1
|
Shinfuku MS, Domeignoz-Horta LA, Choudoir MJ, Frey SD, Mitchell MF, Ranjan R, DeAngelis KM. Seasonal effects of long-term warming on ecosystem function and bacterial diversity. PLoS One 2024; 19:e0311364. [PMID: 39446706 PMCID: PMC11500971 DOI: 10.1371/journal.pone.0311364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained within ecosystems under climate change is uncertain. Here, using two long-term soil warming experiments, we investigated how warming affects the relationship between ecosystem functions and bacterial diversity across seasons, soil horizons, and warming duration. Soils were sampled from these warming experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site, where soils had been heated +5°C above ambient for 13 or 28 years at the time of sampling. We assessed seven measurements representative of different ecosystem functions and nutrient pools. We also surveyed bacterial community diversity. We found that ecosystem function was significantly affected by season, with autumn samples having a higher intercept than summer samples in our model, suggesting a higher overall baseline of ecosystem function in the fall. The effect of warming on bacterial diversity was similarly affected by season, where warming in the summer was associated with decreased bacterial evenness in the organic horizon. Despite the decreased bacterial evenness in the warmed plots, we found that the relationship between ecosystem function and bacterial diversity was unaffected by warming or warming duration. Our findings highlight that season is a consistent driver of ecosystem function as well as a modulator of climate change effects on bacterial community evenness.
Collapse
Affiliation(s)
- Melissa S. Shinfuku
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Luiz A. Domeignoz-Horta
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, Palaiseau, France
| | - Mallory J. Choudoir
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Serita D. Frey
- Center for Soil Biogeochemistry and Microbial Ecology, Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States of America
| | - Megan F. Mitchell
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States of America
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Kristen M. DeAngelis
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
2
|
Silverstein MR, Bhatnagar JM, Segrè D. Metabolic complexity drives divergence in microbial communities. Nat Ecol Evol 2024; 8:1493-1504. [PMID: 38956426 DOI: 10.1038/s41559-024-02440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
Microbial communities are shaped by environmental metabolites, but the principles that govern whether different communities will converge or diverge in any given condition remain unknown, posing fundamental questions about the feasibility of microbiome engineering. Here we studied the longitudinal assembly dynamics of a set of natural microbial communities grown in laboratory conditions of increasing metabolic complexity. We found that different microbial communities tend to become similar to each other when grown in metabolically simple conditions, but they diverge in composition as the metabolic complexity of the environment increases, a phenomenon we refer to as the divergence-complexity effect. A comparative analysis of these communities revealed that this divergence is driven by community diversity and by the assortment of specialist taxa capable of degrading complex metabolites. An ecological model of community dynamics indicates that the hierarchical structure of metabolism itself, where complex molecules are enzymatically degraded into progressively simpler ones that then participate in cross-feeding between community members, is necessary and sufficient to recapitulate our experimental observations. In addition to helping understand the role of the environment in community assembly, the divergence-complexity effect can provide insight into which environments support multiple community states, enabling the search for desired ecosystem functions towards microbiome engineering applications.
Collapse
Affiliation(s)
- Michael R Silverstein
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jennifer M Bhatnagar
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Daniel Segrè
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering and Department of Physics, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Guseva K, Mohrlok M, Alteio L, Schmidt H, Pollak S, Kaiser C. Bacteria face trade-offs in the decomposition of complex biopolymers. PLoS Comput Biol 2024; 20:e1012320. [PMID: 39116194 PMCID: PMC11364420 DOI: 10.1371/journal.pcbi.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/30/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Although depolymerization of complex carbohydrates is a growth-limiting bottleneck for microbial decomposers, we still lack understanding about how the production of different types of extracellular enzymes affect individual microbes and in turn the performance of whole decomposer communities. In this work we use a theoretical model to evaluate the potential trade-offs faced by microorganisms in biopolymer decomposition which arise due to the varied biochemistry of different depolymerizing enzyme classes. We specifically consider two broad classes of depolymerizing extracellular enzymes, which are widespread across microbial taxa: exo-enzymes that cleave small units from the ends of polymer chains and endo-enzymes that act at random positions generating degradation products of varied sizes. Our results demonstrate a fundamental trade-off in the production of these enzymes, which is independent of system's complexity and which appears solely from the intrinsically different temporal depolymerization dynamics. As a consequence, specialists that produce either exo- or only endo-enzymes limit their growth to high or low substrate conditions, respectively. Conversely, generalists that produce both enzymes in an optimal ratio expand their niche and benefit from the synergy between the two enzymes. Finally, our results show that, in spatially-explicit environments, consortia composed of endo- and exo-specialists can only exist under oligotrophic conditions. In summary, our analysis demonstrates that the (evolutionary or ecological) selection of a depolymerization pathway will affect microbial fitness under low or high substrate conditions, with impacts on the ecological dynamics of microbial communities. It provides a possible explanation why many polysaccharide degraders in nature show the genetic potential to produce both of these enzyme classes.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Moritz Mohrlok
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Lauren Alteio
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and innovation, Tulln, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Shaul Pollak
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Katayama T, Nobu MK, Imachi H, Hosogi N, Meng XY, Morinaga K, Yoshioka H, Takahashi HA, Kamagata Y, Tamaki H. A Marine Group A isolate relies on other growing bacteria for cell wall formation. Nat Microbiol 2024; 9:1954-1963. [PMID: 38831032 DOI: 10.1038/s41564-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Most of Earth's prokaryotes live under energy limitation, yet the full breadth of strategies that enable survival under such conditions remain poorly understood. Here we report the isolation of a bacterial strain, IA91, belonging to the candidate phylum Marine Group A (SAR406 or 'Candidatus Marinimicrobia') that is unable to synthesize the central cell wall compound peptidoglycan itself. Using cultivation experiments and microscopy, we show that IA91 growth and cell shape depend on other bacteria, deriving peptidoglycan, energy and carbon from exogenous muropeptide cell wall fragments released from growing bacteria. Reliance on exogenous muropeptides is traceable to the phylum's ancestor, with evidence of vertical inheritance across several classes. This dependency may be widespread across bacteria (16 phyla) based on the absence of key peptidoglycan synthesis genes. These results suggest that uptake of exogenous cell wall components could be a relevant and potentially common survival strategy in energy-limited habitats like the deep biosphere.
Collapse
Affiliation(s)
- Taiki Katayama
- Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, AIST, Tsukuba, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroyuki Imachi
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Naoki Hosogi
- EM Application Department, EM Business Unit, JEOL, Ltd., Akishima, Japan
| | | | - Kana Morinaga
- Bioproduction Research Institute, AIST, Tsukuba, Japan
| | - Hideyoshi Yoshioka
- Research Institute for Geo-Resources and Environment, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroshi A Takahashi
- Research Institute of Earthquake and Volcano Geology, GSJ, AIST, Tsukuba, Japan
| | | | | |
Collapse
|
5
|
Vanharanta M, Santoro M, Villena-Alemany C, Piiparinen J, Piwosz K, Grossart HP, Labrenz M, Spilling K. Microbial remineralization processes during postspring-bloom with excess phosphate available in the northern Baltic Sea. FEMS Microbiol Ecol 2024; 100:fiae103. [PMID: 39039015 DOI: 10.1093/femsec/fiae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Mari Vanharanta
- Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, 10900 Hanko, Finland
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Mariano Santoro
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde - IOW, Seestrasse 15, 18119 Rostock, Germany
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 379 01 Třeboň, Czech Republic
| | - Jonna Piiparinen
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, OT Neuglobsow, 16775 Stechlin, Germany
- Institute of Biology and Biochemistry, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde - IOW, Seestrasse 15, 18119 Rostock, Germany
| | - Kristian Spilling
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
- Centre for Coastal Research, University of Agder, Universitetsveien 25, 4604 Kristiansand, Norway
| |
Collapse
|
6
|
Abdoli P, Vulin C, Lepiz M, Chase AB, Weihe C, Rodríguez-Verdugo A. Substrate complexity buffers negative interactions in a synthetic community of leaf litter degraders. FEMS Microbiol Ecol 2024; 100:fiae102. [PMID: 39020097 PMCID: PMC11289631 DOI: 10.1093/femsec/fiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
Leaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.
Collapse
Affiliation(s)
- Parmis Abdoli
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Clément Vulin
- Department of Fundamental Microbiology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Miriam Lepiz
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, 3225 Daniel Avenue, Suite 207, Heroy Hall, Dallas, TX 75205, United States
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Alejandra Rodríguez-Verdugo
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| |
Collapse
|
7
|
Tueffers L, Batra A, Zimmermann J, Botelho J, Buchholz F, Liao J, Mendoza Mejía N, Munder A, Klockgether J, Tüemmler B, Rupp J, Schulenburg H. Variation in the response to antibiotics and life-history across the major Pseudomonas aeruginosa clone type (mPact) panel. Microbiol Spectr 2024; 12:e0014324. [PMID: 38860784 PMCID: PMC11218531 DOI: 10.1128/spectrum.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, opportunistic human pathogen. Since it often expresses multidrug resistance, new treatment options are urgently required. Such new treatments are usually assessed with one of the canonical laboratory strains, PAO1 or PA14. However, these two strains are unlikely representative of the strains infecting patients, because they have adapted to laboratory conditions and do not capture the enormous genomic diversity of the species. Here, we characterized the major P. aeruginosa clone type (mPact) panel. This panel consists of 20 strains, which reflect the species' genomic diversity, cover all major clone types, and have both patient and environmental origins. We found significant strain variation in distinct responses toward antibiotics and general growth characteristics. Only few of the measured traits are related, suggesting independent trait optimization across strains. High resistance levels were only identified for clinical mPact isolates and could be linked to known antimicrobial resistance (AMR) genes. One strain, H01, produced highly unstable AMR combined with reduced growth under drug-free conditions, indicating an evolutionary cost to resistance. The expression of microcolonies was common among strains, especially for strain H15, which also showed reduced growth, possibly indicating another type of evolutionary trade-off. By linking isolation source, growth, and virulence to life history traits, we further identified specific adaptive strategies for individual mPact strains toward either host processes or degradation pathways. Overall, the mPact panel provides a reasonably sized set of distinct strains, enabling in-depth analysis of new treatment designs or evolutionary dynamics in consideration of the species' genomic diversity. IMPORTANCE New treatment strategies are urgently needed for high-risk pathogens such as the opportunistic and often multidrug-resistant pathogen Pseudomonas aeruginosa. Here, we characterize the major P. aeruginosa clone type (mPact) panel. It consists of 20 strains with different origins that cover the major clone types of the species as well as its genomic diversity. This mPact panel shows significant variation in (i) resistance against distinct antibiotics, including several last resort antibiotics; (ii) related traits associated with the response to antibiotics; and (iii) general growth characteristics. We further developed a novel approach that integrates information on resistance, growth, virulence, and life-history characteristics, allowing us to demonstrate the presence of distinct adaptive strategies of the strains that focus either on host interaction or resource processing. In conclusion, the mPact panel provides a manageable number of representative strains for this important pathogen for further in-depth analyses of treatment options and evolutionary dynamics.
Collapse
Affiliation(s)
- Leif Tueffers
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Aditi Batra
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Johannes Zimmermann
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - João Botelho
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Florian Buchholz
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Junqi Liao
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | | | - Antje Munder
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Burkhard Tüemmler
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
8
|
Mikulski D, Juśkiewicz J, Ognik K, Fotschki B, Tykałowski B, Jankowski J. Gastrointestinal response to the early administration of antimicrobial agents in growing turkeys infected with Escherichia coli. Poult Sci 2024; 103:103720. [PMID: 38652949 PMCID: PMC11063517 DOI: 10.1016/j.psj.2024.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigated the effects of the early administration of enrofloxacin (E) or doxycycline (D) for the first 5 consecutive days of life, or the continuous administration of the coccidiostat monensin (M) throughout the rearing period on gastrointestinal function in turkeys infected with avian pathogenic Escherichia coli (APEC) in an early or later stage of rearing. Experiment 1 lasted 21 d, and turkeys in groups E, D, and M were infected with APEC on d 15. Experiment 2 lasted 56 d, and it had a factorial arrangement of treatments where birds in groups E, D, and M were infected with APEC on d 15 or d 50. In both experiments, control groups (C) consisted of infected and uninfected birds without antibiotic or coccidiostat administration. On d 21 (Experiment 1) and d 56 (Experiment 2), 8 birds from each subgroup were killed, and the ileal and cecal digesta were sampled to analyze the activity of bacterial enzymes and the concentrations of short-chain fatty acids (SCFA). The experimental treatments did not affect the final body weight or body weight gain of birds. Both experiments demonstrated that APEC contributed to an increase in ammonia levels of the cecal digesta (means from 2 experiments: 0.311 vs. 0.225 mg/g in uninfected birds) and ileal pH (6.79 vs. 6.00) and viscosity (2.43 vs. 1.83 mPa⋅s). Moreover, the E. coli challenge enhanced the extracellular activity of several cecal bacterial enzymes, especially in older turkeys infected with APEC in a later stage of life. The continuous administration of monensin throughout the rearing period resulted in a weaker gastrointestinal response in older birds, compared with the other 2 antibiotics administered for the first 5 d of life. The results of the study are inconclusive as both desirable and undesirable effects of preventive early short-term antibiotic therapy were observed in turkeys, including normalization of ileal viscosity and cecal ammonia concentration (positive effect), and disruption in cecal SCFA production (negative effect).
Collapse
Affiliation(s)
- Dariusz Mikulski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Olsztyn 10-719, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, Lublin 20-950, Poland
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn 10-719, Poland
| | - Jan Jankowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Olsztyn 10-719, Poland
| |
Collapse
|
9
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
10
|
Shi J, Du Y, Zou J, Ma S, Mao S, Li W, Yu C. Mechanisms of microbial-driven changes in soil ecological stoichiometry around gold mines. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133239. [PMID: 38118202 DOI: 10.1016/j.jhazmat.2023.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
In this study, we used soils with different pollution and nutrient levels (non-polluted S1, highly polluted low-nutrient S2, and highly polluted high nutrient S3) around the gold mine tailing ponds, and combined with metabolic limitation modeling and macro-genomics approaches, aiming to investigate the relationship between soil microbial composition and soil eco-chemometrics characteristics under heavy metal stress. The results showed that heavy pollution resulted in reduced SOC, TN, microbial biomass, and with C- and P- acquisition (BG, CBH, ALP) as well as nitrogen limitation of soil microbial metabolism in soils (S2, S3). Further analysis by macrogenomics showed that heavy metal contamination led to an increase in α-microbial diversity and altered the composition of microbial communities in the soil. The cycling of C, N, and P nutrients was altered by affecting the relative abundance of Anaeromyxobacter, Steroidobacter, Bradyrhizobium, Acidobacterium, Limnochorda (predominantly in the Ascomycetes and Acidobacteria phyla), with the most pronounced effect on the composition of microorganisms synthesizing C-acquiring enzymes, and heavy metals and pH were the main influences on ecological stoichiometry. The results of this study are useful for understanding the sustainability of ecological remediation in heavy metal contaminated areas and for developing ecological restoration strategies.
Collapse
Affiliation(s)
- Jinshuai Shi
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Jiacheng Zou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shuaixian Mao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Wenyao Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| |
Collapse
|
11
|
Clayton J, Lemanski K, Solbach MD, Temperton VM, Bonkowski M. Two-way NxP fertilisation experiment on barley ( Hordeum vulgare) reveals shift from additive to synergistic N-P interactions at critical phosphorus fertilisation level. FRONTIERS IN PLANT SCIENCE 2024; 15:1346729. [PMID: 38504892 PMCID: PMC10948440 DOI: 10.3389/fpls.2024.1346729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
In a pot experiment, we investigated synergistic interaction of N and P fertilisation on barley biomass (Hordeum vulgare) on both shoot and root level with the aim to determine whether N-P interaction would be the same for all levels of N and P fertilisation. We further aimed to determine whether there was a critical level of N and/or P fertilisation rate, above which, a decrease in resource allocation to roots (as nutrient availability increased) could be demonstrated. Barley plants were grown from seed on a nutrient poor substrate and subjected to a two-way NxP fertilisation gradient using a modified Hoagland fertilisation solution. We observed N-P interactions in shoot and root biomass, and N and P use-efficiencies. A synergistic response in biomass was observed only above a critical level of P fertilisation when P was not limiting growth. Furthermore, we found that the same incremental increase in N:P ratio of applied fertiliser elicited different responses in shoot and root biomass depending on P treatment and concluded that barley plants were less able to cope with increasing stoichiometric imbalance when P was deficient. We provide, for the first time, stoichiometric evidence that critical levels for synergistic interactions between N-P may exist in crop plants.
Collapse
Affiliation(s)
- Jessica Clayton
- Terrestrial Ecology, Institute of Zoology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Kathleen Lemanski
- Terrestrial Ecology, Institute of Zoology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology, Institute of Zoology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Vicky M. Temperton
- Institute of Ecology, Faculty of Sustainability, Leuphana University Lüneburg, Lüneburg, Germany
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Yoo S, Lee KM, Kim N, Vu TN, Abadie R, Yong D. Designing phage cocktails to combat the emergence of bacteriophage-resistant mutants in multidrug-resistant Klebsiella pneumoniae. Microbiol Spectr 2024; 12:e0125823. [PMID: 38018985 PMCID: PMC10783003 DOI: 10.1128/spectrum.01258-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE In this study, we aimed to design a novel and effective bacteriophage cocktail that can target both wild-type bacteria and phage-resistant mutants. To achieve this goal, we isolated four phages (U2874, phi_KPN_H2, phi_KPN_S3, and phi_KPN_HS3) that recognized different bacterial surface molecules using phage-resistant bacteria. We constructed three phage cocktails and tested their phage resistance-suppressing ability against multidrug-resistant Klebsiella pneumoniae. We argue that the phage cocktail that induces resensitization of phage susceptibility exhibited superior phage resistance-suppressing ability. Moreover, we observed trade-off effects that manifested progressively in phage-resistant bacteria. We hypothesize that such trade-off effects can augment therapeutic efficacy. We also recommend collating phage host range data against phage-resistant mutants in addition to wild-type bacteria when establishing phage banks to improve the efficiency of phage therapy. Our study underscores the importance of phage host range data in constructing effective phage cocktails for clinical use.
Collapse
Affiliation(s)
- Seongjun Yoo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Nayoung Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Thao Nguyen Vu
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ricardo Abadie
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Trivellin C, Rugbjerg P, Olsson L. Performance and robustness analysis reveals phenotypic trade-offs in yeast. Life Sci Alliance 2024; 7:e202302215. [PMID: 37903627 PMCID: PMC10618107 DOI: 10.26508/lsa.202302215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
To design strains that can function efficiently in complex industrial settings, it is crucial to consider their robustness, that is, the stability of their performance when faced with perturbations. In the present study, we cultivated 24 Saccharomyces cerevisiae strains under conditions that simulated perturbations encountered during lignocellulosic bioethanol production, and assessed the performance and robustness of multiple phenotypes simultaneously. The observed negative correlations confirmed a trade-off between performance and robustness of ethanol yield, biomass yield, and cell dry weight. Conversely, the specific growth rate performance positively correlated with the robustness, presumably because of evolutionary selection for robust, fast-growing cells. The Ethanol Red strain exhibited both high performance and robustness, making it a good candidate for bioproduction in the tested perturbation space. Our results experimentally map the robustness-performance trade-offs, previously demonstrated mainly by single-phenotype and computational studies.
Collapse
Affiliation(s)
- Cecilia Trivellin
- https://ror.org/040wg7k59 Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Rugbjerg
- https://ror.org/040wg7k59 Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Enduro Genetics ApS, Copenhagen, Denmark
| | - Lisbeth Olsson
- https://ror.org/040wg7k59 Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
14
|
Aliperti L, Aptekmann AA, Farfañuk G, Couso LL, Soler-Bistué A, Sánchez IE. r/K selection of GC content in prokaryotes. Environ Microbiol 2023; 25:3255-3268. [PMID: 37813828 DOI: 10.1111/1462-2920.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.
Collapse
Affiliation(s)
- Lucio Aliperti
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel A Aptekmann
- Marine and Coastal Sciences Department, Rutgers University, New Brunswick, New Jersey, USA
| | - Gonzalo Farfañuk
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana L Couso
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, CONICET, Universidad Nacional de San Martín, San Martin, Argentina
| | - Ignacio E Sánchez
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Kopecky J, Kamenik Z, Omelka M, Novotna J, Stefani T, Sagova-Mareckova M. Phylogenetically related soil actinomycetes distinguish isolation sites by their metabolic activities. FEMS Microbiol Ecol 2023; 99:fiad139. [PMID: 37935470 DOI: 10.1093/femsec/fiad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Soil environments are inhabited by microorganisms adapted to its diversified microhabitats. The metabolic activity of individual strains/populations reflects resources available at a particular spot, quality of which may not comply with broad soil characteristics. To explore the potential of individual strains to adapt to particular micro-niches of carbon sources, a set of 331 Actinomycetia strains were collected at ten sites differing in vegetation, soil pH, organic matter content and quality. The strains were isolated on the same complex medium with neutral pH and their metabolites analyzed by UHPLC and LC-MS/MS in spent cultivation medium (metabolic profiles). For all strains, their metabolic profiles correlated with soil pH and organic matter content of the original sites. In comparison, strains phylogeny based on either 16S rRNA or the beta-subunit of DNA-dependent RNA polymerase (rpoB) genes was partially correlated with soil organic matter content but not soil pH at the sites. Antimicrobial activities of strains against Kocuria rhizophila, Escherichia coli, and Saccharomyces cerevisiae were both site- and phylogeny-dependent. The precise adaptation of metabolic profiles to overall sites characteristics was further supported by the production of locally specific bioactive metabolites and suggested that carbon resources represent a significant selection pressure connected to specific antibiotic activities.
Collapse
Affiliation(s)
- Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, 161 06 Prague, Czechia
| | - Zdenek Kamenik
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, 142 20 Prague, Czechia
| | - Marek Omelka
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 186 75 Prague, Czechia
| | - Jitka Novotna
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, 161 06 Prague, Czechia
| | - Tommaso Stefani
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, 142 20 Prague, Czechia
| | - Marketa Sagova-Mareckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague, Czechia
| |
Collapse
|
16
|
Huang W, Kuzyakov Y, Niu S, Luo Y, Sun B, Zhang J, Liang Y. Drivers of microbially and plant-derived carbon in topsoil and subsoil. GLOBAL CHANGE BIOLOGY 2023; 29:6188-6200. [PMID: 37732716 DOI: 10.1111/gcb.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Plant- and microbially derived carbon (C) are the two major sources of soil organic matter (SOM), and their ratio impacts SOM composition, accumulation, stability, and turnover. The contributions of and the key factors defining the plant and microbial C in SOM along the soil profile are not well known. By leveraging nuclear magnetic resonance spectroscopy and biomarker analysis, we analyzed the plant and microbial C in three soil types using regional-scale sampling and combined these results with a meta-analysis. Topsoil (0-40 cm) was rich in carbohydrates and lignin (38%-50%), whereas subsoil (40-100 cm) contained more proteins and lipids (26%-60%). The proportion of plant C increases, while microbial C decreases with SOM content. The decrease rate of the ratio of the microbially derived C to plant-derived C (CM:P ) with SOM content was 23%-30% faster in the topsoil than in the subsoil in the regional study and meta-analysis. The topsoil had high potential to stabilize plant-derived C through intensive microbial transformations and microbial necromass formation. Plant C input and mean annual soil temperature were the main factors defining CM:P in topsoil, whereas the fungi-to-bacteria ratio and clay content were the main factors influencing subsoil CM:P . Combining a regional study and meta-analysis, we highlighted the contribution of plant litter to microbial necromass to organic matter up to 1-m soil depth and elucidated the main factors regulating their long-term preservation.
Collapse
Affiliation(s)
- Weigen Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yu Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Juśkiewicz J, Ognik K, Fotschki J, Napiórkowska D, Cholewińska E, Grzelak-Błaszczyk K, Krauze M, Fotschki B. The Effects of Dietary Chromium Supplementation along with Discontinuing a High-Fat Diet on the Microbial Enzymatic Activity and the Production of SCFAs in the Faeces of Rats. Nutrients 2023; 15:3962. [PMID: 37764746 PMCID: PMC10534834 DOI: 10.3390/nu15183962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The present study assessed the changes in faecal microbial activity in obese Wistar rats fed high-fat or low-fat diets supplemented with various forms of chromium (picolinate or nanoparticles). The 18-week study was divided into two phases: an introductory period (9 weeks; obesity status induction via a high-fat diet) and an experimental period (9 weeks; maintained on a high-fat diet or switched to a low-fat diet and Cr supplementation). During the experimental period (10-18 weeks of feeding), samples of fresh faeces were collected on chosen days. The bacterial enzymatic activity and short-chain fatty acids (SCFAs) concentration were assessed to characterise the dynamism of the changes in faecal microbial metabolic activity under the applied dietary treatments. The results indicated that faecal microbial metabolic activity displayed several adaptation mechanisms in response to modifications in dietary conditions, and a beneficial outcome resulted from a pro-healthy dietary habit change, that is, switching from a high-fat to a low-fat diet. Dietary supplementation with chromium nanoparticles further modulated the aforementioned microbial activity, i.e., diminished the extracellular and total enzymatic activities, while the effect of chromium picolinate addition was negligible. Both the high-fat diet and the addition of chromium nanoparticles reduced SCFA concentrations and increased the faecal pH values.
Collapse
Affiliation(s)
- Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.O.); (E.C.); (M.K.)
| | - Joanna Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| | - Dorota Napiórkowska
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.O.); (E.C.); (M.K.)
| | - Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.O.); (E.C.); (M.K.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (J.F.); (D.N.); (B.F.)
| |
Collapse
|
18
|
Silverstein M, Bhatnagar JM, Segrè D. Metabolic complexity drives divergence in microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551516. [PMID: 37577626 PMCID: PMC10418233 DOI: 10.1101/2023.08.03.551516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microbial communities are shaped by the metabolites available in their environment, but the principles that govern whether different communities will converge or diverge in any given condition remain unknown, posing fundamental questions about the feasibility of microbiome engineering. To this end, we studied the longitudinal assembly dynamics of a set of natural microbial communities grown in laboratory conditions of increasing metabolic complexity. We found that different microbial communities tend to become similar to each other when grown in metabolically simple conditions, but diverge in composition as the metabolic complexity of the environment increases, a phenomenon we refer to as the divergence-complexity effect. A comparative analysis of these communities revealed that this divergence is driven by community diversity and by the diverse assortment of specialist taxa capable of degrading complex metabolites. An ecological model of community dynamics indicates that the hierarchical structure of metabolism itself, where complex molecules are enzymatically degraded into progressively smaller ones, is necessary and sufficient to recapitulate all of our experimental observations. In addition to pointing to a fundamental principle of community assembly, the divergence-complexity effect has important implications for microbiome engineering applications, as it can provide insight into which environments support multiple community states, enabling the search for desired ecosystem functions.
Collapse
Affiliation(s)
- Michael Silverstein
- Bioinformatics Program, Boston University, Boston, MA
- Biological Design Center, Boston University, Boston, MA
| | - Jennifer M. Bhatnagar
- Bioinformatics Program, Boston University, Boston, MA
- Department of Biology, Boston University, Boston, MA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA
- Biological Design Center, Boston University, Boston, MA
- Department of Biology, Boston University, Boston, MA
- Department of Biomedical Engineering and Department of Physics, Boston University, Boston, MA
| |
Collapse
|
19
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
20
|
Emani SS, Kan A, Storms T, Bonanno S, Law J, Ray S, Joshi NS. Periplasmic stress contributes to a trade-off between protein secretion and cell growth in Escherichia coli Nissle 1917. Synth Biol (Oxf) 2023; 8:ysad013. [PMID: 37601821 PMCID: PMC10439730 DOI: 10.1093/synbio/ysad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of Escherichia coli Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems Graphical Abstract.
Collapse
Affiliation(s)
| | - Anton Kan
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Timothy Storms
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Shanna Bonanno
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jade Law
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Sanhita Ray
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Earthworms enhance the bioremediation of tris(2-butoxyethyl) phosphate-contaminated soil by releasing degrading microbes. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131303. [PMID: 36989797 DOI: 10.1016/j.jhazmat.2023.131303] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The escalating awareness of the environmental risks posed by organophosphorus flame retardants (OPFRs), e.g., tris(2-butoxyethyl) phosphate (TBOEP), necessitates the development of effective approaches to mitigate their adverse ecological effects. However, research on the remediation of OPFR-contaminated soil remains limited. In this study, a strategy is proposed to enhance the microbial remediation of TBOEP-contaminated soil through the introduction of exotic earthworms (Eisenia fetida). The presence of earthworms led to a substantial increase in the 28-d removal rates of TBOEP at concentrations of 0.05, 0.5, and 5 mg/kg, with improvements of 32.3 ± 2.0%, 33.2 ± 1.3%, and 33.0 ± 5.6% compared to rates in the absence of earthworms, respectively. The underlying mechanisms for this enhancement include the earthworm-mediated enrichment of TBOEP-degrading bacteria, particularly Rhodococcus, Flavobacterium, and Pseudomonas, and the transfer of Rhodococcus from the earthworm gut to the soil, resulting in an increased relative abundance within the soil. Concurrently, the earthworms stimulated soil peroxidase activity, facilitating the oxidative degradation of TBOEP. Furthermore, the rise in dissolved organic matter content following earthworm treatment fostered the growth of degrading bacteria in the soil. Rhodococcus emerged as a dominant contributor to soil TBOEP removal, consuming humic-like compounds in dissolved organic matter. This investigation underscores the significance of gut microbes and offers valuable insights for the application of earthworm-based remediation strategies in OPFR-contaminated soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Fu L, Xie R, Ma D, Zhang M, Liu L. Variations in soil microbial community structure and extracellular enzymatic activities along a forest-wetland ecotone in high-latitude permafrost regions. Ecol Evol 2023; 13:e10205. [PMID: 37332520 PMCID: PMC10269122 DOI: 10.1002/ece3.10205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
Permafrost degradation by global warming is expected to alter the hydrological processes, which results in changes in vegetation species composition and gives rise to community succession. Ecotones are sensitive transition areas between ecosystem boundaries, attract particular interest due to their ecological importance and prompt responses to the environmental variables. However, the characteristics of soil microbial communities and extracellular enzymes along the forest-wetland ecotone in high-latitude permafrost region remain poorly understood. In this study, we evaluated the variations of soil bacterial and fungal community structures and soil extracellular enzymatic activities of 0-10 cm and 10-20 cm soil layers in five different wetland types along environmental gradients, including Larix gmelinii swamp (LY), Betula platyphylla swamp (BH), Alnus sibirica var. hirsute swamp (MCY), thicket swamp (GC), and tussock swamp (CC). The relative abundances of some dominant bacterial (Actinobacteria and Verrucomicrobia) and fungal (Ascomycota and Basidiomycota) phyla differed significantly among different wetlands, while bacterial and fungal alpha diversity was not strongly affected by soil depth. PCoA results showed that vegetation type, rather than soil depth explained more variation of soil microbial community structure. β-glucosidase and β-N-acetylglucosaminidase activities were significantly lower in GC and CC than in LY, BH, and MCY, while acid phosphatase activity was significantly higher in BH and GC than LY and CC. Altogether, the data suggest that soil moisture content (SMC) was the most important environmental factor contributing to the bacterial and fungal communities, while extracellular enzymatic activities were closely related to soil total organic carbon (TOC), nitrate nitrogen (NO 3 - -N ) and total phosphorus (TP).
Collapse
Affiliation(s)
- Lingyu Fu
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Ruifeng Xie
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Dalong Ma
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Man Zhang
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| | - Lin Liu
- College of Geographical SciencesHarbin Normal UniversityHarbinChina
| |
Collapse
|
23
|
Li Y, Hou Y, Hou Q, Long M, Yang Y, Wang Z, Liao Y. Long-term plastic mulching decreases rhizoplane soil carbon sequestration by decreasing microbial anabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161713. [PMID: 36682553 DOI: 10.1016/j.scitotenv.2023.161713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Ridge-furrow with plastic mulching (RFPM) is a widely used agricultural practice in rain-fed farmlands. However, the impact of microbial related metabolism on soil organic carbon (SOC) is not fully understood. Amino sugar analysis, high-throughput sequencing, and high-throughput qPCR approaches are combined to investigate this topic, based on a long-term experiment. Treatments include flat planting without mulching (FP), ridge-furrow without mulching (RF), and RFPM. RFPM significantly decreases rhizoplane SOC contents, while bulk SOC contents change insignificantly across treatments. In terms of microbial metabolic pathways, RFPM decreases indicators of the in vivo metabolic pathway, whereas those of the ex vivo pathway are increased. In terms of microbial community features, core taxa module #1 is dominated by Sphingomonadaceae. These are putative high yield (Y) strategists, according to the microbial life-history strategy framework. They are closely related to the in vivo pathway and are most predictive for SOC; their abundance is highest under FP and lowest under RFPM. Core taxa module #2 is dominated by Chitinophagaceae, putative resource acquisition (A) strategists, that are closely related to the ex vivo pathway. Their abundance in the rhizoplane is highest under RFPM and lowest under FP. The RFPM-induced decline in SOC occurs simultaneously with the abundance of A-strategists with in vivo pathway but not the Y-strategists with ex vivo pathway. Overall, the result of this study shows a trade-off. In RFPM practice, the ex vivo microbial pathway is enhanced along with the abundance of A-strategists. This is not the case for the in vivo pathway and associated abundance of Y-strategists, which are closely associated with SOC. Our findings underlined the impact of rhizoplane microbial metabolic pathways on SOC status is key to agricultural practices in drylands such as RFPM, and advanced our understanding of how microbes affect the carbon cycling in dryland farming.
Collapse
Affiliation(s)
- Yüze Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yuting Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Quanming Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Mei Long
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yali Yang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, Liaoning, PR China
| | - Ziting Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; College of Agronomy, Guangxi University, Nanning, 530004, Guangxi, PR China; Guangxi Key Laboratory of Sugarcane Biology, Nanning, 530004, Guangxi, PR China.
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
24
|
Shu X, Hu Y, Liu W, Xia L, Zhang Y, Zhou W, Liu W, Zhang Y. Linking between soil properties, bacterial communities, enzyme activities, and soil organic carbon mineralization under ecological restoration in an alpine degraded grassland. Front Microbiol 2023; 14:1131836. [PMID: 37180269 PMCID: PMC10167489 DOI: 10.3389/fmicb.2023.1131836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Soil organic carbon (SOC) mineralization is affected by ecological restoration and plays an important role in the soil C cycle. However, the mechanism of ecological restoration on SOC mineralization remains unclear. Here, we collected soils from the degraded grassland that have undergone 14 years of ecological restoration by planting shrubs with Salix cupularis alone (SA) and, planting shrubs with Salix cupularis plus planting mixed grasses (SG), with the extremely degraded grassland underwent natural restoration as control (CK). We aimed to investigate the effect of ecological restoration on SOC mineralization at different soil depths, and to address the relative importance of biotic and abiotic drivers of SOC mineralization. Our results documented the statistically significant impacts of restoration mode and its interaction with soil depth on SOC mineralization. Compared with CK, the SA and SG increased the cumulative SOC mineralization but decreased C mineralization efficiency at the 0-20 and 20-40 cm soil depths. Random Forest analyses showed that soil depth, microbial biomass C (MBC), hot-water extractable organic C (HWEOC), and bacterial community composition were important indicators that predicted SOC mineralization. Structural equal modeling indicated that MBC, SOC, and C-cycling enzymes had positive effects on SOC mineralization. Bacterial community composition regulated SOC mineralization via controlling microbial biomass production and C-cycling enzyme activities. Overall, our study provides insights into soil biotic and abiotic factors in association with SOC mineralization, and contributes to understanding the effect and mechanism of ecological restoration on SOC mineralization in a degraded grassland in an alpine region.
Collapse
Affiliation(s)
- Xiangyang Shu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yufu Hu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weijia Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Karlsruhe, Baden-Wurttemberg, Germany
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wanling Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulin Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
25
|
Genomic Features Predict Bacterial Life History Strategies in Soil, as Identified by Metagenomic Stable Isotope Probing. mBio 2023; 14:e0358422. [PMID: 36877031 PMCID: PMC10128055 DOI: 10.1128/mbio.03584-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Bacteria catalyze the formation and destruction of soil organic matter, but the bacterial dynamics in soil that govern carbon (C) cycling are not well understood. Life history strategies explain the complex dynamics of bacterial populations and activities based on trade-offs in energy allocation to growth, resource acquisition, and survival. Such trade-offs influence the fate of soil C, but their genomic basis remains poorly characterized. We used multisubstrate metagenomic DNA stable isotope probing to link genomic features of bacteria to their C acquisition and growth dynamics. We identify several genomic features associated with patterns of bacterial C acquisition and growth, notably genomic investment in resource acquisition and regulatory flexibility. Moreover, we identify genomic trade-offs defined by numbers of transcription factors, membrane transporters, and secreted products, which match predictions from life history theory. We further show that genomic investment in resource acquisition and regulatory flexibility can predict bacterial ecological strategies in soil. IMPORTANCE Soil microbes are major players in the global carbon cycle, yet we still have little understanding of how the carbon cycle operates in soil communities. A major limitation is that carbon metabolism lacks discrete functional genes that define carbon transformations. Instead, carbon transformations are governed by anabolic processes associated with growth, resource acquisition, and survival. We use metagenomic stable isotope probing to link genome information to microbial growth and carbon assimilation dynamics as they occur in soil. From these data, we identify genomic traits that can predict bacterial ecological strategies which define bacterial interactions with soil carbon.
Collapse
|
26
|
Boza G, Barabás G, Scheuring I, Zachar I. Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation. Sci Rep 2023; 13:907. [PMID: 36650168 PMCID: PMC9845244 DOI: 10.1038/s41598-023-27421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Syntrophic cooperation among prokaryotes is ubiquitous and diverse. It relies on unilateral or mutual aid that may be both catalytic and metabolic in nature. Hypotheses of eukaryotic origins claim that mitochondrial endosymbiosis emerged from mutually beneficial syntrophy of archaeal and bacterial partners. However, there are no other examples of prokaryotic syntrophy leading to endosymbiosis. One potential reason is that when externalized products become public goods, they incite social conflict due to selfish mutants that may undermine any mutualistic interactions. To rigorously evaluate these arguments, here we construct a general mathematical framework of the ecology and evolution of different types of syntrophic partnerships. We do so both in a general microbial and in a eukaryogenetic context. Studying the case where partners cross-feed on each other's self-inhibiting waste, we show that cooperative partnerships will eventually dominate over selfish mutants. By contrast, systems where producers actively secrete enzymes that cross-facilitate their partners' resource consumption are not robust against cheaters over evolutionary time. We conclude that cross-facilitation is unlikely to provide an adequate syntrophic origin for endosymbiosis, but that cross-feeding mutualisms may indeed have played that role.
Collapse
Affiliation(s)
- G Boza
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- ASA Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Centre for Social Sciences, Budapest, Hungary
| | - G Barabás
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- Division of Ecological and Environmental Modeling, Linköping University, Linköping, Sweden
| | - I Scheuring
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
| | - I Zachar
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.
- Parmenides Foundation, Centre for the Conceptual Foundation of Science, Pullach Im Isartal, Germany.
| |
Collapse
|
27
|
Emani S, Kan A, Storms T, Bonanno S, Law J, Ray S, Joshi N. Periplasmic stress contributes to a tradeoff between protein secretion and cell growth in E. Coli Nissile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523330. [PMID: 36711660 PMCID: PMC9882030 DOI: 10.1101/2023.01.09.523330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a tradeoff between cell growth and per cell protein secretion in the curli biofilm secretion system of E Coli Nissile 1917. Initial characterization using 24-hour continuous growth and protein production monitoring confirms decreased growth rates at high induction leading to a local maximum in total protein production at intermediate induction. Propidium iodide staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with accumulation of protein containing the outer membrane transport tag in the periplasmic space. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion tradeoff. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems.
Collapse
|
28
|
Wen A, Yang Z, Liu N, Zeng H, Qin L. Dynamic correlation between tetramethylpyrazine and influencing factors in Bacillus subtilis-fermented dehulled adlay. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Sharma U, Rawat D, Mukherjee P, Farooqi F, Mishra V, Sharma RS. Ecological life strategies of microbes in response to antibiotics as a driving factor in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158791. [PMID: 36108841 DOI: 10.1016/j.scitotenv.2022.158791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics as a selection pressure driving the evolution of soil microbial communities is not well understood. Since microbial functions govern ecosystem services, an ecological framework is required to understand and predict antibiotic-induced functional and structural changes in microbial communities. Therefore, metagenomic studies explaining the impacts of antibiotics on soil microbial communities were mined, and alterations in microbial taxa were analyzed through an ecological lens using Grimes's Competitor-Stress tolerator-Ruderal (CSR) model. We propose considering antibiotics as the primary abiotic factor mentioned in the CSR model and classifying non-susceptible microbial taxa as degraders, resistant, and resilient groups analogous to competitors, stress tolerators, and ruderal strategists, respectively. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were among the phyla harboring most members with antibiotic-resistant groups. However, some antibiotic-resistant microbes in these phyla could not only tolerate but also subsist solely on antibiotics, while others degraded antibiotics as a part of secondary metabolism. Irrespective of their taxonomic affiliation, microbes with each life strategy displayed similar phenotypic characteristics. Therefore, it is recommended to consider microbial functional traits associated with each life strategy while analyzing the ecological impacts of antibiotics. Also, potential ecological crises posed by antibiotics through changes in microbial community and ecosystem functions were visualized. Applying ecological theory to understand and predict antibiotics-induced changes in microbial communities will also provide better insight into microbial behavior in the background of emerging contaminants and help develop a robust ecological classification system of microbes.
Collapse
Affiliation(s)
- Udita Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Deepak Rawat
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Paromita Mukherjee
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Furqan Farooqi
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Centre for Interdisciplinary Studies on Mountain & Hill Environment (CISMHE), University of Delhi, Delhi 110007, India.
| | - Radhey Shyam Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
30
|
Shi T, Zhang T, Wang X, Wang X, Shen W, Guo X, Liu Y, Li Z, Jiang Y. Metagenomic Analysis of in Vitro Ruminal Fermentation Reveals the Role of the Copresent Microbiome in Plant Biomass Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12095-12106. [PMID: 36121066 DOI: 10.1021/acs.jafc.2c03522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.
Collapse
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Tingting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xiangnan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, P.R. China
| | - Xi Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yuqin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| |
Collapse
|
31
|
Performance indicators, coccidia oocyst counts, plasma biochemical parameters and fermentation processes in the cecum of rabbits fed a diet with the addition of black cumin seed meal. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to determine the effects of dietary supplementation with black cumin seed meal on growth performance parameters, coccidia oocyst counts, plasma biochemical parameters and cecal fermentation processes in growing rabbits. A total of 40 male Californian rabbits at 35 days of age were divided into two feeding groups: Control (complete rabbit diet) and Black cumin (2% of the complete diet was replaced with black cumin seed meal). Dietary supplementation with black cumin did not affect growth performance parameters, but it reduced coccidia oocyst counts in the feces of 63-day-old rabbits. Increased liver weight and elevated plasma albumin levels were noted in these rabbits. A significant decrease in small intestinal digesta viscosity was also observed in rabbits fed a diet supplemented with black cumin seed meal. The above change suppressed the formation of putrefactive compounds, i.e. ammonia and branched short-chain fatty acids (SCFAs) in the cecum, but it did not decrease the production of major SCFAs, i.e. acetic, propionic and butyric acids. The current study demonstrated that the dietary addition of 2% black cumin seed meal exerted a modulatory effect on gastrointestinal function, but it did not compromise microbial enzyme activity or SCFA production in the cecum.
Collapse
|
32
|
Barnett SE, Youngblut ND, Buckley DH. Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history. Environ Microbiol 2022; 24:5230-5247. [PMID: 35920035 DOI: 10.1111/1462-2920.16146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Soil dwelling microorganisms are key players in the terrestrial carbon cycle, driving both the degradation and stabilization of soil organic matter. Bacterial community structure and function vary with respect to land-use, yet the ecological drivers of this variation remain poorly described and difficult to predict. We conducted a multi-substrate DNA-stable isotope probing experiment across cropland, old-field, and forest habitats to link carbon mineralization dynamics with the dynamics of bacterial growth and carbon assimilation. We tracked the movement of 13 C derived from five distinct carbon sources as it was assimilated into bacterial DNA over time. We show that carbon mineralization, community composition, and carbon assimilation dynamics all differed with respect to land-use. We also show that microbial community dynamics affect carbon assimilation dynamics and are associated with soil DNA content. Soil DNA yield is easy to measure and may be useful in predicting microbial community dynamics linked to soil carbon cycling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Ali NS, Huang F, Qin W, Yang TC. Identification and Characterization of a New Serratia proteamaculans Strain That Naturally Produces Significant Amount of Extracellular Laccase. Front Microbiol 2022; 13:878360. [PMID: 35923404 PMCID: PMC9339997 DOI: 10.3389/fmicb.2022.878360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Natural biodegradation processes hold promises for the conversion of agro-industrial lignocellulosic biomaterials into biofuels and fine chemicals through lignin-degrading enzymes. The high cost and low stability of these enzymes remain a significant challenge to economic lignocellulosic biomass conversion. Wood-degrading microorganisms are a great source for novel enzyme discoveries. In this study, the decomposed wood samples were screened, and a promising γ-proteobacterial strain that naturally secreted a significant amount of laccase enzyme was isolated and identified as Serratia proteamaculans AORB19 based on its phenotypic and genotypic characteristics. The laccase activities in culture medium of strain AORB19 were confirmed both qualitatively and quantitatively. Significant cultural parameters for laccase production under submerged conditions were identified following a one-factor-at-a-time (OFAT) methodology: temperature 30°C, pH 9, yeast extract (2 g/l), Li+, Cu2+, Ca2+, and Mn2+ (0.5 mM), and acetone (5%). Under the selected conditions, a 6-fold increase (73.3 U/L) in laccase production was achieved when compared with the initial culturing conditions (12.18 U/L). Furthermore, laccase production was enhanced under alkaline and mesophilic growth conditions in the presence of metal ions and organic solvents. The results of the study suggest the promising potential of the identified strain and its enzymes in the valorization of lignocellulosic wastes. Further optimization of culturing conditions to enhance the AORB19 strain laccase secretion, identification and characterization of the purified enzyme, and heterologous expression of the specific enzyme may lead to practical industrial and environmental applications.
Collapse
Affiliation(s)
- Nadia Sufdar Ali
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Fang Huang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Trent Chunzhong Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
34
|
Zia H, Von Ah U, Meng Y, Schmidt R, Kerler J, Fuchsmann P. Biotechnological formation of dairy flavor inducing δ-lactones from vegetable oil. Food Chem X 2022; 13:100220. [PMID: 35498959 PMCID: PMC9039933 DOI: 10.1016/j.fochx.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 10/25/2022] Open
Abstract
Agroscope Culture Collection was screened to identify bacterial strains effective in production of dairy flavor inducing lactones using grapeseed oil as a substrate. Lentilactobacillus parafarraginis FAM-1079, Lactococcus lactis subsp. lactis FAM-17918, and L. lactis subsp. lactis biovar diacetylactis FAM-22003 showed the most efficient formation of targeted δ-lactones. The application of sublethal heat stress significantly increased target lactone production. The most profound improvement was for L. lactis subsp. lactis biovar diacetylactis where δ-octadecalactone generation was improved by factor of 9. The pre-fermentation step as well as growth phase in which bacteria are harvested did not have a significant impact on lactones yield. The lactone production process from vegetable oil developed in this study offers a new way of developing a natural flavor ingredient for incorporation into plant-based products.
Collapse
Key Words
- ACC, Agroscope Culture Collection
- Aroma-active lactones
- ESP, Early stationary phase
- Fermentation
- Flavor generation
- GC-O, Gas-chromatography–olfactometry
- HFA, Hydroxy Fatty acid
- HS, Head space
- Heat stress
- LAB, Lactic acid bacteria
- LOQ, Limit of quantitation
- Lactic acid bacteria
- MEP, Mid-exponential phase
- OD, Optical density
- QF, Qualifier ion
- QT, Quantifier ion
- RI, Retention index
- SPE, Solid phase extraction
- UFA, Unsaturated fatty acid
- Vegetable oil
- δ-C10, δ-decalactone
- δ-C12, δ-dodecalactone
- δ-C14, δ-tetradecalactone
- δ-C18, δ-octadecalactone
Collapse
Affiliation(s)
- H. Zia
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - U. Von Ah
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Y.H. Meng
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - R. Schmidt
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - J. Kerler
- Nestlé Technology Centre Dairy, Nestlé Strasse 3, 3510 Konolfingen, Switzerland
| | - P. Fuchsmann
- Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| |
Collapse
|
35
|
Hashem I, Van Impe JFM. A Game Theoretic Analysis of the Dual Function of Antibiotics. Front Microbiol 2022; 12:812788. [PMID: 35250912 PMCID: PMC8889009 DOI: 10.3389/fmicb.2021.812788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
There are two major views toward the role of antibiotics in microbial social interactions. The classical view is that antibiotics serve as weapons, produced by a bacterial species, at a significant cost, to inhibit the growth of its competitors. This view is supported by observations that antibiotics are usually upregulated by stress responses that infer the intensity of ecological competition, such as nutrient limitation and cellular damage, which point out to a competitive role for antibiotics. The other ecological function frequently assigned to antibiotics is that they serve as signaling molecules which regulate the collective behavior of a microbial community. Here, we investigate the conditions at which a weapon can serve as a signal in the context of microbial competition. We propose that an antibiotic will serve as a signal whenever a potential alteration of the growth behavior of the signal receiver, in response to a subinhibitory concentration (SIC) of the antibiotic, reduces the competitive pressure on the signal producer. This in turn would lead to avoiding triggering the stress mechanisms of the signal producer responsible for further antibiotics production. We show using individual-based modeling that this reduction of competitive pressure on the signal producer can happen through two main classes of responses by the signal recipient: competition tolerance, where the recipient reduces its competitive impact on the signal producer by switching to a low growth rate/ high yield strategy, and niche segregation, where the recipient reduces the competitive pressure on the signal producer by reducing their niche overlap. Our hypothesis proposes that antibiotics serve as signals out of their original function as weapons in order to reduce the chances of engaging in fights that would be costly to both the antibiotic producer as well as to its competitors.
Collapse
Affiliation(s)
- Ihab Hashem
- Department of Chemical Engineering, BioTeC+ & OPTEC, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- Department of Chemical Engineering, BioTeC+ & OPTEC, KU Leuven, Ghent, Belgium
| |
Collapse
|
36
|
Alves RJE, Callejas IA, Marschmann GL, Mooshammer M, Singh HW, Whitney B, Torn MS, Brodie EL. Kinetic Properties of Microbial Exoenzymes Vary With Soil Depth but Have Similar Temperature Sensitivities Through the Soil Profile. Front Microbiol 2021; 12:735282. [PMID: 34917043 PMCID: PMC8669745 DOI: 10.3389/fmicb.2021.735282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Current knowledge of the mechanisms driving soil organic matter (SOM) turnover and responses to warming is mainly limited to surface soils, although over 50% of global soil carbon is contained in subsoils. Deep soils have different physicochemical properties, nutrient inputs, and microbiomes, which may harbor distinct functional traits and lead to different SOM dynamics and temperature responses. We hypothesized that kinetic and thermal properties of soil exoenzymes, which mediate SOM depolymerization, vary with soil depth, reflecting microbial adaptation to distinct substrate and temperature regimes. We determined the Michaelis-Menten (MM) kinetics of three ubiquitous enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) acquisition at six soil depths down to 90 cm at a temperate forest, and their temperature sensitivity based on Arrhenius/Q10 and Macromolecular Rate Theory (MMRT) models over six temperatures between 4–50°C. Maximal enzyme velocity (Vmax) decreased strongly with depth for all enzymes, both on a dry soil mass and a microbial biomass C basis, whereas their affinities increased, indicating adaptation to lower substrate availability. Surprisingly, microbial biomass-specific catalytic efficiencies also decreased with depth, except for the P-acquiring enzyme, indicating distinct nutrient demands at depth relative to microbial abundance. These results suggested that deep soil microbiomes encode enzymes with intrinsically lower turnover and/or produce less enzymes per cell, reflecting distinct life strategies. The relative kinetics between different enzymes also varied with depth, suggesting an increase in relative P demand with depth, or that phosphatases may be involved in C acquisition. Vmax and catalytic efficiency increased consistently with temperature for all enzymes, leading to overall higher SOM-decomposition potential, but enzyme temperature sensitivity was similar at all depths and between enzymes, based on both Arrhenius/Q10 and MMRT models. In a few cases, however, temperature affected differently the kinetic properties of distinct enzymes at discrete depths, suggesting that it may alter the relative depolymerization of different compounds. We show that soil exoenzyme kinetics may reflect intrinsic traits of microbiomes adapted to distinct soil depths, although their temperature sensitivity is remarkably uniform. These results improve our understanding of critical mechanisms underlying SOM dynamics and responses to changing temperatures through the soil profile.
Collapse
Affiliation(s)
- Ricardo J Eloy Alves
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ileana A Callejas
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gianna L Marschmann
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Mooshammer
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Hans W Singh
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Bizuayehu Whitney
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Margaret S Torn
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Energy and Resources Group, University of California, Berkeley, Berkeley, CA, United States
| | - Eoin L Brodie
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
37
|
Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol 2021; 24:357-369. [PMID: 34811865 DOI: 10.1111/1462-2920.15843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jeth G V Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
38
|
Identifying Carbon-Degrading Enzyme Activities in Association with Soil Organic Carbon Accumulation Under Land-Use Changes. Ecosystems 2021. [DOI: 10.1007/s10021-021-00711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Abstract
Microbiomes play essential roles in the health and function of animal and plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based approaches with ecological theory can facilitate the prediction of microbial functional traits important for ecosystem functioning and health. In particular, the yield-acquisition-stress (Y-A-S) framework considers dominant microbial life history strategies across gradients of resource availability and stress. However, microbiomes are dynamic, and spatial and temporal shifts in taxonomic and trait composition can affect ecosystem functions. We posit that extending the Y-A-S framework to microbiomes during succession and across biogeographic gradients can lead to generalizable rules for how microbiomes and their functions respond to resources and stress across space, time, and diverse ecosystems. We demonstrate the potential of this framework by applying it to the microbiomes hosted by the carnivorous pitcher plant Sarracenia purpurea, which have clear successional trajectories and are distributed across a broad climatic gradient.
Collapse
|
40
|
Alster CJ, Allison SD, Johnson NG, Glassman SI, Treseder KK. Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME COMMUNICATIONS 2021; 1:43. [PMID: 36740602 PMCID: PMC9723763 DOI: 10.1038/s43705-021-00045-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Phenotypic plasticity of traits is commonly measured in plants to improve understanding of organismal and ecosystem responses to climate change but is far less studied for microbes. Specifically, decomposer fungi are thought to display high levels of phenotypic plasticity and their functions have important implications for ecosystem dynamics. Assessing the phenotypic plasticity of fungal traits may therefore be important for predicting fungal community response to climate change. Here, we assess the phenotypic plasticity of 15 fungal isolates (12 species) from a Southern California grassland. Fungi were incubated on litter at five moisture levels (ranging from 4-50% water holding capacity) and at five temperatures (ranging from 4-36 °C). After incubation, fungal biomass and activities of four extracellular enzymes (cellobiohydrolase (CBH), β-glucosidase (BG), β-xylosidase (BX), and N-acetyl-β-D-glucosaminidase (NAG)) were measured. We used response surface methodology to determine how fungal phenotypic plasticity differs across the moisture-temperature gradient. We hypothesized that fungal biomass and extracellular enzyme activities would vary with moisture and temperature and that the shape of the response surface would vary between fungal isolates. We further hypothesized that more closely related fungi would show more similar response surfaces across the moisture-temperature gradient. In support of our hypotheses, we found that plasticity differed between fungi along the temperature gradient for fungal biomass and for all the extracellular enzyme activities. Plasticity also differed between fungi along the moisture gradient for BG activity. These differences appear to be caused by variation mainly at the moisture and temperature extremes. We also found that more closely related fungi had more similar extracellular enzymes activities at the highest temperature. Altogether, this evidence suggests that with global warming, fungal biodiversity may become increasingly important as functional traits tend to diverge along phylogenetic lines at higher temperatures.
Collapse
Affiliation(s)
- Charlotte J Alster
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA.
- School of Science, University of Waikato, Hamilton, New Zealand.
| | - Steven D Allison
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
| | - Nels G Johnson
- USDA Forest Service, Pacific Southwest Research Station, Albany, CA, USA
| | - Sydney I Glassman
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Kathleen K Treseder
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
41
|
Juśkiewicz J, Fotschki B, Jaworska J, Siemieniuch M. Investigations of the maintenance system of the Konik Polski horse and its effects on fecal microbiota activity during the winter and summer seasons. Anim Sci J 2021; 92:e13603. [PMID: 34318561 DOI: 10.1111/asj.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Gastrointestinal microbiota play a key role in the nutrients digestion and hence maintaining animal health and welfare. The diet offered to the animals in captivity may differ considerably from that on natural pastures. In a stabled maintenance system, horses have a limited choice of habitat and feed. Time spend for feeding is relevant for equine welfare because the reduction of the time devoted for foraging may be responsible for inducing gastric inflammation and ulceration. Therefore, in the present study, it was hypothesized that fecal bacterial fermentative processes differ between free-roaming and stabled Konik Polski Horses (KPHs) with respect to microbial enzymatic activity, and thus the fecal concentration of short-chain fatty acids (SCFA), which can be further utilized for assessing the feeding behavior and welfare in free-roaming versus stabled horses. The SCFA concentration and profile, as well as the extracellular and intracellular activities of selected bacterial enzymes, were characterized in horse feces collected during the winter and summer feeding seasons. The results showed higher enzymatic activity and SCFA production in the feces excreted by free-roaming versus stabled horses, especially during summer. An increase in pasture plant diversity may be beneficial for the gastrointestinal microbiota and hence for maintaining health and welfare.
Collapse
Affiliation(s)
- Jerzy Juśkiewicz
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bartosz Fotschki
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Jaworska
- Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Siemieniuch
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.,Research Station of the Institute of the Animal Reproduction and Food Research, Polish Academy of Sciences, Ruciane-Nida, Poland
| |
Collapse
|
42
|
Tan X, Nie Y, Ma X, Guo Z, Liu Y, Tian H, Megharaj M, Shen W, He W. Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144500. [PMID: 33736358 DOI: 10.1016/j.scitotenv.2020.144500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 05/20/2023]
Abstract
Soil enzymes secreted by microorganisms play a critical role in nutrient cycling, soil structure maintenance, and crop production. However, understanding of the linkage between soil enzyme kinetics and microbial metabolism and active microbial communities is remarkably limited. In this study, we measured the kinetics of three hydrolase enzymes, active microbial abundance and substrate-induced respiration (SIR) from 21 farmlands differing in their fertilities collected from the Loess Plateau, China. Results showed the high fertility soils had higher total organic carbon (TOC) and nutrient contents, potential microbial activity, the colony-forming units (CFU) of actinomycetes, and values of enzyme Vmax and Km than those of low fertility soils. We also observed that the CFU of fungi and other bacterial groups did not change with soil fertility status. Soil chemical properties explained 74.0% of the variance in Vmax and 28.3% of the variance in Km, respectively. Whereas, the abundance of main microbial groups and fungi/bacteria ratio only explained 10.2% and 7% of the variance of Vmax and Km, respectively. The interactive effect of soil properties and microbial community could explain 20.2% of the variance in Km. Our results suggest that the substrate availability would mainly drive enzyme kinetics compared to the abundance of active/potentially active microbes in the farmland soils.
Collapse
Affiliation(s)
- Xiangping Tan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China
| | - Yanxia Nie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China
| | - Xiaomin Ma
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China
| | - Zhiming Guo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China
| | - Yang Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
43
|
Influence of Supplementation of Lactoferrin, Melittin and Cecropin A to Rat Diet on Changes in Faecal Ammonia Concentrations, Short-Chain Fatty Acid Concentrations and Activities of Bacterial Enzymes. Animals (Basel) 2021; 11:ani11051203. [PMID: 33922154 PMCID: PMC8143527 DOI: 10.3390/ani11051203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In the present study conducted on Wistar laboratory rats, the effects of two selected insect antimicrobial peptides (AMPs), melittin and cecropin A, were investigated and compared to those attributed to well-known antibacterial action of lactoferrin. It was hypothesised that the dietary presence of lactoferrin, melittin or cecropin A strongly affects the rat large gut microbial activity at the time of protein/peptide administration and the durability of the effects may differ after their withdrawal from a diet. The experiment was conducted on living animals (without their euthanasia) and the dynamics of changes in pH, microbial enzyme activity, ammonia and short-chain fatty acids concentrations were investigated in the faeces during and after the dietary treatments with lactoferrin, melittin or cecropin A. The results suggested that the faecal intensity of microbial fermentation processes in rats was quickly reduced upon dietary addition of two AMPs and lactoferrin after two days of treatment, on average. The strongest suppression effect was observed on the 5th day of treatment and persisted on days 5–8. The changes caused by the supplemented lactoferrin and AMPs were reversible after 15 days, i.e., 10 days after the withdrawal of lactoferrin, melittin and cecropin A from the diet. Abstract We hypothesised that the dietary addition of the bioactive antimicrobial protein lactoferrin (LF) and peptides melittin (MT) or cecropin A (CR) at a dosage of 100 mg/kg to the diet of Wistar rats would result in strong modulatory effects on faecal microbial enzymatic activity, short-chain fatty acid and ammonia concentrations. To date, the changes in bacterial extracellular and intracellular enzymatic activities upon addition of dietary AMPs have not yet been studied. This experiment lasted 15 days; during the first 5 day period, the rats were fed the control diet (S) and diets supplemented with LF, MT or CR. On days 6–15, all rats were fed the control S diet. The faecal fermentation processes were substantially stopped after two days of treatment, on average, in all rats receiving LF and two AMPs. The deepest suppression effect was observed on the last day of treatment (day 5) and persisted through days 5–8. The highest decreases in faecal bacterial β-glucosidase and β-glucuronidase activities as well as in SCFA and ammonia concentrations were observed in the rats fed the CR diet. Only in the CR animals did the mechanism of suppressed microbial fermentation involve diminished enzyme release from bacterial cells to the digesta.
Collapse
|
44
|
Alster CJ, Allison SD, Glassman SI, Martiny AC, Treseder KK. Exploring Trait Trade-Offs for Fungal Decomposers in a Southern California Grassland. Front Microbiol 2021; 12:655987. [PMID: 33995318 PMCID: PMC8118720 DOI: 10.3389/fmicb.2021.655987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 11/14/2022] Open
Abstract
Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We investigated whether growth and activity of fungi under drought conditions were structured by trade-offs among traits in 15 fungal isolates from a Mediterranean Southern California grassland. We inoculated fungi onto sterilized litter that was incubated at three moisture levels (4, 27, and 50% water holding capacity, WHC). For each isolate, we characterized traits that described three potential lifestyles within the newly proposed “YAS” framework: growth yield, resource acquisition, and stress tolerance. Specifically, we measured fungal hyphal length per unit litter decomposition for growth yield; the potential activities of the extracellular enzymes cellobiohydrolase (CBH), β-glucosidase (BG), β-xylosidase (BX), and N-acetyl-β-D-glucosaminidase (NAG) for resource acquisition; and ability to grow in drought vs. higher moisture levels for drought stress tolerance. Although, we had hypothesized that evolutionary and physiological trade-offs would elicit negative relationships among traits, we found no supporting evidence for this hypothesis. Across isolates, growth yield, drought stress tolerance, and extracellular enzyme activities were not significantly related to each other. Thus, it is possible that drought-induced shifts in fungal community composition may not necessarily lead to changes in fungal biomass or decomposer ability in this arid grassland.
Collapse
Affiliation(s)
- Charlotte J Alster
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Steven D Allison
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States.,Department of Earth System Science, University of California Irvine, Irvine, CA, United States
| | - Sydney I Glassman
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States.,Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States
| | - Adam C Martiny
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States.,Department of Earth System Science, University of California Irvine, Irvine, CA, United States
| | - Kathleen K Treseder
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
45
|
Kohler TJ, Peter H, Fodelianakis S, Pramateftaki P, Styllas M, Tolosano M, de Staercke V, Schön M, Busi SB, Wilmes P, Washburne A, Battin TJ. Patterns and Drivers of Extracellular Enzyme Activity in New Zealand Glacier-Fed Streams. Front Microbiol 2020; 11:591465. [PMID: 33329472 PMCID: PMC7711088 DOI: 10.3389/fmicb.2020.591465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Glacier-fed streams (GFSs) exhibit near-freezing temperatures, variable flows, and often high turbidities. Currently, the rapid shrinkage of mountain glaciers is altering the delivery of meltwater, solutes, and particulate matter to GFSs, with unknown consequences for their ecology. Benthic biofilms dominate microbial life in GFSs, and play a major role in their biogeochemical cycling. Mineralization is likely an important process for microbes to meet elemental budgets in these systems due to commonly oligotrophic conditions, and extracellular enzymes retained within the biofilm enable the degradation of organic matter and acquisition of carbon (C), nitrogen (N), and phosphorus (P). The measurement and comparison of these extracellular enzyme activities (EEA) can in turn provide insight into microbial elemental acquisition effort relative to environmental availability. To better understand how benthic biofilm communities meet resource demands, and how this might shift as glaciers vanish under climate change, we investigated biofilm EEA in 20 GFSs varying in glacier influence from New Zealand’s Southern Alps. Using turbidity and distance to the glacier snout normalized for glacier size as proxies for glacier influence, we found that bacterial abundance (BA), chlorophyll a (Chl a), extracellular polymeric substances (EPS), and total EEA per gram of sediment increased with decreasing glacier influence. Yet, when normalized by BA, EPS decreased with decreasing glacier influence, Chl a still increased, and there was no relationship with total EEA. Based on EEA ratios, we found that the majority of GFS microbial communities were N-limited, with a few streams of different underlying bedrock geology exhibiting P-limitation. Cell-specific C-acquiring EEA was positively related to the ratio of Chl a to BA, presumably reflecting the utilization of algal exudates. Meanwhile, cell-specific N-acquiring EEA were positively correlated with the concentration of dissolved inorganic nitrogen (DIN), and both N- and P-acquiring EEA increased with greater cell-specific EPS. Overall, our results reveal greater glacier influence to be negatively related to GFS biofilm biomass parameters, and generally associated with greater microbial N demand. These results help to illuminate the ecology of GFS biofilms, along with their biogeochemical response to a shifting habitat template with ongoing climate change.
Collapse
Affiliation(s)
- Tyler J Kohler
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stilianos Fodelianakis
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michail Styllas
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matteo Tolosano
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vincent de Staercke
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Schön
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alex Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Selva Analytics, LLC, Bozeman, MT, United States
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Rodrigues AMM, Estrela S, Brown SP. Community lifespan, niche expansion and the evolution of interspecific cooperation. J Evol Biol 2020; 34:352-363. [PMID: 33238064 DOI: 10.1111/jeb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
Microbes live in dense and diverse communities where they deploy many traits that promote the growth and survival of neighbouring species, all the while also competing for shared resources. Because microbial communities are highly dynamic, the costs and benefits of species interactions change over the growth cycle of a community. How mutualistic interactions evolve under such demographic and ecological conditions is still poorly understood. Here, we develop an eco-evolutionary model to explore how different forms of helping with distinct fitness effects (rate-enhancing and yield-enhancing) affect the multiple phases of community growth, and its consequences for the evolution of mutualisms. We specifically focus on a form of yield-enhancing trait in which cooperation augments the common pool of resources, termed niche expansion. We show that although mutualisms in which cooperation increases partners growth rate are generally favoured at early stages of community growth, niche expansion can evolve at later stages where densities are high. Further, we find that niche expansion can promote the evolution of reproductive restraint, in which a focal species adaptively reduces its own growth rate to increase the density of partner species. Our findings suggest that yield-enhancing mutualisms are more prevalent in stable habitats with a constant supply of resources, and where populations typically live at high densities. In general, our findings highlight the need to integrate different components of population growth in the analysis of mutualisms to understand the composition and function of microbial communities.
Collapse
Affiliation(s)
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
47
|
Effects of nitrogen fertilization and bioenergy crop species on central tendency and spatial heterogeneity of soil glycosidase activities. Sci Rep 2020; 10:19681. [PMID: 33184435 PMCID: PMC7664997 DOI: 10.1038/s41598-020-76837-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular glycosidases in soil, produced by microorganisms, act as major agents for decomposing labile soil organic carbon (e.g., cellulose). Soil extracellular glycosidases are significantly affected by nitrogen (N) fertilization but fertilization effects on spatial distributions of soil glycosidases have not been well addressed. Whether the effects of N fertilization vary with bioenergy crop species also remains unclear. Based on a 3-year fertilization experiment in Middle Tennessee, USA, a total of 288 soil samples in topsoil (0–15 cm) were collected from two 15 m2 plots under three fertilization treatments in switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.) using a spatially explicit design. Four glycosidases, α-glucosidase (AG), β-glucosidase (BG), β-xylosidase (BX), cellobiohydrolase (CBH), and their sum associated with C acquisition (Cacq) were quantified. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha−1 year−1 in urea) and high N input (HN: 168 kg N ha−1 year−1 in urea). The descriptive and geostatistical approaches were used to evaluate their central tendency and spatial heterogeneity. Results showed significant interactive effects of N fertilization and crop type on BX such that LN and HN significantly enhanced BX by 14% and 44% in SG, respectively. The significant effect of crop type was identified and glycosidase activities were 15–39% higher in GG than those in SG except AG. Within-plot variances of glycosidases appeared higher in SG than GG but little differed with N fertilization due to large plot-plot variation. Spatial patterns were generally more evident in LN or HN plots than NN plots for BG in SG and CBH in GG. This study suggested that N fertilization elevated central tendency and spatial heterogeneity of glycosidase activities in surficial soil horizons and these effects however varied with crop and enzyme types. Future studies need to focus on specific enzyme in certain bioenergy cropland soil when N fertilization effect is evaluated.
Collapse
|
48
|
Albright MBN, Johansen R, Thompson J, Lopez D, Gallegos-Graves LV, Kroeger ME, Runde A, Mueller RC, Washburne A, Munsky B, Yoshida T, Dunbar J. Soil Bacterial and Fungal Richness Forecast Patterns of Early Pine Litter Decomposition. Front Microbiol 2020; 11:542220. [PMID: 33240225 PMCID: PMC7677502 DOI: 10.3389/fmicb.2020.542220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Discovering widespread microbial processes that drive unexpected variation in carbon cycling may improve modeling and management of soil carbon (Prescott, 2010; Wieder et al., 2015a, 2018). A first step is to identify community features linked to carbon cycle variation. We addressed this challenge using an epidemiological approach with 206 soil communities decomposing Ponderosa pine litter in 618 microcosms. Carbon flow from litter decomposition was measured over a 6-week incubation. Cumulative CO2 from microbial respiration varied two-fold among microcosms and dissolved organic carbon (DOC) from litter decomposition varied five-fold, demonstrating large functional variation despite constant environmental conditions where strong selection is expected. To investigate microbial features driving DOC concentration, two microbial community cohorts were delineated as "high" and "low" DOC. For each cohort, communities from the original soils and from the final microcosm communities after the 6-week incubation with litter were taxonomically profiled. A logistic model including total biomass, fungal richness, and bacterial richness measured in the original soils or in the final microcosm communities predicted the DOC cohort with 72 (P < 0.05) and 80 (P < 0.001) percent accuracy, respectively. The strongest predictors of the DOC cohort were biomass and either fungal richness (in the original soils) or bacterial richness (in the final microcosm communities). Successful forecasting of functional patterns after lengthy community succession in a new environment reveals strong historical contingencies. Forecasting future community function is a key advance beyond correlation of functional variance with end-state community features. The importance of taxon richness-the same feature linked to carbon fate in gut microbiome studies-underscores the need for increased understanding of biotic mechanisms that can shape richness in microbial communities independent of physicochemical conditions.
Collapse
Affiliation(s)
| | - Renee Johansen
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Deanna Lopez
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Marie E. Kroeger
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Andreas Runde
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Rebecca C. Mueller
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Alex Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Thomas Yoshida
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - John Dunbar
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
49
|
Barajas HR, Martínez-Sánchez S, Romero MF, Álvarez CH, Servín-González L, Peimbert M, Cruz-Ortega R, García-Oliva F, Alcaraz LD. Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Front Microbiol 2020; 11:542742. [PMID: 33162946 PMCID: PMC7581803 DOI: 10.3389/fmicb.2020.542742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
The two-step model for plant root microbiomes considers soil as the primary microbial source. Active selection of the plant’s bacterial inhabitants results in a biodiversity decrease toward roots. We collected sixteen samples of in situ ruderal plant roots and their soils and used these soils as the main microbial input for single genotype tomatoes grown in a greenhouse. Our main goal was to test the soil influence in the structuring of rhizosphere microbiomes, minimizing environmental variability, while testing multiple plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of the soils, in situ plants, and tomato roots. We identified a total of 271,940 bacterial operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric microbiomes. We annotated by homology a total of 411,432 (13.07%) of the metagenome predicted proteins. Tomato roots did follow the two-step model with lower α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably working as a microenvironmental oasis providing moisture and plant-derived nutrients, supporting larger α-diversity. Ruderal plants and their soils are closer according to their microbiome community composition than tomato and its soil, based on OTUs and protein comparisons. We expected that tomato β-diversity clustered together with their soil, if it is the main rhizosphere microbiome structuring factor. However, tomato microbiome β-diversity was associated with plant genotype in most samples (81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria Solirubrobacter soli, ruderals were dominated by the Proteobacteria Sphingomonas sp. URGHD0057, and tomato mainly by the Bacteroidetes Ohtaekwangia koreensis, Flavobacterium terrae, Niastella vici, and Chryseolinea serpens. We calculated a metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could be the basis for microbiome-oriented plant breeding programs. We attributed a larger diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting as a microbial harbor. The tomato and ruderal metagenomic differences are probably due to plant domestication trade-offs, impacting plant-bacteria interactions.
Collapse
Affiliation(s)
- Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shamayim Martínez-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel F Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristóbal Hernández Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|