1
|
Halbach L, Kitzinger K, Hansen M, Littmann S, Benning LG, Bradley JA, Whitehouse MJ, Olofsson M, Mourot R, Tranter M, Kuypers MMM, Ellegaard-Jensen L, Anesio AM. Single-cell imaging reveals efficient nutrient uptake and growth of microalgae darkening the Greenland Ice Sheet. Nat Commun 2025; 16:1521. [PMID: 39971895 PMCID: PMC11840010 DOI: 10.1038/s41467-025-56664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Blooms of dark pigmented microalgae accelerate glacier and ice sheet melting by reducing the surface albedo. However, the role of nutrient availability in regulating algal growth on the ice remains poorly understood. Here, we investigate glacier ice algae on the Greenland Ice Sheet, providing single-cell measurements of carbon:nitrogen:phosphorus (C:N:P) ratios and assimilation rates of dissolved inorganic carbon (DIC), ammonium and nitrate following nutrient amendments. The single-cell analyses reveal high C:N and C:P atomic ratios in algal biomass as well as intracellular P storage. DIC assimilation rates are not enhanced by ammonium, nitrate, or phosphate addition. Our combined results demonstrate that glacier ice algae can optimise nutrient uptake, facilitating the potential colonization of newly exposed bare ice surfaces without the need for additional nutrient inputs. This adaptive strategy is particularly important given accelerated climate warming and the expansion of melt areas on the Greenland Ice Sheet.
Collapse
Affiliation(s)
- Laura Halbach
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Martin Hansen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- Department of Environmental and Resource Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Liane G Benning
- GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - James A Bradley
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Malin Olofsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rey Mourot
- GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Martyn Tranter
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | | | - Lea Ellegaard-Jensen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark.
| |
Collapse
|
2
|
Crosta A, Valle B, Caccianiga M, Gobbi M, Ficetola FG, Pittino F, Franzetti A, Azzoni RS, Lencioni V, Senese A, Corlatti L, Buda J, Poniecka E, Novotná Jaroměřská T, Zawierucha K, Ambrosini R. Ecological interactions in glacier environments: a review of studies on a model Alpine glacier. Biol Rev Camb Philos Soc 2025; 100:227-244. [PMID: 39247954 PMCID: PMC11718624 DOI: 10.1111/brv.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Glaciers host a variety of cold-adapted taxa, many of which have not yet been described. Interactions among glacier organisms are even less clear. Understanding ecological interactions is crucial to unravelling the functioning of glacier ecosystems, particularly in light of current glacier retreat. Through a review of the existing literature, we aim to provide a first overview of the biodiversity, primary production, trophic networks, and matter flow of a glacier ecosystem. We use the Forni Glacier (Central Italian Alps) - one of the best studied alpine glaciers in the world - as a model system for our literature review and integrate additional original data. We reveal the importance of allochthonous organic matter inputs, of Cyanobacteria and eukaryotic green algae in primary production, and the key role of springtails (Vertagopus glacialis) on the glacier surface in sustaining populations of two apex terrestrial predators: Nebria castanea (Coleoptera: Carabidae) and Pardosa saturatior (Araneae: Lycosidae). The cryophilic tardigrade Cryobiotus klebelsbergi is the apex consumer in cryoconite holes. This short food web highlights the fragility of nodes represented by invertebrates, contrasting with structured microbial communities in all glacier habitats. Although further research is necessary to quantify the ecological interactions of glacier organisms, this review summarises and integrates existing knowledge about the ecological processes on alpine glaciers and supports the importance of glacier-adapted organisms in providing ecosystem services.
Collapse
Affiliation(s)
- Arianna Crosta
- Department of Environmental Science and PolicyUniversity of Milanvia Celoria 26Milan20133Italy
| | - Barbara Valle
- Department of Life SciencesUniversità degli Studi di SienaVia A. Moro 2Siena53100Italy
- NBFC, National Biodiversity Future CenterPiazza Marina, 61Palermo90133Italy
| | - Marco Caccianiga
- Department of BioscienceUniversity of Milanvia Celoria 26Milan20133Italy
| | - Mauro Gobbi
- Climate and Ecology Unit, Research and Museum Collections OfficeMUSE‐Science MuseumCorso del Lavoro e della Scienza 3Trento38122Italy
| | | | - Francesca Pittino
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Andrea Franzetti
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Roberto Sergio Azzoni
- Department of Earth Sciences ‘A. Desio’University of Milanvia Mangiagalli 34Milan20133Italy
| | - Valeria Lencioni
- Climate and Ecology Unit, Research and Museum Collections OfficeMUSE‐Science MuseumCorso del Lavoro e della Scienza 3Trento38122Italy
| | - Antonella Senese
- Department of Environmental Science and PolicyUniversity of Milanvia Celoria 26Milan20133Italy
| | - Luca Corlatti
- ERSAF – Direzione Parco Stelviovia De Simoni 42Bormio(SO) 23032Italy
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgTennenbacher Str. 4Freiburg79106Germany
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 6Poznań61‐614Poland
| | - Ewa Poniecka
- Laboratory of RNA Biology – ERA Chairs GroupInternational Institute of Molecular and Cell Biology in Warsaw4 Ks. Trojdena StreetWarsaw02‐109Poland
| | - Tereza Novotná Jaroměřská
- Department of Ecology, Faculty of ScienceCharles UniversityViničná 7Prague 2CZ‐12844Czech Republic
- Institute of Soil Biology and BiogeochemistryBiology Centre CASČeské Budějovice37005Czech Republic
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 6Poznań61‐614Poland
| | - Roberto Ambrosini
- Department of Environmental Science and PolicyUniversity of Milanvia Celoria 26Milan20133Italy
| |
Collapse
|
3
|
Arias RS, Cantonwine EG, Orner VA, Walk TE, Massa AN, Stewart JE, Dobbs JT, Manchester A, Higbee PS, Lamb MC, Sobolev VS. Characterizing phenotype variants of Cercosporidium personatum, causal agent of peanut late leaf spot disease, their morphology, genetics and metabolites. Sci Rep 2025; 15:1405. [PMID: 39789282 PMCID: PMC11718120 DOI: 10.1038/s41598-025-85953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN. We characterized, for the first time in CP, anthraquinone (AQ) precursors of dothistromin (DOT), including averantin, averufin, norsolorinic acid, versicolorin B, versicolorin A, nidurufin and averufanin. BROWN had the highest AQ and melanin (15 mg/g DW) contents. RED had the highest ergosterol (855 µM FW) and chitin (beta-glucans, 4% DW) contents. RED and TAN had higher resistance to xenobiotics (p ≤ 1.0E-3), including chlorothalonil, tebuconazole and caffeine, compared to CP NRRL 64,463. In RED, TAN, and BROWN, rates of single nucleotide polymorphisms (SNP) (1.4-1.7 nt/kb) and amino acid changes (3k-4k) were higher than in NRRL 64,463. Differential gene expression (p ≤ 1.0E-5) was observed in 47 pathogenicity/virulence genes, 41 carbohydrate-active enzymes (CAZymes), and 23 pigment/mycotoxin biosynthesis genes. We describe the MAT1 locus, and a method to evaluate CP-xenobiotic resistance in 5 days. Chemical profiles indicate each CP morphotype could trigger different immune response in plants, probably hindering development of durable LLS resistance.
Collapse
Affiliation(s)
- Renee S Arias
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA.
| | - Emily G Cantonwine
- Valdosta State University, 1500 N. Patterson St, Valdosta, GA, 31698, USA
| | - Valerie A Orner
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Travis E Walk
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Alicia N Massa
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, 301 University Ave, Fort Collins, CO, USA
| | - John T Dobbs
- Department of Agricultural Biology, Colorado State University, 301 University Ave, Fort Collins, CO, USA
| | - Atalya Manchester
- Valdosta State University, 1500 N. Patterson St, Valdosta, GA, 31698, USA
| | - Pirada S Higbee
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Marshall C Lamb
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| | - Victor S Sobolev
- USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA
| |
Collapse
|
4
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
5
|
Trejos-Espeleta JC, Marin-Jaramillo JP, Schmidt SK, Sommers P, Bradley JA, Orsi WD. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proc Natl Acad Sci U S A 2024; 121:e2402689121. [PMID: 38954550 PMCID: PMC11252988 DOI: 10.1073/pnas.2402689121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.
Collapse
Affiliation(s)
- Juan Carlos Trejos-Espeleta
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
| | - Juan P. Marin-Jaramillo
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - James A. Bradley
- Aix Marseille University, University of Toulon, Centre national de la recherche scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO), Marseille, France13009
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom, E1 4NS
| | - William D. Orsi
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany, 80333
| |
Collapse
|
6
|
Singh P, Singh SM, Segawa T, Singh PK. Bacterial diversity and biopotentials of Hamtah glacier cryoconites, Himalaya. Front Microbiol 2024; 15:1362678. [PMID: 38751720 PMCID: PMC11094618 DOI: 10.3389/fmicb.2024.1362678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Cryoconite is a granular structure present on the glaciers and ice sheets found in polar regions including the Himalayas. It is composed of organic and inorganic matter which absorb solar radiations and reduce ice surface albedo, therefore impacting the melting and retreat of glaciers. Though climate warming has a serious impact on Himalayan glaciers, the biodiversity of sub-glacier ecosystems is poorly understood. Moreover, cryoconite holes are unique habitats for psychrophile biodiversity hotspots in the NW Himalayas, but unfortunately, studies on the microbial diversity of such habitats remain elusive. Therefore, the current study was designed to explore the bacterial diversity of the Hamtah Glacier Himalaya using both culturable and non-culturable approaches. The culturable bacterial count ranged from 2.0 × 103 to 8.8 × 105 colony-forming units (CFUs)/g at the different locations of the glacier. A total of 88 bacterial isolates were isolated using the culturable approach. Based on the 16S ribosomal RNA gene (16S rRNA), the identified species belong to seven genera, namely, Cryobacterium, Duganella, Janthinobacterium, Pseudomonas, Peribacillus, Psychrobacter, and Sphingomonas. In the non-culturable approach, high-throughput sequencing of 16S rRNA genes (using MiSeq) showed unique bacterial community profiles and represented 440 genera belonging to 20 phyla, namely, Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Acidobacteria, Planctomycetes, Cyanobacteria, Verrucomicrobia, Spirochaetes, Elusimicrobia, Armatimonadetes, Gemmatimonadetes, Deinococcus-Thermus, Nitrospirae, Chlamydiae, Chlorobi, Deferribacteres, Fusobacteria, Lentisphaerae, and others. High relative abundances of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were observed in the samples. Phototrophic (Cyanobacteria and Chloroflexi) and nitrifier (Nitrospirae) in bacterial populations indicated sustenance of the micro-ecosystem in the oligotrophic glacier environment. The isolates varied in their phenotypic characteristics, enzyme activities, and antibiotic sensitivity. Furthermore, the fatty acid profiles of bacterial isolates indicate the predominance of branched fatty acids. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a major proportion of the total fatty acid composition. High cold-adapted enzyme activities such as lipase and cellulase expressed by Cryobacterium arcticum (KY783365) and protease and cellulase activities by Pseudomonas sp. strains (KY783373, KY783377-79, KY783382) provide evidence of the possible applications of these organisms. Additionally, antibiotic tests indicated that most isolates were sensitive to antibiotics. In conclusion, the present study contributed for the first time to bacterial diversity and biopotentials of cryoconites of Hamtah Glacier, Himalayas. Furthermore, the cold-adapted enzymes and polyunsaturated fatty acids (PUFAs) may provide an opportunity for biotechnology in the Himalayas. Inductively coupled plasma mass spectrometry (ICPMS) analyses showed the presence of several elements in cryoconites, providing a clue for the accelerating melting and retreating of the Hamtah glacier.
Collapse
Affiliation(s)
- Purnima Singh
- Indian Institute of Technology, Banaras Hindu University (IIT-BHU), Varanasi, India
| | | | - Takahiro Segawa
- National Institute of Polar Research, Tachikawa-shi, Tokyo, Japan
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College, Mizoram University (A Central University), Aizawl, India
| |
Collapse
|
7
|
Gostinčar C, Gunde-Cimerman N. Black yeasts in hypersaline conditions. Appl Microbiol Biotechnol 2024; 108:252. [PMID: 38441672 PMCID: PMC10914880 DOI: 10.1007/s00253-024-13052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.
Collapse
Affiliation(s)
- Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Doting EL, Jensen MB, Peter EK, Ellegaard-Jensen L, Tranter M, Benning LG, Hansen M, Anesio AM. The exometabolome of microbial communities inhabiting bare ice surfaces on the southern Greenland Ice Sheet. Environ Microbiol 2024; 26:e16574. [PMID: 38263628 DOI: 10.1111/1462-2920.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze-thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high-resolution mass spectrometry-based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo-F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo-F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe-microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces.
Collapse
Affiliation(s)
- Eva L Doting
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marie B Jensen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Elisa K Peter
- Interface Geochemistry Section, German Research Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Martyn Tranter
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Liane G Benning
- Interface Geochemistry Section, German Research Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martin Hansen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| |
Collapse
|
9
|
Jaarsma AH, Sipes K, Zervas A, Jiménez FC, Ellegaard-Jensen L, Thøgersen MS, Stougaard P, Benning LG, Tranter M, Anesio AM. Exploring microbial diversity in Greenland Ice Sheet supraglacial habitats through culturing-dependent and -independent approaches. FEMS Microbiol Ecol 2023; 99:fiad119. [PMID: 37791411 PMCID: PMC10580271 DOI: 10.1093/femsec/fiad119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
The microbiome of Greenland Ice Sheet supraglacial habitats is still underinvestigated, and as a result there is a lack of representative genomes from these environments. In this study, we investigated the supraglacial microbiome through a combination of culturing-dependent and -independent approaches. We explored ice, cryoconite, biofilm, and snow biodiversity to answer: (1) how microbial diversity differs between supraglacial habitats, (2) if obtained bacterial genomes reflect dominant community members, and (3) how culturing versus high throughput sequencing changes our observations of microbial diversity in supraglacial habitats. Genomes acquired through metagenomic sequencing (133 high-quality MAGs) and whole genome sequencing (73 bacterial isolates) were compared to the metagenome assemblies to investigate abundance within the total environmental DNA. Isolates obtained in this study were not dominant taxa in the habitat they were sampled from, in contrast to the obtained MAGs. We demonstrate here the advantages of using metagenome SSU rRNA genes to reflect whole-community diversity. Additionally, we demonstrate a proof-of-concept of the application of in situ culturing in a supraglacial setting.
Collapse
Affiliation(s)
- Ate H Jaarsma
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Mariane S Thøgersen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Liane G Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
10
|
Malard LA, Bergk-Pinto B, Layton R, Vogel TM, Larose C, Pearce DA. Snow Microorganisms Colonise Arctic Soils Following Snow Melt. MICROBIAL ECOLOGY 2023; 86:1661-1675. [PMID: 36939866 PMCID: PMC10497451 DOI: 10.1007/s00248-023-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Arctic soils are constantly subjected to microbial invasion from either airborne, marine, or animal sources, which may impact local microbial communities and ecosystem functioning. However, in winter, Arctic soils are isolated from outside sources other than snow, which is the sole source of microorganisms. Successful colonisation of soil by snow microorganisms depends on the ability to survive and compete of both, the invading and resident community. Using shallow shotgun metagenome sequencing and amplicon sequencing, this study monitored snow and soil microbial communities throughout snow melt to investigate the colonisation process of Arctic soils. Microbial colonisation likely occurred as all the characteristics of successful colonisation were observed. The colonising microorganisms originating from the snow were already adapted to the local environmental conditions and were subsequently subjected to many similar conditions in the Arctic soil. Furthermore, competition-related genes (e.g. motility and virulence) increased in snow samples as the snow melted. Overall, one hundred potentially successful colonisers were identified in the soil and, thus, demonstrated the deposition and growth of snow microorganisms in soils during melt.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Benoit Bergk-Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
- BioIT, TAG (Transversal Activities in Applied Genomics) Sciensano, 1050, Brussels, Belgium
| | - Rose Layton
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
11
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
12
|
Sen K, Bai M, Li J, Ding X, Sen B, Wang G. Spatial Patterns of Planktonic Fungi Indicate Their Potential Contributions to Biological Carbon Pump and Organic Matter Remineralization in the Water Column of South China Sea. J Fungi (Basel) 2023; 9:640. [PMID: 37367576 DOI: 10.3390/jof9060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi have long been known to be dynamic in coastal water columns with multiple trophic modes. However, little is known about their interactions with abiotic and biotic components, contribution to the biological carbon pump (BCP), and organic matter remineralization in the oceanic water column. In this study, we investigated how fungi vary spatially and how their variations relate to that of bacteria in the water column of the South China Sea (SCS). Fungi were about three orders less prevalent than bacteria, and the main factors influencing their distribution were depth, temperature, and distance from the sites of riverine inputs. The decline in the abundance of fungi with depth was less steep than that of bacteria. Correlation tests revealed a strong positive association between the abundance of fungi and bacteria, especially in the twilight (r = 0.62) and aphotic (r = 0.70) zones. However, the co-occurrence network revealed mutual exclusion between certain members of fungi and bacteria. The majority of fungi in the water column were saprotrophs, which indicated that they were generally involved in the degradation of organic matter, particularly in twilight and aphotic zones. Similar to bacteria, the involvement of fungi in the metabolism of carbohydrates, proteins, and lipids was predicted, pointing to their participation in the turnover of organic carbon and the biogeochemical cycling of carbon, nitrogen, and sulfur. These findings suggest that fungi play a role in BCP and support their inclusion in marine microbial ecosystem models.
Collapse
Affiliation(s)
- Kalyani Sen
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mohan Bai
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueyan Ding
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Centre for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Hu Y, Fair H, Liu Q, Wang Z, Duan B, Lu X. Diversity and co-occurrence networks of bacterial and fungal communities on two typical debris-covered glaciers, southeastern Tibetan Plateau. Microbiol Res 2023; 273:127409. [PMID: 37186995 DOI: 10.1016/j.micres.2023.127409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Debris-covered glaciers (DCGs) are globally distributed and thought to contain greater microbial diversity than clean surface continental glaciers, but the ecological characteristics of microbial communities on the surface of DCGs have remained underexplored. Here, we investigated bacterial and fungal diversity and co-occurrence networks on the supraglacial debris habitat of two DCGs (Hailuogou and Dagongba Glaciers) in the southeastern Tibetan Plateau. We found that the supraglacial debris harbored abundant microbes with Proteobacteria occupying more than half (51.5%) of the total bacteria operational taxonomic units. The composition, diversity, and co-occurrence networks of both bacterial and fungal communities in the debris were significantly different between Hailuogou Glacier and Dagongba Glacier even though the glaciers are geographically adjacent within the same mountain range. Bacteria were more diverse in the debris of the Dagongba Glacier, where a lower surface velocity and thicker debris layer allowed the supraglacial debris to continuously weather and accumulate nutrients. Fungi were more diverse in the debris of the Hailuogou Glacier, which experiences a wetter monsoonal climate, is richer in calcium, has greater debris instability, and greater ice velocity than the Dagongba Glacier. These factors may provide ideal conditions for the dispersal and propagation of fungi spores on the Hailuogou Glacier. In addition, we found an obvious gradient of bacterial diversity along the supraglacial debris transect on the Hailuogou Glacier. Bacterial diversity was lower where debris cover was thin and scattered and became more diverse near the glacial terminus in thick, slow-moving debris. No such increasing bacterial pattern was detected on the Dagongba Glacier, which implies a positive relationship of debris age, thickness, and weathering on bacterial diversity. Additionally, a highly connected bacterial co-occurrence network with low modularity was found in the debris of the Hailuogou Glacier. In contrast, debris from the Dagongba Glacier exhibited less connected but more modularized co-occurrence networks of both bacterial and fungal communities. These findings indicate that less disturbed supraglacial debris conditions are crucial for microbes to form stable communities on DCGs.
Collapse
Affiliation(s)
- Yang Hu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Heather Fair
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Qiao Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Ziwei Wang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China.
| | - Xuyang Lu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China.
| |
Collapse
|
14
|
Sannino C, Borruso L, Mezzasoma A, Turchetti B, Ponti S, Buzzini P, Mimmo T, Guglielmin M. The Unusual Dominance of the Yeast Genus Glaciozyma in the Deeper Layer in an Antarctic Permafrost Core (Adélie Cove, Northern Victoria Land) Is Driven by Elemental Composition. J Fungi (Basel) 2023; 9:jof9040435. [PMID: 37108890 PMCID: PMC10145851 DOI: 10.3390/jof9040435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Rock glaciers are relatively common in Antarctic permafrost areas and could be considered postglacial cryogenic landforms. Although the extensive presence of rock glaciers, their chemical–physical and biotic composition remain scarce. Chemical–physical parameters and fungal community (by sequencing the ITS2 rDNA, Illumina MiSeq) parameters of a permafrost core were studied. The permafrost core, reaching a depth of 6.10 m, was divided into five units based on ice content. The five units (U1–U5) of the permafrost core exhibited several significant (p < 0.05) differences in terms of chemical and physical characteristics, and significant (p < 0.05) higher values of Ca, K, Li, Mg, Mn, S, and Sr were found in U5. Yeasts dominated on filamentous fungi in all the units of the permafrost core; additionally, Ascomycota was the prevalent phylum among filamentous forms, while Basidiomycota was the dominant phylum among yeasts. Surprisingly, in U5 the amplicon sequence variants (ASVs) assigned to the yeast genus Glaciozyma represented about two-thirds of the total reads. This result may be considered extremely rare in Antarctic yeast diversity, especially in permafrost habitats. Based on of the chemical–physical composition of the units, the dominance of Glaciozyma in the deepest unit was correlated with the elemental composition of the core.
Collapse
Affiliation(s)
- Ciro Sannino
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Ambra Mezzasoma
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Benedetta Turchetti
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Stefano Ponti
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| | - Pietro Buzzini
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| |
Collapse
|
15
|
High prevalence of parasitic chytrids infection of glacier algae in cryoconite holes in Alaska. Sci Rep 2023; 13:3973. [PMID: 36894609 PMCID: PMC9998860 DOI: 10.1038/s41598-023-30721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Glacier algae, which are photosynthetic microbes growing on ice, considerably reduce the surface albedo of glaciers and accelerate their melting rate. Although the growth of glacier algae can be suppressed by parasitic chytrids, the impact of chytrids on algal populations is still largely unknown. In this study, we described the morphology of the chytrid infecting the glacier alga Ancylonema nordenskioeldii and quantified the prevalence of infection in different habitats on a mountain glacier in Alaska, USA. Microscopic observations revealed three different morphological types of chytrids with distinct rhizoid shapes. Variations in the size of the sporangia were probably because of their different growth stages, indicating that they actively propagated on the glacier. The prevalence of infection did not vary among sites with different elevations but was substantially higher in cryoconite holes (20%) than on ice surfaces (4%) at all sites. This indicates that cryoconite holes are hot spots for chytrid infections of glacier algae, and the dynamics of cryoconite holes might affect the host-parasite interactions between chytrids and the glacier algae, which may in turn alter surface albedo and ice melting.
Collapse
|
16
|
Bradley JA, Trivedi CB, Winkel M, Mourot R, Lutz S, Larose C, Keuschnig C, Doting E, Halbach L, Zervas A, Anesio AM, Benning LG. Active and dormant microorganisms on glacier surfaces. GEOBIOLOGY 2023; 21:244-261. [PMID: 36450703 PMCID: PMC10099831 DOI: 10.1111/gbi.12535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Glacier and ice sheet surfaces host diverse communities of microorganisms whose activity (or inactivity) influences biogeochemical cycles and ice melting. Supraglacial microbes endure various environmental extremes including resource scarcity, frequent temperature fluctuations above and below the freezing point of water, and high UV irradiance during summer followed by months of total darkness during winter. One strategy that enables microbial life to persist through environmental extremes is dormancy, which despite being prevalent among microbial communities in natural settings, has not been directly measured and quantified in glacier surface ecosystems. Here, we use a combination of metabarcoding and metatranscriptomic analyses, as well as cell-specific activity (BONCAT) incubations to assess the diversity and activity of microbial communities from glacial surfaces in Iceland and Greenland. We also present a new ecological model for glacier microorganisms and simulate physiological state-changes in the glacial microbial community under idealized (i) freezing, (ii) thawing, and (iii) freeze-thaw conditions. We show that a high proportion (>50%) of bacterial cells are translationally active in-situ on snow and ice surfaces, with Actinomycetota, Pseudomonadota, and Planctomycetota dominating the total and active community compositions, and that glacier microorganisms, even when frozen, could resume translational activity within 24 h after thawing. Our data suggest that glacial microorganisms respond rapidly to dynamic and changing conditions typical of their natural environment. We deduce that the biology and biogeochemistry of glacier surfaces are shaped by processes occurring over short (i.e., daily) timescales, and thus are susceptible to change following the expected alterations to the melt-regime of glaciers driven by climate change. A better understanding of the activity of microorganisms on glacier surfaces is critical in addressing the growing concern of climate change in Polar regions, as well as for their use as analogues to life in potentially habitable icy worlds.
Collapse
Affiliation(s)
- James A. Bradley
- Queen Mary University of LondonLondonUK
- GFZ German Research Centre for GeosciencesBerlinGermany
| | | | - Matthias Winkel
- GFZ German Research Centre for GeosciencesBerlinGermany
- Bundesanstalt für Risikobewertung (BfR)BerlinGermany
| | - Rey Mourot
- GFZ German Research Centre for GeosciencesBerlinGermany
- Freie University BerlinBerlinGermany
| | - Stefanie Lutz
- GFZ German Research Centre for GeosciencesBerlinGermany
| | - Catherine Larose
- Environmental Microbial GenomicsUniversité de LyonEcully CedexFrance
| | | | - Eva Doting
- Environmental ScienceAarhus UniversityRoskildeDenmark
| | - Laura Halbach
- Environmental ScienceAarhus UniversityRoskildeDenmark
| | | | | | - Liane G. Benning
- GFZ German Research Centre for GeosciencesBerlinGermany
- Freie University BerlinBerlinGermany
| |
Collapse
|
17
|
Pigment signatures of algal communities and their implications for glacier surface darkening. Sci Rep 2022; 12:17643. [PMID: 36271236 PMCID: PMC9587043 DOI: 10.1038/s41598-022-22271-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/12/2022] [Indexed: 01/18/2023] Open
Abstract
Blooms of pigmented algae darken the surface of glaciers and ice sheets, thereby enhancing solar energy absorption and amplifying ice and snow melt. The impacts of algal pigment and community composition on surface darkening are still poorly understood. Here, we characterise glacier ice and snow algal pigment signatures on snow and bare ice surfaces and study their role in photophysiology and energy absorption on three glaciers in Southeast Greenland. Purpurogallin and astaxanthin esters dominated the glacier ice and snow algal pigment pools (mass ratios to chlorophyll a of 32 and 56, respectively). Algal biomass and pigments impacted chromophoric dissolved organic matter concentrations. Despite the effective absorption of astaxanthin esters at wavelengths where incoming irradiance peaks, the cellular energy absorption of snow algae was 95% lower than anticipated from their pigmentation, due to pigment packaging. The energy absorption of glacier ice algae was consequently ~ 5 × higher. On bare ice, snow algae may have locally contributed up to 13% to total biological radiative forcing, despite contributing 44% to total biomass. Our results give new insights into the impact of algal community composition on bare ice energy absorption and biomass accumulation during snow melt.
Collapse
|
18
|
Tan B, Hu P, Niu X, Zhang X, Liu J, Frenken T, Hamilton PB, Haffner GD, Chaganti SR, Nwankwegu AS, Zhang L. Microbial community day-to-day dynamics during a spring algal bloom event in a tributary of Three Gorges Reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156183. [PMID: 35623511 DOI: 10.1016/j.scitotenv.2022.156183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The microbial food-loop is critical to energy flow in aquatic food webs. We tested the hypothesis that species composition and relative abundance in a microbial community would be modified by the development of toxic algal blooms either by enhanced carbon production or toxicity. This study tracked the response of the microbial community with respect to composition and relative abundance during a 7-day algal bloom event in the Three Gorges Reservoir in May 2018. Chlorophyll a biomass, microscopic identification and cell counting of algae and algal abundance (ind. L-1) and carbon, nutrient concentrations (total phosphorus and nitrogen, dissolved total phosphorus and nitrogen), and DNA high throughput sequencing were measured daily. Algal density (1.2 × 109 ind. L-1) and Chlorophyll a (219 μg L-1) peaked on May 20th-21st, when the phytoplankton community was dominated by Chlorella spp. and Microcystis spp. The concentrations of both dissolved total nitrogen and phosphorus declined during the bloom period. Based on DNA high throughput sequencing data, the relative abundance of eukaryotic phytoplankton, microzooplankton (20-200 μm), mesozooplankton (>200 μm), and fungal communities varied day by day while the prokaryotic community revealed a more consistent structure. Enhanced carbon production during the bloom was closely associated with increased heterotrophic microbial composition in both the prokaryotic and eukaryotic communities. A storm event, however, that caused surface cooling and deep mixing of the water column greatly modified the composition and relative abundance of species in the microbial loop. The high temporal variability and dynamics observed in this study suggest that many factors, and not just algal blooms, were interacting to determine the composition and relative abundance of species of the microbial loop.
Collapse
Affiliation(s)
- Bingyuan Tan
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China
| | - Pengfei Hu
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China
| | - Xiaoxu Niu
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China
| | - Xing Zhang
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China
| | - Jiakun Liu
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China
| | - Thijs Frenken
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands.
| | - Paul B Hamilton
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; Canadian Museum of Nature, 240 McLeod Street, Ottawa, Ontario K1P 6P4, Canada.
| | - G Douglas Haffner
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; Great Lakes Institute for Environmental Research, University of Windsor, Ontario N9P 3P4, Canada.
| | - S Rao Chaganti
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI 48108, USA.
| | - Amechi S Nwankwegu
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China
| | - Lei Zhang
- The National Base of Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Southwest University, 400715, China; College of Resources and Environment, Southwest University, 400715, China; Great Lakes Institute for Environmental Research, University of Windsor, Ontario N9P 3P4, Canada.
| |
Collapse
|
19
|
Tucker AE, Brown SP. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci Rep 2022; 12:10536. [PMID: 35732638 PMCID: PMC9217940 DOI: 10.1038/s41598-022-13914-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Snow algae blooms and associated microbial communities play large roles in snow ecosystem processes. Patterns and mechanisms underpinning snow algae bloom spatial distribution and associated microbial community assembly dynamics are poorly understood. Here we examine associations of microbial communities and environmental measures between/within snow algae blooms. Snows from the Cascade Mountains and the Rocky Mountains (USA) were collected from medial (M), peripheral (P), and adjacent (A) zones of red snow algae blooms. Medial snow shows increased levels of pollen, lower oxidation–reduction potential, decreased algal and increased bacterial richness, and increased levels of potassium when compared to A and P within the same bloom. Between the Cascade and Rocky Mountains, fungal communities are distinct but bacterial and algal communities show little differentiation. A weighted OTU co-expression analysis (WOCNA) explores OTU modules and their differential correlation with environmental features, suggesting certain subcommunities may be altered by ecological patterns. Individual OTU interaction networks (fungi and bacteria) show high levels of connectivity compared to networks based on the red snow alga Sanguina nivaloides, which underscores associative differences between algal dominated networks and other taxa.
Collapse
Affiliation(s)
- Avery E Tucker
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA. .,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA.
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA.,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
20
|
Doting EL, Davie-Martin CL, Johansen A, Benning LG, Tranter M, Rinnan R, Anesio AM. Greenland Ice Sheet Surfaces Colonized by Microbial Communities Emit Volatile Organic Compounds. Front Microbiol 2022; 13:886293. [PMID: 35747370 PMCID: PMC9211068 DOI: 10.3389/fmicb.2022.886293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by organisms for a range of physiological and ecological reasons. They play an important role in biosphere–atmosphere interactions and contribute to the formation of atmospheric secondary aerosols. The Greenland ice sheet is home to a variety of microbial communities, including highly abundant glacier ice algae, yet nothing is known about the VOCs emitted by glacial communities. For the first time, we present VOC emissions from supraglacial habitats colonized by active microbial communities on the southern Greenland ice sheet during July 2020. Emissions of C5–C30 compounds from bare ice, cryoconite holes, and red snow were collected using a push–pull chamber active sampling system. A total of 92 compounds were detected, yielding mean total VOC emission rates of 3.97 ± 0.70 μg m–2 h–1 from bare ice surfaces (n = 31), 1.63 ± 0.13 μg m–2 h–1 from cryoconite holes (n = 4), and 0.92 ± 0.08 μg m–2 h–1 from red snow (n = 2). No correlations were found between VOC emissions and ice surface algal counts, but a weak positive correlation (r = 0.43, p = 0.015, n = 31) between VOC emission rates from bare ice surfaces and incoming shortwave radiation was found. We propose that this may be due to the stress that high solar irradiance causes in bare ice microbial communities. Acetophenone, benzaldehyde, and phenylmaleic anhydride, all of which have reported antifungal activity, accounted for 51.1 ± 11.7% of emissions from bare ice surfaces, indicating a potential defense strategy against fungal infections. Greenland ice sheet microbial habitats are, hence, potential sources of VOCs that may play a role in supraglacial microbial interactions, as well as local atmospheric chemistry, and merit future research efforts.
Collapse
Affiliation(s)
- Eva L. Doting
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- *Correspondence: Eva L. Doting,
| | - Cleo L. Davie-Martin
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Johansen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Liane G. Benning
- Interface Geochemistry, German Research Centre for Geosciences, GFZ Potsdam, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre M. Anesio
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- Alexandre M. Anesio,
| |
Collapse
|
21
|
Perini L, Gostinčar C, Likar M, Frisvad JC, Kostanjšek R, Nicholes M, Williamson C, Anesio AM, Zalar P, Gunde-Cimerman N. Interactions of Fungi and Algae from the Greenland Ice Sheet. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02033-5. [PMID: 35608637 DOI: 10.1007/s00248-022-02033-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Heavily pigmented glacier ice algae Ancylonema nordenskiöldii and Ancylonema alaskanum (Zygnematophyceae, Streptophyta) reduce the bare ice albedo of the Greenland Ice Sheet, amplifying melt from the largest cryospheric contributor to eustatic sea-level rise. Little information is available about glacier ice algae interactions with other microbial communities within the surface ice environment, including fungi, which may be important for sustaining algal bloom development. To address this substantial knowledge gap and investigate the nature of algal-fungal interactions, an ex situ co-cultivation experiment with two species of fungi, recently isolated from the surface of the Greenland Ice Sheet (here proposed new species Penicillium anthracinoglaciei Perini, Frisvad and Zalar, Mycobank (MB 835602), and Articulospora sp.), and the mixed microbial community dominated by glacier ice algae was performed. The utilization of the dark pigment purpurogallin carboxylic acid-6-O-β-D-glucopyranoside (C18H18O12) by the two fungi was also evaluated in a separate experiment. P. anthracinoglaciei was capable of utilizing and converting the pigment to purpurogallin carboxylic acid, possibly using the sugar moiety as a nutrient source. Furthermore, after 3 weeks of incubation in the presence of P. anthracinoglaciei, a significantly slower decline in the maximum quantum efficiency (Fv/Fm, inverse proxy of algal stress) in glacier ice algae, compared to other treatments, was evident, suggesting a positive relationship between these species. Articulospora sp. did uptake the glycosylated purpurogallin, but did not seem to be involved in its conversion to aglycone derivative. At the end of the incubation experiments and, in conjunction with increased algal mortality, we detected a substantially increasing presence of the zoosporic fungi Chytridiomycota suggesting an important role for them as decomposers or parasites of glacier ice algae.
Collapse
Affiliation(s)
- L Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark.
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555, China
| | - M Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Fungal Chemodiversity, Technical University of Denmark, Søltofts Plads, Building 221, 2800, Kgs. Lyngby, Denmark
| | - R Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - M Nicholes
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
| | - C Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
| | - A M Anesio
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - P Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| |
Collapse
|
22
|
|
23
|
Abstract
Walker Glacier near the northern coast of Ellesmere Island in the Canadian High Arctic (terrestrial margin of the ‘Last Ice Area’) is undergoing rapid ice attrition in response to climate change. We applied culture and molecular methods to investigate fungal diversity at the terminus of this glacier. Analysis of the mycoflora composition showed that the Walker Glacier isolates separated into two clusters: the surface of the glacier ice and the glacier foreland. The recently exposed sediments of the foreland had a lower fungal diversity and different species from those on the ice, with the exception of five species that occurred in both habitats. This loss of glacial ice in the Arctic is therefore resulting in the loss of habitats for cold-dwelling fungal species. Fungal diversity is a potentially rich biological resource of glacial ecosystems, with unique taxa. The rapid loss of these glacial habitats underscores the urgency for genomic surveys of fungal diversity in the High Arctic, and the need for further isolation of strains as well as cryopreservation of environmental micro-biome samples for future research and conservation.
Collapse
|
24
|
Zawierucha K, Trzebny A, Buda J, Bagshaw E, Franzetti A, Dabert M, Ambrosini R. Trophic and symbiotic links between obligate-glacier water bears (Tardigrada) and cryoconite microorganisms. PLoS One 2022; 17:e0262039. [PMID: 35020747 PMCID: PMC8754347 DOI: 10.1371/journal.pone.0262039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Insights into biodiversity and trophic webs are important for understanding ecosystem functions. Although the surfaces of glaciers are one of the most productive and biologically diverse parts of the cryosphere, the links between top consumers, their diet and microbial communities are poorly understood. In this study, for the first time we investigated the relationships between bacteria, fungi and other microeukaryotes as they relate to tardigrades, microscopic metazoans that are top consumers in cryoconite, a biologically rich and productive biogenic sediment found on glacier surfaces. Using metabarcoding (16S rDNA for bacteria, ITS1 for fungi, and 18S rDNA for other microeukaryotes), we analyzed the microbial community structures of cryoconite and compared them with the community found in both fully fed and starved tardigrades. The community structure of each microbial group (bacteria, fungi, microeukaryotes) were similar within each host group (cryoconite, fully fed tardigrades and starved tardigrades), and differed significantly between groups, as indicated by redundancy analyses. The relative number of operational taxonomic units (ZOTUs, OTUs) and the Shannon index differed significantly between cryoconite and tardigrades. Species indicator analysis highlighted a group of microbial taxa typical of both fully fed and starved tardigrades (potential commensals), like the bacteria of the genera Staphylococcus and Stenotrophomonas, as well as a group of taxa typical of both cryoconite and fully fed tardigrades (likely part of the tardigrade diet; bacteria Flavobacterium sp., fungi Preussia sp., algae Trebouxiophyceae sp.). Tardigrades are consumers of bacteria, fungi and other microeukaryotes in cryoconite and, being hosts for diverse microbes, their presence can enrich the microbiome of glaciers.
Collapse
Affiliation(s)
- Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Elizabeth Bagshaw
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Franzetti
- Earth and Environmental Sciences Department, University of Milano-Bicocca, Milan, Italy
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Touchette D, Altshuler I, Gostinčar C, Zalar P, Raymond-Bouchard I, Zajc J, McKay CP, Gunde-Cimerman N, Whyte LG. Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis. THE ISME JOURNAL 2022; 16:221-232. [PMID: 34294882 PMCID: PMC8692454 DOI: 10.1038/s41396-021-01030-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
The novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China
| | - P Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - J Zajc
- Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - C P McKay
- NASA Ames Research Center, Moffett Field, CA, USA
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
26
|
Extremophilic Microorganisms in Central Europe. Microorganisms 2021; 9:microorganisms9112326. [PMID: 34835450 PMCID: PMC8620676 DOI: 10.3390/microorganisms9112326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Extremophiles inhabit a wide variety of environments. Here we focus on extremophiles in moderate climates in central Europe, and particularly in Slovenia. Although multiple types of stress often occur in the same habitat, extremophiles are generally combined into groups according to the main stressor to which they are adapted. Several types of extremophiles, e.g., oligotrophs, are well represented and diverse in subsurface environments and karst regions. Psychrophiles thrive in ice caves and depressions with eternal snow and ice, with several globally distributed snow algae and psychrophilic bacteria that have been discovered in alpine glaciers. However, this area requires further research. Halophiles thrive in salterns while thermophiles inhabit thermal springs, although there is little data on such microorganisms in central Europe, despite many taxa being found globally. This review also includes the potential use of extremophiles in biotechnology and bioremediation applications.
Collapse
|
27
|
Fungi in Permafrost-Affected Soils of the Canadian Arctic: Horizon- and Site-Specific Keystone Taxa Revealed by Co-Occurrence Network. Microorganisms 2021; 9:microorganisms9091943. [PMID: 34576837 PMCID: PMC8466989 DOI: 10.3390/microorganisms9091943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/16/2023] Open
Abstract
Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.
Collapse
|
28
|
Perini L, Andrejašič K, Gostinčar C, Gunde-Cimerman N, Zalar P. Greenland and Svalbard glaciers host unknown basidiomycetes: the yeast Camptobasidium arcticum sp. nov. and the dimorphic Psychromyces glacialis gen. and sp. nov. Int J Syst Evol Microbiol 2021; 71:004655. [PMID: 33502296 PMCID: PMC8346769 DOI: 10.1099/ijsem.0.004655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Sampling campaigns in Greenland and Svalbard were executed to explore fungal diversity in cold habitats. Three very abundant groups of strains were discovered, consisting either of recently described or of yet-undescribed psychrophilic and oligotrophic yeasts and dimorphic fungi, accounting for around 50 % of the total cultivable diversity of basidiomycetes in our studies. The occurrence of these taxa has also been demonstrated by culture-independent methods. Based on phylogenetic analyses of ribosomal gene cluster sequences (D1/D2 domains of 28S (LSU), 18S (SSU), ITS with 5.8S rDNA) and sequences of protein-coding genes for elongation factor one alpha (TEF), cytochrome b (CYTB) and two subunits of the RNA polymerase II (RPB1 and RPB2) obtained from pure cultures, the isolated taxa presented in this study belong to Basidiomycota, subphylum Pucciniomycotina, class Microbotryomycetes, family Camptobasidiaceae. The dataset of the sequences supported the recognition of three species: Camptobasidium gelus, Camptobasidium arcticum sp. nov. (ex-type strain EXF-12713) and Psychromyces glacialis gen. and sp. nov. (ex-type strain EXF-13111). Camptobasidium gelus was found in the Svalbard and Greenland samples, while representatives of the here proposed new species, C. arcticum, were found only in the Greenland Ice Sheet. Psychromyces gen. nov. was erected for the dimorphic/filamentous isolates found in Svalbard and Greenland glacial environments. The taxon, for which the invalid name 'Rhodotorula svalbardensis' has been used, belongs to this genus. Based on ribosomal genes, Camptobasidium arcticum and Psychromyces glacialis are related, phylogenetically most closely related to the genera Glaciozyma and Cryolevonia. Seven genes phylogeny restricted to taxa with available sequences, supported the placement of Psychromyces to Camptobasidiaceae.
Collapse
Affiliation(s)
- Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Kristina Andrejašič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, PR China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Selbmann L, Benkő Z, Coleine C, de Hoog S, Donati C, Druzhinina I, Emri T, Ettinger CL, Gladfelter AS, Gorbushina AA, Grigoriev IV, Grube M, Gunde-Cimerman N, Karányi ZÁ, Kocsis B, Kubressoian T, Miklós I, Miskei M, Muggia L, Northen T, Novak-Babič M, Pennacchio C, Pfliegler WP, Pòcsi I, Prigione V, Riquelme M, Segata N, Schumacher J, Shelest E, Sterflinger K, Tesei D, U’Ren JM, Varese GC, Vázquez-Campos X, Vicente VA, Souza EM, Zalar P, Walker AK, Stajich JE. Shed Light in the DaRk LineagES of the Fungal Tree of Life-STRES. Life (Basel) 2020; 10:life10120362. [PMID: 33352712 PMCID: PMC7767062 DOI: 10.3390/life10120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023] Open
Abstract
The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.
Collapse
Affiliation(s)
- Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Section of Mycology, Italian National Antarctic Museum (MNA), 16121 Genoa, Italy
- Correspondence: (L.S.); (J.E.S.); Tel.: +39-0761-357012 (L.S.); +1-951-827-2363 (J.E.S.)
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, 6532 Nijmegen, The Netherlands;
| | - Claudio Donati
- Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Irina Druzhinina
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China;
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Cassie L. Ettinger
- Genome Center, University of California, Davis, CA 95616, USA;
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Anna A. Gorbushina
- Department of Materials and Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), 10115 Berlin, Germany; (A.A.G.); (J.S.)
- Department of Earth Sciences & Department of Biology, Chemistry, Pharmacy, Freie Universität, Berlin 10115 Berlin, Germany
| | - Igor V. Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Martin Grube
- Institute of Biology, University of Graz, Graz A-8010, Austria;
| | - Nina Gunde-Cimerman
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Zsolt Ákos Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Tania Kubressoian
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Márton Miskei
- Department of Biochemistry and Molecular Biology, Faculty of Medicine University of Debrecen, 4032 Debrecen, Hungary;
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, 34121 Trieste, Italy;
| | - Trent Northen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
| | - Monika Novak-Babič
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Christa Pennacchio
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Istvàn Pòcsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, University of Torino, 10125 Torino, Italy; (V.P.); (G.C.V.)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22980, Mexico;
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Julia Schumacher
- Department of Materials and Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), 10115 Berlin, Germany; (A.A.G.); (J.S.)
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Katja Sterflinger
- Institute of Natural Sciences and Technology in the Arts, Academy of Fine Arts Vienna, Vienna 22180, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 22180, Austria;
| | - Jana M. U’Ren
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA;
| | - Giovanna C. Varese
- Mycotheca Universitatis Taurinensis, University of Torino, 10125 Torino, Italy; (V.P.); (G.C.V.)
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2006, Australia;
| | - Vania A. Vicente
- Department of Biochemistry, Federal University of Paraná, Paraná E3100, Brazil; (V.A.V.); (E.M.S.)
| | - Emanuel M. Souza
- Department of Biochemistry, Federal University of Paraná, Paraná E3100, Brazil; (V.A.V.); (E.M.S.)
| | - Polona Zalar
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Allison K. Walker
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jason E. Stajich
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
- Correspondence: (L.S.); (J.E.S.); Tel.: +39-0761-357012 (L.S.); +1-951-827-2363 (J.E.S.)
| |
Collapse
|
30
|
Coleine C, Stajich JE, de Los Ríos A, Selbmann L. Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. Mycologia 2020; 113:108-133. [PMID: 33232202 DOI: 10.1080/00275514.2020.1816761] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In an era of rapid climate change and expansion of desertification, the extremely harsh conditions of drylands are a true challenge for microbial life. Under drought conditions, where most life forms cannot survive, rocks represent the main refuge for life. Indeed, the endolithic habitat provides thermal buffering, physical stability, and protection against incident ultraviolet (UV) radiation and solar radiation and, to some extent, ensures water retention to microorganisms. The study of these highly specialized extreme-tolerant and extremophiles may provide tools for understanding microbial interactions and processes that allow them to keep their metabolic machinery active under conditions of dryness and oligotrophy that are typically incompatible with active life, up to the dry limits for life. Despite lithobiontic communities being studied all over the world, a comprehensive understanding of their ecology, evolution, and adaptation is still nascent. Herein, we survey the fungal component of these microbial ecosystems. We first provide an overview of the main defined groups (i.e., lichen-forming fungi, black fungi, and yeasts) of the most known and studied Antarctic endolithic communities that are almost the only life forms ensuring ecosystem functionality in the ice-free areas of the continent. For each group, we discuss their main traits and their diversity. Then, we focus on the fungal taxonomy and ecology of other worldwide endolithic communities. Finally, we highlight the utmost importance of a global rock survey in order to have a comprehensive view of the diversity, distribution, and functionality of these fungi in drylands, to obtain tools in desert area management, and as early alarm systems to climate change.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Ave , Riverside, California 92521
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales, Spanish National Resource Council, Madrid, Spain
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy.,Italian National Antarctic Museum, Mycological Section, Genoa, Italy
| |
Collapse
|
31
|
Finore I, Vigneron A, Vincent WF, Leone L, Di Donato P, Schiano Moriello A, Nicolaus B, Poli A. Novel Psychrophiles and Exopolymers from Permafrost Thaw Lake Sediments. Microorganisms 2020; 8:microorganisms8091282. [PMID: 32842646 PMCID: PMC7563700 DOI: 10.3390/microorganisms8091282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Thermokarst lakes are one of the most abundant types of microbial ecosystems in the circumpolar North. These shallow basins are formed by the thawing and collapse of ice-rich permafrost, with subsequent filling by snow and ice melt. Until now, permafrost thaw lakes have received little attention for isolation of microorganisms by culture-based analysis. The discovery of novel psychrophiles and their biomolecules makes these extreme environments suitable sources for the isolation of new strains, including for potential biotechnological applications. In this study, samples of bottom sediments were collected from three permafrost thaw lakes in subarctic Québec, Canada. Their diverse microbial communities were characterized by 16S rRNA gene amplicon analysis, and subsamples were cultured for the isolation of bacterial strains. Phenotypic and genetic characterization of the isolates revealed affinities to the genera Pseudomonas, Paenibacillus, Acinetobacter,Staphylococcus and Sphingomonas. The isolates were then evaluated for their production of extracellular enzymes and exopolymers. Enzymes of potential biotechnological interest included α and β-glucosidase, α and β-maltosidase, β-xylosidase and cellobiohydrolase. One isolate, Pseudomonas extremaustralis strain 2ASCA, also showed the capability to produce, in the loosely bound cell fraction, a levan-type polysaccharide with a yield of 613 mg/L of culture, suggesting its suitability as a candidate for eco-sustainable alternatives to commercial polymers.
Collapse
Affiliation(s)
- Ilaria Finore
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli (Na), Italy; (I.F.); (L.L.); (P.D.D.); (A.S.M.); (B.N.)
| | - Adrien Vigneron
- Centre d’études nordiques (CEN) & Département de Biologie, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
| | - Warwick F. Vincent
- Centre d’études nordiques (CEN) & Département de Biologie, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
| | - Luigi Leone
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli (Na), Italy; (I.F.); (L.L.); (P.D.D.); (A.S.M.); (B.N.)
| | - Paola Di Donato
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli (Na), Italy; (I.F.); (L.L.); (P.D.D.); (A.S.M.); (B.N.)
- Department of Science and Technology, University of Naples Parthenope, Centro Direzionale, Isola C4, 80143 Naples, Italy
| | - Aniello Schiano Moriello
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli (Na), Italy; (I.F.); (L.L.); (P.D.D.); (A.S.M.); (B.N.)
| | - Barbara Nicolaus
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli (Na), Italy; (I.F.); (L.L.); (P.D.D.); (A.S.M.); (B.N.)
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli (Na), Italy; (I.F.); (L.L.); (P.D.D.); (A.S.M.); (B.N.)
- Correspondence: ; Tel.: +39-0818675311
| |
Collapse
|
32
|
Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic. SUSTAINABILITY 2020. [DOI: 10.3390/su12166477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To understand the microbial composition and diversity patterns, cryoconite granules were collected from two geographical areas, i.e., Nepali Himalaya and Greenland, Arctic. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of the four glaciers. The total 13 species of bacteria such as Bacillus aryabhattai, Bacillus simplex, Brevundimonas vesicularis, Cryobacterium luteum, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Glaciihabitans tibetensis, Leifsonia kafniensis, Paracoccus limosus, Polaromonas glacialis, Sporosarcina globispora, Staphylococcus saprophyticus, Variovorax ginsengisoli, and 4 species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Dothideomycetes sp., Helotiales sp. were recorded from Nepali Himalaya. Among these, 12 species of bacteria and 4 species of fungi are new contributions to Himalaya. In contrast to this, six species of bacteria such as Bacillus cereus, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Enhydrobacter aerosaccus, Glaciihabitans tibetensis, Subtercola frigoramans, and nine species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Naganishia vaughanmartiniae, Piskurozyma fildesensis, Rhodotorula svalbardensis, Alatospora acuminata, Articulospora sp., Phialophora sp., Thelebolus microspores, and Dothideomycetes sp.), were recorded from Qaanaaq, Isunnguata Sermia and Thule glaciers, Greenland. Among these, five species of bacteria and seven species of fungi are new contributions to Greenland cryoconite. Microbial analyses indicate that the Nepali Himalayan cryoconite colonize higher numbers of microbial species compared to the Greenland cryoconite.
Collapse
|
33
|
Yakimovich KM, Engstrom CB, Quarmby LM. Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia. Front Microbiol 2020; 11:1721. [PMID: 33013720 PMCID: PMC7485462 DOI: 10.3389/fmicb.2020.01721] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023] Open
Abstract
Snow algae blooms contain bacteria, fungi, and other microscopic organisms. We surveyed 55 alpine snow algae blooms, collecting a total of 68 samples, from 12 mountains in the Coast Range of British Columbia, Canada. We used microscopy and rDNA metabarcoding to document biodiversity and query species and taxonomic associations. Across all samples, we found 173 algal, 2,739 bacterial, 380 fungal, and 540 protist/animalia operational taxonomic units (OTUs). In a previous study, we reported that most algal species were distributed along an elevational gradient. In the current study, we were surprised to find no corresponding distribution in any other taxa. We also tested the hypothesis that certain bacterial and fungal taxa co-occur with specific algal taxa. However, despite previous evidence that particular genera co-occur, we found no significant correlations between taxa across our 68 samples. Notably, seven bacterial, one fungal, and two cercozoan OTUs were widely distributed across our study regions. Taken together, these data suggest that any mutualisms with algae may not be taxon specific. We also report evidence of snow algae predation by rotifers, tardigrades, springtails, chytrid fungi, and ciliates, establishing the framework for a complex food web.
Collapse
Affiliation(s)
- Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
34
|
de Garcia V, Trochine A, Uetake J, Bellora N, Libkind D. Novel yeast taxa from the cold: description of Cryolevonia giraudoae sp. nov. and Camptobasidium gelus sp. nov. Int J Syst Evol Microbiol 2020; 70:3711-3717. [PMID: 32416741 DOI: 10.1099/ijsem.0.004223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Twenty-one psychrophilic yeast isolates related to the Camptobasidiaceae family in the Microbotryomycetes class were obtained from ice collected from cold environments worldwide. A new psychrophilic species from the recently described genus Cryolevonia, Cryolevania giraudoae is proposed to accommodate 18 isolates from Patagonia (Argentina) and Antarctica (holotype CRUB 2086T). In addition, a new psychrophilic species in the genus Camptobasidium is described as Camptobasidium gelus sp. nov. (holotype CBS 8941T), based on three isolates from glacial ice in the Russel glacier (Greenland ice sheet) and Antarctica. The strict psychrophilic profile is the salient feature of both novel species.
Collapse
Affiliation(s)
- Virginia de Garcia
- PROBIEN (CONICET - Universidad Nacional del Comahue), Buenos Aires 1400, (8300), Neuquén, Argentina
| | - Andrea Trochine
- IPATEC (CONICET - Universidad Nacional del Comahue), Quintral 1250, (8400), San Carlos de Bariloche, Argentina
| | - Jun Uetake
- National Institute of Polar Research, Tokyo, Japan
| | - Nicolas Bellora
- IPATEC (CONICET - Universidad Nacional del Comahue), Quintral 1250, (8400), San Carlos de Bariloche, Argentina
| | - Diego Libkind
- IPATEC (CONICET - Universidad Nacional del Comahue), Quintral 1250, (8400), San Carlos de Bariloche, Argentina
| |
Collapse
|
35
|
Coleine C, Pombubpa N, Zucconi L, Onofri S, Turchetti B, Buzzini P, Stajich JE, Selbmann L. Uncovered Microbial Diversity in Antarctic Cryptoendolithic Communities Sampling three Representative Locations of the Victoria Land. Microorganisms 2020; 8:E942. [PMID: 32585947 PMCID: PMC7356261 DOI: 10.3390/microorganisms8060942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
The endolithic niche represents an ultimate refuge to microorganisms in the Mars-like environment of the Antarctic desert. In an era of rapid global change and desertification, the interest in these border ecosystems is increasing due to speculation on how they maintain balance and functionality at the dry limits of life. To assure a reliable estimation of microbial diversity, proper sampling must be planned in order to avoid the necessity of re-sampling as reaching these remote locations is risky and requires tremendous logistical and economical efforts. In this study, we seek to determine the minimum number of samples for uncovering comprehensive bacterial and fungal diversity, comparing communities in strict vicinity to each other. We selected three different locations of the Victoria Land (Continental Antarctica) at different altitudes and showing sandstone outcrops of a diverse nature and origin-Battleship promontory (834 m above sea level (a.s.l.), Southern VL), Trio Nunatak (1,470 m a.s.l., Northern VL) and Mt New Zealand (3,100 m a.s.l., Northern VL). Overall, we found that a wider sampling would be required to capture the whole amplitude of microbial diversity, particularly in Northern VL. We concluded that the inhomogeneity of the rock matrix and the stronger environmental pressure at higher altitudes may force the communities to a higher local diversification.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (L.Z.); (S.O.)
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA; (N.P.); (J.E.S.)
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (L.Z.); (S.O.)
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (L.Z.); (S.O.)
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (B.T.); (P.B.)
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (B.T.); (P.B.)
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA; (N.P.); (J.E.S.)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (L.Z.); (S.O.)
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy
| |
Collapse
|
36
|
Calvillo-Medina RP, Gunde-Cimerman N, Escudero-Leyva E, Barba-Escoto L, Fernández-Tellez EI, Medina-Tellez AA, Bautista-de Lucio V, Ramos-López MÁ, Campos-Guillén J. Richness and metallo-tolerance of cultivable fungi recovered from three high altitude glaciers from Citlaltépetl and Iztaccíhuatl volcanoes (Mexico). Extremophiles 2020; 24:625-636. [PMID: 32535716 DOI: 10.1007/s00792-020-01182-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
In Mexico little is known about high-altitude glacial psychrotolerant or psychrophilic fungal species, with most glacial fungi isolated from polar environments or Alpine glaciers. It has been documented that some of these species may play an important role in bioremediation of contaminated environments with heavy metals. In the present study, 75 fungi were isolated from glaciers in Citlaltépetl (5675 masl) and Iztaccíhuatl (5286 masl) volcanoes. Combining morphological characteristics and molecular methods, based on ITS rDNA, 38 fungi were partially identified to genus level, 35 belonging to Ascomycota and three to Mucoromycota. The most abundant genera were Cladosporium, followed by Alternaria and Sordariomycetes order. All isolated fungi were psychrotolerant, pigmented and resistant to different concentrations of Cr(III) and Pb(II), while none tolerated Hg(II). Fungi most tolerant to Cr(III) and Pb(II) belong to the genera Stemphylium, Cladosporium and Penicillium and to a lesser extent Aureobasidium and Sordariomycetes. To our knowledge, this is the first report on cultivable mycobiota richness and their Cr and Pb tolerance. The results open new research possibilities about fungal diversity and heavy metals myco-remediation. Extremophilic fungal communities should be further investigated before global warming causes permanent changes and we miss the opportunity to describe these sites in Mexico.
Collapse
Affiliation(s)
| | - Nina Gunde-Cimerman
- Molecular Genetics and Biology of Microorganisms, Dept. Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Efraín Escudero-Leyva
- Centro de Investigaciones en Productos Naturales (CIPRONA) Y Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), Centro Nacional de Computación Avanzada (CNCA), CeNAT-CONARE, San José, Costa Rica
| | - Luis Barba-Escoto
- International Maize and Wheat Improvement Center (CIMMYT), Sustainable Intensification Program, Texcoco, Mexico
| | | | | | - Victor Bautista-de Lucio
- Laboratorio de Microbiología Y Proteómica, Instituto de Oftalmología "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| | | | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
37
|
Mogrovejo DC, Perini L, Gostinčar C, Sepčić K, Turk M, Ambrožič-Avguštin J, Brill FHH, Gunde-Cimerman N. Prevalence of Antimicrobial Resistance and Hemolytic Phenotypes in Culturable Arctic Bacteria. Front Microbiol 2020; 11:570. [PMID: 32318045 PMCID: PMC7147505 DOI: 10.3389/fmicb.2020.00570] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Many Arctic biomes, which are populated with abundant and diverse microbial life, are under threat: climate change and warming temperatures have raised concerns about diversity loss and possible emergence of pathogenic microorganisms. At present, there is little information on the occurrence of Arctic virulence-associated phenotypes. In this study we worked with 118 strains of bacteria (from 10 sampling sites in the Arctic region, located in Greenland and the Svalbard Archipelago) isolated using R2A medium. These strains belong to 4 phyla and represent 36 different bacterial genera. Phenotypic resistance to 8 clinically important antimicrobials (ampicillin, chloramphenicol, ciprofloxacin, cefotaxime, erythromycin, imipenem, kanamycin, and tetracycline) and thermotolerance range were determined. In addition, a screening of all isolates on blood agar media and erythrocytes suspension of bovine and sheep erythrocytes for virulence-linked hemolytic activity was performed. Although antimicrobial resistance profiles varied among the isolates, they were consistent within bacterial families and genera. Interestingly, a high number of isolates (83/104) were resistant to the tested concentration of imipenem (4 mg/L). In addition, one third of the isolates showed hemolytic activity on blood agar, however, in only 5% of the isolates hemolytic activity was also observed in the cell extracts when added to erythrocyte suspensions for 60 min. The observed microbial phenotypes contribute to our understanding of the presence of virulence-associated factors in the Arctic environments, while highlighting the potential risks associated with changes in the polar areas in the light of climate change.
Collapse
Affiliation(s)
- Diana C. Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, Qingdao, China
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Florian H. H. Brill
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS, Murta SMF, Simões JC, Cota BB, Rosa CA, Rosa LH. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 2020; 24:367-376. [PMID: 32157393 DOI: 10.1007/s00792-020-01161-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/21/2020] [Indexed: 01/21/2023]
Abstract
We identified cultivable fungi present in the glacial ice fragments collected in nine sites across Antarctica Peninsula and assessed their abilities to produce bioactive compounds. Three ice fragments with approximately 20 kg were collected, melted and 3 L filtered through of 0.45 µm sterilized membranes, which were placed on the media Sabouraud agar and minimal medium incubated at 10 °C. We collected 66 isolates classified into 27 taxa of 14 genera. Penicillium palitans, Penicillium sp. 1, Thelebolus balaustiformis, Glaciozyma antarctica, Penicillium sp. 7, Rhodotorula mucilaginosa, and Rhodotorula dairenensis had the highest frequencies. The diversity and richness of the fungal community were high with moderate dominance. Penicillium species were present in all samples, with Penicillium chrysogenum showing the broadest distribution. P. chrysogenum, P. palitans, and Penicillium spp. had trypanocidal, leishmanicidal, and herbicidal activities, with P. chrysogenum having the broadest and highest capability. 1H NMR signals revealed the presence of highly functionalized secondary metabolites in the bioactive extracts. Despite extreme environmental conditions, glacial ice harbours a diverse fungal community, including species never before recorded in the Arctic and Antarctica. Among them, Penicillium taxa may represent wild fungal strains with genetic and biochemical pathways that may produce new secondary bioactive metabolites.
Collapse
Affiliation(s)
- Graciéle Cunha Alves de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Bárbara Alves Porto
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Soraya Sander Amorim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | | | | | | | - Jefferson Cardia Simões
- Centro Polar e Climático, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
39
|
Perini L, Gostinčar C, Gunde-Cimerman N. Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 2019; 9:20230. [PMID: 31882659 PMCID: PMC6934841 DOI: 10.1038/s41598-019-56290-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
The composition of fungal and bacterial communities in three polythermal glaciers and associated aquatic environments in Kongsfjorden, Svalbard was analysed using a combination of cultivation and amplicon sequencing. 109 fungal strains belonging to 30 mostly basidiomycetous species were isolated from glacial samples with counts up to 103 CFU/100 ml. Glaciozyma-related taxon and Phenoliferia psychrophenolica were the dominant species. Unexpectedly, amplicon sequencing uncovered sequences of Chytridiomycota in all samples and Rozellomycota in sea water, lake water, and tap water. Sequences of Malassezia restricta and of the extremely halotolerant Hortaea werneckii were also found in subglacial habitats for the first time. Overall, the fungal communities within a glacier and among glaciers were diverse and spatially heterogenous. Contrary to this, there was a large overlap between the bacterial communities of different glaciers, with Flavobacterium sp. being the most frequently isolated. In amplicon sequencing Actinobacteria and Proteobacteria sequences were the most abundant.
Collapse
Affiliation(s)
- L Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555, China
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Perini L, Mogrovejo DC, Tomazin R, Gostinčar C, Brill FHH, Gunde-Cimerman N. Phenotypes Associated with Pathogenicity: Their Expression in Arctic Fungal Isolates. Microorganisms 2019; 7:microorganisms7120600. [PMID: 31766661 PMCID: PMC6955883 DOI: 10.3390/microorganisms7120600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Around 85% of the environments on Earth are permanently or seasonally colder than 5 °C. Among those, the poles constitute unique biomes, which harbor a broad variety of microbial life, including an abundance of fungi. Many fungi have an outstanding ability to withstand extreme conditions and play vital ecosystem roles of decomposers as well as obligate or facultative symbionts of many other organisms. Due to their dispersal capabilities, microorganisms from cryosphere samples can be distributed around the world. Such dispersal involves both species with undefined pathogenicity and potentially pathogenic strains. Here we describe the isolation of fungal species from pristine Arctic locations in Greenland and Svalbard and the testing of the expression of characteristics usually associated with pathogenic species, such as growth at 37 °C, hemolytic ability, and susceptibility to antifungal agents. A total of 320 fungal isolates were obtained, and 24 of the most abundant and representative species were further analyzed. Species known as emerging pathogens, like Aureobasidium melanogenum, Naganishia albida, and Rhodotorula mucilaginosa, were able to grow at 37 °C, showed beta-hemolytic activity, and were intrinsically resistant to commonly used antifungals such as azoles and echinocandins. Antifungal resistance screening revealed a low susceptibility to voriconazole in N. albida and Penicillium spp. and to fluconazole in Glaciozyma watsonii and Glaciozyma-related taxon.
Collapse
Affiliation(s)
- Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (C.G.); (N.G.-C.)
- Correspondence:
| | - Diana C. Mogrovejo
- MicroArctic Research Group, Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Stiegstück 34, 22339 Hamburg, Germany; (D.C.M.); (F.H.H.B.)
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia;
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (C.G.); (N.G.-C.)
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Florian H. H. Brill
- MicroArctic Research Group, Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Stiegstück 34, 22339 Hamburg, Germany; (D.C.M.); (F.H.H.B.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (C.G.); (N.G.-C.)
| |
Collapse
|
41
|
Nicholes MJ, Williamson CJ, Tranter M, Holland A, Poniecka E, Yallop ML, Anesio A. Bacterial Dynamics in Supraglacial Habitats of the Greenland Ice Sheet. Front Microbiol 2019; 10:1366. [PMID: 31333595 PMCID: PMC6616251 DOI: 10.3389/fmicb.2019.01366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Current research into bacterial dynamics on the Greenland Ice Sheet (GrIS) is biased toward cryoconite holes, despite this habitat covering less than 8% of the ablation (melt) zone surface. In contrast, the expansive surface ice, which supports wide-spread Streptophyte micro-algal blooms thought to enhance surface melt, has been relatively neglected. This study aims to understand variability in bacterial abundance and production across an ablation season on the GrIS, in relation to micro-algal bloom dynamics. Bacterial abundance reached 3.3 ± 0.3 × 105 cells ml−1 in surface ice and was significantly linearly related to algal abundances during the middle and late ablation periods (R2 = 0.62, p < 0.05; R2 = 0.78, p < 0.001). Bacterial production (BP) of 0.03–0.6 μg C L−1 h−1 was observed in surface ice and increased in concert with glacier algal abundances, indicating that heterotrophic bacteria consume algal-derived dissolved organic carbon. However, BP remained at least 28 times lower than net primary production, indicating inefficient carbon cycling by heterotrophic bacteria and net accumulation of carbon in surface ice throughout the ablation season. Across the supraglacial environment, cryoconite sediment BP was at least four times greater than surface ice, confirming that cryoconite holes are the true “hot spots” of heterotrophic bacterial activity.
Collapse
Affiliation(s)
- Miranda Jane Nicholes
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher James Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandra Holland
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Ewa Poniecka
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
| | - Marian Louise Yallop
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Alexandre Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom.,Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|