology and metabolic regulation, and its potential use in bioproduction processes.
Collapse
Affiliation(s)
- Emil Ljungqvist
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Center, 106 91, Stockholm, Sweden
| | - Jeanett Daga-Quisbert
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Center, 106 91, Stockholm, Sweden
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Antonius van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Center, 106 91, Stockholm, Sweden.
| | - Martin Gustavsson
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
3
|
Nussbaum N, von Wyl T, Gandia A, Romanens E, Rühs PA, Fischer P. Impact of malt concentration in solid substrate on mycelial growth and network connectivity in Ganoderma species. Sci Rep 2023; 13:21051. [PMID: 38030880 PMCID: PMC10687231 DOI: 10.1038/s41598-023-48203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
With its distinctive material properties, fungal mycelium has emerged as an innovative material with a diverse array of applications across various industries. This study focuses on how the growth strategies of wood fungi adapt to nutrient availability. The effect of malt extract concentration in the growth medium on radial growth kinetics, morphology, mycelium network connectivity, and mechanical characteristics of mycelium from two Ganoderma species were investigated. While an evident pattern of radial growth rate enhancement with malt concentrations was not apparent, there was a discernible trend towards denser mycelium network characteristics as revealed by spectrophotometry. Increased malt extract contents corresponded to elevated optical density measurements and were visually confirmed by denser mycelium networks in photographic images. Investigating the mechanical characteristics of mycelium cultivated on varying solid substrate concentrations, the Young's modulus exhibited a substantial difference between mycelium grown on 5 wt% malt substrate and samples cultivated on 2 wt% and 0.4 wt% malt substrates. The obtained results represent a new understanding of how malt availability influences mycelial growth of two Ganoderma species, a crucial insight for potentially refining mycelium cultivation across diverse applications, including meat alternatives, smart building materials, and alternative leather.
Collapse
Affiliation(s)
- Natalie Nussbaum
- ETH Zürich, Institute of Food, Nutrition and Health, 8092, Zurich, Switzerland.
| | - Tabea von Wyl
- ETH Zürich, Institute of Food, Nutrition and Health, 8092, Zurich, Switzerland
| | - Antoni Gandia
- Planted Foods AG, Kemptpark 32, 8310, Kemptthal, Switzerland
- IBMCP (UPV-CSIC), Institute for Plant Molecular and Cell Biology, 46011, Valencia, Spain
| | - Edwina Romanens
- Planted Foods AG, Kemptpark 32, 8310, Kemptthal, Switzerland
| | | | - Peter Fischer
- ETH Zürich, Institute of Food, Nutrition and Health, 8092, Zurich, Switzerland.
| |
Collapse
|
4
|
Sultan M, Arya R, Chaurasia AK, Kim KK. Sensor histidine kinases kdpD and aauS regulate biofilm and virulence in Pseudomonas aeruginosa PA14. Front Cell Infect Microbiol 2023; 13:1270667. [PMID: 37881370 PMCID: PMC10595159 DOI: 10.3389/fcimb.2023.1270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant opportunistic human pathogen that utilizes two-component systems (TCSs) to sense pathophysiological signals and coordinate virulence. P. aeruginosa contains 64 sensor histidine kinases (HKs) and 72 response regulators (RRs) that play important roles in metabolism, bacterial physiology, and virulence. However, the role of some TCSs in virulence remains uncharacterized. In this study, we evaluated the virulence potential of some uncharacterized sensor HK and RR knockouts in P. aeruginosa using a Galleria mellonella infection model. Furthermore, we demonstrated that KdpD and AauS HKs regulate virulence by affecting P. aeruginosa biofilm formation and motility. Both ΔkdpD and ΔaauS showed reduced biofilm and motility which were confirmed by restored phenotypes upon complementation. Moreover, ΔkdpD and ΔaauS exhibited increased survival of HeLa cells and G. mellonella during in vivo infection. Altered expression of the transcriptional regulators anR and lasR, along with the virulence genes lasA, pelA, cupA, pqsA, pqsB, pqsC, and pqsD in the mutant strains elucidated the mechanism by which ΔkdpD and ΔaauS affect virulence. These findings confirm that kdpD and aauS play important roles in P. aeruginosa pathogenesis by regulating biofilm formation and motility.
Collapse
Affiliation(s)
- Maria Sultan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Rekha Arya
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
5
|
Hassemer GDS, do Nascimento LH, Lin YH, Steffens C, Junges A, Valduga E. Influence of redox potential on the accumulation of poly(3-hydroxybutyrate) by Bacillus megaterium. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02889-y. [PMID: 37294319 DOI: 10.1007/s00449-023-02889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
The main goal of the present study was to evaluate the oxidation-reduction potential (ORP) on the production of poly(3-hydroxybutyrate) (P(3HB)) by Bacillus megaterium. Each microorganism has an optimal ORP range, and changes to the culture medium's ORP may redistribute the cell's metabolic flux, as such, the measurement and control of the ORP profile allows one to, in a way, manipulate the microbial metabolism, affecting the expression of certain enzymes and allowing for better control over the fermentative process. The ORP tests were carried out in a fermentation vessel coupled with an ORP probe, containing 1 L of mineral medium added with agroindustry byproducts (60% v/v of confectionery wastewater, and 40% v/v of rice parboiling water). The system's temperature was kept at 30 °C, with an agitation speed of 500 rpm. The vessel's airflow rate was controlled via a solenoid pump based on the ORP probe's data. Different ORP values were evaluated to verify their impact on biomass and polymer production. Cultures using OPR levels of 0 mV displayed the highest amounts of total biomass (5.00 g L-1) when compared to - 20 mV and - 40 mV (2.90 g L-1 and 0.53 g L-1, respectively). Similar results were also found for P(3HB)-to-biomass ratio, with polymer concentration being reduced when using ORP levels below 0 mV and with a maximum amount of polymer-to-biomass ratio of 69.87% after 48 h of culture. Furthermore, it was possible to observe that the culture's pH can also affect total biomass and polymer concentration, albeit to a lesser extent. Thus, when considering the data found during this study, it is possible to observe that ORP values can greatly impact B. megaterium cell's metabolism. Furthermore, the measurement and control of ORP levels may be an invaluable asset when trying to maximize polymer production under different culture conditions.
Collapse
Affiliation(s)
| | | | - Yen-Han Lin
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Clarice Steffens
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Alexander Junges
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil.
| | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| |
Collapse
|
6
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
7
|
Abd-Allah IM, El-Housseiny GS, Al-Agamy MH, Radwan HH, Aboshanab KM, Hassouna NA. Statistical optimization of a podoviral anti-MRSA phage CCASU-L10 generated from an under sampled repository: Chicken rinse. Front Cell Infect Microbiol 2023; 13:1149848. [PMID: 37065190 PMCID: PMC10102507 DOI: 10.3389/fcimb.2023.1149848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionThe insurgence of antimicrobial resistance is an imminent health danger globally. A wide range of challenging diseases are attributed to methicillin-resistant Staphylococcus aureus (MRSA) as it is weaponized with a unique array of virulence factors, and most importantly, the resistance it develops to most of the antibiotics used clinically. On that account, the present study targeted the optimization of the production of a bacteriophage active against MRSA, and evaluating some of its characters.Methods and resultsThe bacteriophage originated from a quite peculiar environmental source, raw chicken rinse and was suggested to belong to Podoviridae, order Caudovirales. It withstood a variety of extreme conditions and yield optimization was accomplished via the D-optimal design by response surface methodology (RSM). A reduced quadratic model was generated, and the ideal production conditions recommended were pH 8, glycerol 0.9% v/v, peptone 0.08% w/v, and 107 CFU/ml as the host inoculum size. These conditions led to a two-log fold increase in the phage titer (1.17x10¹² PFU/ml), as compared to the regular conditions.DiscussionTo conclude, statistical optimization successfully enhanced the output of the podoviral phage titer by two-log fold and therefore, can be regarded as a potential scale-up strategy. The produced phage was able to tolerate extreme environmental condition making it suitable for topical pharmaceutical preparations. Further preclinical and clinical studies are required to ensure its suitability for use in human.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
- *Correspondence: Ghadir S. El-Housseiny, ; Khaled M. Aboshanab,
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
- *Correspondence: Ghadir S. El-Housseiny, ; Khaled M. Aboshanab,
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
| |
Collapse
|
8
|
Abstract
As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
9
|
Brown JL, Butcher MC, Veena CLR, Chogule S, Johnston W, Ramage G. Generation of Multispecies Oral Bacteria Biofilm Models. Methods Mol Biol 2023; 2588:187-199. [PMID: 36418689 DOI: 10.1007/978-1-0716-2780-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is well-recognized that oral biofilms that occur in health and disease have a polymicrobial composition, though these are poorly reflected in the literature, with many studies focussing on simple mono-species biofilm model systems. The utility of polymicrobial biofilm model systems is that they more accurately reflect the oral cavity and allow researchers to ask relevant questions in basic science studies, pharmaceutical screening, and investigating inflammatory interactions. Here we describe the detailed methodology of how to sequentially construct and maintain polymicrobial biofilm models pertinent to caries, periodontal disease, and denture stomatitis.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
- Glasgow Biofilm Research Network, Glasgow, UK
| | - Mark C Butcher
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
- Glasgow Biofilm Research Network, Glasgow, UK
| | - Chandra Lekha Ramalingam Veena
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
- Glasgow Biofilm Research Network, Glasgow, UK
| | - Safa Chogule
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
- Glasgow Biofilm Research Network, Glasgow, UK
| | - William Johnston
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
- Glasgow Biofilm Research Network, Glasgow, UK
| | - Gordon Ramage
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.
- Glasgow Biofilm Research Network, Glasgow, UK.
| |
Collapse
|
10
|
Shymialevich D, Wójcicki M, Wardaszka A, Świder O, Sokołowska B, Błażejak S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products-In Vitro Studies. Viruses 2022; 15:9. [PMID: 36680050 PMCID: PMC9865725 DOI: 10.3390/v15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| |
Collapse
|
11
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Aida H, Hashizume T, Ashino K, Ying BW. Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity. eLife 2022; 11:76846. [PMID: 36017903 PMCID: PMC9417415 DOI: 10.7554/elife.76846] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Microorganisms growing in their habitat constitute a complex system. How the individual constituents of the environment contribute to microbial growth remains largely unknown. The present study focused on the contribution of environmental constituents to population dynamics via a high-throughput assay and data-driven analysis of a wild-type Escherichia coli strain. A large dataset constituting a total of 12,828 bacterial growth curves with 966 medium combinations, which were composed of 44 pure chemical compounds, was acquired. Machine learning analysis of the big data relating the growth parameters to the medium combinations revealed that the decision-making components for bacterial growth were distinct among various growth phases, e.g., glucose, sulfate, and serine for maximum growth, growth rate, and growth delay, respectively. Further analyses and simulations indicated that branched-chain amino acids functioned as global coordinators for population dynamics, as well as a survival strategy of risk diversification to prevent the bacterial population from undergoing extinction.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuha Ashino
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Fentie EG, Jeong M, Emire SA, Demsash HD, Kim MC, Lim K, Shin JH. Development of mixed starter culture for the fermentation of Ethiopian honey wine, Tej. Sci Rep 2022; 12:13431. [PMID: 35927420 PMCID: PMC9352660 DOI: 10.1038/s41598-022-17594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Ethiopian honey wine is one of the country's most popular spontaneously fermented traditional alcoholic beverages. However, the final product of this natural fermentation system is frequently of poor and inconsistent quality. Furthermore, it makes the process difficult to predict, control, and correct. Thus, the main aim of this study was to develop a direct fermentation system for Ethiopian honey wine, Tej. After isolating fermentative microbial strains from Tej samples, they were subjected to intensive screening to fit to its purpose. Later, phenotypic and genotypic characterization, and inoculation of isolates to honey-must were performed sequentially. Finally, microbial interaction and physicochemical analysis, including volatile compounds profiling, were done for the inoculated samples. The identified isolates were strains of Saccharomycetaceae and Lactobacillaceae families. These strains showed a good ability to tolerate osmotic stress and a lower pH environment. Tej sample produced by mixed culture inoculation of Saccharomyces and Lactobacillus species showed similar physicochemical, volatile compounds, and sensory attributes values with that of the control sample. Thus, a mixture of Saccharomyces and Lactobacillus strains could be used as a starter culture to produce Ethiopian honey, Tej, without scarifying of its major quality attributes.
Collapse
Affiliation(s)
- Eskindir Getachew Fentie
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia.,School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, 16417, Addis Ababa, Ethiopia
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Shimelis Admassu Emire
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, 16417, Addis Ababa, Ethiopia
| | - Hundessa Dessalegn Demsash
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, 16417, Addis Ababa, Ethiopia
| | - Min-Chul Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
14
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
15
|
Abd-Allah IM, El-Housseiny GS, Alshahrani MY, El-Masry SS, Aboshanab KM, Hassouna NA. An Anti-MRSA Phage From Raw Fish Rinse: Stability Evaluation and Production Optimization. Front Cell Infect Microbiol 2022; 12:904531. [PMID: 35656033 PMCID: PMC9152141 DOI: 10.3389/fcimb.2022.904531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulating evidence has denoted the danger of resistance in tenacious organisms like methicillin-resistant Staphylococcus aureus (MRSA). MRSA, a supple bacterium that adopts a variety of antibiotic resistance mechanisms, is the cause of multiple life-threatening conditions. Approaching a post-antibiotic era, bacteria-specific natural predators, bacteriophages, are now given the chance to prove eligible for joining the antibacterial weaponry. Considering the foregoing, this study aimed at isolating bacteriophages with promising anti-MRSA lytic activity, followed by characterization and optimization of the production of the bacteriophage with the broadest host range. Five phages were isolated from different environmental sources including the rinse of raw chicken egg, raw milk, and, remarkably, the raw meat rinses of chicken and fish. Examined for lytic activity against a set of 23 MRSA isolates collected from various clinical specimens, all five phages showed relatively broad host ranges with the bacteriophage originally isolated from raw fish rinse showing lytic activity against all the isolates tested. This phage is suggested to be a member of Siphoviridae family, order Caudovirales, as revealed by electron microscopy. It also exhibited good thermal stability and viability at different pH grades. Moreover, it showed reasonable stability against UV light and all viricidal organic solvents tested. Optimization using D-optimal design by response surface methodology was carried out to enhance the phage yield. The optimum conditions suggested by the generated model were a pH value of 7, a carbon source of 0.5% w/v sucrose, and a nitrogen source of 0.1% w/v peptone, at a temperature of 28°C and a bacterial inoculum size of 107 CFU/ml, resulting in a 2 log-fold increase in the produced bacteriophage titer. Overall, the above findings indicate the lytic ability inflicted by this virus on MRSA. Apparently, its stability under some of the extreme conditions tested implies its potential to be a candidate for pharmaceutical formulation as an anti-MRSA therapeutic tool. We hope that bacteriophages could tip the balance in favor of the human front in their battle against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Samar S. El-Masry
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Morassi LL, Silva BS, Furtado MM, Freire L, Santos JL, Chaves RD, Granato D, Silva MP, Peña WE, Sant’Ana AS. Growth/no-growth modeling to control the spoilage of chocolate cake by Penicillium citrinum LMQA_053: Impact of pH, water activity, temperature, and different concentrations of calcium propionate and potassium sorbate. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Yan R, Wang Y, Li J, Wang X, Wang Y. Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127764. [PMID: 34799165 DOI: 10.1016/j.jhazmat.2021.127764] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics can be biodegraded in activated sludge via co-metabolism and metabolism. In this study, we investigated the biodegradation pathways of sulfamethoxazole (SMX) and antibiotic resistant genes' (ARGs) fate in different autotrophic and heterotrophic microorganisms, by employing aerobic sludge, mixed sludge, and nitrifying sludge. A threshold concentration of SMX activating the degradation pathways in the initial stage of antibiotics degradation was found and proved in different activated sludge systems. Heterotrophic bacteria played an important role in SMX biodegradation. However, ammonia-oxidizing bacteria (AOB) had a faster metabolic rate, which was about 15 times higher than heterotrophic bacteria, contributing much to SMX removal via co-metabolism. As SMX concentration increases, the amoA gene and AOB relative abundance decreased in aerobic sludge due to the enrichment of functional heterotrophic bacteria, while it increased in nitrifying sludge. Microbial community analysis showed that functional bacteria which possess the capacity of SMX removal and antibiotic resistance were selected by SMX pressure. Potential ARGs hosts could increase their resistance to the biotoxicity of SMX and maintain system performance. These findings are of practical significance to guide antibiotic biodegradation and ARGs control in wastewater treatment plants.
Collapse
Affiliation(s)
- Ruofan Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yibing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiahuan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Chinese Academy of Science Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
18
|
Vrabl P, Siewert B, Winkler J, Schöbel H, Schinagl CW, Knabl L, Orth-Höller D, Fiala J, Meijer MS, Bonnet S, Burgstaller W. Xanthoepocin, a photolabile antibiotic of Penicillium ochrochloron CBS 123823 with high activity against multiresistant gram-positive bacteria. Microb Cell Fact 2022; 21:1. [PMID: 34983506 PMCID: PMC8725544 DOI: 10.1186/s12934-021-01718-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background With the steady increase of antibiotic resistance, several strategies have been proposed in the scientific community to overcome the crisis. One of many successful strategies is the re-evaluation of known compounds, which have been early discarded out of the pipeline, with state-of-the-art know-how. Xanthoepocin, a polyketide widespread among the genus Penicillium with an interesting bioactivity spectrum against gram-positive bacteria, is such a discarded antibiotic. The purpose of this work was to (i) isolate larger quantities of this metabolite and chemically re-evaluate it with modern technology, (ii) to explore which factors lead to xanthoepocin biosynthesis in P. ochrochloron, and (iii) to test if it is beside its known activity against methicillin-resistant Staphylococcus aureus (MRSA), also active against linezolid and vancomycin-resistant Enterococcus faecium (LVRE)—a very problematic resistant bacterium which is currently on the rise. Results In this work, we developed several new protocols to isolate, extract, and quantify xanthoepocin out of bioreactor batch and petri dish-grown mycelium of P. ochrochloron. The (photo)chemical re-evaluation with state-of-the-art techniques revealed that xanthoepocin is a photolabile molecule, which produces singlet oxygen under blue light irradiation. The intracellular xanthoepocin content, which was highest under ammonium-limited conditions, varied considerably with the applied irradiation conditions in petri dish and bioreactor batch cultures. Using light-protecting measures, we achieved MIC values against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which were up to 5 times lower than previously published. In addition, xanthoepocin was highly active against a clinical isolate of linezolid and vancomycin-resistant Enterococcus faecium (LVRE). Conclusions This interdisciplinary work underlines that the re-evaluation of known compounds with state-of-the-art techniques is an important strategy in the combat against multiresistant bacteria and that light is a crucial factor on many levels that needs to receive more attention. With appropriate light protecting measures in the susceptibility tests, xanthoepocin proved to be a powerful antibiotic against MRSA and LVRE. Exploring the light response of other polyketides may be pivotal for re-introducing previously discarded metabolites into the antibiotic pipeline and to identify photosensitizers which might be used for (antimicrobial) photodynamic therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01718-9.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Jacqueline Winkler
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Harald Schöbel
- MCI - The Entrepreneurial University, Maximilianstraße 2, 6020, Innsbruck, Austria
| | - Christoph W Schinagl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Ludwig Knabl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,MB-Lab, Clinical Microbiology Laboratory, Franz Fischer Str. 7b, 6020, Innsbruck, Austria
| | - Johannes Fiala
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.,Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Michael S Meijer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Wolfgang Burgstaller
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Ospina-Betancourth C, Acharya K, Allen B, Head IM, Sanabria J, Curtis TP. Valorization of pulp and paper industry wastewater using sludge enriched with nitrogen-fixing bacteria. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1734-1747. [PMID: 33765365 DOI: 10.1002/wer.1561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen-fixing bacteria (NFB) can reduce nitrogen at ambient pressure and temperature. In this study, we treated effluent from a paper mill in sequencing batch reactors (SBRs) and monitored the abundance and activity of NFB with a view to producing a sludge that could work as a biofertilizer. Four reactors were inoculated with activated sludge enriched with NFB and fed with a high C/N waste (100:0.5) from a paper mill. Though the reactors were able to reduce the organic load of the wastewater by up to 89%, they did not have any nitrogen-fixing activity and showed a decrease in the putative number of NFB (quantified with qPCR). The most abundant species in the reactors treating high C/N paper mill wastewater was identified by Illumina MiSeq 16S rRNA gene amplicon sequencing as Methyloversatilis sp. (relative abundance of 4.4%). Nitrogen fixation was observed when the C/N ratio was increased by adding sucrose. We suspect that real-world biological nitrogen fixation (BNF) will only occur where there is a C/N ratio ≤100:0.07. Consequently, operators should actively avoid adding or allowing nitrogen in the waste streams if they wish to valorize their sludge and reduce running costs. PRACTITIONER POINTS: Efficient biological wastewater treatment of low nitrogen paper mill effluent was achieved without nutrient supplementation. The sludge was still capable of fixing nitrogen although this process was not observed in the wastewater treatment system. This high C/N wastewater treatment technology could be used with effluents from cassava flour, olive oil, wine and dairy industries.
Collapse
Affiliation(s)
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Ben Allen
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Janeth Sanabria
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental & Natural Resources, Engineering Faculty, Universidad del Valle, Cali, Colombia
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
21
|
Abstract
Recently, there has been a resurgence of interest in continuous bioprocessing as a cost-optimised production strategy, driven by a rising global requirement for recombinant proteins used as biological drugs. This strategy could provide several benefits over traditional batch processing, including smaller bioreactors, smaller facilities, and overall reduced plant footprints and investment costs. Continuous processes may also offer improved product quality and minimise heterogeneity, both in the culture and in the product. In this paper, a model protein, green fluorescent protein (GFP) mut3*, was used to test the recombinant protein expression in an Escherichia coli strain with industrial relevance grown in chemostat. An important factor in enabling stable productivity in continuous cultures is the carbon source. We have studied the viability and heterogeneity of the chemostat cultures using a chemically defined medium based on glucose or glycerol as the single carbon source. As a by-product of biodiesel production, glycerol is expected to become a sustainable alternative substrate to glucose. We have found that although glycerol gives a higher cell density, it also generates higher heterogeneity in the culture and a less stable recombinant protein production. We suggest that manipulating the balance between different subpopulations to increase the proportion of productive cells may be a possible solution for making glycerol a successful alternative to glucose.
Collapse
|
22
|
New Biocomposite Electrospun Fiber/Alginate Hydrogel for Probiotic Bacteria Immobilization. MATERIALS 2021; 14:ma14143861. [PMID: 34300780 PMCID: PMC8307157 DOI: 10.3390/ma14143861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Biotechnological use of probiotic microorganisms involves providing them with appropriate conditions for growth, but also protection against environmental changes caused by an exchange of the medium, isolation of metabolites, etc. Therefore, the research on effective immobilization of probiotic microorganisms should be focused in this direction. The present study aimed to evaluate the effectiveness of an innovative hybrid immobilization system based on electrospun nanofibers and alginate hydrogel. The analyses carried out included the study of properties of the initial components, the evaluation of the degree and durability of cell immobilization in the final material, and their survival under stress conditions. Effective binding of microorganisms to the hydrogel and nanofibers was confirmed, and the collected results proved that the proposed biocomposite is an efficient method of cell protection. In addition, it was shown that immobilization on electrospun nanofibers leads to the preservation of the highest cell activity and the least cell growth restriction as compared to free or lyophilized cells only. The completed research opens new perspectives for the effective immobilization of microorganisms of significant economic importance.
Collapse
|
23
|
An Analysis of Biosynthesis Gene Clusters and Bioactivity of Marine Bacterial Symbionts. Curr Microbiol 2021; 78:2522-2533. [PMID: 34041587 DOI: 10.1007/s00284-021-02535-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2021] [Indexed: 01/28/2023]
Abstract
Symbiotic marine bacteria have a pivotal role in drug discovery due to the synthesis of diverse biologically potential compounds. The marine bacterial phyla proteobacteria, actinobacteria and firmicutes are commonly associated with marine macro organisms and frequently reported as dominant bioactive compound producers. They can produce biologically active compounds that possess antimicrobial, antiviral, antitumor, antibiofilm and antifouling properties. Synthesis of these bioactive compounds is controlled by a set of genes of their genomes that is known as biosynthesis gene clusters (BGCs). The development in the field of biotechnology and bioinformatics has uncovered the potential BGCs of the bacterial genome and its functions. Now-a-days researchers have focused their attention on the identification of potential BGCs for the discovery of novel bioactive compounds using advanced technology. This review highlights the marine bacterial symbionts and their BGCs which are responsible for the synthesis of bioactive compounds.
Collapse
|
24
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
25
|
Shifts in Bacterial Diversity During the Spontaneous Fermentation of Maize Meal as Revealed by Targeted Amplicon Sequencing. Curr Microbiol 2021; 78:1177-1187. [PMID: 33620555 DOI: 10.1007/s00284-021-02367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Maize meal was allowed to undergo uncontrolled fermentation in the laboratory, in simulation of the traditional method of fermentation as practised in most African households. During the fermentation process, samples were collected daily for 11 days. Physico-chemical analysis of the fermenting slurry and metagenomics analysis of the microbial community using 16S rRNA demonstrated an interrelationship between the changes in the properties of the fermentation environment and the successional interplay of the microbial community. The first 24 h of fermentation at pH of 6.5 was characterised by the proliferation of probiotic Lactobacillus and Bifidobacterium, with their relative abundance being 40.7% and 29.9%, respectively. However, prolonged fermentation and a drop in pH from 5.3 to 3.7 caused a decline and finally an absence of these probiotic bacteria which were replaced by Clostridium spp. with a relative abundance of between 97% and 99% from day 5 to day 11. This study demonstrated that prolonged fermentation of maize meal is not ideally suited for the proliferation of probiotic nutritionally beneficial bacteria.
Collapse
|
26
|
Ecophysiological Study of Paraburkholderia sp. Strain 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency. Appl Environ Microbiol 2020; 86:AEM.01851-20. [PMID: 33008817 PMCID: PMC7688210 DOI: 10.1128/aem.01851-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.
Collapse
|
27
|
Tonner PD, Darnell CL, Bushell FML, Lund PA, Schmid AK, Schmidler SC. A Bayesian non-parametric mixed-effects model of microbial growth curves. PLoS Comput Biol 2020; 16:e1008366. [PMID: 33104703 PMCID: PMC7644099 DOI: 10.1371/journal.pcbi.1008366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/05/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genetics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth behavior through a set of summarizing parameters. However, estimation of these parameters from data is confounded by random effects such as experimental variability, batch effects or differences in experimental material. A systematic statistical method to identify and correct for such confounding effects in population growth data is not currently available. Further, our previous work has demonstrated that parametric models are insufficient to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation. Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding effects on measured population growth.
Collapse
Affiliation(s)
- Peter D. Tonner
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Biology Department, Duke University, Durham, NC, USA
| | | | - Francesca M. L. Bushell
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter A. Lund
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Amy K. Schmid
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Biology Department, Duke University, Durham, NC, USA
- Center for Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Scott C. Schmidler
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Department of Statistical Science, Duke University, Durham, USA
- Department of Computer Science, Duke University, Durham, USA
| |
Collapse
|
28
|
Hengoju S, Tovar M, Man DKW, Buchheim S, Rosenbaum MA. Droplet Microfluidics for Microbial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:129-157. [PMID: 32888037 DOI: 10.1007/10_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - DeDe Kwun Wai Man
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Stefanie Buchheim
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany.
| |
Collapse
|
29
|
Frey LJ, Vorländer D, Rasch D, Meinen S, Müller B, Mayr T, Dietzel A, Grosch JH, Krull R. Defining mass transfer in a capillary wave micro-bioreactor for dose-response and other cell-based assays. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Uria N, Fiset E, Pellitero MA, Muñoz F, Rabaey K, Campo F. Immobilisation of electrochemically active bacteria on screen-printed electrodes for rapid in situ toxicity biosensing. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100053. [PMID: 36159604 PMCID: PMC9488082 DOI: 10.1016/j.ese.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 06/12/2023]
Abstract
Microbial biosensors can be an excellent alternative to classical methods for toxicity monitoring, which are time-consuming and not sensitive enough. However, bacteria typically connect to electrodes through biofilm formation, leading to problems due to lack of uniformity or long device production times. A suitable immobilisation technique can overcome these challenges. Still, they may respond more slowly than biofilm-based electrodes because bacteria gradually adapt to electron transfer during biofilm formation. In this study, we propose a controlled and reproducible way to fabricate bacteria-modified electrodes. The method consists of an immobilisation step using a cellulose matrix, followed by an electrode polarization in the presence of ferricyanide and glucose. Our process is short, reproducible and led us to obtain ready-to-use electrodes featuring a high-current response. An excellent shelf-life of the immobilised electrochemically active bacteria was demonstrated for up to one year. After an initial 50% activity loss in the first month, no further declines have been observed over the following 11 months. We implemented our bacteria-modified electrodes to fabricate a lateral flow platform for toxicity monitoring using formaldehyde (3%). Its addition led to a 59% current decrease approximately 20 min after the toxic input. The methods presented here offer the ability to develop a high sensitivity, easy to produce, and long shelf life bacteria-based toxicity detectors.
Collapse
Affiliation(s)
- N. Uria
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
- Arkyne Technologies SL (Bioo) ES-B90229261, Carrer de La Tecnologia, 17, 08840, Viladecans, Barcelona, Spain
| | - E. Fiset
- Center for Microbial Ecology and Technology (CMET) – FBE – Ghent University, Ghent, Belgium
| | - M. Aller Pellitero
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
| | - F.X. Muñoz
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
| | - K. Rabaey
- Center for Microbial Ecology and Technology (CMET) – FBE – Ghent University, Ghent, Belgium
- CAPTURE, Belgium
| | - F.J.del Campo
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
31
|
Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R. Enhancement of Versatile Extracellular Cellulolytic and Hemicellulolytic Enzyme Productions by Lactobacillus plantarum RI 11 Isolated from Malaysian Food Using Renewable Natural Polymers. Molecules 2020; 25:molecules25112607. [PMID: 32503356 PMCID: PMC7321320 DOI: 10.3390/molecules25112607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/02/2023] Open
Abstract
Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
Collapse
Affiliation(s)
- Nursyafiqah A. Mohamad Zabidi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.M.Z.); (R.M.)
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.M.Z.); (R.M.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Correspondence: (H.L.F.); (T.C.L.); Tel.: +60-3-9769-7476 (H.L.F.); +60-3-97694814 (T.C.L.)
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Correspondence: (H.L.F.); (T.C.L.); Tel.: +60-3-9769-7476 (H.L.F.); +60-3-97694814 (T.C.L.)
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.M.Z.); (R.M.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Office of Vice Chancellor, Universiti Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
| |
Collapse
|
32
|
Drzymała J, Kalka J. Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Aliivibrio fischeri. CHEMOSPHERE 2020; 248:126085. [PMID: 32041071 DOI: 10.1016/j.chemosphere.2020.126085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 05/24/2023]
Abstract
Hormesis is an ecotoxicological phenomenon referred to as the biphasic dose-response effect. At a low concentration of toxic substances, a hormetic stimulating effect occurs, while an inhibitory effect occurs at higher concentrations. The phenomenon of hormesis may hinder the interpretation of toxicity test results and lower the actual toxicity of test samples. In this study, a hormesis phenomenon was observed and analysed during toxicity tests of wastewater from constructed wetlands containing two pharmaceutical substances, diclofenac (DCF) and sulfamethoxazole (SMX), against the marine bacteria Aliivibrio fischeri. To eliminate the hormesis phenomenon, a change in the diluent (ISO 11348-3:2007) to synthetic sea water (ISO 10253:2006) is proposed. The hormesis phenomenon was observed only during the analysis of wastewater toxicity with the standard toxicity test (with the diluent). The use of synthetic sea water eliminated the hormetic effects because of the presence of additional components in the sea water, such as MgCl2, Na2SO4, CaCl2, KCl, NaHCO3, and H3BO3, which increased the sensitivity of A. fischeri to the pharmaceutical substances. The use of different media in toxicity tests may have significant effects on the toxicity classification of the tested compounds or wastewater. Additionally, the toxicity of tested pharmaceuticals towards A. fischeri was analysed. The IC50 values of DCF were 8.7 ± 1.1 mg L-1 (for diluent) and 13.9 ± 0.9 mg L-1 (for synthetic sea water) whereas those of SMX were 50.5 ± 2.3 and 55.3 ± 1.6 mg L-1, respectively.
Collapse
Affiliation(s)
- J Drzymała
- Silesian University of Technology, The Biotechnology Centre, Gliwice, Poland.
| | - J Kalka
- Silesian University of Technology, Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Gliwice, Poland
| |
Collapse
|
33
|
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. BIORESOURCE TECHNOLOGY 2020; 304:122997. [PMID: 32094007 DOI: 10.1016/j.biortech.2020.122997] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 05/11/2023]
Abstract
Microalgae are autotroph organisms that utilise light energy to synthesize various high-value bioactive compounds such as polysaccharides, proteins and lipids. Due to its fast growth rate and capability to survive in harsh environment, microalgae nowadays are applied in various industrial areas. The process of obtaining microalgae-based biomolecules starts with the selection of suitable microalgae strain, cultivation, followed by downstream processing of the biomass (i.e., pre-treatment, harvesting, extraction and purification). The end products of the processes are biofuels and other valuable bioproducts. Nevertheless, low production yield and high-cost downstream processes are the emerging bottlenecks which need to be addressed in the upscaling of extracted compounds from microalgae biomass. To conclude, tremendous efforts are required to overcome these challenges to revolutionize microalgae into a novel and green factory of different bioactive compounds for industrial necessities to satisfy and fulfil global demands.
Collapse
Affiliation(s)
- Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
34
|
Jacoby RP, Succurro A, Kopriva S. Nitrogen Substrate Utilization in Three Rhizosphere Bacterial Strains Investigated Using Proteomics. Front Microbiol 2020; 11:784. [PMID: 32411116 PMCID: PMC7198800 DOI: 10.3389/fmicb.2020.00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Nitrogen metabolism in the rhizosphere microbiome plays an important role in mediating plant nutrition, particularly under low inputs of mineral fertilizers. However, there is relatively little mechanistic information about which genes and metabolic pathways are induced by rhizosphere bacterial strains to utilize diverse nitrogen substrates. Here we investigate nitrogen substrate utilization in three taxonomically diverse bacterial strains previously isolated from Arabidopsis roots. The three strains represent taxa that are consistently detected as core members of the plant microbiome: Pseudomonas, Streptomyces, and Rhizobium. We use phenotype microarrays to determine the nitrogen substrate preferences of these strains, and compare the experimental results vs. computational simulations of genome-scale metabolic network models obtained with EnsembleFBA. Results show that all three strains exhibit generalistic nitrogen substrate preferences, with substrate utilization being well predicted by EnsembleFBA. Using label-free quantitative proteomics, we document hundreds of proteins in each strain that exhibit differential abundance values following cultivation on five different nitrogen sources: ammonium, glutamate, lysine, serine, and urea. The proteomic response to these nitrogen sources was strongly strain-dependent, with lysine nutrition eliciting widespread protein-level changes in Pseudomonas sp. Root9, whereas Rhizobium sp. Root491 showed relatively stable proteome composition across different nitrogen sources. Our results give new protein-level information about the specific transporters and enzymes induced by diverse rhizosphere bacterial strains to utilize organic nitrogen substrates.
Collapse
Affiliation(s)
- Richard P. Jacoby
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
35
|
Maser A, Peebo K, Vilu R, Nahku R. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate. Res Microbiol 2020; 171:185-193. [PMID: 32057959 DOI: 10.1016/j.resmic.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Studying substrate consumption in nutrient-rich conditions is challenging because often the growth medium includes undefined components like yeast extract or peptone. For clear and consistent results, it is necessary to use defined medium, where substrate utilization can be followed. In the present work, Escherichia coli BW25113 batch growth in a medium supplemented with 20 proteinogenic amino acids and glucose was studied. Focus was on the quantitative differences in substrate consumption and proteome composition between minimal and nutrient-rich medium. In the latter, 72% of carbon used for biomass growth came from amino acids and 28% from glucose. Serine was identified as the most consumed substrate with 41% of total carbon consumption. Proteome comparison between nutrient-rich and minimal medium revealed changes in TCA cycle and acetate producing enzymes that together with extracellular metabolite data pointed to serine being consumed mainly for energy generation purposes. Serine removal from the growth medium decreased specific growth rate by 22%. In addition, proteome comparison between media revealed a large shift in amino acid synthesis and translation related proteins. Overall, this work describes in quantitative terms the batch growth carbon uptake profile and proteome allocation of E. coli BW25113 in minimal and nutrient-rich medium.
Collapse
Affiliation(s)
- Andres Maser
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, 12618 Tallinn, Estonia; Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.
| | - Karl Peebo
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, 12618 Tallinn, Estonia; Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Raivo Vilu
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, 12618 Tallinn, Estonia; Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Ranno Nahku
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.
| |
Collapse
|
36
|
Tovar M, Mahler L, Buchheim S, Roth M, Rosenbaum MA. Monitoring and external control of pH in microfluidic droplets during microbial culturing. Microb Cell Fact 2020; 19:16. [PMID: 31996234 PMCID: PMC6990587 DOI: 10.1186/s12934-020-1282-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cell-based experimentation in microfluidic droplets is becoming increasingly popular among biotechnologists and microbiologists, since inherent characteristics of droplets allow high throughput at low cost and space investment. The range of applications for droplet assays is expanding from single cell analysis toward complex cell–cell incubation and interaction studies. As a result of cellular metabolism in these setups, relevant physicochemical alterations frequently occur before functional assays are conducted. However, to use droplets as truly miniaturized bioreactors, parameters like pH and oxygen availability should be controlled similar to large-scale fermentation to ensure reliable research. Results Here, we introduce a comprehensive strategy to monitor and control pH for large droplet populations during long-term incubation. We show the correlation of fluorescence intensity of 6-carboxyfluorescein and pH in single droplets and entire droplet populations. By taking advantage of inter-droplet transport of pH-mediating molecules, the average pH value of several million droplets is simultaneously adjusted in an a priori defined direction. To demonstrate the need of pH control in practice, we compared the fermentation profiles of two E. coli strains, a K12-strain and a B-strain, in unbuffered medium with 5 g/L glucose for standard 1 L bioreactors and 180 pL droplets. In both fermentation formats, the commonly used B-strain E. coli BL21 is able to consume glucose until depletion and prevent a pH drop, while the growth of the K12-strain E. coli MG1655 is soon inhibited by a low pH caused by its own high acetate production. By regulating the pH during fermentation in droplets with our suggested strategy, we were able to prevent the growth arrest of E. coli MG1655 and obtained an equally high biomass yield as with E. coli BL21. Conclusion We demonstrated a comparable success of pH monitoring and regulation for fermentations in 1 L scale and 180 pL scale for two E. coli strains. This strategy has the potential to improve cell-based experiments for various microbial systems in microfluidic droplets and opens the possibility for new functional assay designs.
Collapse
Affiliation(s)
- Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University, 07743, Jena, Germany
| | - Lisa Mahler
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University, 07743, Jena, Germany
| | - Stefanie Buchheim
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University, 07743, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany. .,Faculty of Biology and Pharmacy, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
37
|
Growth and Decay of a Planktonic Microbial Culture. Int J Microbiol 2020; 2020:4186468. [PMID: 32399037 PMCID: PMC7204161 DOI: 10.1155/2020/4186468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/04/2020] [Indexed: 11/18/2022] Open
Abstract
The paper shows that the phenomenological trends of both growth and decay of a microbial population in a given medium are easily reproducible with simple equations that allow gathering the experimental data (plate counts) related to different microbial species, in different mediums and even at different temperatures, in a single master plot. The guideline of the proposed approach is that microbes and surrounding medium form a system where they affect each other and that the so-called “growth curve” is just the phenomenological appearance of such interaction. The whole system (cells and medium) changes following a definite pathway described as the evolution of a “virtual” microbial population in planktonic conditions. The proposed equations come from the assumption of a duplication mechanism with a variable generation time for the growth and of an exponential-like decline with a linear increase of the rate for the decay. The intermediate phase between growth and decay is a time span during which growth and death counterbalance each other and age differences within the virtual cell population tend to level off. The proposed approach does not provide an a priori description of this phase but allows the fit of the whole evolution trend of a microbial culture whenever the experimental data are available. Deviations of such a trend concern microbes able to form spores, modify their metabolism, or express phenotypic heterogeneity, to counterbalance adverse medium conditions.
Collapse
|
38
|
Oliveira-Filho ER, Silva JGP, de Macedo MA, Taciro MK, Gomez JGC, Silva LF. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by Burkholderia sacchari LMG 19450 From Xylose as the Sole Carbon Source. Front Bioeng Biotechnol 2020; 7:416. [PMID: 31970153 PMCID: PMC6960187 DOI: 10.3389/fbioe.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
Burkholderia sacchari LMG19450, a non-model organism and a promising microbial platform, was studied to determine nutrient limitation impact on poly(3-hydroxybutyrate) [P(3HB)] production and bacterial growth from xylose, a major hemicellulosic residue. Nitrogen and phosphorus limitations have been studied in a number of cases to enhance PHA accumulation, but not combining xylose and B. sacchari. Within this strategy, it was sought to understand how to control PHA production and even modulate monomer composition. Nitrogen-limited and phosphorus-limited fed-batch experiments in bioreactors were performed to evaluate each one's influence on cell growth and poly(3-hydroxybutyrate) production. The mineral medium composition was defined based on yields calculated from typical results so that nitrogen was available during phosphorus limitation and residual phosphorus was available when limiting nitrogen. Sets of experiments were performed so as to promote cell growth in the first stage (supplied with initial xylose 15 g/L), followed by an accumulation phase, where N or P was the limiting nutrient when xylose was fed in pulses to avoid concentrations lower than 5 g/L. N-limited fed-batch specific cell growth (around 0.19 1/h) and substrate consumption (around 0.24 1/h) rates were higher when compared to phosphorus-limited ones. Xylose to PHA yield was similar in both conditions [0.37 gP(3HB)/gxyl]. We also described pst gene cluster in B. sacchari, responsible for high-affinity phosphate uptake. Obtained phosphorus to biomass yields might evidence polyphosphate accumulation. Results were compared with studies with B. sacchari and other PHA-producing microorganisms. Since it is the first report of the mentioned kinetic parameters for LMG 19450 growing on xylose solely, our results open exciting perspectives to develop an efficient bioprocess strategy with increased P(3HB) production from xylose or xylose-rich substrates.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson G P Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Arjona de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Pandey K, Saha P, Rao KVB. A study on the utility of immobilized cells of indigenous bacteria for biodegradation of reactive azo dyes. Prep Biochem Biotechnol 2019; 50:317-329. [PMID: 31755822 DOI: 10.1080/10826068.2019.1692219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Azo dyes are recalcitrant compounds used as a colorant in various industries. The pollution caused by their extensive usage has adversely affected the environment for years. The existing physicochemical methods for dye pollution remediation are rather inefficient and hence there is a dearth of low-cost, potential systems capable of dye degradation. The current research studies the biodegradation potential of immobilized bacterial cells against azo dyes Reactive Orange 16 (RO-16) and Reactive Blue 250 (RB-250). Two indigenous dye degrading bacteria Bacillus sp. VITAKB20 and Lysinibacillus sp. KPB6 was isolated from textile sludge sample. Free cells of Bacillus. sp. VITAKB20 degraded 92.38% of RO-16 and that of Lysinibacillus sp. KPB6 degraded 95.36% of RB-250 within 72 h under static conditions. Upon immobilization with calcium alginate, dye degradation occurred rapidly. Bacillus. sp. VITAKB20 degraded 97.5% of RO-16 and Lysinibacillus sp. KPB6 degraded 98.2% of RB-250 within 48 h under shaking conditions. Further, the nature of dye decolorization was biodegradation as evident by high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR) results. Phytotoxicity and biotoxicity assays revealed that the degraded dye products were less toxic in nature than the pure dyes. Thus, immobilization proved to be a highly likely alternative treatment for dye removal.
Collapse
Affiliation(s)
- Koushik Pandey
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Purbasha Saha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - K V Bhaskara Rao
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
40
|
Vrabl P, Schinagl CW, Artmann DJ, Heiss B, Burgstaller W. Fungal Growth in Batch Culture - What We Could Benefit If We Start Looking Closer. Front Microbiol 2019; 10:2391. [PMID: 31681243 PMCID: PMC6805767 DOI: 10.3389/fmicb.2019.02391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022] Open
Abstract
Since filamentous fungi rapidly adjust their metabolic properties to environmental changes, a rigorous standardization and characterization of cultivation conditions is necessary to obtain meaningful and reproducible results. In batch cultures, which are commonly characterized according to the classical growth curve in textbooks (i.e., lag, exponential, stationary, and declining phase), this is of special difficulty. Although various studies in literature report atypically shaped growth curves of filamentous fungi in batch culture, systematic investigations on this topic are scarce and deviations are barely mentioned in textbooks. Summarizing approximately a decade of observations of growth characteristics from bioreactor batch grown filamentous fungi - in particular two strains (CBS123.823 and CBS123.824) of Penicillium ochrochloron - we demonstrate with a series of highly standardized bioreactor batch culture experiments that the classical growth curve failed to describe growth dynamics of the studied fungi in this work. The nature of the first exhausted nutrient was of remarkable importance for the resulting shape of the growth curve. In all experiments, online respirometry proved to be a powerful tool to distinguish growth phases and revealed more physiological states than expected from the mere biomass curve. In this respect we discuss why "atypical" shaped growth curves often remain unrecognized and that they might be the rule rather than the exception. Acknowledging the importance of the correct presentation of this complex topic in textbooks, we also propose a modified growth curve scheme to sensitize students for potential alternative shaped growth curves.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
41
|
Vuono DC, Lipp B, Staub C, Loney E, Harrold ZR, Grzymski JJ. A Real-Time Multiplexed Microbial Growth Intervalometer for Capturing High-Resolution Growth Curves. Front Microbiol 2019; 10:1135. [PMID: 31231321 PMCID: PMC6560151 DOI: 10.3389/fmicb.2019.01135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022] Open
Abstract
Batch cultures are a low maintenance and routine culturing method in microbiology. Automated tools that measure growth curves from microorganisms grown in traditional laboratory glassware, such as Balch-type tubes, are not commercially available. Here, we present a new MicrobiAl Growth Intervalometer (MAGI) that measures optical density as it correlates to microbial growth by utilizing photo-conduction as opposed to photo-attenuation used by traditional OD measurement equipment. Photo-attenuation occurs when biomass in suspension within a medium blocks and/or diffuses light directed at the detector, such that an increase in biomass results in a decrease in the measured signal. Photo-conduction differs in which the biomass contained in a medium conducts light from the emitter to the detector, where an increase in the biomass results in a corresponding increase in the measured signal. MAGI features software-driven automation that provides investigators with a highly sensitive, low-background noise growth measurement instrument with added capabilities for remote visualization and data acquisition. It is a low maintenance, cost effective, versatile, and robust platform for aerobic/anaerobic cultivation. We demonstrate the versatility of this device by obtaining growth curves from two common laboratory organisms Escherichia coli K-12 and Bacillus subtilis. We show that growth rates and generation times in E. coli K-12 are reproducible to previously published results and that morphological changes of B. subtilis during growth can be detected as a change in the slope of the growth curve, which is a function of the effects of cell size on photo-conduction through the medium. We also test MAGI to capture growth curves from an environmental organism, Intrasporangium calvum C5, under various media compositions. Our results demonstrate that the MAGI platform accurately measures growth curves in media under various redox conditions (aerobic, microaerobic, and anaerobic), complex and minimal medias, and resolving diauxic growth curves when I. calvum is grown on a disaccharide. Lastly, we demonstrate that the device can resolve growth curves for μM concentrations of resources that yield low biomass. This research advances the tools available to microbiologists aiming to monitor growth curves in a variety of disciplines, such as environmental microbiology, clinical microbiology, and food sciences.
Collapse
Affiliation(s)
- David C Vuono
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Bruce Lipp
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Carl Staub
- Lumenautix, LLC, Reno, NV, United States
| | - Evan Loney
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Zoë R Harrold
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| |
Collapse
|
42
|
Predicting the decision making chemicals used for bacterial growth. Sci Rep 2019; 9:7251. [PMID: 31076576 PMCID: PMC6510730 DOI: 10.1038/s41598-019-43587-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Predicting the contribution of media components to bacterial growth was first initiated by introducing machine learning to high-throughput growth assays. A total of 1336 temporal growth records corresponding to 225 different media, which were composed of 13 chemical components, were generated. The growth rate and saturated density of each growth curve were automatically calculated with the newly developed data processing program. To identify the decision making factors related to growth among the 13 chemicals, big datasets linking the growth parameters to the chemical combinations were subjected to decision tree learning. The results showed that the only carbon source, glucose, determined bacterial growth, but it was not the first priority. Instead, the top decision making chemicals in relation to the growth rate and saturated density were ammonium and ferric ions, respectively. Three chemical components (NH4+, Mg2+ and glucose) commonly appeared in the decision trees of the growth rate and saturated density, but they exhibited different mechanisms. The concentration ranges for fast growth and high density were overlapped for glucose but distinguished for NH4+ and Mg2+. The results suggested that these chemicals were crucial in determining the growth speed and growth maximum in either a universal use or a trade-off manner. This differentiation might reflect the diversity in the resource allocation mechanisms for growth priority depending on the environmental restrictions. This study provides a representative example for clarifying the contribution of the environment to population dynamics through an innovative viewpoint of employing modern data science within traditional microbiology to obtain novel findings.
Collapse
|
43
|
|
44
|
Jurač K, Nabergoj D, Podgornik A. Bacteriophage production processes. Appl Microbiol Biotechnol 2018; 103:685-694. [DOI: 10.1007/s00253-018-9527-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
|
45
|
Maser A, Peebo K, Nahku R. Avoiding amino acid depletion in a complex medium results in improved Escherichia coli BW25113 growth. MICROBIOLOGY-SGM 2018; 165:37-46. [PMID: 30412459 DOI: 10.1099/mic.0.000742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied Escherichia coli BW25113 growth in a complex medium with emphasis on amino acid consumption. The aim was to profile amino acid utilization in acid-hydrolysed casein and a defined nutrient-rich medium and based on these measurements modify the medium for better growth performance. Amino acid depletions in both media caused apparent biomass growth stops that prolonged growth duration. Obtained amino acid consumption values enabled a new defined medium to be formulated, where no growth stops were observed, the specific growth rate was constant, and the provided substrates were fully utilized. Similarly, we modified the acid-hydrolysed casein medium by adding pure amino acids that removed the apparent biomass growth stops. Key to our results was the combination of growth medium analysis and process monitoring data, specifically oxygen partial pressure and produced carbon dioxide that were used to track growth changes. Our findings showed the deficiencies of the nutrient-rich medium and how rational medium design, based on consumption values, removed these shortcomings. The resulting balanced medium gives a high specific growth rate and is suitable for studying E. coli physiology at fast growth.
Collapse
Affiliation(s)
- Andres Maser
- 1Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.,2Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Karl Peebo
- 1Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.,2Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Ranno Nahku
- 2Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| |
Collapse
|
46
|
Ziemba C, Larivé O, Reynaert E, Morgenroth E. Chemical composition, nutrient-balancing and biological treatment of hand washing greywater. WATER RESEARCH 2018; 144:752-762. [PMID: 30165322 PMCID: PMC6176911 DOI: 10.1016/j.watres.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 05/21/2023]
Abstract
On-site biological hand washing water treatment can improve global access to safe hand washing water, but requires a thorough understanding of the chemical composition of the water to be treated, and an effective treatment strategy. This study first presents a detailed characterization of the individual inputs to hand washing water. We demonstrate (i) that soap is likely the most significant input in hand washing water, representing ∼90% of mass loading, and (ii) that inputs to hand washing water have low concentrations of biologically-essential macro- and micro-nutrients (nitrogen, phosphorus, potassium, copper, zinc, molybdenum and cobalt) with respect to carbon, which may impair biological carbon removal. This study next formulates a recipe that recreates a representative composition of hand washing water and develops a procedure to identify and supplement nutrients in which this recipe is estimated to be deficient. Batch testing of the nutrient-supplemented hand washing water with an inoculum of planktonic bacteria demonstrated improved assimilable organic carbon removal (99% vs. 86% removal) and produced lower final dissolved organic carbon concentrations (1.7 mgC/L vs. 3.5 mgC/L) compared to realistic (nutrient-deficient) washing water. Supplementing nutrients did promote cell growth (50x higher final total cell count). Full-scale testing in a biologically activated membrane bioreactor (BAMBi) system treating 75 L/day of nutrient-supplemented hand washing water showed that long-term operation (100 days) can deliver effective carbon removal (95%) without detrimental fouling or other disruptions caused by cell growth. This work demonstrates that biological treatment in a BAMBi system, operated with appropriate nutrient-balancing offers an effective solution for decentralized treatment of light greywater.
Collapse
Affiliation(s)
- Christopher Ziemba
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| | - Odile Larivé
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPFL Lausanne, Environmental Chemistry Laboratory, 1015 Lausanne, Switzerland
| | - Eva Reynaert
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
47
|
Sawant AP, Patil SA, Vijapurkar J, Bagban NN, Gupta DB. Is the undergraduate microbiology curriculum preparing students for careers in their field?: an assessment of biology majors' conceptions of growth and control of microorganisms. INTERNATIONAL JOURNAL OF STEM EDUCATION 2018; 5:42. [PMID: 30631732 PMCID: PMC6310449 DOI: 10.1186/s40594-018-0138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We present an analysis of students' responses to application-based questions on the topic of growth and control of microorganisms, from a questionnaire administered to 348 second and third year students of an Indian university who were enrolled in its undergraduate programs in Biotechnology or Microbiology. We examined aspects of the laboratory practice as reported by teachers and of the university assessment patterns that may explain our findings. Reports by teachers also included their views on the impact of the laboratory curriculum on building student capabilities. Studies such as this play an important role in informing the ongoing discourse in the country about much-needed reforms in undergraduate education. RESULTS Our analysis revealed several lacunae in students' understanding. Students' performance on the questionnaire was also found to be poorly correlated with their academic achievement in the university examinations. Teachers' reports revealed that there was a minimal student involvement in planning and designing of the experiments in their laboratory course; rather, cookbook protocols were commonly used by the students. There was a striking disparity between students' stated career aspirations and their preparedness for them. CONCLUSIONS Our analysis points to underlying issues in the teaching-learning and assessment process; we discuss these issues and possible alternatives to the current practices. This study, to the best of our knowledge, is the first in the country that has explored students' conceptions for an elementary topic in biology education at the tertiary level. We believe that the results of the study will be useful in shaping the ongoing educational reforms in higher education and will also be useful in developing a concept inventory on this topic.
Collapse
Affiliation(s)
- Aakanksha Purushottam Sawant
- Homi Bhabha Centre for Science Education (Tata Institute of Fundamental Research), V.N. Purav Marg, Mankhurd, Mumbai, 400088 India
| | - Swapnaja Arvind Patil
- Homi Bhabha Centre for Science Education (Tata Institute of Fundamental Research), V.N. Purav Marg, Mankhurd, Mumbai, 400088 India
- Present Address: Wildlife Conservation Trust, Mafatlal Center, Nariman Point, Mumbai, 400021 India
| | - Jyotsna Vijapurkar
- Homi Bhabha Centre for Science Education (Tata Institute of Fundamental Research), V.N. Purav Marg, Mankhurd, Mumbai, 400088 India
| | - Needa Nasir Bagban
- Homi Bhabha Centre for Science Education (Tata Institute of Fundamental Research), V.N. Purav Marg, Mankhurd, Mumbai, 400088 India
| | - Deepti Bhushan Gupta
- Homi Bhabha Centre for Science Education (Tata Institute of Fundamental Research), V.N. Purav Marg, Mankhurd, Mumbai, 400088 India
| |
Collapse
|
48
|
Tsuchiya K, Cao YY, Kurokawa M, Ashino K, Yomo T, Ying BW. A decay effect of the growth rate associated with genome reduction in Escherichia coli. BMC Microbiol 2018; 18:101. [PMID: 30176803 PMCID: PMC6122737 DOI: 10.1186/s12866-018-1242-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bacterial growth is an important topic in microbiology and of crucial importance to better understand living cells. Bacterial growth dynamics are quantitatively examined using various methods to determine the physical, chemical or biological features of growing populations. Due to methodological differences, the exponential growth rate, which is a parameter that is representative of growth dynamics, should be differentiated. Ignoring such differentiation in the growth analysis might overlook somehow slight but significant changes in cellular features of the growing population. Both experimental and theoretical investigations are required to address these issues. Results This study experimentally verified the differentiation in growth rates attributed to different methodologies, and demonstrated that the most popular method, optical turbidity, led to the determination of a lower growth rate in comparison to the methods based on colony formation and cellular adenosine triphosphate, due to a decay effect of reading OD600 during a population increase. Accordingly, the logistic model, which is commonly applied to the high-throughput growth data reading the OD600, was revised by introducing a new parameter: the decay rate, to compensate for the lowered estimation in growth rates. An improved goodness of fit in comparison to the original model was acquired due to this revision. Applying the modified logistic model to hundreds of growth data acquired from an assortment of Escherichia coli strains carrying the reduced genomes led to an intriguing finding of a correlation between the decay rate and the genome size. The decay effect seemed to be partially attributed to the decrease in cell size accompanied by a population increase and was medium dependent. Conclusions The present study provides not only an improved theoretical tool for the high-throughput studies on bacterial growth dynamics linking with optical turbidity to biological meaning, but also a novel insight of the genome reduction correlated decay effect, which potentially reflects the changing cellular features during population increase. It is valuable for understanding the genome evolution and the fitness increase in microbial life. Electronic supplementary material The online version of this article (10.1186/s12866-018-1242-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kouhei Tsuchiya
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan
| | - Yang-Yang Cao
- Institute of Biology and Information Science, East China Normal University, 3663 Zhongshan Road (N), Shanghai, 200062, China
| | - Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan
| | - Kazuha Ashino
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan
| | - Tetsuya Yomo
- Institute of Biology and Information Science, East China Normal University, 3663 Zhongshan Road (N), Shanghai, 200062, China
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8572, Japan.
| |
Collapse
|
49
|
Jacoby RP, Martyn A, Kopriva S. Exometabolomic Profiling of Bacterial Strains as Cultivated Using Arabidopsis Root Extract as the Sole Carbon Source. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:803-813. [PMID: 29457542 DOI: 10.1094/mpmi-10-17-0253-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability of microorganisms to use root-derived metabolites as growth substrates is a key trait for success in the rhizospheric niche. However, few studies describe which specific metabolites are consumed or to what degree microbial strains differ in their substrate consumption patterns. Here, we present a liquid chromatography-mass spectrometry (MS) exometabolomic study of three bacterial strains cultivated using either glucose or Arabidopsis thaliana root extract as the sole carbon source. Two of the strains were previously isolated from field-grown Arabidopsis roots, the other is Escherichia coli, included as a comparison. When cultivated on root extract, a set of 62 MS features were commonly taken up by all three strains, with m/z values matching components of central metabolism (including amino acids and purine or pyrimidine derivatives). Escherichia coli took up very few MS features outside this commonly consumed set, whereas the root-inhabiting strains took up a much larger number of MS features, many with m/z values matching plant-specific metabolites. These measurements define the metabolic niche that each strain potentially occupies in the rhizosphere. Furthermore, we document many MS features released by these strains that could play roles in cross-feeding, antibiosis, or signaling. We present our methodological approach as a foundation for future studies of rhizosphere exometabolomics.
Collapse
Affiliation(s)
- Richard P Jacoby
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Martyn
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
50
|
Clark RL, McGinley LL, Purdy HM, Korosh TC, Reed JL, Root TW, Pfleger BF. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth. Metab Eng 2018; 47:230-242. [PMID: 29601856 PMCID: PMC5984190 DOI: 10.1016/j.ymben.2018.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/22/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO2, light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion.
Collapse
Affiliation(s)
- Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Laura L McGinley
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Hugh M Purdy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Travis C Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States; Department of Environmental Chemistry and Technology, University of Wisconsin - Madison, 660 N Park St., Madison, WI 53706, United States.
| | - Jennifer L Reed
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Thatcher W Root
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| |
Collapse
|