1
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
2
|
Zhou X, Zhou J, Ban Q, Zhang M, Ban B. Effects of metformin on the glucose regulation, lipid levels and gut microbiota in high-fat diet with streptozotocin induced type 2 diabetes mellitus rats. Endocrine 2024; 86:163-172. [PMID: 38782861 PMCID: PMC11445279 DOI: 10.1007/s12020-024-03843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Metformin, an anti-diabetic drug, regulates blood glucose by affecting gut microbiotas. However, the potential mechanism underlying this effect remains unclear. This study aimed to evaluate the effect of metformin on glucose regulation, lipid levels, and the gut microbiota in rats with type 2 diabetes mellitus induced by a high-fat diet with streptozotocin. RESEARCH DESIGN METHODS Thirty Wistar rats was using in this experiment. T2DM rats were administered 300 mg/kg metformin for 8 weeks. The glucose regulation, lipid levels, organ coefficients, and gut microbiotawere measured by 16S rDNA. RESULT The metformin-gavaged rats exhibited significant improvements in blood glucose and serum lipid levels, accompanied by alterations in short-chain fatty acid levels and the intestinal microbiota (p < 0.05). In the diabetic rats, metformin potentially increased specific probiotics, thus improving the hypoglycaemic effects of the oral anti-diabetic drug. Further, damage to the liver and kidney was effectively alleviated in the metformin-gavaged rats. CONCLUSION This study's findings demonstrate that metformin exerts a positive anti-diabetic effect in HFD- and STZ-induced T2DM rats. These findings potentially provide a basis for the recommended use of metformin as a reliable oral drug for T2DM owing to its positive effect on the intestinal microbiota.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jian Zhou
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingfeng Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.
| |
Collapse
|
3
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2024:S2090-1232(24)00124-3. [PMID: 38579985 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Kaczmarek K, Więckiewicz J, Que I, Gałuszka-Bulaga A, Chan A, Siedlar M, Baran J. Human Soluble TRAIL Secreted by Modified Lactococcus lactis Bacteria Promotes Tumor Growth in the Orthotopic Mouse Model of Colorectal Cancer. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0002. [PMID: 38299562 DOI: 10.2478/aite-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Więckiewicz
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Currently: Department of Radiology and Nuclear Medicine, Department of Molecular Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Pavlo Petakh, Kamyshna I, Kamyshnyi A. Effects of metformin on the gut microbiota: A systematic review. Mol Metab 2023; 77:101805. [PMID: 37696355 PMCID: PMC10518565 DOI: 10.1016/j.molmet.2023.101805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain. SCOPE OF REVIEW We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment. MAJOR CONCLUSIONS Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures. Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine; Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| |
Collapse
|
6
|
Ma M, Pan Y, Zhang Y, Yang M, Xi Y, Lin B, Hao W, Liu J, Wu L, Liu Y, Qin X. Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the AMPK/mTOR signaling pathway. J Cell Commun Signal 2023:10.1007/s12079-023-00781-8. [PMID: 37702819 DOI: 10.1007/s12079-023-00781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023] Open
Abstract
Autophagy activation protects against podocyte injury in idiopathic membranous nephropathy (IMN). The AMPK/mTOR signaling pathway is a vital autophagy regulatory pathway. Metformin promotes autophagy, whereas rapamycin is an autophagy agonist. However, the therapeutic mechanisms of metformin and rapamycin in IMN remain unclear. Thus, we examined the mechanisms of action of metformin and rapamycin in IMN by regulating the AMPK/mTOR autophagy signaling pathway. Female Sprague-Dawley (SD) rats were treated with cationic bovine serum albumin (C-BSA) to establish an IMN model and were randomly divided into IMN model, metformin, rapamycin, and metformin + rapamycin groups. A control group was also established. Metformin and rapamycin were used as treatments. Renal histological changes, urinary protein excretion, the protein expression levels of key AMPK/mTOR signaling pathway proteins, renal tissue cell apoptosis, and autophagy-associated proteins (Beclin 1 and LC3) were examined. In addition, a C5b-9 sublysis model using the MPC-5 mouse podocyte cell line was established to verify the effect of metformin combined with rapamycin on podocytes. Metformin combined with rapamycin improved urinary protein excretion in IMN rats. Metformin combined with rapamycin attenuated the inflammatory response, renal fibrosis, and podocyte foot process fusion. In addition, it improved autophagy in podocytes as demonstrated by the enhanced expression of Beclin-1, p-AMPK/AMPK, LC3-II/I, and autophagosomes in podocytes and decreased p-mTOR/mTOR expression. In conclusion, metformin combined with rapamycin decreased proteinuria, improved renal fibrosis and podocyte autophagy via AMPK/mTOR pathway in IMN rats. The metformin and rapamycin decreased proteinuria and inproved renal fibrosis in IMN model rats.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yue Pan
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Mei Yang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
7
|
Nagendra L, Bhattacharya S, Kalra S, Kapoor N. Metformin in COVID-19: Is There a Role Beyond Glycemic Control? Int J Endocrinol Metab 2023; 21:e132965. [PMID: 37654526 PMCID: PMC10467582 DOI: 10.5812/ijem-132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/26/2023] [Accepted: 04/15/2023] [Indexed: 09/02/2023] Open
Abstract
Context The coronavirus disease 2019 (COVID-19) pandemic is still a cause of worldwide health concern. Diabetes and its associated comorbidities are risk factors for mortality and morbidity in COVID-19. Selecting the right antidiabetic drug to achieve optimal glycemic control might mitigate some of the negative impacts of diabetes. Metformin continues to be the most widely administered antidiabetic agent. There is evidence of its beneficial outcome in COVID-19 independent of its glucose-lowering effect. Evidence Acquisition A thorough literature search was conducted in PubMed, Google Scholar, Scopus, and Web of Science to identify studies investigating metformin in COVID-19. Results Several overlapping mechanisms have been proposed to explain its antiviral properties. It could bring about conformational changes in the angiotensin-converting enzyme-2 receptor and decrease viral entry. The effects on the mammalian target of the rapamycin pathway and cellular pH have been proposed to reduce viral protein synthesis and replication. The immunomodulatory effects of metformin might counter the detrimental effects of hyperinflammation associated with COVID-19. Conclusions These findings call for broader metformin usage to manage hyperglycemia in COVID-19.
Collapse
Affiliation(s)
- Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College and Hospital, JSS Academy of Higher Education & Research (JSS AHER), Mysore, Karnataka, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
8
|
Yang T, Guan Q, Shi JS, Xu ZH, Geng Y. Metformin alleviates liver fibrosis in mice by enriching Lactobacillus sp. MF-1 in the gut microbiota. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166664. [PMID: 36893671 DOI: 10.1016/j.bbadis.2023.166664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Liver fibrosis is associated with gut dysbiosis. Metformin administration has emerged as a promising method for the treatment of organ fibrosis. We aimed to investigate whether metformin ameliorates liver fibrosis by enhancing the gut microbiota in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and the underlying mechanism. MATERIALS AND METHODS A liver fibrosis mouse model was established, and the therapeutic effects of metformin were observed. We administered antibiotic treatment and performed fecal microbiota transplantation (FMT), and 16S rRNA-based microbiome analysis to evaluate the effects of the gut microbiome on metformin-treated liver fibrosis. We isolated the bacterial strain preferably enriched by metformin and assessed its antifibrotic effects. RESULTS Metformin treatment repaired the gut integrity of the CCl4-treated mice. It reduced the number of bacteria in colon tissues and reduced the portal vein lipopolysaccharide (LPS) levels. The FMT performed on the metformin-treated CCl4 mice alleviated their liver fibrosis and reduced their portal vein LPS levels. The markedly changed gut microbiota was screened out from the feces and named Lactobacillus sp. MF-1 (L. sp. MF-1). In the CCl4-treated mice, daily gavage of L. sp. MF-1 maintained gut integrity, inhibited bacterial translocation, and reduced liver fibrosis. Mechanistically, metformin or L. sp. MF-1 inhibited the apoptosis of intestinal epithelial cells and restored CD3+ intestinal intraepithelial lymphocytes in the ileum and CD4+Foxp3+ lamina propria lymphocytes in the colon. CONCLUSIONS Metformin and its enriched L. sp. MF-1 can reinforce the intestinal barrier to alleviate liver fibrosis by restoring immune function.
Collapse
Affiliation(s)
- Tao Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Qijie Guan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Allesøe RL, Lundgaard AT, Hernández Medina R, Aguayo-Orozco A, Johansen J, Nissen JN, Brorsson C, Mazzoni G, Niu L, Biel JH, Brasas V, Webel H, Benros ME, Pedersen AG, Chmura PJ, Jacobsen UP, Mari A, Koivula R, Mahajan A, Vinuela A, Tajes JF, Sharma S, Haid M, Hong MG, Musholt PB, De Masi F, Vogt J, Pedersen HK, Gudmundsdottir V, Jones A, Kennedy G, Bell J, Thomas EL, Frost G, Thomsen H, Hansen E, Hansen TH, Vestergaard H, Muilwijk M, Blom MT, 't Hart LM, Pattou F, Raverdy V, Brage S, Kokkola T, Heggie A, McEvoy D, Mourby M, Kaye J, Hattersley A, McDonald T, Ridderstråle M, Walker M, Forgie I, Giordano GN, Pavo I, Ruetten H, Pedersen O, Hansen T, Dermitzakis E, Franks PW, Schwenk JM, Adamski J, McCarthy MI, Pearson E, Banasik K, Rasmussen S, Brunak S, Thomas CE, Haussler R, Beulens J, Rutters F, Nijpels G, van Oort S, Groeneveld L, Elders P, Giorgino T, Rodriquez M, Nice R, Perry M, Bianzano S, Graefe-Mody U, Hennige A, Grempler R, Baum P, Stærfeldt HH, Shah N, Teare H, Ehrhardt B, Tillner J, Dings C, Lehr T, Scherer N, Sihinevich I, Cabrelli L, Loftus H, Bizzotto R, Tura A, Dekkers K, van Leeuwen N, Groop L, Slieker R, Ramisch A, Jennison C, McVittie I, Frau F, Steckel-Hamann B, Adragni K, Thomas M, Pasdar NA, Fitipaldi H, Kurbasic A, Mutie P, Pomares-Millan H, Bonnefond A, Canouil M, Caiazzo R, Verkindt H, Holl R, Kuulasmaa T, Deshmukh H, Cederberg H, Laakso M, Vangipurapu J, Dale M, Thorand B, Nicolay C, Fritsche A, Hill A, Hudson M, Thorne C, Allin K, Arumugam M, Jonsson A, Engelbrechtsen L, Forman A, Dutta A, Sondertoft N, Fan Y, Gough S, Robertson N, McRobert N, Wesolowska-Andersen A, Brown A, Davtian D, Dawed A, Donnelly L, Palmer C, White M, Ferrer J, Whitcher B, Artati A, Prehn C, Adam J, Grallert H, Gupta R, Sackett PW, Nilsson B, Tsirigos K, Eriksen R, Jablonka B, Uhlen M, Gassenhuber J, Baltauss T, de Preville N, Klintenberg M, Abdalla M. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol 2023; 41:399-408. [PMID: 36593394 PMCID: PMC10017515 DOI: 10.1038/s41587-022-01520-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/20/2022] [Indexed: 01/03/2023]
Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
Collapse
Affiliation(s)
- Rosa Lundbye Allesøe
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnete Troen Lundgaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ricardo Hernández Medina
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alejandro Aguayo-Orozco
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Nybo Nissen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gianluca Mazzoni
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jorge Hernansanz Biel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valentas Brasas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henry Webel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Piotr Jaroslaw Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrik Plesner Jacobsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea Mari
- C.N.R. Institute of Neuroscience, Padova, Italy
| | - Robert Koivula
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ana Vinuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mun-Gwan Hong
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Petra B Musholt
- Research and Development Global Development, Translational Medicine and Clinical Pharmacology, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - Federico De Masi
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Josef Vogt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Krogh Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valborg Gudmundsdottir
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Angus Jones
- University of Exeter Medical School, Exeter, UK
| | - Gwen Kennedy
- The Immunoassay Biomarker Core Laboratory, School of Medicine, University of Dundee, Dundee, UK
| | - Jimmy Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - Gary Frost
- Section for Nutrition Research, Faculty of Medicine, Imperial College London, London, UK
| | - Henrik Thomsen
- Department of Radiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Elizaveta Hansen
- Department of Radiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mirthe Muilwijk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marieke T Blom
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Biomedical Data Science, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Francois Pattou
- Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
| | - Violeta Raverdy
- Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Tarja Kokkola
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alison Heggie
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Donna McEvoy
- Diabetes Research Network, Royal Victoria Infirmary, Newcastle, UK
| | - Miranda Mourby
- Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, UK
| | - Jane Kaye
- Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, UK
| | | | | | - Martin Ridderstråle
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Mark Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Ian Forgie
- Division of Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
| | - Imre Pavo
- Eli Lilly Regional Operations, Vienna, Austria
| | - Hartmut Ruetten
- Research and Development Global Development, Translational Medicine and Clinical Pharmacology, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Paul W Franks
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Harvard T.H. Chan School of Public Health, Boston, MA, USA.,OCDEM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Genentech, South San Francisco, CA, USA
| | - Ewan Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maternal Treatment with Metformin Persistently Ameliorates High-Fat Diet-Induced Metabolic Symptoms and Modulates Gut Microbiota in Rat Offspring. Nutrients 2022; 14:nu14173612. [PMID: 36079869 PMCID: PMC9460832 DOI: 10.3390/nu14173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A maternal high-fat (HF) diet has long-term deleterious effect on offspring. This study aims to evaluate whether maternal metformin (MT) treatment ameliorates the adverse effects of maternal HF diet on offspring and the role of gut microbiota in it. Pregnant Sprague-Dawley rats were randomly assigned to a HF diet (60% fat) or a standard chow diet (11.8% fat) group, and part of the HF diet group rats were co-treated with MT via drinking water (300 mg/kg/day), resulting in three groups according to maternal diet and MT treatment during gestation and lactation. All offspring were weaned on a chow diet. A maternal HF diet showed a significant deleterious effect on offspring’s metabolic phenotype and induced colonic inflammation and gut-barrier disruption through the reshaped gut microbiota. The daily oral administration of MT to HF-fed dams during gestation and lactation reversed the dysbiosis of gut microbiota in both dams and adult offspring. The hypothalamic TGR5 expression and plasma bile acids composition in adult male offspring was restored by maternal MT treatment, which could regulate hypothalamic appetite-related peptides expression and alleviate inflammation, thereby improving male offspring’s metabolic phenotype. The present study indicates that targeting the gut–brain axis through the mother may be an effective strategy to control the metabolic phenotype of offspring.
Collapse
|
11
|
Babenko AY. Metformin in prediabetes: key mechanisms for the prevention of diabetes and cardiometabolic risks. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:96-103. [DOI: 10.21518/2079-701x-2022-16-10-96-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Today, prediabetes is regarded by the world medical community as early diabetes mellitus. The accumulated research evidence shows that prediabetes is characterized by a spectrum of complications that are similar to those of diabetes mellitus, which means that the deterioration of cardiovascular prognosis starts already at the stage of prediabetes. In the current timeframe, metformin is actually the only drug that is widely prescribed for the treatment of prediabetes to prevent type 2 diabetes mellitus and cardiovascular diseases associated with insulin resistance and hyperinsulinemia. Meanwhile, metabolically unhealthy obesity characterized by hyperinsulinemia and insulin resistance is associated with a significantly unfavourable course of prediabetes, as well as the highest risk of developing both type 2 diabetes mellitus and cardiovascular diseases, development/ progression of chronic kidney disease. The theme of this review is the priority of metformin for the management of the most prognostically unfavourable phenotypes of prediabetes. The review is also devoted to the description of the most significant mechanisms that provide effects of metformin underlying the management of key disorders that determine the unfavourable prognosis of prediabetes. In particular, it sets forth the role of unhealthy nutrition, its effects on the development of imbalance of the composition of gut microbiota, which, in turn, entails a cascade of metabolic disorders underlying the development of metabolic ill health. The review sets forth the key role of metformin as a drug that protects against the development of these disorders. The information presented in this review will be useful to personalize the choice of both the scope and nature of interventions in patients with different phenotypic characteristics.
Collapse
|
12
|
Pharmacokinetic-Pharmacometabolomic Approach in Early-Phase Clinical Trials: A Way Forward for Targeted Therapy in Type 2 Diabetes. Pharmaceutics 2022; 14:pharmaceutics14061268. [PMID: 35745841 PMCID: PMC9231303 DOI: 10.3390/pharmaceutics14061268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Pharmacometabolomics in early phase clinical trials demonstrate the metabolic profiles of a subject responding to a drug treatment in a controlled environment, whereas pharmacokinetics measure the drug plasma concentration in human circulation. Application of the personalized peak plasma concentration from pharmacokinetics in pharmacometabolomic studies provides insights into drugs’ pharmacological effects through dysregulation of metabolic pathways or pharmacodynamic biomarkers. This proof-of-concept study integrates personalized pharmacokinetic and pharmacometabolomic approaches to determine the predictive pharmacodynamic response of human metabolic pathways for type 2 diabetes. In this study, we use metformin as a model drug. Metformin is a first-line glucose-lowering agent; however, the variation of metabolites that potentially affect the efficacy and safety profile remains inconclusive. Seventeen healthy subjects were given a single dose of 1000 mg of metformin under fasting conditions. Fifteen sampling time-points were collected and analyzed using the validated bioanalytical LCMS method for metformin quantification in plasma. The individualized peak-concentration plasma samples determined from the pharmacokinetic parameters calculated using Matlab Simbiology were further analyzed with pre-dose plasma samples using an untargeted metabolomic approach. Pharmacometabolomic data processing and statistical analysis were performed using MetaboAnalyst with a functional meta-analysis peaks-to-pathway approach to identify dysregulated human metabolic pathways. The validated metformin calibration ranged from 80.4 to 2010 ng/mL for accuracy, precision, stability and others. The median and IQR for Cmax was 1248 (849–1391) ng/mL; AUC0-infinity was 9510 (7314–10,411) ng·h/mL, and Tmax was 2.5 (2.5–3.0) h. The individualized Cmax pharmacokinetics guided the untargeted pharmacometabolomics of metformin, suggesting a series of provisional predictive human metabolic pathways, which include arginine and proline metabolism, branched-chain amino acid (BCAA) metabolism, glutathione metabolism and others that are associated with metformin’s pharmacological effects of increasing insulin sensitivity and lipid metabolism. Integration of pharmacokinetic and pharmacometabolomic approaches in early-phase clinical trials may pave a pathway for developing targeted therapy. This could further reduce variability in a controlled trial environment and aid in identifying surrogates for drug response pathways, increasing the prediction of responders for dose selection in phase II clinical trials.
Collapse
|
13
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
14
|
Deng W, Li F, Ke H, Wang S, Li Z, Lv P, Chen Y. Effect of Metformin in Autistic BTBR T+Itpr3tf/J Mice Administered a High-Fat Diet. Brain Res Bull 2022; 183:172-183. [PMID: 35240246 DOI: 10.1016/j.brainresbull.2022.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023]
Abstract
The biological mechanisms linking diet-related obesity and autism-related behaviors remain unclear. We aimed to characterize these interactions, focusing on gut microbiota, 5-hydroxytryptamine (5-HT) levels, and autistic behaviors in an animal model for autism; a high-fat diet (HFD) BTBR T+Itpr3tf/J (BTBR) mouse. In this model, we also examined the medication effects of metformin (Met) which is known to ameliorate several symptoms of autism spectrum disorder (ASD).Therefore, we hypothesized that HFD exacerbates BTBR autistic symptoms, which can be alleviated by Met, and the effects are associated with serotonin and the microbiota. As expected, compared with mice fed a normal diet, ten-week HFD-fed mice showed increased body weight, adiposity, and glucose levels. HFD consumption markedly aggravated repetitive behaviors in the self-grooming test. Met reduced HFD-induced hyperactivity. Notably, HFD intervention rescued sociability in the three-chamber sociability test. Furthermore, HFD stimulated tryptophan production, which was inhibited by Met. In contrast, 5-HT levels were lower in the gut and higher in the cortex in the HFD group. Moreover, Met suppressed inflammation in the hippocampus of HFD-fed mice by significantly downregulating the expression of pro-inflammatory cytokines (NF-κB, IL-17A, and IL-6). HFD increased the Firmicutes/Bacteroidetes ratio, and Met supplementation decreased richness while increasing bacterial diversity. We found that the abundance of gut microbiota (Lachnoclostridium, Anaerotruncus, Mucispirillum, and Lactococcus) was correlated with behavior scores and 5-HT levels. Overall, HFD consumption improved sociality in BTBR mice, which was related to the modulation of 5-HT levels and the composition of the microbiota. Met did not show any significant positive effects on the autism phenotype associated with HFD.
Collapse
Affiliation(s)
- Wenlin Deng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China; Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China; Wenlin Deng, Fang Li, Haoran Ke and Siqi Wang are co-first authors
| | - Fang Li
- Department of Gastroenterology, Gastroenterology Endoscopy center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Wenlin Deng, Fang Li, Haoran Ke and Siqi Wang are co-first authors
| | - Haoran Ke
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China; Wenlin Deng, Fang Li, Haoran Ke and Siqi Wang are co-first authors
| | - Siqi Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Zitong Li
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Pinjing Lv
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Metformin Alleviates Autistic-Like Behaviors Elicited by High-Fat Diet Consumption and Modulates the Crosstalk Between Serotonin and Gut Microbiota in Mice. Behav Neurol 2022; 2022:6711160. [PMID: 35222739 PMCID: PMC8872653 DOI: 10.1155/2022/6711160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
The biological mechanisms linking diet-related obesity and autistic behaviors remain unclear. Metformin has proven to be beneficial in the treatment of many syndromes, including autism spectrum disorder. Therefore, the aim of this study was to assess whether metformin treatment could ameliorate metabolic and behavioral alterations in C57BL/6 mice kept on a high-fat diet (HFD), and whether these changes were related to modifications in the gut microbiota and 5-HT levels. As expected, ten weeks of HFD ingestion increased body weight, adiposity, and glucose levels. HFD-fed mice showed a marked aggravation of repetitive behaviors (marble burying and self-grooming), and this was prevented by metformin administration. In addition, HFD-fed mice increased the total distance travelled in the open field test. This hyperactivity was counteracted by metformin cotreatment. In the elevated plus maze test, HFD-fed mice showed a reduced number of entries into the open arms. Interestingly, both HFD and metformin cotreatment increased social interactions in the three-chamber test. HFD increased the levels of intestinal tryptophan and 5-hydroxyindoleacetic acid. Metformin stimulated gut tryptophan and promoted the synthesis of 5-HT in the HFD group. Lactococcus, Trichococcus, Romboutsia, and Faecalibaculum were enriched in HFD-fed mice, whereas the HFD group cotreated with metformin was enriched in Intestinimonas and L. reuteri. Faecalibacterium was positively correlated with sociability and 5-HT pathway components in mice that received metformin. In summary, HFD consumption elicited a complex phenotype comprising higher levels of anxiety-like and repetitive behaviors but also increased sociability. Metformin could potentially improve HFD-induced disorders in the autistic spectrum through a mechanism involving positive modulation of 5-HT levels in the gut and its microbiota composition.
Collapse
|
16
|
Wang X, Huang H, Zhu Y, Li S, Zhang P, Jiang J, Xi C, Wu L, Gao X, Fu Y, Zhang D, Chen Y, Hu S, Lai J. Metformin acts on the gut-brain axis to ameliorate antipsychotic-induced metabolic dysfunction. Biosci Trends 2021; 15:321-329. [PMID: 34588398 DOI: 10.5582/bst.2021.01317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antipsychotic-induced metabolic dysfunction (AIMD) is an intractable clinical challenge worldwide. The situation is becoming more critical as second-generation antipsychotics (SGAs), to a great extent, have replaced the role of first-generation antipsychotics in managing major psychiatric disorders. Although the exact mechanisms for developing AIMD is intricate, emerging evidence has indicated the involvement of the microbiota-gut-brain axis in AIMD. SGAs treatment may change the diversity and compositions of intestinal flora (e.g., decreased abundance of Bacteroidetes and Akkermansia muciniphila, and increased Firmicutes). Short-chain fatty acids and other metabolites derived from gut microbiota, on the one hand, can regulate the activity of intestinal endocrine cells and their secretion of satiety hormones (e.g., glucagon-like peptide 1, peptide YY, cholecystokinin and ghrelin); on the other hand, can activate the vagus nerve or transport into the brain to exert a central modulation of foraging behaviors via binding to neuropeptide receptors. Interestingly, metformin, a classical antidiabetic agent, is capable of alleviating AIMD possibly by regulating the microbiota-gut-brain axis. That is, metformin can not only partially reverse the alterations of gut microbial communities due to SGAs treatment, but also play a positive role in rectifying the disturbances of peripheral and central satiety-related neuropeptides. Current evidence has indicated a promising role for metformin on ameliorating AMID, but further verifications in well-designed clinical trials are still warranted.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China.,Brain Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Huimin Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyi Zhu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaoli Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peifen Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajun Jiang
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingling Wu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xingle Gao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaoyang Fu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China.,Brain Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China.,Brain Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Ma L, Diao L, Peng Z, Jia Y, Xie H, Li B, Ma J, Zhang M, Cheng L, Ding D, Zhang X, Chen H, Mo F, Jiang H, Xu G, Meng F, Zhong Z, Liu M. Immunotherapy and Prevention of Cancer by Nanovaccines Loaded with Whole-Cell Components of Tumor Tissues or Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104849. [PMID: 34536044 DOI: 10.1002/adma.202104849] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Tumor tissues/cells are the best sources of antigens to prepare cancer vaccines. However, due to the difficulty of solubilization and delivery of water-insoluble antigens in tumor tissues/cells, including water-insoluble antigens into cancer vaccines and delivering such vaccines efficiently to antigen-presenting cells (APCs) remain challenging. To solve these problems, herein, water-insoluble components of tumor tissues/cells are solubilized by 8 m urea and thus whole components of micrometer-sized tumor cells are reasssembled into nanosized nanovaccines. To induce maximized immunization efficacy, various antigens are loaded both inside and on the surface of nanovaccines. By encapsulating both water-insoluble and water-soluble components of tumor tissues/cells into nanovaccines, the nanovaccines are efficiently phagocytosed by APCs and showed better therapeutic efficacy than the nanovaccine loaded with only water-soluble components in melanoma and breast cancer. Anti-PD-1 antibody and metformin can improve the efficacy of nanovaccines. In addition, the nanovaccines can prevent lung cancer (100%) and melanoma (70%) efficiently in mice. T cell analysis and tumor microenvironment analysis indicate that tumor-specific T cells are induced by nanovaccines and both adaptive and innate immune responses against cancer cells are activated by nanovaccines. Overall, this study demonstrates a universal method to make tumor-cell-based nanovaccines for cancer immunotherapy and prevention.
Collapse
Affiliation(s)
- Lin Ma
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Lu Diao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zuofu Peng
- Alpha X (Beijing) Biotech Co., Ltd., Beijing, 102600, P. R. China
| | - Yun Jia
- Alpha X (Beijing) Biotech Co., Ltd., Beijing, 102600, P. R. China
| | - Huimin Xie
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Baisong Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jianting Ma
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Meng Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Lifang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Dawei Ding
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huabing Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Honglv Jiang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Guoqiang Xu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Mi Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Metformin treatment for 8 days impacts multiple intestinal parameters in high-fat high-sucrose fed mice. Sci Rep 2021; 11:16684. [PMID: 34404817 PMCID: PMC8371110 DOI: 10.1038/s41598-021-95117-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although the mechanism of action of the antidiabetic drug metformin is still a matter of discussions, it is well accepted that the gut plays an important role. To gain more insights into the mechanisms occurring in the different regions of the intestine, adult male mice were fed a high-fat-high sucrose (HFS) diet for 8 days and treated with metformin by gavage (300 mg/day/kg body weight) during the HFS diet. Metformin counteracted HFS diet-induced overexpression of a network of genes involved in the transport of glucose and fatty acids in the different regions of the small intestine. It also induced beneficial modification of secondary bile acid profile in the caecum, with a reduction of deoxycholic acid and lithocholic acid levels and increased abundance of ursodeoxycholic acid and tauroursodeoxycholic acid, potentially leading to FRX inhibition. In parallel, metformin treatment was associated with specific changes of the microbiota composition in the lumen of the different regions of the intestine. Metformin induced a marked increase in the abundance of Akkermansia muciniphila in the lumen all along the gut and counteracted the effects of HFS diet on the abundances of some bacterial groups generally associated with metabolic disturbances (f-Lachnospiraceae, f-Petostreptococcaceae, g-Clostidium). Therefore, the present work clearly emphasises the role of all the regions of the intestinal tract in the beneficial action of the antidiabetic drug metformin in a prediabetic mouse model.
Collapse
|
19
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
20
|
Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int J Mol Sci 2021; 22:ijms22126485. [PMID: 34204274 PMCID: PMC8233936 DOI: 10.3390/ijms22126485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide, affecting both adults and children and will result, in the near future, as the leading cause of end-stage liver disease. Indeed, its prevalence is rapidly increasing, and NAFLD is becoming a major public health concern. For this reason, great efforts are needed to identify its pathogenetic factors and new therapeutic approaches. In the past decade, enormous advances understanding the gut-liver axis-the complex network of cross-talking between the gut, microbiome and liver through the portal circulation-have elucidated its role as one of the main actors in the pathogenesis of NAFLD. Indeed, evidence shows that gut microbiota is involved in the development and progression of liver steatosis, inflammation and fibrosis seen in the context of NAFLD, as well as in the process of hepatocarcinogenesis. As a result, gut microbiota is currently emerging as a non-invasive biomarker for the diagnosis of disease and for the assessment of its severity. Additionally, to its enormous diagnostic potential, gut microbiota is currently studied as a therapeutic target in NAFLD: several different approaches targeting the gut homeostasis such as antibiotics, prebiotics, probiotics, symbiotics, adsorbents, bariatric surgery and fecal microbiota transplantation are emerging as promising therapeutic options.
Collapse
|
21
|
Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience 2021; 43:1093-1112. [PMID: 32902818 PMCID: PMC7479299 DOI: 10.1007/s11357-020-00261-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
We are in the midst of the global pandemic. Though acute respiratory coronavirus (SARS-COV2) that leads to COVID-19 infects people of all ages, severe symptoms and mortality occur disproportionately in older adults. Geroscience interventions that target biological aging could decrease risk across multiple age-related diseases and improve outcomes in response to infectious disease. This offers hope for a new host-directed therapeutic approach that could (i) improve outcomes following exposure or shorten treatment regimens; (ii) reduce the chronic pathology associated with the infectious disease and subsequent comorbidity, frailty, and disability; and (iii) promote development of immunological memory that protects against relapse or improves response to vaccination. We review the possibility of this approach by examining available evidence in metformin: a generic drug with a proven safety record that will be used in a large-scale multicenter clinical trial. Though rigorous translational research and clinical trials are needed to test this empirically, metformin may improve host immune defenses and confer protection against long-term health consequences of infectious disease, age-related chronic diseases, and geriatric syndromes.
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ameya S Kulkarni
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jenna M Bartley
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
22
|
Ser HL, Letchumanan V, Goh BH, Wong SH, Lee LH. The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop? Front Microbiol 2021; 12:519836. [PMID: 34054740 PMCID: PMC8155486 DOI: 10.3389/fmicb.2021.519836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiome transplant (FMT) has gained popularity over the past few years, given its success in treating several gastrointestinal diseases. At the same time, microbial populations in the gut have been shown to have more physiological effects than we expected as "habitants" of the gut. The imbalance in the gut microbiome or dysbiosis, particularly when there are excessive harmful pathogens, can trigger not just infections but can also result in the development of common diseases, such as cancer and cardiometabolic diseases. By using FMT technology, the dysbiosis of the gut microbiome in patients can be resolved by administering fecal materials from a healthy donor. The current review summarizes the history and current uses of FMT before suggesting potential ideas for its high-quality application in clinical settings.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
23
|
Metformin Modifies the Gut Microbiota of Mice Infected with Helicobacter pylori. Pharmaceuticals (Basel) 2021; 14:ph14040329. [PMID: 33916777 PMCID: PMC8065676 DOI: 10.3390/ph14040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is widely prescribed to treat type 2 diabetes. Diabetes patients treated with metformin have a decreased risk of cancers, including gastric cancer. Among the factors influencing digestive carcinogenesis, gut microbiota interactions have been intensively studied. Metformin exhibits direct antimicrobial activity toward Helicobacterpylori, which plays a crucial role in gastric carcinogenesis. Mice were infected with H. pylori and treated for 12 days with either metformin or phosphate-buffered saline (PBS) as a control. At the end of the treatment period, the mice were euthanized and cecal and intestinal contents and stool were collected. The gut microbiota of the three different digestive sites (stool, cecal, and intestinal contents) were characterized through 16S RNA gene sequencing. In mice infected with H. pylori, metformin significantly decreased alpha diversity indices and led to significant variation in the relative abundance of some bacterial taxa including Clostridium and Lactobacillus, which were directly inhibited by metformin in vitro. PICRUSt analysis suggested that metformin modifies functional pathway expression, including a decrease in nitrate reducing bacteria in the intestine. Metformin significantly changed the composition and predicted function of the gut microbiota of mice infected with H. pylori; these modifications could be implicated in digestive cancer prevention.
Collapse
|
24
|
Lee CB, Chae SU, Jo SJ, Jerng UM, Bae SK. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22073566. [PMID: 33808194 PMCID: PMC8037857 DOI: 10.3390/ijms22073566] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023] Open
Abstract
Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.
Collapse
Affiliation(s)
- Chae Bin Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Soon Uk Chae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Seong Jun Jo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Ui Min Jerng
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju 26339, Korea;
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
- Correspondence: ; Tel.: +82-2-2164-4054
| |
Collapse
|
25
|
Liu A, Lv H, Wang H, Yang H, Li Y, Qian J. Aging Increases the Severity of Colitis and the Related Changes to the Gut Barrier and Gut Microbiota in Humans and Mice. J Gerontol A Biol Sci Med Sci 2021; 75:1284-1292. [PMID: 32048723 DOI: 10.1093/gerona/glz263] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
This study aims to compare intestinal mucosal barrier function in older and young ulcerative colitis (UC) patients and the healthy population, and to explore the possible mechanisms through which aging increases the severity of colitis in mice. The old healthy group showed discontinued tight junction (TJ) strand. The E-cadherin and occludin protein expressions in the colonic tissue of the old healthy subjects were lower than those in the younger healthy people. The protein expressions of E-cadherin and occludin were lower in the old UC patients than in the younger UC patients. In mice, disease activity indexes induced by inflammatory stimulus differed as a function of age. Weight loss level, histological scores, and expression of proinflammatory factors were higher in the dextran sulfate sodium (DSS)-induced group of aged mice than in the young DSS-induced mice. Compared with the results observed in the young DSS-induced mice, the protein expressions of E-cadherin and occludin in the aged DSS-induced mice were lower. Furthermore, significant differences were observed in the composition of the gut microbiota between the young and aged mice. In the aged mice, the fraction of beneficial bacteria (Lactobacillus) was lower before the DSS treatment, while the fraction of the harmful bacteria (Turicibacter, Parasutterella) was higher than that observed in the young mice. After the DSS treatment in the aged mice, the fraction of beneficial bacteria (Odoribacter and Alistipes) was lower, while the fraction of harmful bacteria (Turicibacter) was higher than in the young mice. We demonstrate that the aging of the human colon is characterized by an impairment of the intestinal barrier. Aging leads to more severe disease following DSS challenge. Age-related deterioration of gastrointestinal barrier function and gut microbial dysbiosis may be involved in the pathogenesis of colitis in the aged mice.
Collapse
Affiliation(s)
- Ailing Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Lv
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Qi C, Wang P, Fu T, Lu M, Cai Y, Chen X, Cheng L. A comprehensive review for gut microbes: technologies, interventions, metabolites and diseases. Brief Funct Genomics 2021; 20:42-60. [PMID: 33554248 DOI: 10.1093/bfgp/elaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbes have attracted much more attentions in the recent decade since their essential roles in the development of metabolic diseases, cancer and neurological diseases. Considerable evidence indicates that the metabolism of gut microbes exert influences on intestinal homeostasis and human diseases. Here, we first reviewed two mainstream sequencing technologies involving 16s rRNA sequencing and metagenomic sequencing for gut microbes, and data analysis methods assessing alpha and beta diversity. Next, we introduced some observational studies reflecting that many factors, such as lifestyle and intake of diets, drugs, contribute to gut microbes' quantity and diversity. Then, metabolites produced by gut microbes were presented to understand that gut microbes exert on host homeostasis in the intestinal epithelium and immune system. Finally, we focused on the molecular mechanism of gut microbes on the occurrence and development of several common diseases. In-depth knowledge of the relationship among interventions, gut microbes and diseases might provide new insights in to disease prevention and treatment.
Collapse
|
27
|
Pastor-Villaescusa B, Plaza-Díaz J, Egea-Zorrilla A, Leis R, Bueno G, Hoyos R, Vázquez-Cobela R, Latorre M, Cañete MD, Caballero-Villarraso J, Gil Á, Cañete R, Aguilera CM. Evaluation of the gut microbiota after metformin intervention in children with obesity: A metagenomic study of a randomized controlled trial. Biomed Pharmacother 2021; 134:111117. [PMID: 33360047 DOI: 10.1016/j.biopha.2020.111117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
|
28
|
Luo C, Wang X, Huang HX, Mao XY, Zhou HH, Liu ZQ. Coadministration of metformin prevents olanzapine-induced metabolic dysfunction and regulates the gut-liver axis in rats. Psychopharmacology (Berl) 2021; 238:239-248. [PMID: 33095288 DOI: 10.1007/s00213-020-05677-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Olanzapine is widely prescribed for patients with mental disorders; however, it may induce metabolic dysfunction. Metformin is an efficient adjuvant for preventing olanzapine-induced metabolic dysfunction in clinical practice. Although the mechanism of how metformin prevents this metabolic dysfunction remains unknown, changes in the gut-liver axis are considered a potential explanation. METHODS Forty-eight male rats were gavaged with olanzapine and/or metformin for 35 consecutive days. Body weight, food intake, and water intake were measured daily. Histopathological and biochemical tests were performed to evaluate the metabolic dysfunction. The 16S rRNA obtained from fecal bacterial DNA was assessed. RESULTS Olanzapine treatment increased the body weight, blood glucose and triglyceride levels, and the number of adipocytes in the liver. While coadministration of metformin, there was a dose-dependent reverse of the abnormal changes induced by olanzapine treatment. Both olanzapine and metformin treatments altered the composition of the gut microbiota. Bacteroides acidifaciens and Lactobacillus gasseri were possibly played a positive role in metformin-mediated olanzapine-induced metabolic dysfunction prevention. CONCLUSION Metformin prevented olanzapine-induced metabolic dysfunction and regulated the gut microbiota in a dose-dependent manner.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.,School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Han-Xue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
29
|
Koulouridi A, Messaritakis I, Gouvas N, Tsiaoussis J, Souglakos J. Immunotherapy in Solid Tumors and Gut Microbiota: The Correlation-A Special Reference to Colorectal Cancer. Cancers (Basel) 2020; 13:cancers13010043. [PMID: 33375686 PMCID: PMC7795476 DOI: 10.3390/cancers13010043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Immunotherapy and immune checkpoint inhibitors have become the breakthrough treatment with extended responses and survival rates in various neoplasms. They use the immune system to defeat cancer, while gut microbiota seems to play a significant role in that attempt. To date, colorectal cancer patients have gained little benefit from immunotherapy. Only mismatch repair-deficient/microsatellite-unstable tumors seem to respond positively to immunotherapy. However, gut microbiota could be the key to expanding the use of immunotherapy to a greater range of colorectal cancer patients. In the current review study, the authors aimed to present and analyze the mechanisms of action and resistance of immunotherapy and the types of immune checkpoint inhibitors (ICIs) as well as their correlation to gut microbiota. A special reference will be made in the association of immunotherapy and gut microbiota in the colorectal cancer setting. Abstract Over the last few years, immunotherapy has been considered as a key player in the treatment of solid tumors. Immune checkpoint inhibitors (ICIs) have become the breakthrough treatment, with prolonged responses and improved survival results. ICIs use the immune system to defeat cancer by breaking the axes that allow tumors to escape immune surveillance. Innate and adaptive immunity are involved in mechanisms against tumor growth. The gut microbiome and its role in such mechanisms is a relatively new study field. The presence of a high microbial variation in the gut seems to be remarkably important for the efficacy of immunotherapy, interfering with innate immunity. Metabolic and immunity pathways are related with specific gut microbiota composition. Various studies have explored the composition of gut microbiota in correlation with the effectiveness of immunotherapy. Colorectal cancer (CRC) patients have gained little benefit from immunotherapy until now. Only mismatch repair-deficient/microsatellite-unstable tumors seem to respond positively to immunotherapy. However, gut microbiota could be the key to expanding the use of immunotherapy to a greater range of CRC patients.
Collapse
Affiliation(s)
- Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
- Correspondence: (I.M.); (J.S.); Tel.: +30-28-1039-4926 (I.M.); +30-28-1039-4712 (J.S.)
| | - Nikolaos Gouvas
- Medical School, University of Cyprus, 20537 Nicosia, Cyprus;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
- Correspondence: (I.M.); (J.S.); Tel.: +30-28-1039-4926 (I.M.); +30-28-1039-4712 (J.S.)
| |
Collapse
|
30
|
Disparate Effects of Metformin on Mycobacterium tuberculosis Infection in Diabetic and Nondiabetic Mice. Antimicrob Agents Chemother 2020; 65:AAC.01422-20. [PMID: 33046495 DOI: 10.1128/aac.01422-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Comorbid type 2 diabetes poses a great challenge to the global control of tuberculosis. Here, we assessed the efficacy of metformin (MET), an antidiabetic drug, in mice infected with a very low dose of Mycobacterium tuberculosis In contrast to diabetic mice, infected nondiabetic mice that received the same therapeutic concentration of MET presented with significantly higher disease burden. This warrants further studies to investigate the disparate efficacy of MET against tuberculosis in diabetic and nondiabetic individuals.
Collapse
|
31
|
Huang X, Hong X, Wang J, Sun T, Yu T, Yu Y, Fang J, Xiong H. Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMedicine 2020; 61:103037. [PMID: 33039709 PMCID: PMC7553239 DOI: 10.1016/j.ebiom.2020.103037] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The effect of metformin on gut microbiota has been reported, but whether metformin can suppress colorectal cancer (CRC) by affecting gut microbiota composition and rescue F. nucleatum-induced tumourigenicity remains unclear. METHODS To identify microbiota associated with both CRC occurrence and metformin treatment, first, we reanalyzed the gut microbiome of our previous data on two human cohorts of normal and CRC individuals. Subsequently, we summarized microbiota altered by metformin from published literatures. Several taxa, including Fusobacterium, were associated with both CRC occurrence and metformin treatment. We investigated the effect of metformin on APCMin/+ mice given with or without F. nucleatum. 16S rRNA gene sequencing was performed. FINDINGS We summarized 131 genera altered by metformin from 18 published literatures. Five genera reported to be changed by metformin, including Bacteroides, Streptococcus, Achromobacter, Alistipes and Fusobacterium, were associated with CRC in both of our human cohorts. Metformin relieved the symptoms caused by F. nucleatum administration in APCMin/+ mice, and showed promise in suppressing intestinal tumour formation and rescuing F. nucleatum-induced tumourigenicity. Administration of F. nucleatum and/or metformin had effect on gut microbiome structure, composition and functions of APCMin/+ mice. INTERPRETATION This study pioneers in predicting critical CRC-associated taxa contributing to the antitumour effect of metformin, and correlating gut microbiome with the antitumour effect of metformin in experimental animals. We presented a basis for future investigations into metformin's potential effect on suppressing F. nucleatum-induced tumor formation in vivo. FUNDING This work was supported by grants from the National Natural Science Foundation of China (31701250).
Collapse
Affiliation(s)
- Xiaowen Huang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xialu Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jilin Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tiantian Sun
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China
| | - TaChung Yu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Hua Xiong
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
32
|
Elbere I, Silamikelis I, Dindune II, Kalnina I, Ustinova M, Zaharenko L, Silamikele L, Rovite V, Gudra D, Konrade I, Sokolovska J, Pirags V, Klovins J. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One 2020; 15:e0241338. [PMID: 33125401 PMCID: PMC7598494 DOI: 10.1371/journal.pone.0241338] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background The study was conducted to investigate the effects of metformin treatment on the human gut microbiome’s taxonomic and functional profile in the Latvian population, and to evaluate the correlation of these changes with therapeutic efficacy and tolerance. Methods In this longitudinal observational study, stool samples for shotgun metagenomic sequencing-based analysis were collected in two cohorts. The first cohort included 35 healthy nondiabetic individuals (metformin dose 2x850mg/day) at three time-points during metformin administration. The second cohort was composed of 50 newly-diagnosed type 2 diabetes patients (metformin dose–determined by an endocrinologist) at two concordant times. Patients were defined as Responders if their HbA1c levels during three months of metformin therapy had decreased by ≥12.6 mmol/mol (1%), while in Non-responders HbA1c were decreased by <12.6 mmol/mol (1%). Results Metformin reduced the alpha diversity of microbiota in healthy controls (p = 0.02) but not in T2D patients. At the species level, reduction in the abundance of Clostridium bartlettii and Barnesiella intestinihominis, as well as an increase in the abundance of Parabacteroides distasonis and Oscillibacter unclassified overlapped between both study groups. A large number of group-specific changes in taxonomic and functional profiles was observed. We identified an increased abundance of Prevotella copri (FDR = 0.01) in the Non-Responders subgroup, and enrichment of Enterococcus faecium, Lactococcus lactis, Odoribacter, and Dialister at baseline in the Responders group. Various taxonomic units were associated with the observed incidence of side effects in both cohorts. Conclusions Metformin effects are different in T2D patients and healthy individuals. Therapy induced changes in the composition of gut microbiome revealed possible mediators of observed short-term therapeutic effects. The baseline composition of the gut microbiome may influence metformin therapy efficacy and tolerance in T2D patients and could be used as a powerful prediction tool.
Collapse
Affiliation(s)
- Ilze Elbere
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Monta Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Konrade
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | | | - Valdis Pirags
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- * E-mail:
| |
Collapse
|
33
|
Dong W, Huang K, Yan Y, Wan P, Peng Y, Zeng X, Cao Y. Long-Term Consumption of 2- O-β-d-Glucopyranosyl-l-ascorbic Acid from the Fruits of Lycium barbarum Modulates Gut Microbiota in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8863-8874. [PMID: 32706586 DOI: 10.1021/acs.jafc.0c04007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The modulating effect of 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), a natural derivative of ascorbic acid from the fruits of Lycium barbarum, on mice gut microbiota was investigated in the present study. It was found that AA-2βG was able to adjust the structure of mice gut microbiota, elevated the relative abundances of Verrucomicrobia, Porphyromonadaceae, Verrucomicrobiaceae, and Erysipelotrichaceae, and meanwhile reduced the relative abundances of Firmicutes, Lachnospiraceae, Rikenellaceae, Ruminococcaceae, Bdellovibrionaceae, Anaeroplasmataceae, and Peptococcaceae. Through the linear discriminant analysis effect size analysis, the key microbiota that were found to be significantly changed after long-term consumption of AA-2βG were Ruminococcaceae, Porphyromonadaceae, Lachnospiraceae, and Rikenellaceae. In addition, AA-2βG could upregulate pro-inflammatory cytokines, promote tight junctions between intestinal cells, facilitate the generation of short-chain fatty acids (SCFAs), and upregulate the mRNA expression level of SCFAs receptors, indicating that AA-2βG might promote organism health. The results demonstrated that AA-2βG might maintain organism health by modulating gut microbiota.
Collapse
Affiliation(s)
- Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| |
Collapse
|
34
|
Meng Y, Xiang R, Yan H, Zhou Y, Hu Y, Yang J, Zhou Y, Cui Q. Transcriptomic landscape profiling of metformin-treated healthy mice: Implication for potential hypertension risk when prophylactically used. J Cell Mol Med 2020; 24:8138-8150. [PMID: 32529766 PMCID: PMC7348147 DOI: 10.1111/jcmm.15472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, the first-line anti-diabetic drug metformin shows versatile protective effects against several diseases and is potentially prescribed to healthy individual for prophylactic use against ageing or other pathophysiological processes. However, for healthy individuals, it remains unclear what effects metformin treatment will induce on their bodies. A systematic profiling of the molecular landscape of metformin treatment is expected to provide crucial implications for this issue. Here, we delineated the first transcriptomic landscape induced by metformin in 10 tissues (aorta, brown adipose, brain, eye, heart, liver, kidney, skeletal muscle, stomach and testis) of healthy mice by using RNA-sequencing technique. A comprehensive computational analysis was performed. The overrepresentation of cardiovascular disease-related gene sets, positive correlation with hypertension-related transcriptomic signatures and the associations of drugs with hypertensive side effect together indicate that although metformin does exert various beneficial effects, it would also increase the risk of hypertension in healthy mice. This prediction was experimentally validated by an independent animal experiments. Together, this study provided important resource necessary for investigating metformin's beneficial/deleterious effects on various healthy tissues, when it is potentially prescribed to healthy individual for prophylactic use.
Collapse
Affiliation(s)
- Yuhong Meng
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Rui Xiang
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Han Yan
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yiran Zhou
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yuntao Hu
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Jichun Yang
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yuan Zhou
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Qinghua Cui
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| |
Collapse
|
35
|
Wu WK, Ivanova EA, Orekhov AN. Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Semin Cancer Biol 2020; 70:85-97. [PMID: 32610150 DOI: 10.1016/j.semcancer.2020.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Human gut microbiota is a dynamic and variable system that can change over time and in response to different diets and treatments. There is currently no doubt that gut microbiota can provide interesting therapeutic opportunities, since it can metabolize biologically active molecules, drugs, and their precursors, and control their bioavailability. Moreover, it can produce both beneficial and dangerous metabolites that influence host's health. In this review, we summarize the current knowledge on the involvement of gut microbiota in two chronic human pathologies that represent the greatest challenges of modern medicine: atherosclerosis and cancer. Interesting parallels are observed between the mechanisms and possible treatment approaches of these pathologies. Some of the common effects of therapeutic agents targeting both pathologies, such as anti-inflammatory activity, are partially mediated by the gut microbiota. We will discuss the effects of common drugs (metformin, statins and aspirin) and various nutraceuticals on gut microbiota and outline the pathways of microbial involvement in mediating the pleiotropic beneficial effects of these agents in atherosclerosis and cancer.
Collapse
Affiliation(s)
- Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | | | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia; Institute of Human Morphology, 117418, Moscow, Russia.
| |
Collapse
|
36
|
Guo J, Li Y, Duan H, Yuan L. Metformin Suppresses the Proliferation and Promotes the Apoptosis of Colon Cancer Cells Through Inhibiting the Expression of Long Noncoding RNA-UCA1. Onco Targets Ther 2020; 13:4169-4181. [PMID: 32523353 PMCID: PMC7234977 DOI: 10.2147/ott.s245091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE LncRNA-UCA1 has been proven to facilitate the proliferation and metastasis of colon cancer. Whether metformin inhibits the progression of colon cancer by suppressing lncRNA-UCA1 remains unknown. In this research, we aimed to explore the role of Metformin playing in pathogenesis of colon cancer. MATERIALS AND METHODS Using qRT-PCR, we measured the expression of five tumor-promoting lncRNAs in SW480 and SW620 colon cancer cells. Then, we conducted Western blotting and immunohistochemistry to evaluate the effects of MET or UCA1 knockdown or the combined MET+ UCA1 knockdown on the activities of the PI3K/AKT and ERK pathways in vitro and in tumor tissues obtained from tumor-bearing nude mice. RESULTS The results from CCK-8 assays showed that MET dose-dependently and time-dependently inhibited the viability of the colon cancer cells in vitro. Flow cytometry revealed that MET promoted the apoptosis of the SW480 and SW620 cells. qRT-PCR showed that lncRNA-UCA1 had the highest expression among the five lncRNAs. Suppressing UCA1 expression by siRNA or shRNA could further enhance the metformin-mediated anticancer effects against colon cancer in vitro and in vivo. Metformin decreased the UCA1 expression and further inhibited the proliferation and promoted the apoptosis of the colon cancer cells, which were associated with inactivation of the PI3K/AKT and ERK signaling pathways in vitro and in the tumor tissues obtained from the mice. CONCLUSION These results indicated that metformin has potential anticancer properties and revealed the anticancer mechanisms of metformin against colon cancer via regulating lncRNA-UCA1.
Collapse
Affiliation(s)
- Jianbo Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - He Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lu Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
37
|
Simopoulos CMA, Ning Z, Zhang X, Li L, Walker K, Lavallée-Adam M, Figeys D. pepFunk: a tool for peptide-centric functional analysis of metaproteomic human gut microbiome studies. Bioinformatics 2020; 36:4171-4179. [DOI: 10.1093/bioinformatics/btaa289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
Enzymatic digestion of proteins before mass spectrometry analysis is a key process in metaproteomic workflows. Canonical metaproteomic data processing pipelines typically involve matching spectra produced by the mass spectrometer to a theoretical spectra database, followed by matching the identified peptides back to parent-proteins. However, the nature of enzymatic digestion produces peptides that can be found in multiple proteins due to conservation or chance, presenting difficulties with protein and functional assignment.
Results
To combat this challenge, we developed pepFunk, a peptide-centric metaproteomic workflow focused on the analysis of human gut microbiome samples. Our workflow includes a curated peptide database annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) terms and a gene set variation analysis-inspired pathway enrichment adapted for peptide-level data. Analysis using our peptide-centric workflow is fast and highly correlated to a protein-centric analysis, and can identify more enriched KEGG pathways than analysis using protein-level data. Our workflow is open source and available as a web application or source code to be run locally.
Availability and implementation
pepFunk is available online as a web application at https://shiny.imetalab.ca/pepFunk/ with open-source code available from https://github.com/northomics/pepFunk.
Contact
dfigeys@uottawa.ca
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Krystal Walker
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine, SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
38
|
Nayak G, Salian SR, Agarwal P, Suresh Poojary P, Rao A, Kumari S, Kalthur SG, Shreya AB, Mutalik S, Adiga SK, Kalthur G. Antidiabetic drug metformin affects the developmental competence of cleavage-stage embryos. J Assist Reprod Genet 2020; 37:1227-1238. [PMID: 32335799 PMCID: PMC7244706 DOI: 10.1007/s10815-020-01709-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Metformin is the most commonly prescribed drug in the management of metabolic disorders such as polycystic ovarian syndrome (PCOS) and gestational diabetes in women of reproductive age. Insulin-sensitizing effect of metformin helps in improving from PCOS features such as hyperandrogenism, anovulation, and infertility. However, its ability to cross placental barrier raises concern about safety of the drug on early embryonic development. In this study, we evaluated the effect of metformin on the ovarian function and embryo development. METHODS Adult Swiss albino female mice were administered with metformin (0, 50, 100, and 200 mg/kg body weight) for 4 weeks and assessed for reproductive function and preimplantation embryo development. Further, effect of metformin (0, 10, 25, 50, 100, 250, and 500 μg/mL) exposure to 2-cell-stage embryos was tested under in vitro conditions. RESULTS Metformin did not alter the body weight, blood glucose, ovarian weight, and follicular reserve. However, the early embryo development was significantly affected in mice treated with metformin in vivo at highest dose. Moreover, embryos which were exposed to metformin in vitro showed dose-dependent decline in blastocyst rate and hatching rate. Furthermore, at highest concentration of metformin (500 μg/mL), all the embryos were arrested at compaction stage. CONCLUSION The study revealed that metformin affects the early embryonic development and raises concern about its use during conception.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Agarwal
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Suresh Poojary
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
39
|
Chae S, Kim DJ, Cho JY. Complex influences of gut microbiome metabolism on various drug responses. Transl Clin Pharmacol 2020; 28:7-16. [PMID: 32274377 PMCID: PMC7136083 DOI: 10.12793/tcp.2020.28.e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome closely interacts with the host, and it has a major influence on drug response. Many studies have reported the possible microbial influences on drugs and the possible influences of drugs on the microbiome. This knowledge has led to a better understanding of intra- and inter-individual variabilities in clinical pharmacology. For a more precise understanding of the complex correlation between the microbiome and drugs, in this review, we summarized the current knowledge on the interactions between the gut microbiome and drug response. Moreover, we suggest gut microbiome-derived metabolites as possible modulators of drug response and recommend metabolomics as a powerful tool to achieve such understanding.
Collapse
Affiliation(s)
- Sihyun Chae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul 03080, Korea
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul 03080, Korea
| |
Collapse
|
40
|
Zhang Q, Hu N. Effects of Metformin on the Gut Microbiota in Obesity and Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:5003-5014. [PMID: 33364804 PMCID: PMC7751595 DOI: 10.2147/dmso.s286430] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Metformin is a first-line treatment for type 2 diabetes mellitus (T2DM); however, its underlying mechanism is not fully understood. Gut microbiota affect the development and progression of T2DM. In recent years, an increasing number of studies has focused on the relationship between metformin and gut microbiota, suggesting that metformin might exert part of its hypoglycemic effect through these microbes. However, most of these results were not consistent due to the complex composition of the microbiota, the differences between species, the large variation between individuals, and the differences in experimental design, bringing great obstacle for our better understanding of the effects of metformin on the gut microbiota. Here, we reviewed the published papers concerning about the impacts of metformin on the gut microbiota of mice, rats, and humans with obesity or T2DM, and summarized the changes of gut microbiota composition caused by metformin and the possible underlying hypoglycemic mechanism which is related to gut microbiota. It was found that the proportions of some microbiota, such as phyla Bacteroidetes and Verrucomicrobia and genera Akkermansia, Bacteroides and Escherichia, were significantly affected by metformin in several studies. Metformin may exert part of hypoglycemic effects by altering the gut microbiota in ways that maintain the integrity of the intestinal barrier, promote the production of short-chain fatty acids (SCFAs), regulate bile acid metabolism, and improve glucose homeostasis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacy, Changzhou No.7 People’s Hospital, Changzhou213000, People’s Republic of China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou213000, People’s Republic of China
- Correspondence: Nan Hu Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou213000, People’s Republic of ChinaTel +86-519-68870870 Email
| |
Collapse
|
41
|
Cao TTB, Wu KC, Hsu JL, Chang CS, Chou C, Lin CY, Liao YM, Lin PC, Yang LY, Lin HW. Effects of Non-insulin Anti-hyperglycemic Agents on Gut Microbiota: A Systematic Review on Human and Animal Studies. Front Endocrinol (Lausanne) 2020; 11:573891. [PMID: 33071980 PMCID: PMC7538596 DOI: 10.3389/fendo.2020.573891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 01/30/2023] Open
Abstract
Background: As growing evidence links gut microbiota with the therapeutic efficacy and side effects of anti-hyperglycemic drugs, this article aims to provide a systematic review of the reciprocal interactions between anti-hyperglycemic drugs and gut microbiota taxa, which underlie the effect of the gut microbiome on diabetic control via bug-host interactions. Method: We followed the PRISMA requirements to perform a systematic review on human vs. animal gut microbiota data in PubMed, SCOPUS, and EMBASE databases, and used Cochrane, ROBIN-I, and SYRCLE tools to assess potential bias risks. The outcomes of assessment were trends on gut microbiota taxa, diversity, and associations with metabolic control (e.g., glucose, lipid) following anti-hyperglycemic treatment. Results: Of 2,804 citations, 64 studies (17/humans; 47/mice) were included. In human studies, seven were randomized trials using metformin or acarbose in obese, pre-diabetes, and type 2 diabetes (T2D) patients. Treatment of pre-diabetes and newly diagnosed T2D patients with metformin or acarbose was associated with decreases in genus of Bacteroides, accompanied by increases in both Bifidobacterium and Lactobacillus. Additionally, T2D patients receiving metformin showed increases in various taxa of the order Enterobacteriales and the species Akkermansia muciniphila. Of seven studies with significant differences in beta-diversity, the incremental specific taxa were associated with the improvement of glucose and lipid profiles. In mice, the effects of metformin on A. muciniphila were similar, but an inverse association with Bacteroides was reported. Animal studies on other anti-hyperglycemic drugs, however, showed substantial variations in results. Conclusions: The changes in specific taxa and β-diversity of gut microbiota were associated with metformin and acarbose in humans while pertinent information for other anti-hyperglycemic drugs could only be obtained in rodent studies. Further human studies on anti-hyperglycemic drugs other than metformin and acarbose are needed to explore gut microbiota's role in their therapeutic efficacies and side effects.
Collapse
Affiliation(s)
- Thao T. B. Cao
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
- Department of Clinical Pharmacy, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Kun-Chang Wu
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
| | - Jye-Lin Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
| | - Chiahung Chou
- Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan
| | - Chen-Yuan Lin
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
- Division of Hematology and Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Yu-Min Liao
- Division of Hematology and Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Pei-Chun Lin
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung City, Taiwan
- Biomedical Technology Research and Development Center, China Medical University Hospital, Taichung City, Taiwan
| | - Hsiang-Wen Lin
- School of Pharmacy and Graduate Institute, China Medical University, Taichung City, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung City, Taiwan
- Department of Pharmacy System, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Hsiang-Wen Lin
| |
Collapse
|
42
|
Du Y, Li X, Su C, Wang L, Jiang J, Hong B. The human gut microbiome - a new and exciting avenue in cardiovascular drug discovery. Expert Opin Drug Discov 2019; 14:1037-1052. [PMID: 31315489 DOI: 10.1080/17460441.2019.1638909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Over the past decade, numerous research efforts have identified the gut microbiota as a novel regulator of human metabolic syndrome and cardiovascular disease (CVD). With the elucidation of underlying molecular mechanisms of the gut microbiota and its metabolites, the drug-discovery process of CVD therapeutics might be expedited. Areas covered: The authors describe the evidence concerning the impact of gut microbiota on metabolic disorders and CVD and summarize the current knowledge of the gut microbial mechanisms that underlie CVD with a focus on microbial metabolites. In addition, they discuss the potential impact of the gut microbiota on the drug efficacy of available cardiometabolic therapeutic agents. Most importantly, the authors review the role of the gut microbiome as a promising source of potential drug targets and novel therapeutics for the development of new treatment modalities for CVD. This review also presents the various effective strategies to investigate the gut microbiome for CVD drug-discovery approaches. Expert opinion: With the elucidation of its causative role in cardiometabolic disease and atherosclerosis, the human gut microbiome holds promises as a reservoir of novel potential therapeutic targets as well as novel therapeutic agents, paving a new and exciting avenue in cardiovascular drug discovery.
Collapse
Affiliation(s)
- Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| | - Chunyan Su
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Jiandong Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| |
Collapse
|
43
|
Ponziani FR, Nicoletti A, Gasbarrini A, Pompili M. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol 2019; 11:1758835919848184. [PMID: 31205505 PMCID: PMC6535703 DOI: 10.1177/1758835919848184] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is involved in the maintenance of the homeostasis of the human body and its alterations are associated with the development of different pathological conditions. The liver is the organ most exposed to the influence of the gut microbiota, and recently important connections between the intestinal flora and hepatocellular carcinoma (HCC) have been described. In fact, HCC is commonly associated with liver cirrhosis and develops in a microenvironment where inflammation, immunological alterations, and cellular aberrations are dramatically evident. Prevention and diagnosis in the earliest stages are still the most effective weapons in fighting this tumor. Animal models show that the gut microbiota can be involved in the promotion and progression of HCC directly or through different pathogenic mechanisms. Recent data in humans have confirmed these preclinical findings, shedding new light on HCC pathogenesis. Limitations due to the different experimental design, the ethnic and hepatological setting make it difficult to compare the results and draw definitive conclusions, but these studies lay the foundations for a pathogenetic redefinition of HCC. Therefore, it is evident that the characterization of the gut microbiota and its modulation can have an enormous diagnostic, preventive, and therapeutic potential, especially in patients with early stage HCC.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, 00168, Italy
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
44
|
Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci Rep 2019; 9:6668. [PMID: 31040374 PMCID: PMC6491483 DOI: 10.1038/s41598-019-43228-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The antidiabetic drug metformin has been proposed to affect non-alcoholic fatty liver disease (NAFLD) through its effects on intestinal microbiota and barrier function. However, so far most studies focused on long-term effects and more progressed disease stages. The aim of this study was to assess in two experimental settings, if the onset of NAFLD is associated with changes of intestinal microbiota and barrier function and to determine effects of metformin herein. C57Bl/6J mice were fed a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) for four days or six weeks ±300 mg/kg BW/day metformin (Met). Markers of liver health, intestinal barrier function and microbiota composition were assessed. Metformin treatment markedly attenuated FFC-induced NAFLD in both experiments with markers of inflammation and lipidperoxidation in livers of FFC + Met-fed mice being almost at the level of controls. Metformin treatment attenuated the loss of tight junction proteins in small intestine and the increase of bacterial endotoxin levels in portal plasma. Changes of intestinal microbiota found in FFC-fed mice were also significantly blunted in FFC + Met-fed mice. Taken together, protective effects of metformin on the onset of NAFLD are associated with changes of intestinal microbiota composition and lower translocation of bacterial endotoxins.
Collapse
|
45
|
Luo C, Wang X, Huang H, Mao X, Zhou H, Liu Z. Effect of Metformin on Antipsychotic-Induced Metabolic Dysfunction: The Potential Role of Gut-Brain Axis. Front Pharmacol 2019; 10:371. [PMID: 31024322 PMCID: PMC6465968 DOI: 10.3389/fphar.2019.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Antipsychotics are the first-line medications prescribed for patients with schizophrenia or other mental disorders. Cumulative evidence has revealed that metabolic dysfunctions frequently occur in patients receiving antipsychotics, especially second-generation antipsychotics, and these effects may decrease patient compliance and increase health costs. Metformin is an effective pharmaceutical adjuvant for ameliorating antipsychotic-induced metabolic dysfunction (AIMD) in clinical practice. However, the mechanism of the effects of metformin on AIMD remains unclear. The gut-brain axis is a bidirectional communication system between the gastrointestinal tract and the central nervous system and has been associated with many pathological and physiological conditions, such as those related to metabolism. Antipsychotics interact with and have affinity for dopamine receptors and other receptors in the brain, and treatment with these antipsychotics has been shown to influence gut microbiota metabolism and composition, as observed in both animal and human studies. Metformin exerts an antidiabetic effect that is correlated with activation of AMP-kinase in the hypothalamus, and metformin also influences gut flora. Therefore, the gut-brain axis may play a role in the effect of metformin on AIMD. Since no direct evidence is available, this perspective may provide a direction for further research.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab 2019; 1:34-46. [PMID: 32694818 DOI: 10.1038/s42255-018-0017-4] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
The gut microbiome has emerged as a key regulator of host metabolism. Here we review the various mechanisms through which the gut microbiome influences the energy metabolism of its host, highlighting the complex interactions between gut microbes, their metabolites and host cells. Among the most important bacterial metabolites are short-chain fatty acids, which serve as a direct energy source for host cells, stimulate the production of gut hormones and act in the brain to regulate food intake. Other microbial metabolites affect systemic energy expenditure by influencing thermogenesis and adipose tissue browning. Both direct and indirect mechanisms of action are known for specific metabolites, such as bile acids, branched chain amino acids, indole propionic acid and endocannabinoids. We also discuss the roles of specific bacteria in the production of specific metabolites and explore how external factors, such as antibiotics and exercise, affect the microbiome and thereby energy homeostasis. Collectively, we present a large body of evidence supporting the concept that gut microbiota-based therapies can be used to modulate host metabolism, and we expect to see such approaches moving from bench to bedside in the near future.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Charlotte Lefort
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Clara Depommier
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|