1
|
Jiao XQ, Liu Y, Chen XM, Wang CY, Cui JT, Zheng LL, Ma SJ, Chen HY. Construction and Immunogenicity of a Recombinant Porcine Pseudorabies Virus (PRV) Expressing the Major Neutralizing Epitope Regions of S1 Protein of Variant PEDV. Viruses 2024; 16:1580. [PMID: 39459914 PMCID: PMC11512226 DOI: 10.3390/v16101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea and high mortality in neonatal piglets. Pseudorabies causes acute and often fatal infections in young piglets, respiratory disorders in growing pigs, and reproductive failure in sows. In late 2011, pseudorabies virus (PRV) variants occurred in Bartha-K61-vaccine-immunized swine herds, resulting in economic losses to the global pig industry. Therefore, it is essential to develop a safe and effective vaccine against both PEDV and PRV infections. In this study, we constructed a recombinant virus rPRV-PEDV S1 expressing the major neutralizing epitope region (COE, SS2, and SS6) of the PEDV S1 protein by homologous recombination technology and CRISPR/Cas9 gene editing technology, and then evaluated its biological characteristics in vitro and immunogenicity in pigs. The recombinant virus rPRV-PEDV S1 had similar growth kinetics in vitro to the parental rPRV NY-gE-/gI-/TK- strain, and was proven genetically stable in swine testicle (ST) cells and safe for piglets. PEDV S1-specific antibodies were detected in piglets immunized with rPRV-PEDV S1 on the 7th day post-immunization (dpi), and the antibody level increased rapidly at 14-21 dpi. Moreover, the immunized piglets receiving the recombinant virus exhibited alleviated clinical signs and reduced viral load compared to the unvaccinated group following a virulent PEDV HN2021 strain challenge. Also, piglets immunized with rPRV-PEDV S1 developed a PRV-specific humoral immune response and elicited complete protection against a lethal PRV NY challenge. These data indicate that the recombinant rPRV-PEDV S1 is a promising vaccine candidate strain for the prevention and control of PEDV and PRV infections.
Collapse
MESH Headings
- Animals
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Swine
- Herpesvirus 1, Suid/immunology
- Herpesvirus 1, Suid/genetics
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Epitopes/immunology
- Epitopes/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/veterinary
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pseudorabies/prevention & control
- Pseudorabies/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xian-Qin Jiao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Ying Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Cheng-Yuan Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Jian-Tao Cui
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
- Animal Health Supervision Institute, Honghu 433200, China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| |
Collapse
|
2
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
3
|
Dampalla CS, Kim Y, Zabiegala A, Howard DJ, Nguyen HN, Madden TK, Thurman HA, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Design of Potent Coronavirus Inhibitors with a 2-Pyrrolidone Scaffold: Biochemical, Crystallographic, and Virological Studies. J Med Chem 2024; 67:11937-11956. [PMID: 38953866 DOI: 10.1021/acs.jmedchem.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Zoonotic coronaviruses are known to produce severe infections in humans and have been the cause of significant morbidity and mortality worldwide. SARS-CoV-2 was the largest and latest contributor of fatal cases, even though MERS-CoV has the highest case-fatality ratio among zoonotic coronaviruses. These infections pose a high risk to public health worldwide warranting efforts for the expeditious discovery of antivirals. Hence, we hereby describe a novel series of inhibitors of coronavirus 3CLpro embodying an N-substituted 2-pyrrolidone scaffold envisaged to exploit favorable interactions with the S3-S4 subsites and connected to an invariant Leu-Gln P2-P1 recognition element. Several inhibitors showed nanomolar antiviral activity in enzyme and cell-based assays, with no significant cytotoxicity. High-resolution crystal structures of inhibitors bound to the 3CLpro were determined to probe and identify the molecular determinants associated with binding, to inform the structure-guided optimization of the inhibitors, and to confirm the mechanism of action of the inhibitors.
Collapse
Affiliation(s)
- Chamandi S Dampalla
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alexandria Zabiegala
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dennis J Howard
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Trent K Madden
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
4
|
Brunet J, Choucha Z, Gransagne M, Tabbal H, Ku MW, Buchrieser J, Fernandes P, Batalie D, Lopez J, Ma L, Dufour E, Simon E, Hardy D, Petres S, Guinet F, Strick-Marchand H, Monot M, Charneau P, Majlessi L, Duprex WP, Gerke C, Martin A, Escriou N. A measles-vectored vaccine candidate expressing prefusion-stabilized SARS-CoV-2 spike protein brought to phase I/II clinical trials: candidate selection in a preclinical murine model. J Virol 2024; 98:e0169323. [PMID: 38563763 PMCID: PMC11210269 DOI: 10.1128/jvi.01693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.
Collapse
Affiliation(s)
- Jérémy Brunet
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Zaineb Choucha
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Marion Gransagne
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Houda Tabbal
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Min-Wen Ku
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Priyanka Fernandes
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Damien Batalie
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Jodie Lopez
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Emeline Simon
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Françoise Guinet
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocytes and Immunity Unit, Paris, France
| | - Helene Strick-Marchand
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Pierre Charneau
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - W. Paul Duprex
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christiane Gerke
- Institut Pasteur, Université Paris Cité, Innovation Office, Vaccine Programs, Paris, France
| | - Annette Martin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| |
Collapse
|
5
|
Ghaffar SA, Tahir H, Muhammad S, Shahid M, Naqqash T, Faisal M, Albekairi TH, Alshammari A, Albekairi NA, Manzoor I. Designing of a multi-epitopes based vaccine against Haemophilius parainfluenzae and its validation through integrated computational approaches. Front Immunol 2024; 15:1380732. [PMID: 38690283 PMCID: PMC11058264 DOI: 10.3389/fimmu.2024.1380732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Haemophilus parainfluenzae is a Gram-negative opportunist pathogen within the mucus of the nose and mouth without significant symptoms and has an ability to cause various infections ranging from ear, eye, and sinus to pneumonia. A concerning development is the increasing resistance of H. parainfluenzae to beta-lactam antibiotics, with the potential to cause dental infections or abscesses. The principal objective of this investigation is to utilize bioinformatics and immuno-informatic methodologies in the development of a candidate multi-epitope Vaccine. The investigation focuses on identifying potential epitopes for both B cells (B lymphocytes) and T cells (helper T lymphocytes and cytotoxic T lymphocytes) based on high non-toxic and non-allergenic characteristics. The selection process involves identifying human leukocyte antigen alleles demonstrating strong associations with recognized antigenic and overlapping epitopes. Notably, the chosen alleles aim to provide coverage for 90% of the global population. Multi-epitope constructs were designed by using suitable linker sequences. To enhance the immunological potential, an adjuvant sequence was incorporated using the EAAAK linker. The final vaccine construct, comprising 344 amino acids, was achieved after the addition of adjuvants and linkers. This multi-epitope Vaccine demonstrates notable antigenicity and possesses favorable physiochemical characteristics. The three-dimensional conformation underwent modeling and refinement, validated through in-silico methods. Additionally, a protein-protein molecular docking analysis was conducted to predict effective binding poses between the multi-epitope Vaccine and the Toll-like receptor 4 protein. The Molecular Dynamics (MD) investigation of the docked TLR4-vaccine complex demonstrated consistent stability over the simulation period, primarily attributed to electrostatic energy. The docked complex displayed minimal deformation and enhanced rigidity in the motion of residues during the dynamic simulation. Furthermore, codon translational optimization and computational cloning was performed to ensure the reliability and proper expression of the multi-Epitope Vaccine. It is crucial to emphasize that despite these computational validations, experimental research in the laboratory is imperative to demonstrate the immunogenicity and protective efficacy of the developed vaccine. This would involve practical assessments to ascertain the real-world effectiveness of the multi-epitope Vaccine.
Collapse
Affiliation(s)
- Sana Abdul Ghaffar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Haneen Tahir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
6
|
Wei MZ, Chen L, Zhang R, Chen Z, Shen YJ, Zhou BJ, Wang KG, Shan CL, Zhu EP, Cheng ZT. Overview of the recent advances in porcine epidemic diarrhea vaccines. Vet J 2024; 304:106097. [PMID: 38479492 DOI: 10.1016/j.tvjl.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Vaccination is the most effective means of preventing and controlling porcine epidemic diarrhea (PED). Conventional vaccines developed from porcine epidemic diarrhea virus (PEDV) GI-a subtypes (CV777 and SM98) have played a vital role in preventing classical PED. However, with the emergence of PEDV mutants in 2010, conventional PEDV GI-a subtype-targeting vaccines no longer provide adequate protection against PEDV GII mutants, thereby making novel-type PED vaccine development an urgent concern to be addressed. Novel vaccines, including nucleic acid vaccines, genetically engineered subunit vaccines, and live vector vaccines, are associated with several advantages, such as high safety and stability, clear targeting, high yield, low cost, and convenient usage. These vaccines can be combined with corresponding ELISA kits to differentiate infected from vaccinated animals, which is beneficial for disease confirmation. This review provides a detailed overview of the recent advancements in PED vaccines, emphasizing on the research and application evaluation of novel PED vaccines. It also considers the future directions and challenges in advancing these vaccines to widespread use in clinics.
Collapse
Affiliation(s)
- Miao-Zhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan-Juan Shen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bi-Jun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kai-Gong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chun-Lan Shan
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Er-Peng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Zhen-Tao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Ávila-Nieto C, Vergara-Alert J, Amengual-Rigo P, Ainsua-Enrich E, Brustolin M, Rodríguez de la Concepción ML, Pedreño-Lopez N, Rodon J, Urrea V, Pradenas E, Marfil S, Ballana E, Riveira-Muñoz E, Pérez M, Roca N, Tarrés-Freixas F, Cantero G, Pons-Grífols A, Rovirosa C, Aguilar-Gurrieri C, Ortiz R, Barajas A, Trinité B, Lepore R, Muñoz-Basagoiti J, Perez-Zsolt D, Izquierdo-Useros N, Valencia A, Blanco J, Guallar V, Clotet B, Segalés J, Carrillo J. Immunization with V987H-stabilized Spike glycoprotein protects K18-hACE2 mice and golden Syrian hamsters upon SARS-CoV-2 infection. Nat Commun 2024; 15:2349. [PMID: 38514609 PMCID: PMC10957958 DOI: 10.1038/s41467-024-46714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Pep Amengual-Rigo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Marco Brustolin
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | | | - Mònica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | | | - Carla Rovirosa
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | | | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Rosalba Lepore
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Victor Guallar
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
- Fundaciò Lluita contra les infeccions. Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain
- Universitat Autonoma de Barcelona. Bellaterra, Cerdanyola del Vallès, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain.
- Universitat Autonoma de Barcelona. Bellaterra, Cerdanyola del Vallès, Catalonia, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain.
- CIBERINFEC. ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Park JE. Porcine Epidemic Diarrhea: Insights and Progress on Vaccines. Vaccines (Basel) 2024; 12:212. [PMID: 38400195 PMCID: PMC10892315 DOI: 10.3390/vaccines12020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is a swine-wasting disease caused by coronavirus infection. It causes great economic damage to the swine industry worldwide. Despite the continued use of vaccines, PED outbreaks continue, highlighting the need to review the effectiveness of current vaccines and develop additional vaccines based on new platforms. Here, we review existing vaccine technologies for preventing PED and highlight promising technologies that may help control PED virus in the future.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Miao X, Zhang L, Zhou P, Yu R, Zhang Z, Wang C, Guo H, Wang Y, Pan L, Liu X. Adenovirus-vectored PDCoV vaccines induce potent humoral and cellular immune responses in mice. Vaccine 2023; 41:6661-6671. [PMID: 37777448 DOI: 10.1016/j.vaccine.2023.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes severe watery diarrhea, vomiting, dehydration and high mortality in piglets, resulting in significant economic losses by the global pig industry. Recently, PDCoV has also shown the potential for cross-species transmission. However, there are currently few vaccine studies and no commercially available vaccines for PDCoV. Hence, here, two novel human adenovirus 5 (Ad5)-vectored vaccines expressing codon-optimized forms of the PDCoV spike (S) glycoprotein (Ad-PD-tPA-Sopt) and S1 glycoprotein (Ad-PD-oriSIP-S1opt) were constructed, and their effects were evaluated via intramuscular (IM) injection in BALB/c mice with different doses and times. Both vaccines elicited robust humoral and cellular immune responses; moreover, Ad-PD-tPA-Sopt-vaccinated mice after two IM injections with 108 infectious units (IFU)/mouse had significantly higher anti-PDCoV-specific neutralizing antibody titers. In contrast, the mice immunized with Ad-PD-tPA-Sopt via oral gavage (OG) did not generate robust systemic and mucosal immunity. Thus, IM Ad-PD-tPA-Sopt administration is a promising strategy against PDCoV and provides useful information for future animal vaccine development.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Cancan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| |
Collapse
|
10
|
Luu B, McCoy-Hass V, Kadiu T, Ngo V, Kadiu S, Lien J. Severe Acute Respiratory Syndrome Associated Infections. PHYSICIAN ASSISTANT CLINICS 2023; 8:495-530. [PMID: 37197227 PMCID: PMC10015106 DOI: 10.1016/j.cpha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Viral infections are some of the most common sources of respiratory illness in pediatric and adult populations worldwide. Influenza and coronaviruses are viral pathogens that could lead to severe respiratory illness and death. More recently, respiratory illness from coronaviruses, accounts for more than 1 million deaths in the United States alone. This article will explore the epidemiology, pathogenesis, diagnosis, treatment, and prevention of severe acute respiratory syndrome caused by coronavirus-2, and Middle Eastern respiratory syndrome.
Collapse
Affiliation(s)
- Brent Luu
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Virginia McCoy-Hass
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Teuta Kadiu
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Victoria Ngo
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Sara Kadiu
- Partners Pharmacy, 181 Cedar Hill Road Suite 1610, Marlborough, MA 01752, USA
| | - Jeffrey Lien
- Walgreens, 227 Shoreline Highway, Mill Valley, CA 94941, USA
| |
Collapse
|
11
|
Tan CW, Valkenburg SA, Poon LLM, Wang LF. Broad-spectrum pan-genus and pan-family virus vaccines. Cell Host Microbe 2023; 31:902-916. [PMID: 37321173 PMCID: PMC10265776 DOI: 10.1016/j.chom.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Although the development and clinical application of SARS-CoV-2 vaccines during the COVID-19 pandemic demonstrated unprecedented vaccine success in a short time frame, it also revealed a limitation of current vaccines in their inability to provide broad-spectrum or universal protection against emerging variants. Broad-spectrum vaccines, therefore, remain a dream and challenge for vaccinology. This review will focus on current and future efforts in developing universal vaccines targeting different viruses at the genus and/or family levels, with a special focus on henipaviruses, influenza viruses, and coronaviruses. It is evident that strategies for developing broad-spectrum vaccines will be virus-genus or family specific, and it is almost impossible to adopt a universal approach for different viruses. On the other hand, efforts in developing broad-spectrum neutralizing monoclonal antibodies have been more successful and it is worth considering broad-spectrum antibody-mediated immunization, or "universal antibody vaccine," as an alternative approach for early intervention for future disease X outbreaks.
Collapse
Affiliation(s)
- Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China.
| | - Lin-Fa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
12
|
Liu X, Song H, Jiang J, Gao X, Yi Y, Shang Y, Li J, Li D, Zeng Z, Li Y, Zhang Z. Baculovirus-expressed self-assembling SARS-CoV-2 nanoparticle vaccines targeting the S protein induce protective immunity in mice. Process Biochem 2023; 129:200-208. [PMID: 37007452 PMCID: PMC10038678 DOI: 10.1016/j.procbio.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Spike (S) protein, a homotrimeric glycoprotein, is the most important antigen target for SARS-CoV-2 vaccines. A complete simulation of the advanced structure of this homotrimer during subunit vaccine development is the most likely method to improve its immunoprotective effects. In this study, preparation strategies for the S protein receptor-binding domain, S1 region, and ectodomain trimer nanoparticles were designed using ferritin nanoparticle self-assembly technology. The Bombyx mori baculovirus expression system was used to prepare three nanoparticle vaccines with high expression levels recorded in silkworms. The results in mice showed that the nanoparticle vaccine prepared using this strategy could induce immune responses when administered via both the subcutaneous administration and oral routes. Given the stability of these ferritin-based nanoparticle vaccines, an easy-to-use and low-cost oral immunization strategy can be employed in vaccine blind areas attributed to shortages of ultralow-temperature equipment and medical resources in underdeveloped areas. Oral vaccines are also promising candidates for limiting the spread of SARS-CoV-2 in domestic and farmed animals, especially in stray and wild animals.
Collapse
Affiliation(s)
- Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Jiang
- Key Laboratory of Vaccine, Prevention and control of Infectious disease of Zhejiang Province, Zhejiang Provincial Center For Disease Control And Prevention, Hangzhou, Zhejiang Province, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhu Yi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuting Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zeng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Ren Z, Shen C, Peng J. Status and Developing Strategies for Neutralizing Monoclonal Antibody Therapy in the Omicron Era of COVID-19. Viruses 2023; 15:1297. [PMID: 37376597 DOI: 10.3390/v15061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The monoclonal antibody (mAb)-based treatment is a highly valued therapy against COVID-19, especially for individuals who may not have strong immune responses to the vaccine. However, with the arrival of the Omicron variant and its evolving subvariants, along with the occurrence of remarkable resistance of these SARS-CoV-2 variants to the neutralizing antibodies, mAbs are facing tough challenges. Future strategies for developing mAbs with improved resistance to viral evasion will involve optimizing the targeting epitopes on SARS-CoV-2, enhancing the affinity and potency of mAbs, exploring the use of non-neutralizing antibodies that bind to conserved epitopes on the S protein, as well as optimizing immunization regimens. These approaches can improve the viability of mAb therapy in the fight against the evolving threat of the coronavirus.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Samman N, El-Boubbou K, Al-Muhalhil K, Ali R, Alaskar A, Alharbi NK, Nehdi A. MICaFVi: A Novel Magnetic Immuno-Capture Flow Virometry Nano-Based Diagnostic Tool for Detection of Coronaviruses. BIOSENSORS 2023; 13:553. [PMID: 37232914 PMCID: PMC10216117 DOI: 10.3390/bios13050553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
COVID-19 has resulted in a pandemic that aggravated the world's healthcare systems, economies, and education, and caused millions of global deaths. Until now, there has been no specific, reliable, and effective treatment to combat the virus and its variants. The current standard tedious PCR-based tests have limitations in terms of sensitivity, specificity, turnaround time, and false negative results. Thus, an alternative, rapid, accurate, and sensitive diagnostic tool that can detect viral particles, without the need for amplification or viral replication, is central to infectious disease surveillance. Here, we report MICaFVi (Magnetic Immuno-Capture Flow Virometry), a novel precise nano-biosensor diagnostic assay for coronavirus detection which combines the MNP-based immuno-capture of viruses for enrichment followed by flow-virometry analysis, enabling the sensitive detection of viral particles and pseudoviruses. As proof of concept, virus-mimicking spike-protein-coated silica particles (VM-SPs) were captured using anti-spike-antibody-conjugated MNPs (AS-MNPs) followed by detection using flow cytometry. Our results showed that MICaFVi can successfully detect viral MERS-CoV/SARS-CoV-2-mimicking particles as well as MERS-CoV pseudoviral particles (MERSpp) with high specificity and sensitivity, where a limit of detection (LOD) of 3.9 µg/mL (20 pmol/mL) was achieved. The proposed method has great potential for designing practical, specific, and point-of-care testing for rapid and sensitive diagnoses of coronavirus and other infectious diseases.
Collapse
Affiliation(s)
- Nosaibah Samman
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Kheireddine El-Boubbou
- King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- Nanomaterials for Bioimaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Khawlah Al-Muhalhil
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Ahmed Alaskar
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- Department of Oncology, King Abdulaziz Medical City, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Naif Khalaf Alharbi
- King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Atef Nehdi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- Department of Life Sciences, Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
15
|
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, Uversky VN, Ranaei Siadat SO, Mozaffari-Jovin S, Sefidbakht Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:32-49. [PMID: 36801471 PMCID: PMC9938630 DOI: 10.1016/j.pbiomolbio.2023.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA; TardigradeNano LLC, Irvine, CA, 92604, USA
| | - Mahdi Alijanianzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | | | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
16
|
Engineering potent live attenuated coronavirus vaccines by targeted inactivation of the immune evasive viral deubiquitinase. Nat Commun 2023; 14:1141. [PMID: 36854765 PMCID: PMC9973250 DOI: 10.1038/s41467-023-36754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Coronaviruses express a papain-like protease (PLpro) that is required for replicase polyprotein maturation and also serves as a deubiquitinating enzyme (DUB). In this study, using a Middle East respiratory syndrome virus (MERS-CoV) PLpro modified virus in which the DUB is selectively inactivated, we show that the PLpro DUB is an important MERS-CoV interferon antagonist and virulence factor. Although the DUB-negative rMERS-CoVMA replicates robustly in the lungs of human dipeptidyl peptidase 4 knock-in (hDPP4 KI) mice, it does not cause clinical symptoms. Interestingly, a single intranasal vaccination with DUB-negative rMERS-CoVMA induces strong and sustained neutralizing antibody responses and sterilizing immunity after a lethal wt virus challenge. The survival of naïve animals also significantly increases when sera from animals vaccinated with the DUB-negative rMERS-CoVMA are passively transferred, prior to receiving a lethal virus dose. These data demonstrate that DUB-negative coronaviruses could be the basis of effective modified live attenuated vaccines.
Collapse
|
17
|
mRNA-From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11020308. [PMID: 36830845 PMCID: PMC9953480 DOI: 10.3390/biomedicines11020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
This review provides an overview covering mRNA from its use in the COVID-19 pandemic to cancer immunotherapy, starting from the selection of appropriate antigens, tumor-associated and tumor-specific antigens, neoantigens, the basics of optimizing the mRNA molecule in terms of stability, efficacy, and tolerability, choosing the best formulation and the optimal route of administration, to summarizing current clinical trials of mRNA vaccines in tumor therapy.
Collapse
|
18
|
CALIMERI SEBASTIANO, LO GIUDICE DANIELA, BUDA AGATA, LAGANÀ ANTONIO, FACCIOLÀ ALESSIO, DI PIETRO ANGELA, VISALLI GIUSEPPA. Role of the 1 st booster dose of COVID-19 vaccine in the protection against the infection: A fundamental public health tool. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E520-E526. [PMID: 36891000 PMCID: PMC9986990 DOI: 10.15167/2421-4248/jpmh2022.63.4.2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 03/10/2023]
Abstract
Introduction The COVID-19 pandemic is having a huge impact on human health with high morbidity and mortality rates worldwide. Healthcare Workers (HCWs) are one of the most at risk categories to contract the infection. Effective anti-COVID-19 vaccines were approved in a very short time. Making the 1st booster dose is essential to induce a good protection against the infection. Methods We conducted a retrospective sero-epidemiological survey of already existing data concerning the antibody response of a HCWs sample vaccinated with the primary cycle and the 1st booster dose of the Pfizer-BioNTech COVID-19 mRNA vaccine and, specifically, after three weeks from the third dose of vaccination. Results In our analysis, after the primary cycle, a 95.15% efficacy was detected. Among the non-responders, women were significantly more frequent (69.56%). Moreover, we found a significant reverse correlation between the immune response and the age of the sample, especially in women. However, the 1st booster dose completely cancelled these differences. Conclusions Our data are perfectly in line with what has been declared by the conducted studies in terms of efficacy. However, it is important to highlight that people with only the primary cycle are at high risk to contract the COVID-19 infection. Therefore, it is necessary to not consider people vaccinated with the primary cycle completely risk-free and to stress the importance to perform the 1st booster dose.
Collapse
Affiliation(s)
- SEBASTIANO CALIMERI
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - DANIELA LO GIUDICE
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - AGATA BUDA
- Virology Operative Unit, University Hospital “G. Martino”, Messina
| | - ANTONIO LAGANÀ
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche S.p.A, Messina, Italy
| | - ALESSIO FACCIOLÀ
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Correspondence: Alessio Facciolà, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy. E-mail:
| | - ANGELA DI PIETRO
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - GIUSEPPA VISALLI
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Liu R, Lin X, Chen B, Hou Z, Zhang Q, Lin S, Geng L, Sun Z, Cao C, Shi Y, Xia X. The mutation features and geographical distributions of the surface glycoprotein (S gene) in SARS-CoV-2 strains: A comparative analysis of the early and current strains. J Med Virol 2022; 94:5363-5374. [PMID: 35871556 PMCID: PMC9350160 DOI: 10.1002/jmv.28023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
The surface glycoprotein (S protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to develop coronavirus disease 2019 (COVID-19) vaccines. However, SARS-CoV-2, especially the S protein, has undergone rapid evolution and mutation, which has remained to be determined. Here, we analyzed and compared the early (12 237) and the current (more than 10 million) SARS-CoV-2 strains to identify the mutation features and geographical distribution of the S gene and S protein. Results showed that in the early strains, most of the loci were with relative low mutation frequency except S: 23403 (4486 strains), while in the current strains, there was a surge in the mutation strains and frequency, with S: 23403 constantly being the highest one, but tremendously increased to approximately 1050 times. Furthermore, D614 (S: 23403) was one of the most highly frequent mutations in the S protein of Omicron as of March 2022, and most of the mutant strains were still from the United States, and the United Kingdom. Further analysis demonstrated that in the receptor-binding domain, most of the loci with low mutation frequency in the early strains, while S: 22995 was nowadays the most prevalent loci with 3 122 491 strains in the current strains. Overall, we compare the mutation features of the S region in SARS-CoV-2 strains between the early and the current stains, providing insight into further studies in concert with emerging SARS-CoV-2 variants for COVID-19 vaccines.
Collapse
Affiliation(s)
- Rang Liu
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
| | - Xinran Lin
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Bing Chen
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Zhenhui Hou
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Qiuju Zhang
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Shouren Lin
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Lan Geng
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Zhongyi Sun
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Canhui Cao
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yu Shi
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| | - Xi Xia
- Center for Reproductive MedicinePeking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdongChina
| |
Collapse
|
20
|
Comparing the Immunogenicity and Protective Effects of Three MERS-CoV Inactivation Methods in Mice. Vaccines (Basel) 2022; 10:vaccines10111843. [DOI: 10.3390/vaccines10111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The Middle East respiratory syndrome (MERS) is a fatal acute viral respiratory disease caused by MERS-coronavirus (MERS-CoV) infection. To date, no vaccine has been approved for MERS-CoV despite continuing outbreaks. Inactivated vaccines are a viable option when developed using the appropriate inactivation methods and adjuvants. In this study, we evaluated the immunogenicity and protective effects of MERS-CoV vaccine candidates inactivated by three different chemical agents. MERS-CoV was effectively inactivated by formaldehyde, hydrogen peroxide, and binary ethylene imine and induced humoral and cellular immunity in mice. Although inflammatory cell infiltration was observed in the lungs four days after the challenge, the immunized hDPP4-transgenic mouse group showed 100% protection against a challenge with MERS-CoV (100 LD50). In particular, the immune response was highly stimulated by MERS-CoV inactivated with formaldehyde, and all mice survived a challenge with the minimum dose. In the adjuvant comparison test, the group immunized with inactivated MERS-CoV and AddaVax had a higher immune response than the group immunized with aluminum potassium sulfate (alum). In conclusion, our study indicates that the three methods of MERS-CoV inactivation are highly immunogenic and protective in mice and show strong potential as vaccine candidates when used with an appropriate adjuvant.
Collapse
|
21
|
Oyelade T, Raya RP, Latief K. HIV infection and the implication for COVID-19 vaccination. PUBLIC HEALTH CHALLENGES 2022; 1:e14. [PMID: 37521727 PMCID: PMC9353425 DOI: 10.1002/puh2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Abstract Human immunodeficiency virus (HIV) is associated with altered cellular and humoral immune response, especially in patients with an untreated or chronic infection. This may be due to direct and/or indirect HIV viral activities resulting in T- and B-cells dysfunctions. Although still unclear, various studies have proposed that HIV infection may exacerbate the clinical outcomes of COVID-19. Indeed, COVID-19 vaccines were developed in record time and have been shown to reduce the severity of COVID-19 in the general population. These vaccines were also earmarked as a solution to global disruptions caused by the COVID-19 pandemic. HIV infection has been reported to reduce the efficacy of various other vaccines including those used against Streptococcus pneumoniae, Clostridium tetani, and influenza viruses. However, current guidelines for the administration of available COVID-19 vaccines do not account for the immune-compromised state of people living with HIV (PLWH). We discuss here the potentials, nature, and implications of this HIV-induced dampening of the humoral immune response on COVID-19 vaccines by first reviewing the literature about efficacy of previous vaccines in PLWH, and then assessing the proportion of PLWH included in phase III clinical trials of the COVID-19 vaccines currently available. The clinical and public health implications as well as suggestions for governments and non-governmental organizations are also proposed in the context of whether findings on the safety and efficacy of the vaccines could be extended to PLWH. Impacts The human immunodeficiency virus (HIV) is characterized by attenuated humoral immunity that may reduce the efficacy of vaccines in people living with HIV (PLWH). Vaccination against the SARS-CoV-2 infection remains the main public health answer to the COVID-19 pandemic.Although no significant safety concerns have been raised regarding the COVID-19 vaccines in PLWH, the efficacy of these vaccines in PLWH has not received due attention. Indeed, phase III clinical trials for the safety and efficacy of COVID-19 vaccines involved a significantly low number of PLWH.There are major gaps in knowledge on the efficacy of COVID-19 vaccines in PLWH and until further research is carried out, PLWH should be prioritized along with other at-risk groups for repeated vaccination and safeguard.
Collapse
Affiliation(s)
- Tope Oyelade
- Institute for Liver and Digestive HealthDivision of MedicineUniversity College LondonLondonUK
| | - Reynie Purnama Raya
- Institute for Global HealthFaculty of Population Health SciencesUniversity College LondonLondonUK
- Faculty of ScienceUniversitas ‘Aisyiyah BandungBandungIndonesia
| | - Kamaluddin Latief
- Global Health and Health Security DepartmentCollege of Public HealthTaipei Medical UniversityTaipei CityTaiwan
- Centre for Family WelfareFaculty of Public HealthUniversity of IndonesiaDepokIndonesia
| |
Collapse
|
22
|
Weskamm LM, Fathi A, Raadsen MP, Mykytyn AZ, Koch T, Spohn M, Friedrich M, Haagmans BL, Becker S, Sutter G, Dahlke C, Addo MM. Persistence of MERS-CoV-spike-specific B cells and antibodies after late third immunization with the MVA-MERS-S vaccine. Cell Rep Med 2022; 3:100685. [PMID: 35858586 PMCID: PMC9295383 DOI: 10.1016/j.xcrm.2022.100685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2022] [Accepted: 06/16/2022] [Indexed: 04/08/2023]
Abstract
The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany.
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Matthijs P Raadsen
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Anna Z Mykytyn
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Bioinformatics Core Unit, Hamburg University Medical Centre, Hamburg, Germany
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Bart L Haagmans
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Stephan Becker
- German Centre for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany
| | - Gerd Sutter
- German Centre for Infection Research, München, Germany; Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany.
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Bellamkonda N, Lambe UP, Sawant S, Nandi SS, Chakraborty C, Shukla D. Immune Response to SARS-CoV-2 Vaccines. Biomedicines 2022; 10:1464. [PMID: 35884770 PMCID: PMC9312515 DOI: 10.3390/biomedicines10071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
COVID-19 vaccines have been developed to confer immunity against the SARS-CoV-2 infection. Prior to the pandemic of COVID-19 which started in March 2020, there was a well-established understanding about the structure and pathogenesis of previously known Coronaviruses from the SARS and MERS outbreaks. In addition to this, vaccines for various Coronaviruses were available for veterinary use. This knowledge supported the creation of various vaccine platforms for SARS-CoV-2. Before COVID-19 there are no reports of a vaccine being developed in under a year and no vaccine for preventing coronavirus infection in humans had ever been developed. Approximately nine different technologies are being researched and developed at various levels in order to design an effective COVID-19 vaccine. As the spike protein of SARS-CoV-2 is responsible for generating substantial adaptive immune response, mostly all the vaccine candidates have been targeting the whole spike protein or epitopes of spike protein as a vaccine candidate. In this review, we have compiled the immune response to SARS-CoV-2 infection and followed by the mechanism of action of various vaccine platforms such as mRNA vaccines, Adenoviral vectored vaccine, inactivated virus vaccines and subunit vaccines in the market. In the end we have also summarized the various adjuvants used in the COVID-19 vaccine formulation.
Collapse
Affiliation(s)
- Navya Bellamkonda
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | | | - Sonali Sawant
- ICMR-NIV, Mumbai Unit, A. D. Road, Parel, Mumbai 400012, India; (U.P.L.); (S.S.)
| | - Shyam Sundar Nandi
- ICMR-NIV, Mumbai Unit, A. D. Road, Parel, Mumbai 400012, India; (U.P.L.); (S.S.)
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
24
|
Bommireddy R, Stone S, Bhatnagar N, Kumari P, Munoz LE, Oh J, Kim KH, Berry JTL, Jacobsen KM, Jaafar L, Naing SH, Blackerby AN, der Gaag TV, Wright CN, Lai L, Pack CD, Ramachandiran S, Suthar MS, Kang SM, Kumar M, Reddy SJC, Selvaraj P. Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines (Basel) 2022; 10:944. [PMID: 35746552 PMCID: PMC9230705 DOI: 10.3390/vaccines10060944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Shannon Stone
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Noopur Bhatnagar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Pratima Kumari
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Luis E. Munoz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Judy Oh
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Jameson T. L. Berry
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| | - Kristen M. Jacobsen
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Lahcen Jaafar
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Swe-Htet Naing
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Allison N. Blackerby
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Tori Van der Gaag
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Chloe N. Wright
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Yerkes Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.L.); (M.S.S.)
| | - Christopher D. Pack
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Sampath Ramachandiran
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.L.); (M.S.S.)
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (N.B.); (J.O.); (K.-H.K.); (S.-M.K.)
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (P.K.); (M.K.)
| | - Shaker J. C. Reddy
- Metaclipse Therapeutics Corporation, Atlanta, GA 30340, USA; (K.M.J.); (L.J.); (S.-H.N.); (A.N.B.); (T.V.d.G.); (C.N.W.); (C.D.P.); (S.R.); (S.J.C.R.)
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.B.); (L.E.M.); (J.T.L.B.)
| |
Collapse
|
25
|
Zhu L, Liu S, Zhuo Z, Lin Y, Zhang Y, Wang X, Kong L, Wang T. Expression and immunogenicity of nsp10 protein of porcine epidemic diarrhea virus. Res Vet Sci 2022; 144:34-43. [PMID: 35038674 PMCID: PMC8721950 DOI: 10.1016/j.rvsc.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes lethal watery diarrhea to the piglets, which poses significant economic losses and public health concerns. The nsp10 protein of PEDV is essential regulatory subunits that are critical for virus replication. Since PEDV nsp10 is a crucial regulator of viral RNA synthesis, it is promising that nsp10 might become anti-virus drugs target or candidate for rapid diagnosis of PEDV infection. In this study, the PEDV nsp10 was inserted into pMAL-c2x-MBP / pET-28a vector, efficiently and stably expressed in E.coli system. Then the purified nsp10 protein was found to mediate potent antibody responses in immunized mice. The antibodies of immunized mice and PEDV infection swine strongly recognized purified nsp10 protein from cell lysates. Furthermore, cytokines test revealed that the expression of IL-2, IL-4, IL-10, TNF-α, IFN-γ were significantly higher than those in control group, indicated that purified nsp10 protein induce the cellular immune response mechanism in mice. Using modified seroneutralization test, we also demonstrated that sera from nsp10-immunized mice inhibited PEDV replication to some extent. These findings suggest that nsp10 has a high immunogenicity. This study may have implications for future development of PEDV detection or anti-virus drugs for swine.
Collapse
Affiliation(s)
- Liting Zhu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiguo Liu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zewen Zhuo
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanxi Lin
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
26
|
Gasmi A, Srinath S, Dadar M, Pivina L, Menzel A, Benahmed AG, Chirumbolo S, Bjørklund G. A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clin Immunol 2022; 237:108958. [PMID: 35218966 PMCID: PMC8865932 DOI: 10.1016/j.clim.2022.108958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 01/04/2023]
Abstract
The development of COVID-19 vaccines was promptly regulated to ensure the best possible approach. By January 2022, 75 candidates reached preclinical evaluation in various animal models, 114 vaccines were in clinical trials on humans, and 48 were in the final testing stages. Vaccine platforms range from whole virus vaccines to nucleic acid vaccines, which are the most promising in prompt availability and safety. The USA and Europe have approved vaccines developed by Pfizer-BioNTech (BNT162b2) and Moderna (mRNa1273). So far, Pfizer-BioNTech, Moderna, Johnson & Johnson, AstraZeneca-University of Oxford, Sinopharm, Sinovac Biotech Gamaleya, Bharat Biotech, and Novavax have documented effective vaccines. Even with technological advances and a fast-paced development approach, many limitations and problems need to be overcome before a large-scale production of new vaccines can start. The Key is to ensure equal and fair distribution globally through regulatory measures. Recent studies link Bacillus Calmette-Guérin (BCG) vaccination programs and lower disease severity.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Shvetha Srinath
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | - Asma Gasmi Benahmed
- Université Claude Bernard, Villeurbanne, France; Académie Internationale de Médecine Dentaire Intégrative, Paris, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
27
|
Middle East Respiratory Syndrome coronavirus vaccine development: updating clinical studies using platform technologies. J Microbiol 2022; 60:238-246. [PMID: 35089585 PMCID: PMC8795722 DOI: 10.1007/s12275-022-1547-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022]
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV), a contagious zoonotic virus, causes severe respiratory infection with a case fatality rate of approximately 35% in humans. Intermittent sporadic cases in communities and healthcare facility outbreaks have continued to occur since its first identification in 2012. The World Health Organization has declared MERS-CoV a priority pathogen for worldwide research and vaccine development due to its epidemic potential and the insufficient countermeasures available. The Coalition for Epidemic Preparedness Innovations is supporting vaccine development against emerging diseases, including MERS-CoV, based on platform technologies using DNA, mRNA, viral vector, and protein subunit vaccines. In this paper, we review the usefulness and structure of a spike glycoprotein as a MERS-CoV vaccine candidate molecule, and provide an update on the status of MERS-CoV vaccine development. Vaccine candidates based on both DNA and viral vectors coding MERS-CoV spike gene have completed early phase clinical trials. A harmonized approach is required to assess the immunogenicity of various candidate vaccine platforms. Platform technologies accelerated COVID-19 vaccine development and can also be applied to developing vaccines against other emerging viral diseases.
Collapse
|
28
|
Kalinke U, Barouch DH, Rizzi R, Lagkadinou E, Türeci Ö, Pather S, Neels P. Clinical development and approval of COVID-19 vaccines. Expert Rev Vaccines 2022; 21:609-619. [PMID: 35157542 PMCID: PMC8935460 DOI: 10.1080/14760584.2022.2042257] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction The coronavirus 19 (COVID-19) pandemic triggered a simultaneous global demand for preventative vaccines, which quickly became a high priority among governments as well as academia and the pharmaceutical industry. Within less than a year after COVID-19 was declared a pandemic, vaccines had received emergency approvals and vaccination campaigns were initiated. Areas covered We discuss the several factors that led to the unprecedented, accelerated development and approval of COVID-19 vaccines, which includes optimization of processes by regulatory authorities, redesign of sequential development processes, learnings from previous pandemics, and prior development of novel vaccine platforms. Expert Opinion Despite unanticipated and complex challenges presented by real-time vaccine development in the context of the evolving COVID-19 pandemic and subsequent ever-changing landscape of public health measures and recommendations, important milestones were reached within extraordinarily short periods and, following roll-out to billions worldwide, the approved vaccines have proven to be well tolerated and effective. Whilst this is an exceptional feat and an example of what can be achieved with collaboration and innovation, there are lessons that can still be learned, including the need for further harmonization between regulatory authorities, modes to react to the pandemic’s ever-evolving challenges, and ensuring equitable vaccine access among low-income countries.
Collapse
Affiliation(s)
- Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | | | - Pieter Neels
- Vaccine Advice BV, St. Antoniusbaan 281, B 2980 ZOERSEL, Belgium
| |
Collapse
|
29
|
da Silva Torres MK, Bichara CDA, de Almeida MDNDS, Vallinoto MC, Queiroz MAF, Vallinoto IMVC, dos Santos EJM, de Carvalho CAM, Vallinoto ACR. The Complexity of SARS-CoV-2 Infection and the COVID-19 Pandemic. Front Microbiol 2022; 13:789882. [PMID: 35222327 PMCID: PMC8870622 DOI: 10.3389/fmicb.2022.789882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the death of millions of people worldwide and thousands more infected individuals developed sequelae due to the disease of the new coronavirus of 2019 (COVID-19). The development of several studies has contributed to the knowledge about the evolution of SARS-CoV2 infection and the disease to more severe forms. Despite this information being debated in the scientific literature, many mechanisms still need to be better understood in order to control the spread of the virus and treat clinical cases of COVID-19. In this article, we carried out an extensive literature review in order to bring together, in a single article, the biological, social, genetic, diagnostic, therapeutic, immunization, and even socioeconomic aspects that impact the SAR-CoV-2 pandemic. This information gathered in this article will enable a broad and consistent reading of the main aspects related to the current pandemic.
Collapse
Affiliation(s)
- Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mariana Cayres Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- University Center of the State of Pará, Belém, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Antonio Carlos R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| |
Collapse
|
30
|
Rustagi V, Bajaj M, Tanvi, Singh P, Aggarwal R, AlAjmi MF, Hussain A, Hassan MI, Singh A, Singh IK. Analyzing the Effect of Vaccination Over COVID Cases and Deaths in Asian Countries Using Machine Learning Models. Front Cell Infect Microbiol 2022; 11:806265. [PMID: 35223534 PMCID: PMC8877421 DOI: 10.3389/fcimb.2021.806265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is spreading across the world, and vaccinations are running parallel. Coronavirus has mutated into a triple-mutated virus, rendering it deadlier than before. It spreads quickly from person to person by contact and nasal or pharyngeal droplets. The COVID-19 database ‘Our World in Data’ was analyzed from February 24, 2020, to September 26, 2021, and predictions on the COVID positives and their mortality rate were made. Factors such as Vaccine data for the First and Second Dose vaccinated individuals and COVID positives that influence the fluctuations in the COVID-19 death ratio were investigated and linear regression analysis was performed. Based on vaccination doses (partial or complete vaccinated), models are created to estimate the number of patients who die from COVID infection. The estimation of variance in the datasets was investigated using Karl Pearson’s coefficient. For COVID-19 cases and vaccination doses, a quartic polynomial regression model was also created. This predictor model helps to predict the number of deaths due to COVID-19 and determine the susceptibility to COVID-19 infection based on the number of vaccine doses received. SVM was used to analyze the efficacy of models generated.
Collapse
|
31
|
Ju JH, Lee N, Kim SH, Chang S, Yang M, Shin J, Lee E, Sung S, Kim JH, Hong JT, Oh HJ. Points to consider for COVID-19 vaccine quality control and national lot release in Republic of Korea: focus on a viral vector platform. Osong Public Health Res Perspect 2022; 13:4-14. [PMID: 35255674 PMCID: PMC8907614 DOI: 10.24171/j.phrp.2021.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Due to the global public health crisis caused by the coronavirus disease 2019 (COVID-19) pandemic, the importance of vaccine development has increased. In particular, a rapid supply of vaccines and prompt deployment of vaccination programs are essential to prevent and overcome the spread of COVID-19. As a part of the vaccine regulations, national lot release is regulated by the responsible authorities, and this process involves the assessment of the lot before a vaccine is marketed. A lot can be released for use when both summary protocol (SP) review and quality control testing are complete. Accelerated lot release is required to distribute COVID-19 vaccines in a timely manner. In order to expedite the process by simultaneously undertaking the verification of quality assessment and application for approval, it is necessary to prepare the test methods before marketing authorization. With the prolonged pandemic and controversies regarding the effectiveness of the COVID-19 vaccine against new variants, public interest for the development of a new vaccine are increasing. Domestic developers have raised the need to establish standard guidance on the requirements for developing COVID-19 vaccine. This paper presents considerations for quality control in the manufacturing process, test items, and SP content of viral vector vaccines.
Collapse
|
32
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
33
|
Ashique S, Sandhu NK, Das S, Haque SN, Koley K. Global Comprehensive Outlook of Hantavirus Contagion on Humans: A Review. Infect Disord Drug Targets 2022; 22:e050122199975. [PMID: 34986775 DOI: 10.2174/1871526522666220105110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Hantaviruses are rodent viruses that have been identified as etiologic agents of 2 diseases of humans: hemorrhagic fever with renal syndrome (HFRS) and nephropathiaepidemica (NE) in the Old World and Hantavirus pulmonary syndrome (HPS) in the New World. Orthohantavirus is a genus of sin- gle-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae of the order Bunyavi- rales. The important reservoir of Hantaviruses is rodents. Each virus serotype has its unique rodent host species and is transmitted to human beings with the aid of aerosolized virus, which is shed in urine, fae- ces and saliva and hardly by a bite of the contaminated host. Andes virus is the only Hantavirus identified to be transmitted from human-to-human and its major signs and symptoms include fever, headache, mus- cle aches, lungs filled with fluid etc. In the early 1993, this viral syndrome appeared in the Four Cor- ner location in the south western United States. The only accepted therapeutics for this virus is Ribavirin. Recently, serological examinations to identify Hantavirus antibodies have become most popular for in- vestigation among humans and rodent reservoirs.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Navjot K Sandhu
- Department of Pharmaceuti- cal Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Supratim Das
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sk Niyamul Haque
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| | - Kartick Koley
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| |
Collapse
|
34
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Furuyama W, Marzi A, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X 2021; 9:100126. [PMID: 34778744 PMCID: PMC8570651 DOI: 10.1016/j.jvacx.2021.100126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Aquena H. Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
35
|
Fathi A, Mellinghoff SC. [Vaccines against COVID-19]. Internist (Berl) 2021; 62:1191-1201. [PMID: 34613428 PMCID: PMC8493542 DOI: 10.1007/s00108-021-01164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/04/2022]
Abstract
The ongoing COVID-19 pandemic represents an emergency situation of devastating proportions. To mitigate its effects, several safe and effective vaccines have been developed in a very short period of time. Currently, four vaccines have been approved by the European Medicines Agency (EMA) and are in use in Germany. These include two mRNA vaccines and two vector-based vaccines. They all show very good protective efficacy, especially against severe courses of disease and can significantly contain the pandemic by reducing viral transmission. This article focuses on the development and mechanism of action of the vaccines, their safety and efficacy profile as well as indications for vaccination and current recommendations for the use of vaccines in special groups of people, such as convalescent, immunosuppressed and pregnant patients. Finally, currently open scientific questions are addressed.
Collapse
Affiliation(s)
- Anahita Fathi
- 1. Medizinische Klinik und Poliklinik, Sektion Infektiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
- Deutsches Zentrum für Infektionsforschung (DZIF), Hamburg-Lübeck-Borstel-Riems, Deutschland.
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Deutschland.
| | - Sibylle C Mellinghoff
- 1. Medizinische Klinik und Poliklinik, Sektion Infektiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Deutschland
- Klinik I für Innere Medizin, Exzellenzzentrum für Medizinische Mykologie (ECMM), Medizinische Fakultät und Uniklinikum Köln, Universität zu Köln, Köln, Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Bonn-Köln, Deutschland
| |
Collapse
|
36
|
Gutiérrez-Álvarez J, Honrubia JM, Sanz-Bravo A, González-Miranda E, Fernández-Delgado R, Rejas MT, Zúñiga S, Sola I, Enjuanes L. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A 2021; 118:e2111075118. [PMID: 34686605 PMCID: PMC8639359 DOI: 10.1073/pnas.2111075118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Female
- Gene Deletion
- Genes, env
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- RNA, Viral/immunology
- Replicon
- Vaccines, DNA
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- J Gutiérrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - J M Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - A Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - E González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - R Fernández-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - M T Rejas
- Electron Microscopy Service, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - S Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain;
| |
Collapse
|
37
|
In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. COATINGS 2021. [DOI: 10.3390/coatings11111273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of computational models to identify new therapeutics and repurpose existing drugs has gained significance in recent times. The current ‘COVID-19’ pandemic caused by the new SARS CoV2 virus has affected over 200 million people and caused over 4 million deaths. The enormity and the consequences of this viral infection have fueled the research community to identify drugs or vaccines through a relatively expeditious process. The availability of high-throughput datasets has cultivated new strategies for drug development and can provide the foundation towards effective therapy options. Molecular modeling methods using structure-based or computer-aided virtual screening can potentially be employed as research guides to identify novel antiviral agents. This review focuses on in-silico modeling of the potential therapeutic candidates against SARS CoVs, in addition to strategies for vaccine design. Here, we particularly focus on the recently published SARS CoV main protease (Mpro) active site, the RNA-dependent RNA polymerase (RdRp) of SARS CoV2, and the spike S-protein as potential targets for vaccine development. This review can offer future perspectives for further research and the development of COVID-19 therapies via the design of new drug candidates and multi-epitopic vaccines and through the repurposing of either approved drugs or drugs under clinical trial.
Collapse
|
38
|
Kleandrova VV, Scotti MT, Speck-Planche A. Indirect-Acting Pan-Antivirals vs. Respiratory Viruses: A Fresh Perspective on Computational Multi-Target Drug Discovery. Curr Top Med Chem 2021; 21:2687-2693. [PMID: 34636311 DOI: 10.2174/1568026621666211012110819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Respiratory viruses continue to afflict mankind. Among them, pathogens such as coronaviruses [including the current pandemic agent known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] and the one causing influenza A (IAV) are highly contagious and deadly. These can evade the immune system defenses while causing a hyperinflammatory response that can damage different tissues/organs. Simultaneously targeting immunomodulatory proteins is a plausible antiviral strategy since it could lead to the discovery of indirect-acting pan-antiviral (IAPA) agents for the treatment of diseases caused by respiratory viruses. In this context, computational approaches, which are an essential part of the modern drug discovery campaigns, could accelerate the identification of multi-target immunomodulators. This perspective discusses the usefulness of computational multi-target drug discovery for the virtual screening (drug repurposing) of IAPA agents capable of boosting the immune system through the activation of the toll-like receptor 7 (TLR7) and/or the stimulator of interferon genes (STING) while inhibiting key pro-inflammatory proteins, such as caspase-1 and tumor necrosis factor-alpha (TNF-α).
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080, Moscow. Russian Federation
| | - Marcus T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| | - Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| |
Collapse
|
39
|
Muhammed Y, Yusuf Nadabo A, Pius M, Sani B, Usman J, Anka Garba N, Mohammed Sani J, Opeyemi Olayanju B, Zeal Bala S, Garba Abdullahi M, Sambo M. SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review. BIOSAFETY AND HEALTH 2021; 3:249-263. [PMID: 34396086 PMCID: PMC8346354 DOI: 10.1016/j.bsheal.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/04/2021] [Accepted: 07/18/2021] [Indexed: 01/18/2023] Open
Abstract
The present pandemic has posed a crisis to the economy of the world and the health sector. Therefore, the race to expand research to understand some good molecular targets for vaccine and therapeutic development for SARS-CoV-2 is inevitable. The newly discovered coronavirus 2019 (COVID-19) is a positive sense, single-stranded RNA, and enveloped virus, assigned to the beta CoV genus. The virus (SARS-CoV-2) is more infectious than the previously detected coronaviruses (MERS and SARS). Findings from many studies have revealed that S protein and RdRp are good targets for drug repositioning, novel therapeutic development (antibodies and small molecule drugs), and vaccine discovery. Therapeutics such as chloroquine, convalescent plasma, monoclonal antibodies, spike binding peptides, and small molecules could alter the ability of S protein to bind to the ACE-2 receptor, and drugs such as remdesivir (targeting SARS-CoV-2 RdRp), favipir, and emetine could prevent SASR-CoV-2 RNA synthesis. The novel vaccines such as mRNA1273 (Moderna), 3LNP-mRNAs (Pfizer/BioNTech), and ChAdOx1-S (University of Oxford/Astra Zeneca) targeting S protein have proven to be effective in combating the present pandemic. Further exploration of the potential of S protein and RdRp is crucial in fighting the present pandemic.
Collapse
Affiliation(s)
- Yusuf Muhammed
- Department of Biochemistry, Federal University, Gusau, Nigeria,Corresponding author: Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | - Mkpouto Pius
- Department of Medical Genetics, University of Cambridge, CB2 1TN, United Kingdom
| | - Bashiru Sani
- Department of Microbiology, Federal University of Lafia, Nigeria
| | - Jafar Usman
- Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | | | - Basit Opeyemi Olayanju
- Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA
| | | | | | - Misbahu Sambo
- Department of Biochemistry, Abubakar Tafawa Balewa University Bauchi, Nigeria
| |
Collapse
|
40
|
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, Zhu X, Leong KW, Liu J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. NANO TODAY 2021; 40:101280. [PMID: 34512795 PMCID: PMC8418322 DOI: 10.1016/j.nantod.2021.101280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
New vaccine technologies are urgently needed to produce safe and effective vaccines in a more timely manner to prevent future infectious disease pandemics. Here, we describe erythrocyte-mediated systemic antiviral immunization, a versatile vaccination strategy that boosts antiviral immune responses by using erythrocytes decorated with virus-mimetic nanoparticles carrying a viral antigen and a Toll-like receptor (TLR) agonist. As a proof of concept, polydopamine nanoparticles were synthesized via a simple in situ polymerization in which the nanoparticles were conjugated with the SARS-CoV-2 spike protein S1 subunit and the TLR7/8 agonist R848. The resulting SARS-CoV-2 virus-mimetic nanoparticles were attached to erythrocytes via catechol groups on the nanoparticle. Erythrocytes naturally home to the spleen and interact with the immune system. Injection of the nanoparticle-decorated erythrocytes into mice resulted in greater maturation and activation of antigen-presenting cells, humoral and cellular immune responses in the spleen, production of S1-specific immunoglobulin G (IgG) antibodies, and systemic antiviral T cell responses than a control group treated with the nanoparticles alone, with no significant negative side effects. These results show that erythrocyte-mediated systemic antiviral immunization using viral antigen- and TLR agonist-presenting polydopamine nanoparticles-a generalizable method applicable to many viral infections-is effective new approach to developing vaccines against severe infectious diseases.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangjie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
41
|
Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against covid-19. Curr Stem Cell Res Ther 2021; 17:166-185. [PMID: 33349221 DOI: 10.2174/1574888x16666201221151853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations' health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC) representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
42
|
Spadaccini M, Canziani L, Aghemo A, Lleo A, Maselli R, Anderloni A, Carrara S, Fugazza A, Pellegatta G, Galtieri PA, Hassan C, Greenwald D, Pochapin M, Wallace M, Sharma P, Roesch T, Bhandari P, Emura F, Raju GS, Repici A. What gastroenterologists should know about SARS-CoV 2 vaccine: World Endoscopy Organization perspective. United European Gastroenterol J 2021; 9:787-796. [PMID: 34102015 PMCID: PMC8242672 DOI: 10.1002/ueg2.12103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The novel Coronavirus (SARS-CoV-2) has caused almost 2 million deaths worldwide. Both Food and Drug Administration and European Medicines Agency have recently approved the first COVID-19 vaccines, and a few more are going to be approved soon. METHODS Several different approaches have been used to stimulate the immune system in mounting a humoral response. As more traditional approaches are under investigation (inactivated virus vaccines, protein subunit vaccines, recombinant virus vaccines), more recent and innovative strategies have been tried (non-replicating viral vector vaccines, RNA based vaccines, DNA based vaccines). RESULTS Since vaccinations campaigns started in December 2020 in both the US and Europe, gastroenterologists will be one of the main sources of information regarding SARS-CoV 2 vaccination for patients in their practice, including vulnerable patients such as those with Inflammatory Bowel Disease (IBD), patients with chronic liver disease, and GI cancer patients. CONCLUSIONS Thus, we must ourselves be well educated and updated in order to provide unambiguous counseling to these categories of vulnerable patients. In this commentary, we aim to provide a comprehensive review of both approved COVID-19 vaccines and the ones still under development, and explore potential risks, benefits and prioritization of vaccination.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Lorenzo Canziani
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
- Department of Internal MedicineHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Alessio Aghemo
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
- Department of GastroenterologyDivision of Internal Medicine and HepatologyHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Ana Lleo
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
- Department of GastroenterologyDivision of Internal Medicine and HepatologyHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Roberta Maselli
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Andrea Anderloni
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Silvia Carrara
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Alessandro Fugazza
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Gaia Pellegatta
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Piera Alessia Galtieri
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Cesare Hassan
- Digestive Endoscopy UnitNuovo Regina MargheritaRomeItaly
| | - David Greenwald
- Division of GastroenterologyIcahn School of Medicine at Mount SinaiMount Sinai HospitalNew YorkNew YorkUSA
| | - Mark Pochapin
- Division of Gastroenterology and HepatologyNYU Langone HealthNew YorkNew YorkUSA
| | - Michael Wallace
- Division of Gastroenterology and HepatologyMayo ClinicJacksonvilleFloridaUSA
| | - Prateek Sharma
- Digestive Endoscopy UnitKansas City VA Medical CenterKansas CityMissouriUSA
| | - Thomas Roesch
- Division of Gastroenterology & HepatologyUniversity Medical Center Hamburg ‐ EppendorfHamburgGermany
| | - Pradeep Bhandari
- Division of Gastroenterology and HepatologyQueen Alexandra HospitalPortsmouthUK
| | - Fabian Emura
- Division of GastroenterologyUniversidad de La SabanaChíaColombia
| | - Gottumukkala S Raju
- Department of Gastroenterology, Hepatology, and NutritionThe University of TexasMD Anderson Cancer CenterHoustonTexasUSA
| | - Alessandro Repici
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
- Department of GastroenterologyEndoscopy UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| |
Collapse
|
43
|
Burkholz S, Pokhrel S, Kraemer BR, Mochly-Rosen D, Carback RT, Hodge T, Harris P, Ciotlos S, Wang L, Herst CV, Rubsamen R. Paired SARS-CoV-2 spike protein mutations observed during ongoing SARS-CoV-2 viral transfer from humans to minks and back to humans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104897. [PMID: 33971305 PMCID: PMC8103774 DOI: 10.1016/j.meegid.2021.104897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
A mutation analysis of SARS-CoV-2 genomes collected around the world sorted by sequence, date, geographic location, and species has revealed a large number of variants from the initial reference sequence in Wuhan. This analysis also reveals that humans infected with SARS-CoV-2 have infected mink populations in the Netherlands, Denmark, United States, and Canada. In these animals, a small set of mutations in the spike protein receptor binding domain (RBD), often occurring in specific combinations, has transferred back into humans. The viral genomic mutations in minks observed in the Netherlands and Denmark show the potential for new mutations on the SARS-CoV-2 spike protein RBD to be introduced into humans by zoonotic transfer. Our data suggests that close attention to viral transfer from humans to farm animals and pets will be required to prevent build-up of a viral reservoir for potential future zoonotic transfer.
Collapse
Affiliation(s)
- Scott Burkholz
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States of America
| | - Benjamin R Kraemer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States of America
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States of America
| | - Richard T Carback
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America
| | - Tom Hodge
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America
| | - Paul Harris
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032, United States of America
| | - Serban Ciotlos
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America
| | - Lu Wang
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America
| | - C V Herst
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America
| | - Reid Rubsamen
- Flow Pharma, Inc., 4829 Galaxy Parkway, Suite K, Warrensville Heights, OH 44128, United States of America; Department of Anesthesiology and Perioperative Medicine, University Hospitals, Cleveland Medical Center, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH 44106, United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, United States of America.
| |
Collapse
|
44
|
Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Mofazzal Jahromi MA, Simon P, Karimi M, Hamblin MR. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J Control Release 2021; 336:354-374. [PMID: 34175366 PMCID: PMC8226031 DOI: 10.1016/j.jconrel.2021.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Alamdaran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Aref Bagherzadeh
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Perikles Simon
- Department of Sport Medicine, Disease Prevention and Rehabilitation, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Transcriptomic Profiling of Dromedary Camels Immunised with a MERS Vaccine Candidate. Vet Sci 2021; 8:vetsci8080156. [PMID: 34437478 PMCID: PMC8402689 DOI: 10.3390/vetsci8080156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV) infects dromedary camels and zoonotically infects humans, causing a respiratory disease with severe pneumonia and death. With no approved antiviral or vaccine interventions for MERS, vaccines are being developed for camels to prevent virus transmission into humans. We have previously developed a chimpanzee adenoviral vector-based vaccine for MERS-CoV (ChAdOx1 MERS) and reported its strong humoral immunogenicity in dromedary camels. Here, we looked back at total RNA isolated from whole blood of three immunised dromedaries pre and post-vaccination during the first day; and performed RNA sequencing and bioinformatic analysis in order to shed light on the molecular immune responses following a ChAdOx1 MERS vaccination. Our finding shows that a number of transcripts were differentially regulated as an effect of the vaccination, including genes that are involved in innate and adaptive immunity, such as type I and II interferon responses. The camel Bcl-3 and Bcl-6 transcripts were significantly upregulated, indicating a strong activation of Tfh cell, B cell, and NF-κB pathways. In conclusion, this study gives an overall view of the first changes in the immune transcriptome of dromedaries after vaccination; it supports the potency of ChAdOx1 MERS as a potential camel vaccine to block transmission and prevent new human cases and outbreaks.
Collapse
|
46
|
Goyal M, Tewatia N, Vashisht H, Jain R, Kumar S. Novel corona virus (COVID-19); Global efforts and effective investigational medicines: A review. J Infect Public Health 2021; 14:910-921. [PMID: 34119845 PMCID: PMC8088038 DOI: 10.1016/j.jiph.2021.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19), associated with the outbreak of deadly virus originating in Wuhan, China, is now a global health emergency and a matter of serious concern. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is rapidly spreading worldwide, and WHO declared the outbreak of this disease a pandemic on March 11, 2020. Though some of the countries have succeeded in slowing down the rate of the spread of this pandemic, most the countries across the globe are still continuing to experience an increasing trend in the growth and spread of this deadly disease. Hence, in the current scenario, is has now become essential to control and finally irradicate this deadly disease using an effective vaccine. One can expect the prominent role of already available antivirals, antibodies and anti-inflammatory drugs in the market, in this pandemic. Immunomodulatory and biological therapeutics are also in the high expectations to combat COVID-19. RNA based vaccines might be more advantageous over traditional vaccines, to deal with the pandemic threat. Aiming towards this direction, clinical trials for SARS-CoV-2 vaccine are currently underway all across the globe. Currently, about 150 health related organizations and research labs are in the progress for the evolution of COVID-19 vaccines, globally. The initial aim of these clinical trials is to assess vaccine's safety, which is tested in Phase I/II/III studies where the primary outcomes typically examine the frequency of adverse effects. The vaccine is about to undergo phase III testing in several countries such as India, USA, South Africa, Brazil and England. US Government, under Operation Wrap Speed is even ready to sponsor three candidates, namely-The University of Oxford and AstraZeneca's AZD1222; Moderna's mRNA-1273; and Pfizer and BioNTech's BNT162 for Phase III trials.
Collapse
Affiliation(s)
- Madhusudan Goyal
- Department of Chemistry, Pt. J.L.N. Government College, Department of Higher Education, Faridabad 121002, Haryana, India.
| | - Nisha Tewatia
- Department of Chemistry, Pt. J.L.N. Government College, Department of Higher Education, Faridabad 121002, Haryana, India
| | - Hemlata Vashisht
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Reena Jain
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007,India
| | - Sudershan Kumar
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007,India
| |
Collapse
|
47
|
Kim E, Weisel FJ, Balmert SC, Khan MS, Huang S, Erdos G, Kenniston TW, Carey CD, Joachim SM, Conter LJ, Weisel NM, Okba NMA, Haagmans BL, Percivalle E, Cassaniti I, Baldanti F, Korkmaz E, Shlomchik MJ, Falo LD, Gambotto A. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol 2021; 51:1774-1784. [PMID: 33772778 PMCID: PMC8250272 DOI: 10.1002/eji.202149167] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.
Collapse
Affiliation(s)
- Eun Kim
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Florian J. Weisel
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen C. Balmert
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Muhammad S. Khan
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| | - Shaohua Huang
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Geza Erdos
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Thomas W. Kenniston
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Cara Donahue Carey
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen M. Joachim
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Laura J. Conter
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nadine M. Weisel
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nisreen M. A. Okba
- Department of ViroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Bart L. Haagmans
- Department of ViroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Elena Percivalle
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
| | - Irene Cassaniti
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
| | - Fausto Baldanti
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
- Department of ClinicalSurgicalDiagnostic and Pediatric SciencesUniversity of PaviaPaviaItaly
| | - Emrullah Korkmaz
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPAUSA
| | - Mark J. Shlomchik
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Louis D. Falo
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPAUSA
- Clinical and Translational Science InstituteUniversity of PittsburghPittsburghPAUSA
- The McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Andrea Gambotto
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
- Department of MedicineDivision of Infectious DiseaseUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Microbiology and Molecular Genetics University of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
48
|
Routhu NK, Cheedarla N, Bollimpelli VS, Gangadhara S, Edara VV, Lai L, Sahoo A, Shiferaw A, Styles TM, Floyd K, Fischinger S, Atyeo C, Shin SA, Gumber S, Kirejczyk S, Dinnon KH, Shi PY, Menachery VD, Tomai M, Fox CB, Alter G, Vanderford TH, Gralinski L, Suthar MS, Amara RR. SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nat Commun 2021; 12:3587. [PMID: 34117252 PMCID: PMC8196016 DOI: 10.1038/s41467-021-23942-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Narayanaiah Cheedarla
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Venkata Satish Bollimpelli
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Venkata Viswanadh Edara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Lilin Lai
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sally A Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Shannon Kirejczyk
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mark Tomai
- 3M Corporate Research Materials Laboratory, Saint Paul, MN, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas H Vanderford
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Lisa Gralinski
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Rama Rao Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
49
|
Kumar S, Sarma P, Kaur H, Prajapat M, Bhattacharyya A, Avti P, Sehkhar N, Kaur H, Bansal S, Mahendiratta S, Mahalmani VM, Singh H, Prakash A, Kuhad A, Medhi B. Clinically relevant cell culture models and their significance in isolation, pathogenesis, vaccine development, repurposing and screening of new drugs for SARS-CoV-2: a systematic review. Tissue Cell 2021; 70:101497. [PMID: 33550034 PMCID: PMC7836970 DOI: 10.1016/j.tice.2021.101497] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In-Vitro/Cellular evidence is the backbone and vital proof of concept during the development of novel therapeutics as well as drugs repurposing against COVID-19. Choosing an ideal in-vitro model is vital as the virus entry is through ACE2, CD147, and TMPRSS2 dependant and very specific. In this regard, this is the first systematic review addressing the importance of specific cell lines used as potential in-vitro models in the isolation, pathogenesis, and therapeutics for SARS-COV-2. METHODS We searched 17 literature databases with appropriate keywords, and identified 1173 non-duplicate studies. In the present study, 71 articles are included after a careful, thorough screening of the titles and their abstracts for possible inclusion using predefined inclusion/exclusion criteria (PRISMA Guidelines). RESULTS In the current study, we compiled cell culture-based studies for SARS-CoV-2 and found the best compatible In-Vitro models for SARS-CoV-2 (Vero, VeroE6, HEK293 as well as its variants, Huh-7, Calu-3 2B4, and Caco2). Among other essential cell lines used include LLC-MK2, MDCKII, BHK-21, HepG2, A549,T cell leukemia (MT-2), stems cells based cell line DYR0100for differentiation assays, and embryo-specific NIH3T3 cell line for vaccine production. CONCLUSION The Present study provides a detailed summary of all the drugs/compounds screened for drug repurposing and discovery purpose using the in-vitro models for SARS-CoV-2 along with isolation, pathogenesis and vaccine production. This study also suggests that after careful evaluation of all the cell line based studies, Kidney cells (VeroE6, HEK293 along with their clones), liver Huh-7cells, respiratory Calu-3 cells, and intestinal Caco-2 are the most widely used in-vitro models for SARS-CoV-2.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | - Hardeep Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | | | | | - Pramod Avti
- Department of Biophysics, PGIMER, Chandigarh, India.
| | | | | | - Seema Bansal
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India.
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences (UIPS). Panjab University, Chandigarh, India.
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
50
|
Zhang BZ, Wang X, Yuan S, Li W, Dou Y, Poon VKM, Chan CCS, Cai JP, Chik KK, Tang K, Chan CCY, Hu YF, Hu JC, Badea SR, Gong HR, Lin X, Chu H, Li X, To KKW, Liu L, Chen Z, Hung IFN, Yuen KY, Chan JFW, Huang JD. A novel linker-immunodominant site (LIS) vaccine targeting the SARS-CoV-2 spike protein protects against severe COVID-19 in Syrian hamsters. Emerg Microbes Infect 2021; 10:874-884. [PMID: 33890550 PMCID: PMC8118541 DOI: 10.1080/22221751.2021.1921621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is unlikely to abate until sufficient herd immunity is built up by either natural infection or vaccination. We previously identified ten linear immunodominant sites on the SARS-CoV-2 spike protein of which four are located within the RBD. Therefore, we designed two linkerimmunodominant site (LIS) vaccine candidates which are composed of four immunodominant sites within the RBD (RBD-ID) or all the 10 immunodominant sites within the whole spike (S-ID). They were administered by subcutaneous injection and were tested for immunogenicity and in vivo protective efficacy in a hamster model for COVID-19. We showed that the S-ID vaccine induced significantly better neutralizing antibody response than RBD-ID and alum control. As expected, hamsters vaccinated by S-ID had significantly less body weight loss, lung viral load, and histopathological changes of pneumonia. The S-ID has the potential to be an effective vaccine for protection against COVID-19.
Collapse
Affiliation(s)
- Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Wenjun Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Chris Chung-Sing Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kenn KaHeng Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Chris Chun-Yiu Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jing-Chu Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Smaranda Ruxandra Badea
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hua-Rui Gong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Li Liu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, People's Republic of China
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, People's Republic of China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| |
Collapse
|