1
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
2
|
Li J, Gao Y, Shu G, Chen X, Zhu J, Zheng S, Chen T. HMicroDB: A Comprehensive Database of Herpetofaunal Microbiota With a Focus on Host Phylogeny, Physiological Traits, and Environment Factors. Mol Ecol Resour 2024:e14046. [PMID: 39545396 DOI: 10.1111/1755-0998.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Symbiotic microbiota strongly impact host physiology. Amphibians and reptiles occupy a pivotal role in the evolutionary history of Animalia, and they are of significant ecological, economic, and scientific value. Many prior studies have found that symbiotic microbiota in herpetofaunal species are closely associated with host phylogeny, physiological traits, and environmental factors; however, insufficient integrated databases hinder researchers from querying, accessing, and reanalyzing these resources. To rectify this, we built the first herpetofaunal microbiota database (HMicroDB; https://herpdb.com/) that integrates 11,697 microbiological samples from 337 host species (covering 23 body sites and associated with 23 host phenotypic or environmental factors), and we identified 11,084 microbial taxa by consistent annotation. The standardised analysis process, cross-dataset integration, user-friendly interface, and interactive visualisation make the HMicroDB a powerful resource for researchers to search, browse, and explore the relationships between symbiotic microbiota, hosts, and environment. This facilitates research in host-microbiota coevolution, biological conservation, and resource utilisation.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Automation, Tsinghua University, Beijing, China
| | - Yuze Gao
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Guocheng Shu
- Faculty of Agriculture, Forest and Food Engineering, Yibin University, Yibin, China
| | - Xuanzhong Chen
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Jiahao Zhu
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Si Zheng
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Chen
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2024. [PMID: 39530277 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Xiaolin Wang
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Akhil Kommala
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Noah Schulhof
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Allison MacDonald
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia Jukovich
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emma Smith
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emily Kelleher
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kota Suzuki
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Zoey Hall
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katherine Ryan Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Liechty ZS, Agans RT, Barbato RA, Colston SM, Christian MR, Hammamieh R, Kardish MR, Karl JP, Leary DH, Mauzy CA, de Goodfellow IPF, Racicot K, Soares JW, Stamps BW, Sweet CR, Tuck SM, Whitman JA, Goodson MS. Meeting report of the seventh annual Tri-Service Microbiome Consortium Symposium. BMC Proc 2024; 18:25. [PMID: 39506745 PMCID: PMC11542233 DOI: 10.1186/s12919-024-00307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among DoD organizations and to facilitate resource, material and information sharing among consortium members, which includes collaborators in academia and industry. The 2023 annual symposium was a hybrid meeting held in Washington DC on 26-27 September 2023 concurrent with the virtual attendance, with oral and poster presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) Environmental Microbiome Characterization; 2) Microbiome Analysis; 3) Human Microbiome Characterization; 4) Microbiome Engineering; and 5) In Vitro and In Vivo Microbiome Models. Collectively, the symposium provided an update on the scope of current DoD and DoD-affiliated microbiome research efforts and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 7th annual TSMC symposium.
Collapse
Affiliation(s)
- Zachary S Liechty
- 711th, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | - Richard T Agans
- 711th, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | - Robyn A Barbato
- United States Army ERDC Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
| | | | - Monica R Christian
- 711th, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Dagmar H Leary
- United States Naval Research Laboratory, Washington D.C., USA
| | - Camilla A Mauzy
- 711th, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | | | - Kenneth Racicot
- Soldier Effectiveness Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Jason W Soares
- Soldier Effectiveness Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Blake W Stamps
- 711th, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
| | | | - Sara M Tuck
- United States Naval Research Laboratory, Washington D.C., USA
| | - Jordan A Whitman
- Soldier Effectiveness Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Michael S Goodson
- 711th, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA.
| |
Collapse
|
5
|
Hoffbeck C, Middleton DRML, Keall SN, Huang CM, Pas A, Irving K, Nelson NJ, Taylor MW. Limited gut bacterial response of tuatara (Sphenodon punctatus) to dietary manipulation and captivity. FEMS Microbiol Ecol 2024; 100:fiae141. [PMID: 39400705 PMCID: PMC11523620 DOI: 10.1093/femsec/fiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/15/2024] Open
Abstract
The bacteria of a host's digestive tract play crucial roles in digestion and pathogen resistance. Hosts living in captivity often have more human interaction and antibiotic use, in addition to differences in diet and environment, compared to their wild counterparts. Consequently, wild and captive animals frequently harbour different bacterial communities. We tested whether diversity of diet provided in captivity shifts the gut bacteria of tuatara, an endemic New Zealand reptile, at three captive sites, and examined how the gut community of these tuatara compares to those in the wild. Dietary manipulation did not cause a strong overall shift in tuatara gut bacteria, but individual tuatara did experience bacterial shifts during manipulation, which subsequently reverted after manipulation. We found that Bacteroides, a genus common in most vertebrate guts but rare in tuatara, increased significantly in the gut during manipulation, then decreased post-manipulation. Finally, the gut bacteria of captive tuatara significantly differed from those of wild tuatara, though most of the dominant bacterial genera found in wild tuatara persisted in captive tuatara. This work represents a first investigation of the captive tuatara bacterial community and establishes the sensitivity of the gut community to dietary manipulation and captivity for this relict reptile.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | | | - Susan N Keall
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | - An Pas
- Auckland Zoo, Auckland 1022, New Zealand
| | - Kate Irving
- Wellington Zoo, Wellington 6021, New Zealand
| | - Nicola J Nelson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Mafra D, Borges NA, Baptista BG, Martins LF, Borland G, Shiels PG, Stenvinkel P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024; 16:1789. [PMID: 38892721 PMCID: PMC11174762 DOI: 10.3390/nu16111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota performs several crucial roles in a holobiont with its host, including immune regulation, nutrient absorption, synthesis, and defense against external pathogens, significantly influencing host physiology. Disruption of the gut microbiota has been linked to various chronic conditions, including cardiovascular, kidney, liver, respiratory, and intestinal diseases. Studying how animals adapt their gut microbiota across their life course at different life stages and under the dynamics of extreme environmental conditions can provide valuable insights from the natural world into how the microbiota modulates host biology, with a view to translating these into treatments or preventative measures for human diseases. By modulating the gut microbiota, opportunities to address many complications associated with chronic diseases appear. Such a biomimetic approach holds promise for exploring new strategies in healthcare and disease management.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Natália A. Borges
- Graduate Program in Food, Nutrition, and Health, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro 21941-909, Brazil;
| | - Beatriz G. Baptista
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
| | - Layla F. Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gillian Borland
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Paul G. Shiels
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden;
| |
Collapse
|
7
|
Jenkins L, McKnight DT, Parks M, Byer NW, Oliaro FJ, Thompson D, Scott R. Variable effects of captivity on microbiomes in populations of IUCN-endangered Blanding's turtles (Emydoidea blandingii). J Appl Microbiol 2024; 135:lxae121. [PMID: 38755020 DOI: 10.1093/jambio/lxae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
AIMS Microbiome composition is increasingly considered in species reintroduction efforts and may influence survival and reproductive success. Many turtle species are threatened by anthropogenic pressures and are frequently raised in captivity for reintroduction efforts, yet little is known about turtle microbiome composition in either wild or captive settings. Here, we investigated trends in microbiome composition of captive and wild IUCN-endangered Blanding's turtles (Emydoidea blandingii). METHODS AND RESULTS We amplified and sequenced the V4 region of the 16S rDNA locus from plastron, cloaca, and water samples of wild E. blandingii adults and two populations of captive E. blandingii juveniles being raised for headstarting. Plastron, cloaca, and water-associated microbiomes differed strongly from each other and were highly variable among captive sites and between captive and wild sites. Across plastron, cloaca, and water-associated microbial communities, microbial diversity changed over time, but not in a predictable direction between captive sites. Plastron beta diversity correlated with growth rate in captive samples, indicating that external microbiomes may correlate with individual fitness. CONCLUSIONS Our results indicate that external and internal microbiomes vary between captive and wild turtles and may reflect differences in fitness of captive-raised individuals.
Collapse
Affiliation(s)
- Lauren Jenkins
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
- Department of Biology, Wheaton College, Wheaton, IL 60187, United States
| | | | - Matthew Parks
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, United States
| | - Nathan W Byer
- Division of Natural Resources, Cleveland Metroparks, Cleveland, OH 44144, United States
| | - Francis J Oliaro
- Conservation Research Department, John G. Shedd Aquarium, Chicago, IL 60605, United States
| | - Dan Thompson
- Forest Preserve District of DuPage County, Wheaton, IL 60189, United States
| | - Rodney Scott
- Department of Biology, Wheaton College, Wheaton, IL 60187, United States
| |
Collapse
|
8
|
Zhang L, Tang X, Fan C, Ren S, Cheng Q, Zhou H, Liu K, Jia S, Zhang Y. Dysbiosis of Gut Microbiome Aggravated Male Infertility in Captivity of Plateau Pika. Biomolecules 2024; 14:403. [PMID: 38672421 PMCID: PMC11047922 DOI: 10.3390/biom14040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Shi’en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| | - Kai Liu
- Qinghai Provincial Grassland Station, Xining 810008, China;
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.Z.); (X.T.); (C.F.); (S.R.); (Q.C.)
| |
Collapse
|
9
|
Chalifour BN, Elder LE, Li J. Diversity of gut microbiome in Rocky Mountainsnail across its native range. PLoS One 2023; 18:e0290292. [PMID: 38011083 PMCID: PMC10681204 DOI: 10.1371/journal.pone.0290292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/07/2023] [Indexed: 11/29/2023] Open
Abstract
The animal gut microbiome is often a key requirement for host nutrition, digestion, and immunity, and can shift in relation to host geography and environmental factors. However, ecological drivers of microbiome community assembly across large geographic ranges have rarely been examined in invertebrates. Oreohelix strigosa (Rocky Mountainsnail) is a widespread land snail found in heterogeneous environments across the mountainous western United States. It is ideally suited for biogeography studies due to its broad distribution, low migration, and low likelihood of passive transport via other animals. This study aims to uncover large-scale geographic shifts in the composition of O. strigosa gut microbiomes by using 16S rRNA gene sequencing on samples from across its native range. Additionally, we elucidate smaller-scale microbiome variation using samples collected only within Colorado. Results show that gut microbiomes vary significantly across broad geographic ranges. Several possible ecological drivers, including soil and vegetation composition, habitat complexity, habitat type, and human impact, collectively explained 27% of the variation across Coloradan O. strigosa gut microbiomes. Snail gut microbiomes show more similarity to vegetation than soil microbiomes. Gut microbial richness was highest in the rocky habitats and increased significantly in the most disturbed habitats (low complexity, high human impact), potentially indicating signs of dysbiosis in the snails' gut microbiomes. These small-scale environmental factors may be driving changes in O. strigosa gut microbiome composition seen across large-scale geography. This knowledge will also help us better understand how microbial associations influence species survival in diverse environments and aid wildlife conservation efforts.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Leanne E. Elder
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
10
|
Lin Z, He M, Zhong C, Li Y, Tang S, Kang X, Wu Z. Responses of gut microbiota in crocodile lizards ( Shinisaurus crocodilurus) to changes in temperature. Front Microbiol 2023; 14:1263917. [PMID: 38033565 PMCID: PMC10684959 DOI: 10.3389/fmicb.2023.1263917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
The gut microbiota plays an essential role in maintaining the health and fitness of the host organism. As a critical environmental variable, temperature exerts significant effects on animal survival and reproduction. Elevated temperatures can influence the composition and function of the animal gut microbiota, which may have potentially detrimental effects on the host. The crocodile lizard (Shinisaurus crocodilurus) is an ancient and currently endangered reptile species due to human hunting and habitat destruction. Given the predicted shifts in global temperatures in the next century, it is important to understand how warming affects the gut microbiota of these vulnerable lizards, which remains unclear. To determine how the microbial communities change in crocodile lizards in response to warming, we analyzed the gut microbiota under five temperature conditions (22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput sequencing. Results showed that the dominant phyla, Proteobacteria and Bacteroidetes, in gut microbiota were not significantly affected by temperature variations, but increasing temperature altered the structure and increased the community richness of the gut microbiota. In addition, warming changed the abundance of Pseudomonas aeruginosa and Actinobacteria, which may have negative effects on the physiological health of the crocodile lizards. Functional prediction analysis demonstrated that the functional pathways enriched in crocodile lizards were mainly related to metabolism, with no significant differences observed in these pathways at KEGG pathway level 1 after warming. These results provide valuable insights into the ecological adaptations and regulatory mechanisms employed by crocodile lizards in response to warming, which may be of benefit for their conservation.
Collapse
Affiliation(s)
- Zhengzhong Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Mingxian He
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi, China
| | - Chunying Zhong
- College of Vocational and Technical Education, Guangxi Science and Technology Normal University, Guangxi, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Sanqi Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Xindan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| |
Collapse
|
11
|
Hoffbeck C, Middleton DMRL, Nelson NJ, Taylor MW. 16S rRNA gene-based meta-analysis of the reptile gut microbiota reveals environmental effects, host influences and a limited core microbiota. Mol Ecol 2023; 32:6044-6058. [PMID: 37795930 DOI: 10.1111/mec.17153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
An animal's gut microbiota plays an important role in host health, reproduction and digestion. However, many studies focus on only a few individuals or a single species, limiting our ability to recognize emergent patterns across a wider taxonomic grouping. Here, we compiled and reanalysed published 16S rRNA gene sequence data for 745 gut microbiota samples from 91 reptile species using a uniform bioinformatics pipeline to draw broader conclusions about the taxonomy of the reptile gut microbiota and the forces shaping it. Our meta-analysis revealed the significant differences in alpha- and beta-diversity across host order, environment, diet, habitat and conservation status, with host diet and order contributing the most to these differences. We identified the principal bacterial phyla present in the reptile gut microbiota as Bacteroidota, Proteobacteria (mostly Gamma class), and Firmicutes, and detected the bacterial genus Bacteroides in most reptile individuals, thus representing a putative 'core' microbiota. Our study provides novel insights into key drivers of the reptile gut microbiota, highlights existing knowledge gaps and lays the groundwork for future research on these fascinating hosts and their associated microbes.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Nicola J Nelson
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Guan Y, Bao L, Zhou L, Dai C, Li Z, Zhang S, Shang Y, Niu W, Zhang Y, Wang H. Comparative analysis of the fecal microbiota of healthy and injured common kestrel ( Falco tinnunculus) from the Beijing Raptor Rescue Center. PeerJ 2023; 11:e15789. [PMID: 37637157 PMCID: PMC10452619 DOI: 10.7717/peerj.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
The gut microbiota is a complex ecosystem that interacts with many other factors to affect the health and disease states of the host. The common kestrel (Falco tinnunculus) is protected at the national level in China. However, the available sequencing data of the gut microbiota from the feces of wild common kestrels, especially for being rescued individuals by professional organization, remains limited. In the present study, we characterized the fecal bacterial communities of healthy and injured common kestrels, and compared the structure of their fecal microbiota by analyzing the V3-V4 region of the 16S rRNA gene using high-throughput sequencing technology with the Illumina MiSeq platform. We found that Firmicutes, Proteobacteria and Actinobacteria were the most predominant phyla in common kestrels. Further, the beta diversity analysis showed that changes in gut microbes were associated with injuries to the common kestrel. The Bacteroides/Firmicutes ratio was significantly lower in the injured group. At the genus level, Glutamicibacter showed significant difference in the two groups. The aim of our current study was to characterize the basic bacterial composition and community structure in the feces of healthy common kestrels, and then compare the differences in the fecal microbiota between healthy and injured individuals. Patescibacteria, Spirochaetes, and Glutamicibacter may be studied as potential biomarkers for certain diseases in raptors. The results could provide the basic data for additional research on the fecal microbiota of common kestrels and contribute to the rescue of wild raptors in the future.
Collapse
Affiliation(s)
- Yu Guan
- Beijing Normal University, Beijing, China
| | - Lei Bao
- Beijing Normal University, Beijing, China
| | - Lei Zhou
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Chang Dai
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Zhisai Li
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Shuai Zhang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Yugang Shang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | | | | | | |
Collapse
|
13
|
Gao W, Yang Y, Shi L. Seasonal dietary shifts alter the gut microbiota of a frugivorous lizard Teratoscincus roborowskii (Squamata, Sphaerodactylidae). Ecol Evol 2023; 13:e10363. [PMID: 37546566 PMCID: PMC10396791 DOI: 10.1002/ece3.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Seasonal dietary shifts in animals are important strategies for ecological adaptation. An increasing number of studies have shown that seasonal dietary shifts can influence or even determine the composition of gut microbiota. The Turpan wonder gecko, Teratoscincus roborowskii, lives in extreme desert environments and has a flexible dietary shift to fruit-eating in warm seasons. However, the effect of such shifts on the gut microbiota is poorly understood. In this study, 16S rRNA sequencing and LC-MS metabolomics were used to examine changes in the gut microbiota composition and metabolic patterns of T. roborowskii. The results demonstrated that the gut microbes of T. roborowskii underwent significant seasonal changes, and the abundance of phylum level in autumn was significantly higher than spring, but meanwhile, the diversity was lower. At the family level, the abundance and diversity of the gut microbiota were both higher in autumn. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant gut microbes of T. roborowskii. Verrucomicrobia and Proteobacteria exhibited dynamic ebb and flow patterns between spring and autumn. Metabolomic profiling also revealed differences mainly related to the formation of secondary bile acids. The pantothenate and CoA biosynthesis, and lysine degradation pathways identified by KEGG enrichment symbolize the exuberant metabolic capacity of T. roborowskii. Furthermore, strong correlations were detected between metabolite types and bacteria, and this correlation may be an important adaptation of T. roborowskii to cope with dietary shifts and improve energy acquisition. Our study provides a theoretical basis for exploring the adaptive evolution of the special frugivorous behavior of T. roborowskii, which is an important progress in the study of gut microbes in desert lizards.
Collapse
Affiliation(s)
- Wei‐Zhen Gao
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Yi Yang
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Lei Shi
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| |
Collapse
|
14
|
Jiang XR, Dai YY, Wang YR, Guo K, Du Y, Gao JF, Lin LH, Li P, Li H, Ji X, Qu YF. Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel, 1836). Animals (Basel) 2023; 13:ani13081365. [PMID: 37106928 PMCID: PMC10134999 DOI: 10.3390/ani13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host's metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species.
Collapse
Affiliation(s)
- Xin-Ru Jiang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying-Yu Dai
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Rong Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kun Guo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jian-Fang Gao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
15
|
Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. MICROBIAL ECOLOGY 2023; 85:820-838. [PMID: 35316343 DOI: 10.1007/s00248-022-01991-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
During the ongoing biodiversity crisis, captive conservation and breeding programs offer a refuge for species to persist and provide source populations for reintroduction efforts. Unfortunately, captive animals are at a higher disease risk and reintroduction efforts remain largely unsuccessful. One potential factor in these outcomes is the host microbiota which includes a large diversity and abundance of bacteria, fungi, and viruses that play an essential role in host physiology. Relative to wild populations, the generalized pattern of gut and skin microbiomes in captivity are reduced alpha diversity and they exhibit a significant shift in community composition and/or structure which often correlates with various physiological maladies. Many conditions of captivity (antibiotic exposure, altered diet composition, homogenous environment, increased stress, and altered intraspecific interactions) likely lead to changes in the host-associated microbiome. To minimize the problems arising from captivity, efforts can be taken to manipulate microbial diversity and composition to be comparable with wild populations through methods such as increasing dietary diversity, exposure to natural environmental reservoirs, or probiotics. For individuals destined for reintroduction, these strategies can prime the microbiota to buffer against novel pathogens and changes in diet and improve reintroduction success. The microbiome is a critical component of animal physiology and its role in species conservation should be expanded and included in the repertoire of future management practices.
Collapse
Affiliation(s)
- Jason W Dallas
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
16
|
Assis BA, Bell TH, Engler HI, King WL. Shared and unique responses in the microbiome of allopatric lizards reared in a standardized environment. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:5-12. [PMID: 36266922 DOI: 10.1002/jez.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022]
Abstract
The gut microbiome can influence host fitness and, consequently, the ecology and evolution of natural populations. Microbiome composition can be driven by environmental exposure but also by the host's genetic background and phenotype. To contrast environmental and genetic effects on the microbiome we leverage preserved specimens of eastern fence lizards from allopatric lineages east and west of the Mississippi River but reared in standardized conditions. Bacterial composition was indistinguishable between lineages but responded significantly to host age-a proxy for environmental exposure. This was accompanied by a continuous decrease in bacterial diversity in both lineages, partially driven by decreasing evenness seen only in western lizards. These findings indicate that longer exposure to a homogeneous habitat may have a depreciating effect on microbiome diversity in eastern fence lizards, a response shared by both lineages. We highlight the importance of such effects when extrapolating patterns from laboratory experiments to the natural world.
Collapse
Affiliation(s)
- Braulio A Assis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Heather I Engler
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA.,School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Cui X, Zhang Q, Zhang Q, Chen H, Liu G, Zhu L. The putative maintaining mechanism of gut bacterial ecosystem in giant pandas and its potential application in conservation. Evol Appl 2023; 16:36-47. [PMID: 36699119 PMCID: PMC9850007 DOI: 10.1111/eva.13494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 01/01/2023] Open
Abstract
Animals living in captivity and the wild show differences in the internal structure of their gut microbiomes. Here, we performed a meta-analysis of the microbial data of about 494 fecal samples obtained from giant pandas (captive and wild giant pandas). Our results show that the modular structures and topological features of the captive giant panda gut microbiome differ from those of the wild populations. The co-occurrence network of wild giant pandas also contained more nodes and edges, indicating a higher complexity and stability compared to that of captive giant pandas. Keystone species analysis revealed the differences between geographically different wild populations, indicating the potential effect of geography on the internal modular structure. When combining all the giant panda samples for module analysis, we found that the abundant taxa (e.g., belonged to Flavobacterium, Herbaspirillum, and Escherichia-Shigella) usually acted as module hubs to stabilize the modular structure, while the rare taxa usually acted as connectors of different modules. We conclude that abundant and rare taxa play different roles in the gut bacterial ecosystem. The conservation of some key bacterial species is essential for promoting the development of the gut microbiome in pandas. The living environment of the giant pandas can influence the internal structure, topological features, and strength of interrelationships in the gut microbiome. This study provides new insights into the conservation and management of giant panda populations.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qinrong Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qunde Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hua Chen
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Guoqi Liu
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Lifeng Zhu
- College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
18
|
Liu W, Yang J, Meng Y, Wu D, Cui L, Li T, Sun B, Liu P. The divergent effects of moderate climate warming on the gut microbiota and energetic state of cold-climate lizards from open and semi-closed microhabitats. Front Microbiol 2022; 13:1050750. [PMID: 36483215 PMCID: PMC9722725 DOI: 10.3389/fmicb.2022.1050750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
Introduction Understanding the physiological responses to warming temperatures is critical for evaluating the vulnerabilities of animals to climate warming. The physiological responses are increasingly affected by gut microbiota. However, the interactions between physiological responses and the gut microbiota of sympatric animals from various microhabitats in the face of climate change remain largely unknown. Methods To evaluate the effects of warming temperatures on animals from different microhabitats, we compared locomotor performance, metabolic rate, growth, survival, and gut microbiota of two sympatric ectothermic species (Eremias argus and Takydromus amurensis) from open and semi-closed microhabitats under present and moderate warming climate conditions, respectively. Results and discussion We found that locomotor performance and growth rates of snout-vent length (SVL) were enhanced in both lizard species by warming climate. Interestingly, warming temperatures enhanced resting metabolic rates (RMR) in the open-habitat lizard, E. argus, but depressed them in the semi-closed habitat lizard, T. amurensis. Reversely, the metabolism-related gut microbiota was not affected by warming in E. argus, whereas it was significantly enhanced by warming in T. amurensis, indicating a plausible compensatory effect of the gut microbiota on the metabolic regulation of T. amurensis. Furthermore, warming likely improved immunity in both lizard species by significantly reducing pathogenic bacteria while increasing probiotics. This study found that high-latitude sympatric lizards from both open and semi-closed habitats were beneficial to warming temperatures by physiological modification and regulation of the gut microbiota and highlighted the importance of integrating the physiology and gut microbiota in evaluating the vulnerability of animals to climate warming.
Collapse
Affiliation(s)
- Wanli Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu Meng
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Danyang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luoxin Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Zhao N, Ma Z, Jiang Y, Shi Y, Xie Y, Wang Y, Wu S, Liu S, Wang S. Geographical patterns of Fejervarya limnocharis gut microbiota by latitude along mainland China’s coastline. Front Microbiol 2022; 13:1062302. [DOI: 10.3389/fmicb.2022.1062302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota affects many aspects of host biology and plays key roles in the coevolutionary association with its host. Geographical gradients may play a certain role on gut microbiota variation in the natural environment. However, the distribution pattern of amphibian gut microbiota in the latitudinal gradient remains largely unexplored. Here, we sampled six natural populations of Fejervarya limnocharis along the eastern coastline of mainland China (spanning 20°–30° N = 1,300 km) using 16S rRNA amplicon sequencing to characterize the gut microbiota. First of all, a significant correlation between gut microbial diversity and latitude was observed in our research system. Second, we discovered that latitude influenced the composition of the gut microbiota of F. limnocharis. Finally, we detected that geographical distance could not determine gut microbiota composition in F. limnocharis. These results indicate that latitude can play an important role in shaping the gut microbial diversity of amphibian. Our study offers the first evidence that gut microbial diversity of amphibian presents a latitudinal pattern and highlights the need for increased numbers of individuals to be sampled during microbiome studies in wild populations along environmental gradients.
Collapse
|
20
|
Chen JQ, Zhang LW, Zhao RM, Wu HX, Lin LH, Li P, Li H, Qu YF, Ji X. Gut microbiota differs between two cold-climate lizards distributed in thermally different regions. BMC Ecol Evol 2022; 22:120. [PMID: 36271355 PMCID: PMC9585762 DOI: 10.1186/s12862-022-02077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The metabolic cold-climate adaption hypothesis predicts that animals from cold environments have relatively high metabolic rates compared with their warm-climate counterparts. However, studies testing this hypothesis are sparse. Here, we compared gut microbes between two cold-climate lizard species of the genus Phrynocephalus to see if gut microbiota could help lizards adapt to cold environments by promoting metabolism. We conducted a 2 species (P. erythrurus and P. przewalskii) × 2 temperatures (24 and 30 °C) factorial design experiment, whereby we kept lizards of two Phrynocephalus species at 24 and 30 °C for 25 d and then collected their fecal samples to analyze and compare the microbiota based on 16S rRNA gene sequencing technology. RESULTS The gut microbiota was mainly composed of bacteria of the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Verrucomicrobia in both species (Proteobacteria > Firmicutes > Verrucomicrobiota in P. erythrurus, and Bacteroidetes > Proteobacteria > Firmicutes in P. przewalskii). Further analysis revealed that the gut microbiota promoted thermal adaptation in both lizard species, but with differences in the relative abundance of the contributory bacteria between the two species. An analysis based on the Kyoto Encyclopedia of Genes and Genomes revealed that the gut microbiota played important roles in metabolism, genetic information processing, cellular processes, and environmental information processing in both species. Furthermore, genes related to metabolism were more abundant in P. erythrurus at 24 °C than in other species ⋅ temperature combinations. CONCLUSION Our study provides evidence that gut microbiota promotes thermal adaptation in both species but more evidently in P. erythrurus using colder habitats than P. przewalskii all year round, thus confirming the role of gut microbiota in cold-climate adaptation in lizards.
Collapse
Affiliation(s)
- Jun-Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Lu-Wen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Ru-Meng Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Hai-Xia Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
21
|
Zeng Y, Xiong Y, Yang C, He N, He J, Luo W, Chen Y, Zeng X, Wu Z. Investigation of Parasitic Infection in Crocodile Lizards ( Shinisaurus crocodilurus) Using High-Throughput Sequencing. Animals (Basel) 2022; 12:ani12202726. [PMID: 36290112 PMCID: PMC9597849 DOI: 10.3390/ani12202726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The highly endangered crocodile lizard (Shinisaurus crocodilurus) continues to be impacted by disease, especially in captive breeding populations. In this paper, based on high-throughput sequencing, we investigated parasitic infections in captive and wild crocodile lizard populations in the Daguishan National Nature Reserve and Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve. The results show that the overall parasitic infection rate in crocodile lizards was 33.33% (23/69). Four parasite genera were detected, including Eimeria, Cryptosporidium, Nematopsis, and Acanthamoeba, with infection rates of 15.94% (11/69), 17.39% (12/69), 7.25% (5/69), and 4.35% (3/69), respectively. Significant differences in the infection rate were found between the different parasite species (χ2 = 8.54, p < 0.05, chi-squared test). The parasitic infection rates in the captive and wild populations were 39.29% (22/56) and 7.69% (1/13), respectively, which were significantly different (p < 0.05, Fisher’s exact test). However, no significant differences in the infection rates of the four parasite genera were found between the captive and wild populations (p > 0.05, Fisher’s exact test). The parasitic infection rates in Daguishan and Luokeng were 34.09% (15/44) and 32.00% (8/25), respectively, which were not significantly different (p > 0.05, Fisher’s exact test). However, significant differences in terms of species were found in the two reserves (p < 0.01, Fisher’s exact test). Only Cryptosporidium infection showed a significant difference between the two regions (p < 0.01, Fisher’s exact test). Our results suggest that captive crocodile lizards are more susceptible to parasitic diseases than wild crocodile lizards and that Cryptosporidium infection varies by geographical region. This study provides basic information about the parasites of endangered crocodile lizards, as well as a reference for disease control and conservation.
Collapse
Affiliation(s)
- Yongru Zeng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Yi Xiong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Chunsheng Yang
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou 542824, China
| | - Nan He
- Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan 512100, China
| | - Jiasong He
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou 542824, China
| | - Wenxian Luo
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou 542824, China
| | - Yaohuan Chen
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou 542824, China
| | - Xiaochen Zeng
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou 542824, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, China
- Correspondence: ; Tel.: +86-135-1783-6091
| |
Collapse
|
22
|
Sustained Drought, but Not Short-Term Warming, Alters the Gut Microbiomes of Wild Anolis Lizards. Appl Environ Microbiol 2022; 88:e0053022. [PMID: 36165625 PMCID: PMC9552597 DOI: 10.1128/aem.00530-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard (Anolis apletophallus) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term "heat-wave" by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These "microbiomes" can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard (Anolis apletophallus) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change.
Collapse
|
23
|
Zhang Z, Zhu Q, Chen J, Khattak RH, Li Z, Teng L, Liu Z. Insights into the composition of gut microbiota in response to environmental temperature: The case of the Mongolia racerunner (Eremias argus). Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
24
|
Li T, Yang Y, Li H, Li C. Mixed-Mode Bacterial Transmission via Eggshells in an Oviparous Reptile Without Parental Care. Front Microbiol 2022; 13:911416. [PMID: 35836422 PMCID: PMC9273969 DOI: 10.3389/fmicb.2022.911416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microorganisms play important roles in maintaining health and facilitating the adaptation of the host. We know little about the origin and transgenerational transmission of symbiotic bacteria, especially in egg-laying species without parental care. Here, we investigated the transmission of bacterial symbionts in the Chinese three-keeled pond turtle (Mauremys reevesii), a species with no post-oviposition parental care, by evaluating contributions from potential maternal and environmental sources to eggshell bacterial communities. Using 16S rRNA amplicon sequencing, we established that the bacterial communities of eggshells were similar to those of the maternal cloaca, maternal skin, and nest soil, but distinct from those of surface soil around nest and pond water. Phylogenetic structure analysis and source-tracking models revealed the deterministic assembly process of eggshell microbiota and high contributions of the maternal cloaca, maternal skin, and nest soil microbiota to eggshell bacterial communities. Moreover, maternal cloaca showed divergent contribution to eggshell microbiota compared with two other main sources in phylogenesis and taxonomic composition. The results demonstrate a mixture of horizontal and vertical transmission of symbiotic bacteria across generations in an oviparous turtle without parental care and provide insight into the significance of the eggshell microbiome in embryo development.
Collapse
|
25
|
Tang S, Li Y, Huang C, Yan S, Li Y, Chen Z, Wu Z. Comparison of Gut Microbiota Diversity Between Captive and Wild Tokay Gecko (Gekko gecko). Front Microbiol 2022; 13:897923. [PMID: 35783386 PMCID: PMC9248866 DOI: 10.3389/fmicb.2022.897923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Captive animals and wild animals may exhibit different characteristics due to the heterogeneity of their living environments. The gut microbiota play an important role in the digestion and absorption, energy metabolism, immune regulation, and physiological health of the host. However, information about the gut microbiota of captive and wild Gekko gecko is currently limited. To determine the difference in gut microbiota community composition, diversity, and structure between captive and wild geckos, we used the Illumina miseq platform to conduct high-throughput sequencing and bioinformatics analysis of the v3–v4 hypervariable region of 16S rRNA in 54 gecko samples. Our results showed that Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant gut microbiota phyla of the gecko. The dominant genera comprised mainly Pseudomonas, Burkholderia-caballeronia-paraburkholderia, Ralstonia, Romboutsia, and Bacteroides. Captive geckos had significantly higher alpha diversity and potential pathogenic bacteria than wild populations. Moreover, significant differences in beta diversity of gut microbiota were observed between two populations. Functional prediction analysis showed that the relative abundance of functional pathways of wild geckos was more higher in metabolism, genetic information processing and organismal system function than those in captive geckos. Total length significantly affected gut microbial community (R2 = 0.4527, p = 0.001) and explained 10.45% of the total variation for gut microbial community variance between two groups. These results may be related to differences in diet and living environment between two populations, suggesting that the management of captive populations should mimic wild environments to the greatest extent possible to reduce the impact on their gut microbiota.
Collapse
Affiliation(s)
- Sanqi Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Chengming Huang
- Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shufa Yan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yongtai Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zening Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- Zening Chen,
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- *Correspondence: Zhengjun Wu,
| |
Collapse
|
26
|
de Jonge N, Carlsen B, Christensen MH, Pertoldi C, Nielsen JL. The Gut Microbiome of 54 Mammalian Species. Front Microbiol 2022; 13:886252. [PMID: 35783446 PMCID: PMC9246093 DOI: 10.3389/fmicb.2022.886252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiome plays a critical role in many aspects of host life, and the microbial community composition is heavily influenced by the prevailing conditions in the gut environment. Community composition has been suggested to have large implications for conservation efforts, and gut health has become of interest for optimizing animal care in captivity. In this study, we explore the gut microbiome of a wide range of animals in the context of conservation biology. The composition of the gut microbial community of 54 mammalian animal species was investigated using 16S rRNA gene amplicon sequencing. The composition of the gut microbiota clearly reflects diet and the structure of the gastrointestinal system, and it is to a certain degree more similar between closely related animals. Specific clusters of taxa were observed across animals of the same species, diet, and gut morphology. The microbiota retained regardless of captivity status is hypothesized to cover important symbiotic relationships with the host, while the remaining part reflects the artificial living conditions and can therefore be used as a future tool for conservation biologists. For five animal species (giraffes, horses, baboons, elephants, and zebras), it was possible to compare the microbiota of wild and captive individuals. Differences were observed in the proportion of microbiota detected between wild and captive specimens of the same animal species. We propose that the gut microbiota harbours important species, which can potentially serve as indicators for the well-being of the animal and the effect of living in captivity.
Collapse
Affiliation(s)
- Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Benjamin Carlsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Aalborg Zoo, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- *Correspondence: Jeppe Lund Nielsen
| |
Collapse
|
27
|
Chen Z, Chen J, Liu Y, Zhang J, Chen X, Qu Y. Comparative study on gut microbiota in three Anura frogs from a mountain stream. Ecol Evol 2022; 12:e8854. [PMID: 35475186 PMCID: PMC9021931 DOI: 10.1002/ece3.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jun‐Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yao Liu
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jie Zhang
- College of Fisheries Henan Normal University Xinxiang Henan China
| | - Xiao‐Hong Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yan‐Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| |
Collapse
|
28
|
Zhang L, Yang F, Li T, Dayananda B, Lin L, Lin C. Lessons from the diet: Captivity and sex shape the gut microbiota in an oviparous lizard ( Calotes versicolor). Ecol Evol 2022; 12:e8586. [PMID: 35169453 PMCID: PMC8840884 DOI: 10.1002/ece3.8586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Studies have indicated that the abundance and community structure of gut microbiota are altered by diet. In this study, next-generation sequencing of the 16S rRNA gene amplicon was performed to evaluate variations in the gut microbiota of wild and captive individuals of both sexes of Calotes versicolor. The results showed that there was a significant sex difference in microbial community structure for wild C. versicolor, Bacteroide was the dominant genus in wild females (WF), whereas Ochrobactrum was the dominant genus in wild males (WM). Acinetobacter and Hymenobacter were the dominant genera in WF, while Clostridium was the dominant genus in captive females (CF). The results indicated that differences in diet between wild and captive C. versicolor also resulted in variations in gut microbiota. Thus, it was not surprising that captivity and sex shape the gut microbiota in C. versicolor. In summary, the fundamental information presented about the gut microbiota of both sexes of wild (and captive females) C. versicolor, indicates that the artificial environments are not suitable for the wild C. versicolor.
Collapse
Affiliation(s)
- Lin Zhang
- School of Basic Medical SciencesHubei University of Chinese MedicineWuhanChina
| | - Fang Yang
- School of Laboratory MedicineHubei University of Chinese MedicineWuhanChina
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
| | - Buddhi Dayananda
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Longhui Lin
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Chixian Lin
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine BioresourcesHainan Key Laboratory of Herpetological ResearchCollege of Fisheries and Life ScienceHainan Tropical Ocean UniversitySanyaChina
| |
Collapse
|
29
|
Du Y, Chen JQ, Liu Q, Fu JC, Lin CX, Lin LH, Li H, Qu YF, Ji X. Dietary Correlates of Oral and Gut Microbiota in the Water Monitor Lizard, Varanus salvator (Laurenti, 1768). Front Microbiol 2022; 12:771527. [PMID: 35069477 PMCID: PMC8770915 DOI: 10.3389/fmicb.2021.771527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that food shapes the structure and composition of the host’s oral and gut microbiota. The disorder of oral and gut microbiota may trigger various host diseases. Here, we collected oral and gut samples from wild water monitor lizards (Varanus salvator) and their captive conspecifics fed with bullfrogs, eggs, and depilated chicken, aiming to examine dietary correlates of oral and gut microbiota. We used the 16S rRNA gene sequencing technology to analyze the composition of the microbiota. Proteobacteria and Bacteroidota were the dominant phyla in the oral microbiota, and so were in the gut microbiota. The alpha diversity of microbiota was significantly higher in the gut than in the oral cavity, and the alpha diversity of oral microbiota was higher in captive lizards than in wild conspecifics. Comparing the relative abundance of oral and gut bacteria and their gene functions, differences among different animal groups presumably resulted from human contact in artificial breeding environments and complex food processing. Differences in gene function might be related to the absolute number and/or the taxonomic abundance of oral and gut microorganisms in the wild and the water environment. This study provides not only basic information about the oral and gut microbiota of captive and wild water monitor lizards, but also an inference that feeding on frogs and aquatic products and reducing human exposure help water monitor lizards maintain a microbiota similar to that in the wild environment.
Collapse
Affiliation(s)
- Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Jun-Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qian Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jian-Chao Fu
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
30
|
Diaz J, Reese AT. Possibilities and limits for using the gut microbiome to improve captive animal health. Anim Microbiome 2021; 3:89. [PMID: 34965885 PMCID: PMC8715647 DOI: 10.1186/s42523-021-00155-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Because of its potential to modulate host health, the gut microbiome of captive animals has become an increasingly important area of research. In this paper, we review the current literature comparing the gut microbiomes of wild and captive animals, as well as experiments tracking the microbiome when animals are moved between wild and captive environments. As a whole, these studies report highly idiosyncratic results with significant differences in the effect of captivity on the gut microbiome between host species. While a few studies have analyzed the functional capacity of captive microbiomes, there has been little research directly addressing the health consequences of captive microbiomes. Therefore, the current body of literature cannot broadly answer what costs, if any, arise from having a captive microbiome in captivity. Addressing this outstanding question will be critical to determining whether it is worth pursuing microbial manipulations as a conservation tool. To stimulate the next wave of research which can tie the captive microbiome to functional and health impacts, we outline a wide range of tools that can be used to manipulate the microbiome in captivity and suggest a variety of methods for measuring the impact of such manipulation preceding therapeutic use. Altogether, we caution researchers against generalizing results between host species given the variability in gut community responses to captivity and highlight the need to understand what role the gut microbiome plays in captive animal health before putting microbiome manipulations broadly into practice.
Collapse
Affiliation(s)
- Jessica Diaz
- Section of Ecology, Behavior, and Evolution, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Aspen T Reese
- Section of Ecology, Behavior, and Evolution, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
31
|
Siddiqui R, Maciver S, Elmoselhi A, Soares NC, Khan NA. Longevity, cellular senescence and the gut microbiome: lessons to be learned from crocodiles. Heliyon 2021; 7:e08594. [PMID: 34977412 PMCID: PMC8688568 DOI: 10.1016/j.heliyon.2021.e08594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Crocodiles are flourishing large-bodied ectotherms in a world dominated by endotherms. They survived the Cretaceous extinction event, that eradicated the dinosaurs who are thought to be their ancestral hosts. Crocodiles reside in polluted environments; and often inhabit water which contains heavy metals; frequent exposure to radiation; feed on rotten meat and considered as one of the hardy species that has successfully survived on this planet for millions of years. Another capability that crocodiles possess is their longevity. Crocodiles live much longer than similar-sized land mammals, sometimes living up to 100 years. But how do they withstand such harsh conditions that are detrimental to Homo sapiens? Given the importance of gut microbiome on its' host physiology, we postulate that the crocodile gut microbiome and/or its' metabolites produce substances contributing to their "hardiness" and longevity. Thus, we accomplished literature search in PubMed, Web of Science and Google Scholar and herein, we discuss the composition of the crocodile gut microbiome, longevity and cellular senescence in crocodiles, their resistance to infectious diseases and cancer, and our current knowledge of the genome and epigenome of these remarkable species. Furthermore, preliminary studies that demonstrate the remarkable properties of crocodile gut microbial flora are discussed. Given the profound role of the gut microbiome in the health of its' host, it is likely that the crocodile gut microbiome and its' metabolites may be contributing to their extended life expectancy and elucidating the underlying mechanisms and properties of these metabolites may hold clues to developing new treatments for age-related diseases for the benefit of Homo sapiens.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Sutherland Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Adel Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson Cruz Soares
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
32
|
Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard ( Calotes versicolor). Animals (Basel) 2021; 11:ani11082461. [PMID: 34438918 PMCID: PMC8388656 DOI: 10.3390/ani11082461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The different gut sections potentially provide different habitats for gut microbiota. We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut microbiota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend from the small intestine to the large intestine, and there was a higher abundance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in different parts of the lizards’ intestine. Abstract Vertebrates maintain complex symbiotic relationships with microbiota living within their gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and their gut microbiota. However, this understanding is limited in lizards and the spatial heterogeneity and co-occurrence patterns of gut microbiota inside the gastrointestinal tracts of a host and variations of microbial community among samples remain poorly understood. To address this issue and provide a guide for gut microbiota sampling from lizards, we investigated the bacteria in three gut locations of the oriental garden lizard (Calotes versicolor) and the data were analyzed for bacterial composition by 16S ribosomal RNA (16S rRNA) gene amplicon sequencing. We found the relative abundance of the dominant phyla exhibited an increasing trend from the small intestine to the large intestine, and phyla Firmicutes, Bacteroidetes and Proteobacteria were the three primary phyla in the gut microbiota of C. versicolor. There were a higher abundance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the sample from the hindgut. The secondary bile acid biosynthesis, glycosaminoglycan degradation, sphingolipid metabolism and lysosome were significantly higher in the hindgut than that in the small intestine. Taken together our results indicate variations of gut microbiota composition and metabolic pathway in different parts of the oriental garden lizard.
Collapse
|
33
|
Betts EL, Hoque S, Torbe L, Bailey JR, Ryan H, Toller K, Breakell V, Carpenter AI, Diana A, Matechou E, Gentekaki E, Tsaousis AD. Parasites, Drugs and Captivity: Blastocystis-Microbiome Associations in Captive Water Voles. BIOLOGY 2021; 10:457. [PMID: 34067374 PMCID: PMC8224621 DOI: 10.3390/biology10060457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
(1) Background: Blastocystis is a microbial eukaryote inhabiting the gastrointestinal tract of a broad range of animals including humans. Several studies have shown that the organism is associated with specific microbial profiles and bacterial taxa that have been deemed beneficial to intestinal and overall health. Nonetheless, these studies are focused almost exclusively on humans, while there is no similar information on other animals. (2) Methods: Using a combination of conventional PCR, cloning and sequencing, we investigated presence of Blastocystis along with Giardia and Cryptosporidium in 16 captive water voles sampled twice from a wildlife park. We also characterised their bacterial gut communities. (3) Results: Overall, alpha and beta diversities between water voles with and without Blastocystis did not differ significantly. Differences were noted only on individual taxa with Treponema and Kineothrix being significantly reduced in Blastocystis positive water voles. Grouping according to antiprotozoal treatment and presence of other protists did not reveal any differences in the bacterial community composition either. (4) Conclusion: Unlike human investigations, Blastocystis does not seem to be associated with specific gut microbial profiles in water voles.
Collapse
Affiliation(s)
- Emma L. Betts
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Sumaiya Hoque
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Lucy Torbe
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Jessica R. Bailey
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| | - Hazel Ryan
- Wildwood Trust, Herne Common, Herne Bay CT6 7LQ, UK; (H.R.); (K.T.); (V.B.)
| | - Karen Toller
- Wildwood Trust, Herne Common, Herne Bay CT6 7LQ, UK; (H.R.); (K.T.); (V.B.)
| | - Vicki Breakell
- Wildwood Trust, Herne Common, Herne Bay CT6 7LQ, UK; (H.R.); (K.T.); (V.B.)
| | - Angus I. Carpenter
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Nottinghamshire NG1 4FQ, UK;
| | - Alex Diana
- School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NJ, UK; (A.D.); (E.M.)
| | - Eleni Matechou
- School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NJ, UK; (A.D.); (E.M.)
| | - Eleni Gentekaki
- School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Anastasios D. Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (E.L.B.); (S.H.); (L.T.); (J.R.B.)
| |
Collapse
|
34
|
Qu YF, Wu YQ, Zhao YT, Lin LH, Du Y, Li P, Li H, Ji X. The invasive red-eared slider turtle is more successful than the native Chinese three-keeled pond turtle: evidence from the gut microbiota. PeerJ 2020; 8:e10271. [PMID: 33194431 PMCID: PMC7603792 DOI: 10.7717/peerj.10271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The mutualistic symbiosis between the gut microbial communities (microbiota) and their host animals has attracted much attention. Many factors potentially affect the gut microbiota, which also varies among host animals. The native Chinese three-keeled pond turtle (Chinemys reevesii) and the invasive red-eared slider turtle (Trachemys scripta elegans) are two common farm-raised species in China, with the latter generally considered a more successful species. However, supporting evidence from the gut microbiota has yet to be collected. METHODS We collected feces samples from these two turtle species raised in a farm under identical conditions, and analyzed the composition and relative abundance of the gut microbes using bacterial 16S rRNA sequencing on the Roach/454 platform. RESULTS The gut microbiota was mainly composed of Bacteroidetes and Firmicutes at the phylum level, and Porphyromonadaceae, Bacteroidaceae and Lachnospiraceae at the family level in both species. The relative abundance of the microbes and gene functions in the gut microbiota differed between the two species, whereas alpha or beta diversity did not. Microbes of the families Bacteroidaceae, Clostridiaceae and Lachnospiraceae were comparatively more abundant in C. reevesii, whereas those of the families Porphyromonadaceae and Fusobacteriaceae were comparatively more abundant in T. s. elegans. In both species the gut microbiota had functional roles in enhancing metabolism, genetic information processing and environmental information processing according to the Kyoto Encyclopedia of Genes and Genomes database. The potential to gain mass is greater in T. s. elegans than in C. reevesii, as revealed by the fact that the Firmicutes/Bacteroidetes ratio was lower in the former species. The percentage of human disease-related functional genes was lower in T. s. elegans than in C. reevesii, presumably suggesting an enhanced potential to colonize new habitats in the former species.
Collapse
Affiliation(s)
- Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yan-Qing Wu
- National Key Laboratory of Environmental Protection and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu, China
| | - Yu-Tian Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|