1
|
Traoré M, Noviello C, Vergnol A, Gentil C, Halliez M, Saillard L, Gelin M, Forand A, Lemaitre M, Guesmia Z, Cadot B, Caldas de Almeida Araujo E, Marty B, Mougenot N, Messéant J, Strochlic L, Sadoine J, Slimani L, Jolly A, De la Grange P, Hogrel JY, Pietri-Rouxel F, Falcone S. GDF5 as a rejuvenating treatment for age-related neuromuscular failure. Brain 2024; 147:3834-3848. [PMID: 38584513 DOI: 10.1093/brain/awae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in tibialis anterior muscle of adult aged (20 months) mice and performed molecular and functional analysis of skeletal muscle. We analysed human vastus lateralis muscle biopsies from adult young (21-42 years) and aged (77-80 years) donors, quantifying the molecular markers modified by GDF5 overexpression in mouse muscle. We validated the major effects of GDF5 overexpression using human immortalized myotubes and Schwann cells. We established a preclinical study by treating chronically (for 4 months) aged mice using recombinant GDF5 protein (rGDF5) in systemic administration and evaluated the long-term effect of this treatment on muscle mass and function. Here, we demonstrated that GDF5 overexpression in the old tibialis anterior muscle promoted an increase of 16.5% of muscle weight (P = 0.0471) associated with a higher percentage of 5000-6000 µm2 large fibres (P = 0.0211), without the induction of muscle regeneration. Muscle mass gain was associated with an amelioration of 26.8% of rate of force generation (P = 0.0330) and better neuromuscular connectivity (P = 0.0098). Moreover, GDF5 overexpression preserved neuromuscular junction morphology (38.5% of nerve terminal area increase, P < 0.0001) and stimulated the expression of reinnervation-related genes, in particular markers of Schwann cells (fold-change 3.19 for S100b gene expression, P = 0.0101). To characterize the molecular events induced by GDF5 overexpression during ageing, we performed a genome-wide transcriptomic analysis of treated muscles and showed that this factor leads to a 'rejuvenating' transcriptomic signature in aged mice, as 42% of the transcripts dysregulated by ageing reverted to youthful expression levels upon GDF5 overexpression (P < 0.05). Towards a preclinical approach, we performed a long-term systemic treatment using rGDF5 and showed its effectiveness in counteracting age-related muscle wasting, improving muscle function (17.8% of absolute maximal force increase, P = 0.0079), ensuring neuromuscular connectivity and preventing neuromuscular junction degeneration (7.96% of AchR area increase, P = 0.0125). In addition, in human muscle biopsies, we found the same age-related alterations than those observed in mice and improved by GDF5 and reproduced its major effects on human cells, suggesting this treatment as efficient in humans. Overall, these data provide a foundation to examine the curative potential of GDF5 drug in clinical trials for sarcopenia and, eventually, other neuromuscular diseases.
Collapse
Affiliation(s)
- Massiré Traoré
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Chiara Noviello
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Amélie Vergnol
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Christel Gentil
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marius Halliez
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Lucile Saillard
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Maxime Gelin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Anne Forand
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
- Inovarion, F-75005 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, INSERM UMS28, Phénotypage du Petit Animal, 75013 Paris, France
| | - Zoheir Guesmia
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Bruno Cadot
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | | | - Benjamin Marty
- Institut de Myologie, CEA, Laboratoire d'imagerie et de spectroscopie par RMN, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, INSERM UMS28, Phénotypage du Petit Animal, 75013 Paris, France
| | - Julien Messéant
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Laure Strochlic
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Jeremy Sadoine
- Université de Paris, Plateforme d'Imagerie du Vivant (PIV), F-92120 Montrouge, France
| | - Lofti Slimani
- Université de Paris, Plateforme d'Imagerie du Vivant (PIV), F-92120 Montrouge, France
| | - Ariane Jolly
- GenoSplice, Paris Biotech Santé, F-75014 Paris, France
| | | | - Jean-Yves Hogrel
- Institut de Myologie, Laboratoire de physiologie et d'évaluation neuromusculaire, F-75013 Paris, France
| | - France Pietri-Rouxel
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| |
Collapse
|
2
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|
3
|
Pu X, Huang H, Zhao X, Liu F, Leng Y, Deng Y, Huang L, Zhou X, Xu F, Huang Y, Guo S. Improving Lower Limb Function and Frailty in Frail Older Patients with Acute Myocardial Infarction After Percutaneous Coronary Intervention: A Randomized Controlled Study of Neuromuscular Electrical Stimulation. Clin Interv Aging 2024; 19:1163-1176. [PMID: 38974513 PMCID: PMC11225987 DOI: 10.2147/cia.s460805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background A global public health problem, frailty is closely associated with poor prognosis after percutaneous coronary intervention (PCI) in older patients with acute myocardial infarction (AMI). Although exercise intervention is the most commonly used method to reverse and alleviate frailty, its application is restricted in patients with acute myocardial infarction following PCI due to cardiovascular instability and autonomic imbalance. Consequently, there is a need for a new practical intervention to address frailty syndrome in these patients. Purpose This study aimed to investigate the effect of neuromuscular electrical stimulation in frail older AMI patients post-PCI. Patients and Methods A single-blind, randomized controlled trial was carried out in the Department of Cardiovascular Medicine from March to October 2023. A total of 100 eligible participants were randomly divided into two groups: experimental (n = 50) and control (n = 50) groups, respectively. Both groups received usual care. The experimental group underwent neuromuscular electrical stimulation (NMES) on bilateral quadriceps and gastrocnemius muscles for 30 minutes daily from day 1 to day 7 after surgery. The primary outcomes measured included the frailty score, lower limb muscle strength, and lower limb muscle quality. Secondary outcomes included the activities of daily living score, inflammatory markers, and length of hospital stay. All participants were included in an intention-to-treat analysis after the study ended. Results The frailty scores of the two groups exhibited a gradual decrease over time, and the scores of the experimental group were lower than those of the control group at 4 and 7 days after surgery (P<0.001). Concurrently, the lower limb muscle strength showed an increasing trend over the time in the experimental group and a decreasing trend in the control group, and the scores of the experimental group surpassed those of the control group (p<0.001). Moreover, a statistical difference was observed in the lower limb muscle mass across the groups after 7 days postoperatively compared with baseline on both sides (p<0.05). Conclusion Neuromuscular electrical stimulation has the potential to enhance lower limb function and alleviate frailty in elderly patients with acute myocardial infarction after PCI. These findings introduce a novel intervention approach for frailty management in the elderly population.
Collapse
Affiliation(s)
- Xiamin Pu
- Department of Cardiovascular Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Houqiang Huang
- Department of Nursing, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaolei Zhao
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Feng Liu
- Department of Cardiovascular Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yebo Leng
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ya Deng
- School of Nursing, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Lingyi Huang
- School of Nursing, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xingchen Zhou
- School of Nursing, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Fen Xu
- Department of Cardiovascular Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yongli Huang
- Department of Outpatient, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
4
|
Frazão M, Figueiredo TDG, Cipriano G. Should We Use the Functional Electrical Stimulation-Cycling Exercise in Clinical Practice? Physiological and Clinical Effects Systematic Review With Meta-analysis. Arch Phys Med Rehabil 2024:S0003-9993(24)01057-8. [PMID: 38914190 DOI: 10.1016/j.apmr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVE To examine the evidence regarding functional electrical stimulation cycling's (FES-cycling's) physiological and clinical effects. DATA SOURCES The study was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses protocol. PubMed, Embase, Cochrane Review, CINAHL, Scopus, Sport Discus, and Web of Science databases were used. STUDY SELECTION Randomized controlled trials involving FES-cycling were included. Studies that did not involve FES-cycling in the intervention group or without the control group were excluded. Two reviewers screened titles and abstracts and then conducted a blinded full-text evaluation. A third reviewer resolved the discrepancies. DATA EXTRACTION Meta-analysis was performed using inverse variance for continuous data, with effects measured using the mean difference and random effects analysis models. A 95% confidence interval was adopted. The significance level was set at P<.05, and trends were declared at P=.05 to ≤.10. The I2 method was used for heterogeneity analysis. The minimal clinically important difference was calculated. Methodological quality was assessed using the risk of bias tool for randomized trials. The Grading of Recommendations Assessment, Development, and Evaluation method was used for the quality of the evidence analysis. DATA SYNTHESIS A total of 52 studies were included. Metabolic, cardiocirculatory, ventilatory, and peripheral muscle oxygen extraction variables presented statistical (P<.05) and clinically important differences favoring FES-cycling, with moderate-to-high certainty of evidence. It also presented statistical (P<.05) and clinically important improvements in cardiorespiratory fitness, leg and total body lean mass, power, physical fitness in intensive care (moderate-to-high certainty of evidence), and torque (low certainty of evidence). It presented a trend (P=.05 to ≤.10) of improvement in muscle volume, spasticity, and mobility (low-to-moderate certainty of evidence). It showed no difference (P>.10) in 6-minute walking distance, muscle cross-sectional area, bone density, and length of intensive care unit stay (low-to-moderate certainty of evidence). CONCLUSIONS FES-cycling exercise is a more intense stimulus modality than other comparative therapeutic modalities and presented clinically important improvement in several clinical outcomes.
Collapse
Affiliation(s)
- Murillo Frazão
- Lauro Wanderley University Hospital - UFPB/EBSERH, João Pessoa-PB; Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília.
| | | | - Gerson Cipriano
- Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília
| |
Collapse
|
5
|
Flodin J, Reitzner SM, Emanuelsson EB, Sundberg CJ, Ackermann P. The effect of neuromuscular electrical stimulation on the human skeletal muscle transcriptome. Acta Physiol (Oxf) 2024; 240:e14129. [PMID: 38459757 DOI: 10.1111/apha.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
AIM The influence on acute skeletal muscle transcriptomics of neuromuscular electrical stimulation (NMES), as compared to established exercises, is poorly understood. We aimed to investigate the effects on global mRNA-expression in the quadriceps muscle early after a single NMES-session, compared to the effects of voluntary knee extension exercise (EX), and to explore the discomfort level. METHODS Global vastus lateralis muscle gene expression was assessed (RNA-sequencing) in 30 healthy participants, before and 3 h after a 30-min session of NMES and/or EX. The NMES-treatment was applied using textile electrodes integrated in pants and set to 20% of each participant's pre-tested MVC mean (±SD) 200 (±80) Nm. Discomfort was assessed using Visual Analogue Scale (VAS, 0-10). The EX-protocol was performed at 80% of 1-repetition-maximum. RESULTS NMES at 20% of MVC resulted in VAS below 4 and induced 4448 differentially expressed genes (DEGs) with 80%-overlap of the 2571 DEGs of EX. Genes well-known to be up-regulated following exercise, for example, PPARGC1A, ABRA, VEGFA, and GDNF, were also up-regulated by NMES. Gene set enrichment analysis demonstrated many common pathways after EX and NMES. Also, some pathways were exclusive to either EX, for example, muscle tissue proliferation, or to NMES, for example, neurite outgrowth and connective tissue proliferation. CONCLUSION A 30-min NMES-session at 20% of MVC with NMES-pants, which can be applied with an acceptable level of discomfort, induces over 4000 DEGs, of which 80%-overlap with DEGs of EX. NMES can induce exercise-like molecular effects, that potentially can lead to health and performance benefits in individuals who are unable to perform resistance exercise.
Collapse
Affiliation(s)
- Johanna Flodin
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Paul Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Oshiro H, Hata J, Nakashima D, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study. Magn Reson Med Sci 2024; 23:136-145. [PMID: 36754420 PMCID: PMC11024708 DOI: 10.2463/mrms.mp.2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom. METHODS We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion. RESULTS The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws. CONCLUSION No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Yawara Haga
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Kei Hagiya
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
7
|
Zarzeczny R, Nawrat-Szołtysik A, Polak A. Effects of 12 weeks of neuromuscular electrical stimulation of the quadriceps muscles on the function and physio-biochemical traits in functionally fit female nursing-home residents aged 75 + years: a pilot study. Eur J Appl Physiol 2024; 124:945-962. [PMID: 37750973 PMCID: PMC10879313 DOI: 10.1007/s00421-023-05321-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Muscular changes induced by neuromuscular electrical stimulation (NMES) are well recognized, but knowledge of how NMES influences the physio-biochemical traits of the oldest old is still limited. This study investigated the effect of NMES applied for 12 weeks to the quadriceps muscles of female nursing-home residents aged 75 + on their functional capability and inflammatory, bone metabolism, and cardiovascular traits. METHODS Nineteen women regularly taking part in two body conditioning sessions per week were randomized into an electrical stimulation group (ES; n = 10; 30 min sessions, 3 times per week) or a control group (CON; n = 9). At baseline and study week 12, all women performed the 30 s chair stand test (30sCST), the 6-minute walk test (6MWT), and the instrumented timed up and go test (iTUG). Resting heart rates, blood pressure, and the blood concentrations of inflammatory and bone metabolism markers were also measured twice. RESULTS NMES increased the strength of participants' quadriceps muscles and their performance on the 30sCST and 6MWT while lowering resting arterial blood pressure and inflammatory marker levels; osteoclast activity showed a tendency to decrease. Changes in the iTUG results were not observed. A multiple regression analysis found that the results of functional tests in the ES group were best correlated with pulse pressure (the 30sCST and iTUG tests) and diastolic blood pressure (the 6MWT test). CONCLUSION Twelve weeks of NMES treatment improved participants' functional capacity and inflammatory, bone metabolism, and cardiovascular traits. The ES group participants' performance on functional tests was best predicted by hemodynamic parameters.
Collapse
Affiliation(s)
- Ryszard Zarzeczny
- Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, 5 Żeromskiego Str., 25-369, Kielce, Poland.
| | - Agnieszka Nawrat-Szołtysik
- Chair of Physiotherapy Basics, Jerzy Kukuczka Academy of Physical Education in Katowice, 72A Mikołowska Str., 40-065, Katowice, Poland
| | - Anna Polak
- Chair of Physiotherapy Basics, Jerzy Kukuczka Academy of Physical Education in Katowice, 72A Mikołowska Str., 40-065, Katowice, Poland
| |
Collapse
|
8
|
Ravara B, Giuriati W, Zampieri S, Kern H, Pond AL. Translational mobility medicine and ugo carraro: a life of significant scientific contributions reviewed in celebration. Neurol Res 2024; 46:139-156. [PMID: 38043115 DOI: 10.1080/01616412.2023.2258041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/04/2023] [Indexed: 12/05/2023]
Abstract
Prof. Ugo Carraro reached 80 years of age on 23 February 2023, and we wish to celebrate him and his work by reviewing his lifetime of scientific achievements in Translational Myology. Currently, he is a Senior Scholar with the University of Padova, Italy, where, as a tenured faculty member, he founded the Interdepartmental Research Center of Myology. Prof. Carraro, a pioneer in skeletal muscle research, is a world-class expert in structural and molecular investigations of skeletal muscle biology, physiology, pathology, and care. An authority in bidimensional gel electrophoresis for myosin light chains, he was the first to separate mammalian muscle myosin heavy chain isoforms by SDS-gel electrophoresis. He has demonstrated that long-term denervated muscle can survive denervation by myofiber regeneration, and shown that an athletic lifestyle has beneficial impacts on muscle reinnervation. He has utilized his expertise in translational myology to develop and validate rehabilitative treatments for denervated and ageing skeletal muscle. He has authored more than 160 PubMed listed papers and numerous scholarly books, including his recent autobiography. Prof. Carraro founded and serves as Editor-in-Chief of the European Journal of Translational Myology and Mobility Medicine. He has organized more than 40 Padua Muscle Days Meetings and continues this, encouraging students and young scientists to participate. As he dreams endlessly, he is currently validating non-invasive analyses on saliva, a promising approach that will allow increased frequency sampling to analyze systemic factors during the transient effects of training and rehabilitation by his proposed Full-Body in- Bed Gym for bed-ridden elderly.
Collapse
Affiliation(s)
- Barbara Ravara
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Walter Giuriati
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology Sciences, Padua University Hospital, Padua, Italy
| | - Helmut Kern
- Physiko- und Rheumatherapie, Ludwig Boltzmann Institute for Rehabilitation Research, Sankt Pölten, Austria
| | - Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Scalia M, Parrella M, Borzuola R, Macaluso A. Comparison of acute responses in spinal excitability between older and young people after neuromuscular electrical stimulation. Eur J Appl Physiol 2024; 124:353-363. [PMID: 37524980 DOI: 10.1007/s00421-023-05288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE This study aims at comparing acute responses in spinal excitability, as measured by H-reflex, between older and young individuals, following a single session of NMES superimposed onto voluntary isometric contractions of the ankle plantar-flexor muscles (NMES+), with respect to passive NMES (pNMES) and voluntary isometric contractions only (ISO). METHODS Thirty-two volunteers, 16 older (OLDER) and 16 young (YOUNG), were asked to sustain a constant force at 20% of maximal voluntary isometric contraction (MVIC) of the ankle plantar-flexor muscles in the dominant limb during each of the 3 conditions (NMES+ , pNMES and ISO). Fifteen repetitions of 6 s were performed, with a resting interval of 6 s between repetitions. Before and after each condition, soleus H-reflexes were elicited by percutaneous electrical stimulation of the posterior tibial nerve and H-reflex amplitudes recorded by surface EMG. RESULTS In OLDER, H-reflex amplitude did not change following any experimental condition (ISO: p = 0.203; pNMES: p = 0.542; NMES+: p = 0.431) compared to baseline. On the contrary, in YOUNG, H-reflex amplitudes significantly increased (p < 0.000) and decreased (p = 0.001) following NMES+ and pNMES, respectively, while there was no significant change in reflex responses following ISO (p = 0.772). CONCLUSION The lack of change in H-reflex responses following either NMES+ or pNMES might reflect a reduced ability of older people in modulating spinal excitability after the conditions. Specifically, an age-related alteration in controlling mechanisms at presynaptic level was suggested.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
10
|
Lee MC, Ho CS, Hsu YJ, Wu MF, Huang CC. Effect of 8-week frequency-specific electrical muscle stimulation combined with resistance exercise training on muscle mass, strength, and body composition in men and women: a feasibility and safety study. PeerJ 2023; 11:e16303. [PMID: 37868059 PMCID: PMC10586320 DOI: 10.7717/peerj.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, electrical muscle stimulation (EMS) devices have been developed as a complementary training technique that is novel, attractive, and time-saving for physical fitness and rehabilitation. While it is known that EMS training can improve muscle mass and strength, most studies have focused on the elderly or specific patient populations. The aim of this study was to investigate the effects of frequency-specific EMS combined with resistance exercise training for 8 weeks on muscle mass, strength, power, body composition, and parameters related to exercise fatigue. Additionally, we aimed to evaluate the feasibility and safety of EMS as an exercise aid to improve body composition. We recruited 14 male and 14 female subjects who were randomly assigned to two groups with gender parity (seven male and seven female/group): (1) no EMS group (age: 21.6 ± 1.7; height: 168.8 ± 11.8 cm; weight: 64.2 ± 14.4 kg) and (2) daily EMS group (age: 21.8 ± 2.0; height: 167.8 ± 9.9 cm; weight: 68.5 ± 15.5 kg). The two groups of subjects were very similar with no significant difference. Blood biochemical routine analysis was performed every 4 weeks from pre-intervention to post-intervention, and body composition, muscle strength, and explosive power were evaluated 8 weeks before and after the intervention. We also performed an exercise challenge analysis of fatigue biochemical indicators after 8 weeks of intervention. Our results showed that resistance exercise training combined with daily EMS significantly improved muscle mass (p = 0.002) and strength (left, p = 0.007; right, p = 0.002) and significantly reduced body fat (p < 0.001) than the no EMS group. However, there was no significant advantage for biochemical parameters of fatigue and lower body power. In summary, our study demonstrates that 8 weeks of continuous resistance training combined with daily upper body, lower body, and abdominal EMS training can significantly improve muscle mass and upper body muscle strength performance, as well as significantly reduce body fat percentage in healthy subjects.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
- Center for General Education, Taipei Medical University, Taipei, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Ming-Fang Wu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
- Tajen University, Pingtung, Taiwan
| |
Collapse
|
11
|
Lo Re V, Russelli G, Lo Gerfo E, Alduino R, Bulati M, Iannolo G, Terzo D, Martucci G, Anzani S, Panarello G, Sparacia G, Parla G, Avorio F, Raffa G, Pilato M, Speciale A, Agnese V, Mamone G, Tuzzolino F, Vizzini GB, Conaldi PG, Ambrosio F. Cognitive outcomes in patients treated with neuromuscular electrical stimulation after coronary artery bypass grafting. Front Neurol 2023; 14:1209905. [PMID: 37693766 PMCID: PMC10486105 DOI: 10.3389/fneur.2023.1209905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Objective Mechanisms of neurocognitive injury as post-operative sequelae of coronary artery bypass grafting (CABG) are not understood. The systemic inflammatory response to surgical stress causes skeletal muscle impairment, and this is also worsened by immobility. Since evidence supports a link between muscle vitality and neuroprotection, there is a need to understand the mechanisms by which promotion of muscle activity counteracts the deleterious effects of surgery on long-term cognition. Methods We performed a clinical trial to test the hypothesis that adding neuromuscular electrical stimulation (NMES) to standard rehabilitation care in post-CABG patients promotes the maintenance of skeletal muscle strength and the expression of circulating neuroprotective myokines. Results We did not find higher serum levels of neuroprotective myokines, except for interleukin-6, nor better long-term cognitive performance in our intervention group. However, a greater increase in functional connectivity at brain magnetic resonance was seen between seed regions within the default mode, frontoparietal, salience, and sensorimotor networks in the NMES group. Regardless of the treatment protocol, patients with a Klotho increase 3 months after hospital discharge compared to baseline Klotho values showed better scores in delayed memory tests. Significance We confirm the potential neuroprotective effect of Klotho in a clinical setting and for the first time post-CABG.
Collapse
Affiliation(s)
- Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), University of Pittsburgh Medical Center (UPMC), Palermo, Italy
| | | | - Emanuele Lo Gerfo
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), University of Pittsburgh Medical Center (UPMC), Palermo, Italy
- Department of Research, IRCCS ISMETT, UPMC, Palermo, Italy
| | | | - Matteo Bulati
- Department of Research, IRCCS ISMETT, UPMC, Palermo, Italy
| | | | - Danilo Terzo
- Rehabilitation Service, IRCCS ISMETT, Palermo, Italy
| | - Gennaro Martucci
- Department of Anesthesiology and Intensive Care, IRCCS ISMETT, UPMC, Palermo, Italy
| | - Stefano Anzani
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), University of Pittsburgh Medical Center (UPMC), Palermo, Italy
- Department of Research, IRCCS ISMETT, UPMC, Palermo, Italy
| | - Giovanna Panarello
- Department of Anesthesiology and Intensive Care, IRCCS ISMETT, UPMC, Palermo, Italy
| | - Gianvincenzo Sparacia
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Palermo, Italy
| | - Giuseppe Parla
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Palermo, Italy
| | - Federica Avorio
- Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), University of Pittsburgh Medical Center (UPMC), Palermo, Italy
| | - Giuseppe Raffa
- Cardiac Surgery Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS ISMETT, Palermo, Italy
| | - Michele Pilato
- Cardiac Surgery Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS ISMETT, Palermo, Italy
| | | | | | - Giuseppe Mamone
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Palermo, Italy
| | | | | | | | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Ramirez KP, Jiwan NC, Mettler JA. Effect of Neuromuscular Electrical Stimulation Training on Control of Involuntary Muscular Torque and Stimulation Intensity in Older Adults. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2023; 16:482-496. [PMID: 37622036 PMCID: PMC10446957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The purpose of this study was to examine the effects of a 4-week neuromuscular electrical stimulation (NMES) training regimen on involuntary torque output and electrical stimulation intensity in older adults. Twelve older adults (ages: 68.4 ± 6.5 years; men: n = 6, women: n = 6; weight: 158.6 ± 27.3 lbs; height: 65.2 ± 2.1 in) received submaximal intensity NMES to the quadriceps for 4 weeks to determine training-related changes in stimulation intensity and involuntary control of muscular torque during the NMES protocol. Two-way repeated measures ANOVAs were used to compare torque parameters and stimulation intensity between days and across protocol time bins. After training, stimulation intensity and torque increased over the course of the NMES protocol, while torque decreased during the protocol pre-training. These results suggest that muscular endurance of involuntary muscle contraction is increased with NMES training, and that stimulation intensity should be increased throughout the course of training to augment muscular torque output.
Collapse
Affiliation(s)
- Kyndall P Ramirez
- Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| | - Nigel C Jiwan
- Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| | - Joni A Mettler
- Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| |
Collapse
|
13
|
Effect of electromyostimulation training on intramuscular fat accumulation determined by ultrasonography in older adults. Eur J Appl Physiol 2023; 123:271-282. [PMID: 36260185 PMCID: PMC9580431 DOI: 10.1007/s00421-022-05074-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Electromyostimulation (EMS) induces a short-term change in muscle metabolism, and EMS training induces long-term improvements of muscle atrophy and function. However, the effects of EMS training on intramuscular fat in older adults are still poorly known. The purpose of this study was to examine whether the intramuscular fat index and biochemical parameters change with EMS training of the quadriceps femoris muscles in older adults. METHODS Nineteen non-obese older men and women performed EMS training of the quadriceps femoris for 12 weeks (3 times/week; single session for 30 min). The intramuscular fat content index was estimated by echo intensity of the vastus lateralis and rectus femoris muscles on ultrasonography, and muscle thickness was also measured. Muscle strength was assessed as the maximal voluntary contraction during isometric knee extension. Echo intensity, muscle thickness, and muscle strength were measured before and after EMS training. A rested/fasting blood samples were collected before and after EMS training for measuring plasma glucose, insulin, free fatty acid, triglyceride, and interleukin-6 concentrations. To examine the acute effect of a single-EMS session on biochemical parameters, blood samples were taken before and after the EMS session. RESULTS EMS training did not significantly change echo intensity in muscles, muscle thickness, muscle strength, or biochemical parameters. Regarding the acute effect on blood lipid concentrations, a single-EMS session increased free fatty acid and glucose concentrations. CONCLUSION EMS sessions had an acute effect of increasing free fatty acid and glucose concentrations, but EMS training intervention did not improve intramuscular fat content.
Collapse
|
14
|
Thapa N, Yang JG, Bae S, Kim GM, Park HJ, Park H. Effect of Electrical Muscle Stimulation and Resistance Exercise Intervention on Physical and Brain Function in Middle-Aged and Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:101. [PMID: 36612423 PMCID: PMC9819342 DOI: 10.3390/ijerph20010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effectiveness of electrical muscle stimulation (EMS) with resistance exercise training (ERT) and resistance exercise training (RT) on physical and brain function in middle-aged and older women. Method: Forty-eight participants were randomly allocated into three groups: (i) ERT (n = 16), (ii) RT (n = 16), and (iii) control group (n = 16). The intervention session was 50 min long and performed three times/week for four weeks. The ERT group performed quadriceps setting, straight leg raises, and ankle pump exercises while constantly receiving EMS on their quadriceps muscle on both legs. The RT group performed the same exercise without EMS. Physical function was measured using skeletal muscle mass index (SMI), handgrip strength, gait speed, five times sit-to-stand test (FTSS) and timed up-and-go test (TUG). Brain function was assessed with electroencephalogram measurement of whole brain activity. Results: After four-week intervention, significant improvements were observed in SMI (p < 0.01), phase angle (p < 0.05), and gait speed (p < 0.05) in the ERT group compared to the control group. ERT also increased muscle strength (p < 0.05) and mobility in lower limbs as observed in FTSS and TUG tests (p < 0.05) at post-intervention compared to the baseline. In the ERT group, significant positive changes were observed in Beta1 band power, Theta band power, and Alpha1 band whole brain connectivity (p < 0.005) compared to the control group. Conclusions: Our findings showed that ERT can improve muscle and brain function in middle-aged and older adults during a four-week intervention program whereas significant improvements were not observed with RT. Therefore might be one of the feasible alternative intervention to RT for the prevention of muscle loss whilst improving brain function for middle-aged and older population.
Collapse
Affiliation(s)
- Ngeemasara Thapa
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Ja-Gyeong Yang
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Seongryu Bae
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Gwon-Min Kim
- Medical Research Institute, Pusan National University, Busan 49241, Republic of Korea
| | - Hye-Jin Park
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Hyuntae Park
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
15
|
Ye X, Gockel N, Vala D, Devoe T, Brodoff P, Gaza V, Umali V, Walker H. Wide-Pulse High-Frequency Neuromuscular Electrical Stimulation Evokes Greater Relative Force in Women Than in Men: A Pilot Study. Sports (Basel) 2022; 10:134. [PMID: 36136389 PMCID: PMC9501951 DOI: 10.3390/sports10090134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to examine the potential sex differences in wide-pulse high-frequency neuromuscular electrical stimulation (WPHF NMES)-evoked force. Twenty-two subjects (10 women) completed this study. Prior to the stimulation, the visual analogue scale (VAS) for discomfort and the rating of perceived exertion (RPE) were measured, followed by the isometric strength of the dominant elbow flexor muscles. The subjects then completed ten, 10-s on 10-s off WPHF NMES (pulse width: 1 ms, frequency: 100 Hz) at maximum tolerable intensities. The subjects' RPE was recorded after each set, and the VAS was measured following the last stimulation. The stimulation induced significant increase in discomfort for both sexes, with women having greater discomfort than men (men: 22.4 ± 14.9 mm, women: 39.7 ± 12.7 mm). The stimulation amplitude was significantly greater in men than in women (men: 16.2 ± 6.3 mA, women: 12.0 ± 4.5 mA). For the evoked force, only the relative NMES-evoked force was found greater in women than in men (men: 8.96 ± 6.51%, women: 17.08 ± 12.61%). In conclusion, even at the maximum tolerable intensity, WPHF NMES evoked larger relative elbow flexion force in women than in men, with women experiencing greater discomfort.
Collapse
Affiliation(s)
- Xin Ye
- Department of Rehabilitations Sciences, University of Hartford, West Hartford, CT 06117, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Amirova L, Avdeeva M, Shishkin N, Gudkova A, Guekht A, Tomilovskaya E. Effect of Modulated Electromyostimulation on the Motor System of Elderly Neurological Patients. Pilot Study of Russian Currents Also Known as Kotz Currents. Front Physiol 2022; 13:921434. [PMID: 35923241 PMCID: PMC9339608 DOI: 10.3389/fphys.2022.921434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this brief report, we present preliminary findings from a study of the use of electromyostimulation (EMS) in neurological patients. Assuming the approach to be sufficiently effective, we decided to investigate the motor system of elderly neurological patients before and after a course of Russian currents EMS, which were developed for Soviet athletes and cosmonauts. To this point, 19 patients—EMS (n = 11) and control (n = 8)—have successfully completed the study. The study included patients aged 60–90 years with confirmed walking and balance disorders with a history of chronic cerebral ischemia. Patients in the experimental group underwent a course of modulated EMS of the hip and shin muscles from 3 to 9 procedures. Preliminary results of the study showed good patient acceptance of EMS. After the course, the EMS group showed a significant improvement from baseline in the Tinetti Test (+1.4 points, p = 0.0045), Rivermead Mobility Index (+0.5 points, p = 0.0022), and Timed Up and Go Test (−1.2 s, p = 0.0053). There was also a significant improvement in balance quality of 8.6% (p = 0.04). Shin muscle strength, although trending positively, did not change significantly. There was also no change in hip and shin muscles’ tone. No significant changes were observed in the control group in the same tests. It can be concluded that stimulation of the hip and shin muscles with Russian (Kotz) currents has a positive effect on the motor system of elderly neurological patients. Significant effects with a course of short duration indicate that this EMS regimen is promising.
Collapse
Affiliation(s)
- Liubov Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Liubov Amirova,
| | - Maria Avdeeva
- Consultative and Diagnostic Department, Solovyov Scientific and Practical Psychoneurological Center of the Moscow Department of Health, Moscow, Russia
| | - Nikita Shishkin
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna Gudkova
- Consultative and Diagnostic Department, Solovyov Scientific and Practical Psychoneurological Center of the Moscow Department of Health, Moscow, Russia
| | - Alla Guekht
- Consultative and Diagnostic Department, Solovyov Scientific and Practical Psychoneurological Center of the Moscow Department of Health, Moscow, Russia
| | - Elena Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Bloeckl J, Raps S, Weineck M, Kob R, Bertsch T, Kemmler W, Schoene D. Feasibility and Safety of Whole-Body Electromyostimulation in Frail Older People—A Pilot Trial. Front Physiol 2022; 13:856681. [PMID: 35812334 PMCID: PMC9263209 DOI: 10.3389/fphys.2022.856681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
Whole-body electromyostimulation (WB-EMS) induces high-intense stimuli to skeletal muscles with low strain on joints and the autonomic nervous system and may thus be suitable for frail, older people. However, if trained at very high intensities, WB-EMS may damage muscles and kidneys (rhabdomyolysis). This study aimed at investigating the feasibility, safety and preliminary efficacy of WB-EMS in frail, older people. Seven frail (81.3 ± 3.5 years), 11 robust (79.5 ± 3.6 years), 10 young (29.1 ± 6.4 years) participants completed an eight-week WB-EMS training (week 1–4: 1x/week; week 5–8: 1.5x/week) consisting of functional exercises addressing lower extremity strength and balance. Feasibility was assessed using recruitment, adherence, retention, and dropout rates. The satisfaction with WB-EMS was measured using the Physical Activity Enjoyment Scale for older adults (PACES-8). In week 1, 3, and 8 creatine kinase (CK) was assessed immediately before, 48 and 72 h after WB-EMS. Symptoms of rhabdomyolysis (muscle pain, muscle weakness, myoglobinuria) and adverse events were recorded. Functional capacity was assessed at baseline and after 8 weeks using the Short Physical Performance Battery (SPPB), Timed Up-and-Go Test (TUG), Choice Stepping Reaction Time Test (CSRT), 30-second Chair-Stand Test (30-STS), maximum isometric leg strength and handgrip strength. The recruitment rate of frail individuals was 46.2%, adherence 88.3% and the dropout rate 16.7%. All groups indicated a high satisfaction with WB-EMS. CK activity was more pronounced in young individuals with significant changes over time. Within older people CK increased borderline-significantly in the frail group from baseline to week 1 but not afterwards. In robust individuals CK increased significantly from baseline to week 1 and 3. No participant reached CK elevations close to the threshold of ≥5,000 U/l and no symptoms of rhabdomyolysis were observed. With the exception of the TUG (p = 0.173), frail individuals improved in all tests of functional capacity. Compared to the young and robust groups, frail individuals showed the greater improvements in the SPPB, handgrip strength, maximum isokinetic hip-/knee extension and flexion strength. WB-EMS is feasible for frail older people. There were no clinical signs of exertional rhabdomyolysis. WB-EMS proved to be sufficiently intense to induce meaningful changes in functional capacity with frail individuals showing greater improvements for several measures.
Collapse
Affiliation(s)
- Joerg Bloeckl
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Joerg Bloeckl,
| | - Sebastian Raps
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Weineck
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander University Erlangen-Nürnberg, Nuremberg, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Wolfgang Kemmler
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Schoene
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Exercise and Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
19
|
Shin HE, Kim M, Lee D, Jang JY, Soh Y, Yun DH, Kim S, Yang J, Kim MK, Lee H, Won CW. Therapeutic effects of functional electrical stimulation on physical performance and muscle strength in post-stroke older adults: a review. Ann Geriatr Med Res 2022; 26:16-24. [PMID: 35313099 PMCID: PMC8984173 DOI: 10.4235/agmr.22.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Stroke-related disabilities cause poor physical performance, especially among older adults, and can lead to sarcopenia. Functional electrical stimulation (FES) has been used to improve physical performance in individuals with neurological disorders and increase muscle mass and strength to counteract muscle atrophy. This review covers the principles, underlying mechanisms, and therapeutic effects of FES on physical performance and skeletal muscle function in post-stroke older adults. We found that FES restored weakened dorsiflexor and hip abductor strength during the swing and stance phases of gait, respectively, to help support weight-bearing and upright posture and facilitate static and dynamic balance in this population. FES may also be effective in improving muscle mass and strength to prevent muscle atrophy. However, previous studies on this topic in post-stroke older adults are scarce, and further studies are needed to confirm this supposition.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Miji Kim
- Department of Biomedical Science and Technology, East-West Medical Research Institute, Kyung Hee University College of Medicine, Seoul, Korea
| | - Daehyun Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jae Young Jang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yunsoo Soh
- Department of Physical Medicine & Rehabilitation Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Dong Hwan Yun
- Department of Physical Medicine & Rehabilitation Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Jisoo Yang
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Maeng Kyu Kim
- Sports Medicine Lab., Department of Physical Education, Kyungpook National University, Daegu, Korea
| | | | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- Corresponding Authors: Chang Won Won, MD, PhD Department of Family Medicine, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea E-mail:
| |
Collapse
|
20
|
Spring LK, Petrell K, Depina J, Dover JS. Use of Neuromuscular Electrical Stimulation for Abdominal and Quadriceps Muscle Strengthening: A Randomized Controlled Trial. Dermatol Surg 2022; 48:334-338. [PMID: 34966120 DOI: 10.1097/dss.0000000000003368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Radiographic imaging has demonstrated muscle hypertrophy after treatment with noninvasive body contouring devices that target skeletal muscles. OBJECTIVE This pilot study sought to evaluate whether increased muscle mass translated to improved functional strength and endurance. METHODS A prospective, single-center, randomized open-label controlled study included 26 subjects randomized into 3 groups: 2 treatment groups and 1 control group. Both treatment groups received 4 neuromuscular electrical stimulation (NMES) treatments over a 2-week period. Muscle performance testing was conducted at baseline and 2-week and 4-week posttreatment. Anthropometric measurements were assessed at baseline and at 4-week posttreatment. Study participants completed subject satisfaction surveys and a personal experience assessment. RESULTS Treatment with NMES resulted in statistically significant improvements in abdominal and quadriceps strength and endurance from baseline through 4-week posttreatment. Mean waist circumference decreased and quadriceps circumference increased, both nonsignificantly. Subject satisfaction regarding abdominal and quadriceps strength was reported as "satisfied or very satisfied" in 89% and 92% at 4-week and 8-week posttreatment, respectively. CONCLUSION Treatment of the abdomen and quadriceps with NMES leads to significant improvements in muscular strength and endurance.
Collapse
Affiliation(s)
- Leah K Spring
- SkinCare Physicians, Chestnut Hill, Massachusetts
- Commander, Medical Corps, United States Navy, Naval Medical Center Portsmouth, Portsmouth, Virginia
| | | | | | - Jeffrey S Dover
- SkinCare Physicians, Chestnut Hill, Massachusetts
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Mosole S, Rossini K, Kern H, Löfler S, Fruhmann H, Vogelauer M, Burggraf S, Grim-Stieger M, Cvečka J, Hamar D, Sedliak M, Šarabon N, Pond A, Biral D, Carraro U, Zampieri S. Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise (2013, revisited here in 2022). Eur J Transl Myol 2022; 32. [PMID: 35234026 PMCID: PMC8992670 DOI: 10.4081/ejtm.2022.10420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
In 2013 we presented results showing that at the histological level lifelong increased physical activity promotes reinnervation of muscle fibers in aging muscles. Indeed, in muscle biopsies from 70-year old men with a lifelong history of high-level physical activity, we observed a considerable increase in fiber-type groupings (F-TG), almost exclusively of the slow type. Slow-type transformation by denervation-reinnervation in senior sportsmen seems to fluctuate from those with scarce fiber-type transformation and groupings to almost fully transformed muscle, going through a process in which isolated fibers co-expressing fast and slow Myosin Heavy Chains (MHCs) seems to fill the gaps. Taken together, our results suggest that, beyond the direct effects of aging on the muscle fibers, changes occurring in skeletal muscle tissue appear to be largely, although not solely, a result of sparse denervation-reinnervation. The lifelong exercise allows the body to adapt to the consequences of the age-related denervation and to preserve muscle structure and function by saving otherwise lost muscle fibers through recruitment to different, mainly slow, motor units. These beneficial effects of high-level life-long exercise on motoneurons, specifically on the slow type motoneurones that are those with higher daily activity, and on muscle fibers, serve to maintain size, structure and function of muscles, delaying the functional decline and loss of independence that are commonly seen in late aging. Several studies of independent reserchers with independent analyses confirmed and cited our 2013 results. Thus, the results we presented in our paper in 2013 seem to have held up rather well. Trial Registration: ClinicalTrials.gov: NCT01679977
Collapse
Affiliation(s)
- Simone Mosole
- Laboratory of Translation Myology, Department of Biomedical Sciences, Padua, Italy; Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| | - Katia Rossini
- Laboratory of Translation Myology, Department of Biomedical Sciences, Padua, Italy; Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| | - Stefan Löfler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| | - Hannah Fruhmann
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| | - Michael Vogelauer
- Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna.
| | - Samantha Burggraf
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| | | | - Ján Cvečka
- Faculty of Physical Education and Sport, Comenius University, Bratislava.
| | - Dušan Hamar
- Faculty of Physical Education and Sport, Comenius University, Bratislava.
| | - Milan Sedliak
- Faculty of Physical Education and Sport, Comenius University, Bratislava.
| | - Nejc Šarabon
- University of Primorska, Science and Research Centre, Institute for Kinesilogical Research, Koper.
| | - Amber Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL.
| | - Donatella Biral
- C.N.R. Institute of Neuroscience, Department of Biomedical Sciences, Padua.
| | - Ugo Carraro
- Laboratory of Translation Myology, Department of Biomedical Sciences, Padua.
| | - Sandra Zampieri
- Laboratory of Translation Myology, Department of Biomedical Sciences, Padua, Italy; Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna.
| |
Collapse
|
22
|
Trauma of Peripheral Innervation Impairs Content of Epidermal Langerhans Cells. Diagnostics (Basel) 2022; 12:diagnostics12030567. [PMID: 35328120 PMCID: PMC8947052 DOI: 10.3390/diagnostics12030567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Langerhans cells represent the first immune cells that sense the entry of external molecules and microorganisms at the epithelial level in the skin. In this pilot case-study, we evaluated Langerhans cells density and progression of epidermal atrophy in permanent spinal cord injury (SCI) patients suffering with either lower motor neuron lesions (LMNSCI) or upper motor neuron lesions (UMNSCI), both submitted to surface electrical stimulation. Skin biopsies harvested from both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation for denervated degenerating muscles (DDM) delivered at home (h-bFES) by large anatomically shaped surface electrodes placed on the skin of the anterior thigh in the cases of LMNSCI patients or by neuromuscular electrical stimulation (NMES) for innervated muscles in the cases of UMNSCI persons. Using quantitative histology, we analyzed epidermal thickness and flattening and content of Langerhans cells. Linear regression analyses show that epidermal atrophy worsens with increasing years of LMNSCI and that 2 years of skin electrostimulation reverses skin changes, producing a significant recovery of epidermis thickness, but not changes in Langerhans cells density. In UMNSCI, we did not observe any statistically significant changes of the epidermis and of its content of Langerhans cells, but while the epidermal thickness is similar to that of first year-LMNSCI, the content of Langerhans cells is almost twice, suggesting that the LMNSCI induces an early decrease of immunoprotection that lasts at least 10 years. All together, these are original clinically relevant results suggesting a possible immuno-repression in epidermis of the permanently denervated patients.
Collapse
|
23
|
Paillard T. Neuromuscular or Sensory Electrical Stimulation for Reconditioning Motor Output and Postural Balance in Older Subjects? Front Physiol 2022; 12:779249. [PMID: 35095554 PMCID: PMC8791235 DOI: 10.3389/fphys.2021.779249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Percutaneous electrical stimulation is used for reconditioning functional capabilities in older subjects. However, its optimal application depends on the specific physiological needs of the individual. Depending on whether his/her needs are related to motor function or sensory and central functions, the relevant modality of electrical stimulation differs significantly. In fact, there are two main modalities of electrical stimulation, that is, neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves high-intensity currents (above the motor threshold) and provokes involuntary visible direct muscle contractions. With chronic application, the induced adaptations occur mainly at the neuromuscular function level and thus enhance muscle strength/power and motor output. SES involves low-intensity currents (below, at or only just above the sensory threshold), does not induce any visible muscle contraction and provides only sensory information. With chronic application, the induced adaptations occur at the level of potentiation and transmission of proprioceptive afferents and thus facilitate sensorimotor activity (movement and balance). Overall, SES is interesting for the improvement/maintenance of sensorimotor capabilities in non-frail older subjects while NMES is relevant to develop muscle strength/power and thus reduce the risk of falls due to a lack of muscle strength/power in frail older subjects.
Collapse
|
24
|
Labanca L, Rocchi JE, Carta N, Giannini S, Macaluso A. NMES superimposed on movement is equally effective as heavy slow resistance training in patellar tendinopathy. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:474-485. [PMID: 36458385 PMCID: PMC9716305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed at investigating the effectiveness of an 8-week training protocol, based on neuromuscular electrical stimulation of the quadriceps, which was superimposed onto voluntary exercise (NMES+), in comparison to a traditional heavy slow resistance training (HSRT), in individuals with patellar tendinopathy. METHODS Thirty-two physically active participants, aged: 33.6±10.2 years, were divided into two groups: NMES+ or HSRT. Maximal voluntary isometric contraction (MVIC) of knee extensor and flexor muscles, power during a countermovement jump (CMJ), and VISA-p questionnaire scores were recorded at the start(T0), 2-weeks(T1), 4-weeks(T2), 6-weeks(T3), 8-weeks(T4) and 4-months post-training (T5). Knee pain and rate of perceived exertion (RPE) were recorded at each training session with a 0-10 scale. RESULTS Knee pain was significantly lower in NMES+ compared to HSRT during all training sessions. No significant between-group differences were found for VISA-p scores and forces recorded during MVICs at T0,T1,T2,T3,T4 and T5. A significant increase of VISA-p and peak forces during MVIC was recorded across-time in both groups. No significant between-group or across-time differences were found for RPE and CMJ parameters. CONCLUSIONS NMES+ and HSRT were equally effective in decreasing tendinopathy symptoms and increasing strength, with NMES+ having the advantage to be a pain-free resistance training modality.
Collapse
Affiliation(s)
- Luciana Labanca
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy,Corresponding author: Luciana Labanca, PhD, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 6, 00135, Roma, Italy E-mail:
| | | | - Nicola Carta
- Villa Stuart Sport Clinic-FIFA Medical Centre of Excellence, Rome, Italy
| | - Silvana Giannini
- Villa Stuart Sport Clinic-FIFA Medical Centre of Excellence, Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy,Villa Stuart Sport Clinic-FIFA Medical Centre of Excellence, Rome, Italy
| |
Collapse
|
25
|
Sasaki KI, Fukumoto Y. Sarcopenia as a comorbidity of cardiovascular disease. J Cardiol 2021; 79:596-604. [PMID: 34906433 DOI: 10.1016/j.jjcc.2021.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
Sarcopenia, the lowered skeletal muscle mass, weakened skeletal muscle strength, and reduced physical performance with aging, is a component of frailty and high-risk factor for falls, resulting in an increase in mortality. In cardiovascular disease (CVD) patients, systemic inflammation, oxidative stress, overactivation of ubiquitin-proteasome system, endothelial dysfunction, lowering muscle blood flow, impaired glucose tolerance, hormonal changes, and physical inactivity possibly contribute to CVD-related sarcopenia. Prevalence of sarcopenia and osteosarcopenia, which is osteopenia and sarcopenia coexisting together, seems to be higher in CVD patients than in community-dwelling adults, suggesting the necessity of early diagnosis and prevention of CVD-related sarcopenia. Atrial stiffness, coronary artery calcification score, and serum vitamin D levels may be of help as the biomarkers to suspect sarcopenia, and renin-angiotensin-aldosterone system inhibitors may play a role in the medical prevention and treatment of CVD-related sarcopenia. There are few reports to convince the efficacies of dietary and antioxidant supplementation on sarcopenia at present, whereas aerobic and resistance training exercises have been recognized as an effective strategy to prevent and treat sarcopenia.
Collapse
Affiliation(s)
- Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
26
|
Effectiveness and feasibility of home-based telerehabilitation for community-dwelling elderly people in Southeast Asian countries and regions: a systematic review. Aging Clin Exp Res 2021; 33:2657-2669. [PMID: 33765258 PMCID: PMC7993072 DOI: 10.1007/s40520-021-01820-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
This systematic review aimed to evaluate the impact of home-based telerehabilitation on physical function among community-dwelling elderly people in Southeast Asian countries and regions, and to investigate its feasibility. A systematic electronic literature search was conducted in PubMed/MEDLINE and PEDro according to PRISMA guidelines. Randomized controlled trials conducted in the area that involved elderly people and any physical function indexes were included. Home-based telerehabilitation was defined as a specific remote rehabilitation intervention that used any kind of technological device allowing healthcare professional/patient interaction. Information regarding the effect and feasibility (intervention completion rate) of home-based telerehabilitation was extracted from eligible articles. We used the Revised Cochrane risk-of-bias tool for randomized trials to assess methodological quality of the included articles. Eventually, six studies were included as eligible articles. The overall risk of bias judgement was assessed as “High” in five studies. All studies were conducted in either China or South Korea, and heterogeneity in terms of participants’ health condition and intervention regimen was observed across the studies. Our narrative-based analysis showed that compared with conventional rehabilitation, either equal or better effects on physical function were reported across the six studies. The intervention completion rates were 81% ± 11 on average (range 59–96%). Although we could not obtain conclusive evidence due to limited relevant information with heterogeneity across the studies, our findings suggest that home-based telerehabilitation can be a strategy for rehabilitation service delivery with acceptable feasibility comparable to conventional rehabilitation for elderly people in the area.
Collapse
|
27
|
Bispo VA, Bastos JAI, Almeida CCD, Modesto KAG, Dantas LO, Cipriano Júnior G, Durigan JLQ. The effects of neuromuscular electrical stimulation on strength, pain, and function in individuals with knee osteoarthritis: a systematic review with meta-analysis. FISIOTERAPIA E PESQUISA 2021. [DOI: 10.1590/1809-2950/20028528042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT We aimed to investigate the effects of neuromuscular electrical stimulation on muscle strength, pain relief, and improvement in function in patients with knee osteoarthritis. Databases were searched from December 2017 to July 2020 and included PubMed, Embase, LILACS, and the Cochrane Central Register of Controlled Trials. A manual search was also performed by checking the reference lists of eligible articles. The PRISMA guidelines were followed. The studies selected compared NMES with an exercise program on isometric muscle strength as a primary outcome. The secondary outcomes were pain and function. The quality of the studies was assessed using the Risk of Bias assessment and PEDro scale, and the overall quality of the evidence was assessed using the GRADE approach. Eight studies were included in this systematic review. A total of 571 patients were analyzed. Neuromuscular electrical stimulation associated with exercise promoted an increase in isometric strength of the quadriceps muscle compared to the active control group, demonstrating heterogeneity and statistical difference (95% CI=1.16 to 5.10, I2=97%, p=0.002; very low-certainty evidence). NMES associated with exercise did not improve physical function (95% CI=−0.37 to 0.59, I2=0%, p=0.67; low-certainty evidence) and showed controversial results for pain compared to an active control group (qualitative assessment). In conclusion, NMES induces an increase in muscle strength in patients with osteoarthritis compared to an active control group. No differences were found for physical function and pain outcomes. Further research is needed due to the uncertain level of evidence.
Collapse
|
28
|
Gosch M, Pils K, Venkat S, Singler K. [Aspects of multimodal pain therapy in old age]. Z Gerontol Geriatr 2021; 54:823-832. [PMID: 34319451 DOI: 10.1007/s00391-021-01952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Chronic pain in older adults should be explained and treated on the basis of the biopsychosocial model. With its interdisciplinary and interprofessional approach, multimodal pain therapy is the method of choice. In old age freedom from pain is usually not the primary goal. It is more important to restore the quality of life of those affected and to maintain independence and autonomy with a versatile treatment offer. This article explains the basics of multimodal pain therapy and its special features in old age.
Collapse
Affiliation(s)
- M Gosch
- Medizinische Klinik 2, Schwerpunkt Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität Nürnberg, Prof. Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland.
| | - K Pils
- Institut für Physikalische Medizin und Rehabilitation, Wiener Gesundheitsverbund - Klinik Favoriten, Kundratstr. 1, 1100, Wien, Österreich
| | - S Venkat
- Klinik für Psychosomatische Medizin und Psychotherapie, Schmerztagesklinik, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität Nürnberg, Prof. Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland
| | - K Singler
- Medizinische Klinik 2, Schwerpunkt Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität Nürnberg, Prof. Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland.,Institut für Biomedizin des Alterns, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kobergerstr. 60, 90408, Nürnberg, Deutschland
| |
Collapse
|
29
|
Skeletal muscle weakness in older adults home-restricted due to COVID-19 pandemic: a role for full-body in-bed gym and functional electrical stimulation. Aging Clin Exp Res 2021; 33:2053-2059. [PMID: 34047931 PMCID: PMC8160559 DOI: 10.1007/s40520-021-01885-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/09/2021] [Indexed: 01/03/2023]
Abstract
Persons suffering with systemic neuromuscular disorders or chronic organ failures, spend less time for daily physical activity, aggravating their mobility impairments. From 2020, patients at risk are also older adults, who, though negative for the SARS-Cov-2 infection, suffer with a fatigue syndrome due to home restriction/quarantine. Besides eventual psycological managements, it could be useful to offer to these patients a rehabilitation workouts easy to learn and to independently repeat at home (Full-Body In-Bed Gym). Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation (FES), we suggest for this fatigue syndrome a 10–20 min long daily routine of easy and safe physical exercises that may recover from muscle weakness the main 400 skeletal muscles used for every-day activities. Leg muscles could be trained also by an adjunctive neuro-muscular electrical stimulation (NMES) in frail old persons. Many of the exercises could be performed in bed (Full-Body in-Bed Gym), thus hospitalized patients can learn this light training before leaving the hospital. Full-Body in-Bed Gym is, indeed, an extension of well-established cardiovascular-ventilation rehabilitation training performed by patients after heavy surgery. Blood pressure readings, monitored before and after daily routine of Full-Body in-Bed Gym, demonstrate a transient decrease in peripheral resistance due to increased blood flow to major body muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the fatigue syndrome related to the restrictions/quarantine imposed to the general population during the COVID-19 pandemic.
Collapse
|
30
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
31
|
Hernandez-Reynoso AG, Corona-Quintanilla DL, López-García K, Horbovetz AA, Castelán F, Zimmern P, Martínez-Gómez M, Romero-Ortega MI. Targeted neuromodulation of pelvic floor nerves in aging and multiparous rabbits improves continence. Sci Rep 2021; 11:10615. [PMID: 34011938 PMCID: PMC8136474 DOI: 10.1038/s41598-021-90088-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Pelvic floor muscle stretch injury during pregnancy and birth is associated with the incidence of stress urinary incontinence (SUI), a condition that affects 30-60% of the female population and is characterized by involuntary urine leakage during physical activity, further exacerbated by aging. Aging and multiparous rabbits suffer pelvic nerve and muscle damage, resulting in alterations in pelvic floor muscular contraction and low urethral pressure, resembling SUI. However, the extent of nerve injury is not fully understood. Here, we used electron microscopy analysis of pelvic and perineal nerves in multiparous rabbits to describe the extent of stretch nerve injury based on axon count, axon size, myelin-to-axon ratio, and elliptical ratio. Compared to young nulliparous controls, mid-age multiparous animals showed an increase in the density of unmyelinated axons and in myelin thickness in both nerves, albeit more significant in the bulbospongiosus nerve. This revealed a partial but sustained damage to these nerves, and the presence of some regenerated axons. Additionally, we tested whether electrical stimulation of the bulbospongiosus nerve would induce muscle contraction and urethral closure. Using a miniature wireless stimulator implanted on this perineal nerve in young nulliparous and middle age multiparous female rabbits, we confirmed that these partially damaged nerves can be acutely depolarized, either at low (2-5 Hz) or medium (10-20 Hz) frequencies, to induce a proportional increase in urethral pressure. Evaluation of micturition volume in the mid-age multiparous animals after perineal nerve stimulation, effectively reversed a baseline deficit, increasing it 2-fold (p = 0.02). These results support the notion that selective neuromodulation of pelvic floor muscles might serve as a potential treatment for SUI.
Collapse
Affiliation(s)
- Ana G Hernandez-Reynoso
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, 75390, USA
- Department of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Dora L Corona-Quintanilla
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | - Kenia López-García
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Ana A Horbovetz
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Mario I Romero-Ortega
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
- Department of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, 77204, USA.
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
32
|
Macaulay TR, Peters BT, Wood SJ, Clément GR, Oddsson L, Bloomberg JJ. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight. Front Syst Neurosci 2021; 15:658985. [PMID: 33986648 PMCID: PMC8111171 DOI: 10.3389/fnsys.2021.658985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. Furthermore, some exercise capabilities like treadmill running are currently not feasible on exploration spaceflight vehicles. Thus, new in-flight operational countermeasures are needed to mitigate postural and locomotor control deficits after exploration missions. Data from spaceflight and from analog studies collectively suggest that body unloading decreases the utilization of proprioceptive input, and this adaptation strongly contributes to balance dysfunction after spaceflight. For example, on return to Earth, an astronaut's vestibular input may be compromised by adaptation to microgravity, but their proprioceptive input is compromised by body unloading. Since proprioceptive and tactile input are important for maintaining postural control, keeping these systems tuned to respond to upright balance challenges during flight may improve functional task performance after flight through dynamic reweighting of sensory input. Novel approaches are needed to compensate for the challenges of balance training in microgravity and must be tested in a body unloading environment such as head down bed rest. Here, we review insights from the literature and provide observations from our laboratory that could inform the development of an in-flight proprioceptive countermeasure.
Collapse
Affiliation(s)
| | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | - Lars Oddsson
- RxFunction Inc., Eden Prairie, MN, United States
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
- Recaniti School for Community Health Professions, Ben Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
33
|
Kritikaki E, Asterling R, Ward L, Padget K, Barreiro E, C. M. Simoes D. Exercise Training-Induced Extracellular Matrix Protein Adaptation in Locomotor Muscles: A Systematic Review. Cells 2021; 10:cells10051022. [PMID: 33926070 PMCID: PMC8146973 DOI: 10.3390/cells10051022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exercise training promotes muscle adaptation and remodelling by balancing the processes of anabolism and catabolism; however, the mechanisms by which exercise delays accelerated muscle wasting are not fully understood. Intramuscular extracellular matrix (ECM) proteins are essential to tissue structure and function, as they create a responsive environment for the survival and repair of the muscle fibres. However, their role in muscle adaptation is underappreciated and underinvestigated. The PubMed, COCHRANE, Scopus and CIHNAL databases were systematically searched from inception until February 2021. The inclusion criteria were on ECM adaptation after exercise training in healthy adult population. Evidence from 21 studies on 402 participants demonstrates that exercise training induces muscle remodelling, and this is accompanied by ECM adaptation. All types of exercise interventions promoted a widespread increase in collagens, glycoproteins and proteoglycans ECM transcriptomes in younger and older participants. The ECM controlling mechanisms highlighted here were concerned with myogenic and angiogenic processes during muscle adaptation and remodelling. Further research identifying the mechanisms underlying the link between ECMs and muscle adaptation will support the discovery of novel therapeutic targets and the development of personalised exercise training medicine.
Collapse
Affiliation(s)
- Efpraxia Kritikaki
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK; (E.K.); (R.A.); (L.W.); (K.P.)
| | - Rhiannon Asterling
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK; (E.K.); (R.A.); (L.W.); (K.P.)
| | - Lesley Ward
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK; (E.K.); (R.A.); (L.W.); (K.P.)
| | - Kay Padget
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK; (E.K.); (R.A.); (L.W.); (K.P.)
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), CIBERES, 08002 Barcelona, Spain;
| | - Davina C. M. Simoes
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK; (E.K.); (R.A.); (L.W.); (K.P.)
- Correspondence:
| |
Collapse
|
34
|
Carraro U, Albertin G, Martini A, Giuriati W, Guidolin D, Masiero S, Kern H, Hofer C, Marcante A, Ravara B. To contrast and reverse skeletal muscle weakness by Full-Body In-Bed Gym in chronic COVID-19 pandemic syndrome. Eur J Transl Myol 2021; 31. [PMID: 33709653 PMCID: PMC8056156 DOI: 10.4081/ejtm.2021.9641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Mobility-impaired persons, either very old or younger but suffering with systemic neuromuscular disorders or chronic organ failures, spend small amounts of time for daily physical activity, contributing to aggravate their poor mobility by resting muscle atrophy. Sooner or later the limitations to their mobility enforce them to bed and to more frequent hospitalizations. We include among these patients at risk those who are negative for the SARS-COV-2 infection, but suffering with COVID-19 pandemic syndrome. Beside managements of psychological symptoms, it is mandatory to offer to the last group physical rehabilitation approaches easy to learn and self-managed at home. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation, we suggest also for chronic COVID-19 pandemic syndrome a 10-20 min long daily routine of easy and safe physical exercises that can activate, and recover from weakness, the main 400 skeletal muscles used for every-day mobility activities. Persons can do many of them in bed (Full-Body in-Bed Gym), and hospitalized patients can learn this light training before leaving the hospital. It is, indeed, an extension of well-established cardiovascular-respiratory rehabilitation training performed after heavy surgical interventions. Blood pressure readings, monitored before and after daily routine, demonstrate a transient decrease in peripheral resistance due to increased blood flow of many muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the COVID-19 pandemic syndrome.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Giovanna Albertin
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Alessandro Martini
- Department of Neuroscience, University of Padova, Italy; Padova University Research Center "I Approve", University of Padov.
| | | | - Diego Guidolin
- Department of Neuroscience, Section of Human Anatomy, University of Padova.
| | - Stefano Masiero
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova.
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, St. Pölten, Austria; Physiko- und Rheumatherapie, St. Pölten.
| | | | - Andrea Marcante
- UOC Recovery and Functional Rehabilitation, Lonigo Hospital, Azienda ULSS 8 Berica, Lonigo.
| | - Barbara Ravara
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; AC M-C Foundation for Translational Myology, Padova, Italy; Department of Neuroscience, Section of Human Anatomy, University of Padova.
| |
Collapse
|
35
|
Inns TB, McCormick D, Greig CA, Atherton PJ, Phillips BE, Piasecki M. Factors associated with electrical stimulation-induced performance fatigability are dependent upon stimulation location. Exp Physiol 2021; 106:828-836. [PMID: 33638246 DOI: 10.1113/ep089204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does peripheral nerve stimulation (PNS) compare with neuromuscular electrical stimulation (NMES) used clinically to reduce muscle atrophy? What is the main finding and its importance? NMES resulted in progressive increases in M-wave duration and delay of muscle relaxation throughout a single stimulation protocol, findings not observed with PNS. This suggests PNS recruits from a wider pool of muscle fibres/motor units, providing a more favourable alternative to NMES for rehabilitation intervention. ABSTRACT Neuromuscular electrical stimulation (NMES) is increasingly viewed as a central tenet to minimise muscle loss during periods of disuse/illness - typically applied directly over a muscle belly. Peripheral nerve stimulation (PNS) is afforded less attention, despite providing a more global contractile stimulus to muscles. We investigated NMES versus PNS in relation to performance fatigability and peripheral contributions to voluntary force capacity. Two fatigue protocols were assessed separately: (1) over-quadriceps NMES and (2) peripheral (femoral) nerve stimulation (PNS). Before and after each session, a maximal voluntary contraction (MVC) was performed to assess force loss. Knee-extensor force was measured throughout to assess contractile function in response to submaximal electrical stimulation, and M-wave features quantified myoelectrical activity. NMES and PNS induced similar voluntary (MVC, NMES: -12 ± 9%, PNS: -10 ± 8%, both P < 0.001) and stimulated (NMES: -45 ± 12%, PNS -27 ± 27%, both P < 0.001) force reductions. Although distinct between protocols, myoelectrical indicators of muscle recruitment (M-wave area and amplitude) and nerve conduction time did not change throughout either protocol. Myoelectrical propagation speed, represented as M-wave duration, and the delay before muscle relaxation began both progressively increased during NMES only (P < 0.05 and P < 0.001, respectively). NMES myoelectrical changes suggested performance fatigability, indicating activation of superficial fibres only, which was not observed with PNS. This suggests PNS recruits a wider pool of muscle fibres and motor units and is a favourable alternative for rehabilitation. Future work should focus on implementing PNS interventions in clinically relevant scenarios such as immobilisation, care homes and critical illness.
Collapse
Affiliation(s)
- Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Daniel McCormick
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Carolyn A Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,MRC-Versus Arthritis Research UK Centre for Musculoskeletal Ageing Research, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
36
|
Carraro U, Albertin G, Martini A, Giuriati W, Guidolin D, Masiero S, Kern H, Hofer C, Marcante A, Ravara B. To contrast and reverse skeletal muscle weakness by Full-Body In-Bed Gym in chronic COVID-19 pandemic syndrome. Eur J Transl Myol 2021. [DOI: 10.4081/ejtm.2020.9641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mobility-impaired persons, either very old or younger but suffering with systemic neuromuscular disorders or chronic organ failures, spend small amounts of time for daily physical activity, contributing to aggravate their poor mobility by resting muscle atrophy. Sooner or later the limitations to their mobility enforce them to bed and to more frequent hospitalizations. We include among these patients at risk those who are negative for the SARS-COV-2 infection, but suffering with COVID-19 pandemic syndrome. Beside managements of psychological symptoms, it is mandatory to offer to the last group physical rehabilitation approaches easy to learn and self-managed at home. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation, we suggest also for chronic COVID-19 pandemic syndrome a 10–20 min long daily routine of easy and safe physical exercises that can activate, and recover from weakness, the main 400 skeletal muscles used for every-day mobility activities. Persons can do many of them in bed (Full-Body in-Bed Gym), and hospitalized patients can learn this light training before leaving the hospital. It is, indeed, an extension of well-established cardiovascular-respiratory rehabilitation training performed after heavy surgical interventions. Blood pressure readings, monitored before and after daily routine, demonstrate a transient decrease in peripheral resistance due to increased blood flow of many muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the COVID-19 pandemic syndrome.
Collapse
|
37
|
Langeard A, Bigot L, Loggia G, Bherer L, Chastan N, Gauthier A. Ankle dorsiflexors and plantarflexors neuromuscular electrical stimulation training impacts gait kinematics in older adults: A pilot study. Gait Posture 2021; 84:335-339. [PMID: 33450595 DOI: 10.1016/j.gaitpost.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND While ankle muscles, highly affected by aging, are highly implicated in the changes in gait kinematics and involved in the limitation of seniors' mobility, whether neuromuscular electrical stimulation (NMES) training of these muscles could impact gait kinematics in older adults has not been investigated yet. RESEARCH QUESTION What are the effects of 12 weeks of ankle plantar and dorsiflexors NMES training on strength and gait kinematics in healthy older adults? METHODS Fourteen older adults (73.6 ± 4.9 years) performed a three-time per week, three months long NMES training of both ankle plantar and dorsiflexors. Before and after training, neuromuscular parameters, gait kinematic parameters, and daily physical activity were measured. RESULTS The participants significantly increased their lower limb muscle mass and their plantar and dorsiflexors isometric strength after training. They reduced the hip abduction/adduction and the pelvic anterior tilt range of motion and variability during gait. However, the participants became less active after the training. SIGNIFICANCE NMES training of ankle muscles, by increasing ankle muscle mass and strength,modified gait kinematics. NMES training of ankle muscles is feasible and effective to lower the hip implication and increment foot progression angle during gait. Further study should determine if this could lower the risk of falling.
Collapse
Affiliation(s)
| | - Lucile Bigot
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000, Caen, France
| | - Gilles Loggia
- Normandie Univ, UNICAEN, INSERM, CHU Caen, Department of Geriatrics, COMETE, 14000, Caen, France
| | - Louis Bherer
- University of Montréal, Department of Medicine and Research Center Montreal Heart Institute, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada; Research Centre, Montreal Heart Institute, Montreal, QC, Canada; Research Centre, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Nathalie Chastan
- Normandie Univ, UNICAEN, INSERM, CHU Rouen, Department of Neurophysiology, COMETE, 14000, Caen, France
| | | |
Collapse
|
38
|
Nakashima D, Hata J, Sone Y, Maruyama K, Feiweier T, Okano JH, Matsumoto M, Nakamura M, Nagura T. Detecting Mild Lower-limb Skeletal Muscle Fatigue with Stimulated-echo q-space Imaging. Magn Reson Med Sci 2020; 20:457-466. [PMID: 33342916 PMCID: PMC8922348 DOI: 10.2463/mrms.tn.2020-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The feasibility of detecting mild exercise-related muscle fatigue via stimulated echo (STE) and q-space imaging (qsi) was evaluated. The right calves of seven healthy volunteers were subjected to mild exercise loading, and qsi was generated using spin echo (Δ: 45.6 ms) and three different STE (Δ: 114, 214, and 414 ms) acquisitions. We concluded that qsi with an increased STE diffusion time can detect mild fatigue in the gastrocnemius muscle.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopedic Surgery, Keio University School of Medicine
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University Graduate School ofMedicine.,Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute
| | | | - Katsuya Maruyama
- MRI Research and Collaboration Department, Siemens Healthcare K.K
| | | | - James Hirotaka Okano
- Division of Regenerative Medicine, The Jikei University Graduate School ofMedicine
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine
| | - Takeo Nagura
- Department of Orthopedic Surgery, Keio University School of Medicine.,Department of Clinical Biomechanics, Keio University School of Medicine
| |
Collapse
|
39
|
Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle. Mech Ageing Dev 2020; 193:111402. [PMID: 33189759 PMCID: PMC7816160 DOI: 10.1016/j.mad.2020.111402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and functional declines observed with advancing age can be minimized via various NMES protocols. Animal models have shown that NMES induces motor axon regeneration and promotes axonal outgrowth and fibre reinnervation. The activation of BDNF-trkB contributes to promotion of nerve growth and survival and mediates neuroplasticity. NMES is able to regulate muscle protein homeostasis and elevate oxidative enzyme activity.
One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional deficits and can be explained by the combined effects of individual fibre atrophy and fibre loss. The gradual degradation of fibre atrophy is attributed to impaired muscle protein homeostasis, while muscle fibre loss is a result of denervation and motor unit (MU) remodelling. Neuromuscular electrical stimulation (NMES), a substitute for voluntary contractions, has been applied to reduce muscle mass and functional declines. However, the measurement of the effectiveness of NMES in terms of its mechanism of action on the peripheral motor nervous system and neuromuscular junction, and multiple molecular adaptations at the single fibre level is not well described. NMES mediates neuroplasticity and upregulates a number of neurotropic factors, manifested by increased axonal sprouting and newly formed neuromuscular junctions. Repeated involuntary contractions increase the activity levels of oxidative enzymes, increase fibre capillarisation and can influence fibre type conversion. Additionally, following NMES muscle protein synthesis is increased as well as functional capacity. This review will detail the neural, molecular, metabolic and functional adaptations to NMES in human and animal studies.
Collapse
|
40
|
Reidy PT, Edvalson LT, McKenzie AI, Petrocelli JJ, Mahmassani ZS, Drummond MJ. Neuromuscular electrical stimulation and protein during bed rest increases CD11b + skeletal muscle macrophages but does not correspond to muscle size or insulin sensitivity. Appl Physiol Nutr Metab 2020; 45:1261-1269. [PMID: 32470312 PMCID: PMC9236569 DOI: 10.1139/apnm-2020-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With this cohort, we previously demonstrated preservation of thigh lean tissue with neuromuscular electrical stimulation combined with protein supplementation (NMES+PRO) treatment during bed rest in healthy older adults. Because macrophage polarization plays a significant role in the repair and maintenance of muscle size and insulin sensitivity, we hypothesized that muscle macrophages would be induced by NMES+PRO and would correspond to an increase in lean mass and an attenuated insulin resistance response altered by bed rest. Older adults (60-80 years old; body mass index < 30 kg/m2) underwent 5 days of bed rest and were randomized to either thrice daily treatment of NMES+PRO (n = 8) or CON (n = 8). Lean mass, insulin sensitivity, and markers of muscle macrophages, inflammation, and connective tissue were determined before and after bed rest. Glucose intolerance and insulin resistance occurred after bed rest but there was not a treatment effect (p > 0.10). Proinflammatory-like macrophages (CD11b+, CD206-) increased (p < 0.05) with NMES+PRO treatment and was different than CON. Minor changes in noncontractile tissue were observed. However, changes in muscle macrophages or extracellular matrix were not related to the preservation of thigh lean mass or insulin resistance. Daily NMES+PRO treatment during bed rest induced a muscle proinflammatory-like macrophage response and was unrelated to muscle size or metabolic function. This study is listed as clinical trial NCT02566590. Novelty Neuromuscular electrical stimulation combined with protein supplementation (NMES+PRO) increased proinflammatory-like macrophages and extracellular matrix content in older adults after bed rest. NMES+PRO changes in macrophages and noncontractile tissue macrophages were not related to muscle size preservation or insulin sensitivity.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Logan T Edvalson
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S. 1850 E, Room 214, Salt Lake City, UT 84112, USA
| |
Collapse
|
41
|
Acheche A, Mekki M, Paillard T, Tabka Z, Trabelsi Y. The Effect of Adding Neuromuscular Electrical Stimulation with Endurance and Resistance Training on Exercise Capacity and Balance in Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Can Respir J 2020; 2020:9826084. [PMID: 33062081 PMCID: PMC7542502 DOI: 10.1155/2020/9826084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effectiveness of adding neuromuscular electrical stimulation (NMES) to endurance training (ET) and resistance training (RT) on exercise tolerance and balance in COPD patients. 42 patients were assigned randomly to the ET + RT + NMES group (n = 22) or ET + RT group (n = 20). Two training programs were performed including 72 sessions. The center of pressure (CoP) displacement in the mediolateral direction (CoPML), in the anteroposterior direction (CoPAP), and the center of pressure velocity (CoPV) were recorded using a stabilometric platform with eyes open (EO) and eyes closed (EC). Time up and go and Berg Balance Scale tests, 6-minute walking test (6MWT), and the maximal voluntary contraction (MVC) were measured before and after the intervention. The walking distance, the dyspnea, and the heart rate were improved after the training period (p < 0.001) for both groups (p < 0.05). The ET + RT + NMES group showed better improvement than the ET + RT group in terms of 6MWD. CoPML, CoPAP, and CoPV were significantly (p < 0.001; p < 0.05; p < 0.001, respectively) more improved in EO and EC conditions in the ET + RT + NMES group than the ET + RT group. BBS, TUG, and MVC values improved in both groups after the training (p < 0.001). The performances in TUG and MVC tests were significantly greater in the ET + RT + NMES group than those in the ET + RT group (p < 0.01; p < 0.001, respectively). Combining NMES, RT, and ET improves balance in patients with COPD.
Collapse
Affiliation(s)
- Amal Acheche
- Laboratoire de Recherche Physiologie de l'Exercice et Physiopathologie: de l'intégré au moléculaire « Biologie, Médecine et Santé » (LR19ES09), Faculté de Médecine de Sousse, Sousse 4002, Tunisia
- Biology Department, Faculty of Sciences of Sfax, Sfax3038, Tunisia
| | - Marwa Mekki
- Laboratoire de Recherche Physiologie de l'Exercice et Physiopathologie: de l'intégré au moléculaire « Biologie, Médecine et Santé » (LR19ES09), Faculté de Médecine de Sousse, Sousse 4002, Tunisia
| | - Thierry Paillard
- Movement, Balance, Performance and Health Laboratory (EA 4445), University of Pau and des Pays de l'Adour, Pau 64012, France
| | - Zouhair Tabka
- Laboratoire de Recherche Physiologie de l'Exercice et Physiopathologie: de l'intégré au moléculaire « Biologie, Médecine et Santé » (LR19ES09), Faculté de Médecine de Sousse, Sousse 4002, Tunisia
| | - Yassine Trabelsi
- Laboratoire de Recherche Physiologie de l'Exercice et Physiopathologie: de l'intégré au moléculaire « Biologie, Médecine et Santé » (LR19ES09), Faculté de Médecine de Sousse, Sousse 4002, Tunisia
| |
Collapse
|
42
|
Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2020; 9:jcm9092902. [PMID: 32911822 PMCID: PMC7563530 DOI: 10.3390/jcm9092902] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
It has been shown that resistance exercise (RT) is one of the most effective approaches to counteract the physical and functional changes associated with aging. This systematic review with meta-analysis compared the effects of RT, whole-body vibration (WBV), and electrical muscle stimulation (EMS) on muscle strength, body composition, and functional performance in older adults. A thorough literature review was conducted, and the analyses were limited to randomized controlled trials. In total, 63 studies were included in the meta-analysis (48 RT, 11 WBV, and 4 EMS). The results showed that RT and WBV are comparably effective for improving muscle strength, while the effects of EMS remains debated. RT interventions also improved some outcome measures related to functional performance, as well as the cross-sectional area of the quadriceps. Muscle mass was not significantly affected by RT. A limitation of the review is the smaller number of WBV and particularly EMS studies. For this reason, the effects of WBV and EMS could not be comprehensively compared to the effect of RT for all outcome measures. For the moment, RT or combinations of RT and WBV or EMS, is probably the most reliable way to improve muscle strength and functional performance, while the best approach to increase muscle mass in older adults remains open to further studies.
Collapse
|
43
|
Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People. Life (Basel) 2020; 10:life10090184. [PMID: 32911678 PMCID: PMC7554879 DOI: 10.3390/life10090184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Loss of muscle mass of the lower limbs and of the spine extensors markedly impairs locomotor ability and spine stability in old age. In this study, we investigated whether 8 w of neuromuscular electrical stimulation (NMES) improves size and architecture of the lumbar multifidus (LM) and vastus lateralis (VL) along with locomotor ability in healthy older individuals. Eight volunteers (aged 65 ≥ years) performed NMES 3 times/week. Eight sex- and age-matched individuals served as controls. Functional tests (Timed Up and Go test (TUG) and Five Times Sit-to-Stand Test (FTSST)), VL muscle architecture (muscle thickness (MT), pennation angle (PA), and fiber length (FL)), along with VL cross-sectional area (CSA) and both sides of LM were measured before and after by ultrasound. By the end of the training period, MT and CSA of VL increased by 8.6% and 11.4%, respectively. No significant increases were observed in FL and PA. LM CSA increased by 5.6% (left) and 7.1% (right). Interestingly, all VL architectural parameters significantly decreased in the control group. The combined NMES had a large significant effect on TUG (r = 0.50, p = 0.046). These results extend previous findings on the hypertrophic effects of NMES training, suggesting to be a useful mean for combating age-related sarcopenia.
Collapse
|
44
|
Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel) 2020; 10:diagnostics10080529. [PMID: 32751308 PMCID: PMC7460102 DOI: 10.3390/diagnostics10080529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.
Collapse
|
45
|
Boutry-Regard C, Vinyes-Parés G, Breuillé D, Moritani T. Supplementation with Whey Protein, Omega-3 Fatty Acids and Polyphenols Combined with Electrical Muscle Stimulation Increases Muscle Strength in Elderly Adults with Limited Mobility: A Randomized Controlled Trial. Nutrients 2020; 12:E1866. [PMID: 32585837 PMCID: PMC7353259 DOI: 10.3390/nu12061866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
Age-related sarcopenia is a progressive and generalized skeletal muscle disorder associated with adverse outcomes. Herein, we evaluate the effects of a combination of electrical muscle stimulation (EMS) and a whey-based nutritional supplement (with or without polyphenols and fish oil-derived omega-3 fatty acids) on muscle function and size. Free-living elderly participants with mobility limitations were included in this study. They received 2 sessions of EMS per week and were randomly assigned to ingest an isocaloric beverage and capsules for 12 weeks: (1) carbohydrate + placebo capsules (CHO, n = 12), (2) whey protein isolate + placebo capsules (WPI, n = 15) and (3) whey protein isolate + bioactives (BIO) capsules containing omega-3 fatty acids, rutin, and curcumin (WPI + BIO, n = 10). The change in knee extension strength was significantly improved by 13% in the WPI + BIO group versus CHO on top of EMS, while WPI alone did not provide a significant benefit over CHO. On top of this, there was the largest improvement in gait speed (8%). The combination of EMS and this specific nutritional intervention could be considered as a new approach for the prevention of sarcopenia but more work is needed before this approach should be recommended. This trial was registered at the Japanese University Hospital Medical Information Network (UMIN) clinical trial registry (UMIN000008382).
Collapse
Affiliation(s)
| | | | | | - Toshio Moritani
- Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
46
|
Carraro U. Thirty years of translational research in Mobility Medicine: Collection of abstracts of the 2020 Padua Muscle Days. Eur J Transl Myol 2020; 30:8826. [PMID: 32499887 PMCID: PMC7254447 DOI: 10.4081/ejtm.2019.8826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
47
|
Valenzuela PL, Morales JS, Ruilope LM, de la Villa P, Santos-Lozano A, Lucia A. Intradialytic neuromuscular electrical stimulation improves functional capacity and muscle strength in people receiving haemodialysis: a systematic review. J Physiother 2020; 66:89-96. [PMID: 32291224 DOI: 10.1016/j.jphys.2020.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
QUESTIONS Does neuromuscular electrical stimulation (NMES) applied during haemodialysis sessions improve functional capacity in people with end-stage renal disease? Does NMES used in this way also improve muscle strength, muscle mass/architecture, psychological outcomes, cardiovascular outcomes and biochemical variables? Does it have any adverse effects? DESIGN Systematic review of randomised controlled trials with meta-analysis. PubMed, Web of Science, Scopus and SPORTDiscus were searched from inception to 15 October 2019. PARTICIPANTS Patients receiving haemodialysis for end-stage renal disease. INTERVENTION NMES administered during haemodialysis sessions versus control. OUTCOMES MEASURES Functional capacity, muscle strength, muscle mass, psychological outcomes, cardiovascular outcomes, biochemical variables and adverse events. DATA ANALYSIS Data were meta-analysed where possible and results were expressed as the pooled mean difference between groups with a 95% confidence interval. RESULTS Eight studies (221 patients) were included in the analysis. Overall, the methodological quality of the studies was fair to good. NMES improved functional capacity as assessed by the 6-minute walk distance test (MD 31 m, 95% CI 13 to 49) and peak workload attained in incremental exercise (MD 12.5 W, 95% CI 3.2 to 21.9). NMES increased knee extensor muscle strength (MD 3.5 kg, 95% CI 2.3 to 4.7) and handgrip strength (MD 2.4 kg, 95% CI 0.4 to 4.4). Muscle mass/architecture was not substantially affected. NMES was estimated to be beneficial for several domains of quality of life in several studies, although most of these estimates were imprecise. No benefits were found for cardiovascular outcomes. The available data did not establish any clear effects on cardiovascular outcomes or biochemical variables (dialysis efficiency, urea and creatinine). No major NMES-related adverse events were observed. CONCLUSIONS NMES is safe, practical and effective for improving functional capacity and muscle strength in haemodialysis patients. Further research is needed to confirm the clinical relevance of these findings. REGISTRATION PROSPERO CRD42018107323.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain; Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Luis M Ruilope
- Hypertension Unit and Cardiorenal Translational Laboratory, Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid, Spain
| | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, Madrid, Spain; i+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Alejandro Santos-Lozano
- Hypertension Unit and Cardiorenal Translational Laboratory, Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain; Hypertension Unit and Cardiorenal Translational Laboratory, Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
48
|
Giuriato G, Ives SJ, Tarperi C, Bortolan L, Ruzzante F, Pedrinolla A, Martignon C, Laginestra FG, Cevese A, Schena F, Venturelli M. Timed synchronization of muscle contraction to heartbeat enhances muscle hyperemia. J Appl Physiol (1985) 2020; 128:805-812. [PMID: 32191594 DOI: 10.1152/japplphysiol.00898.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood flow (BF) to exercising muscles is susceptible to variations of intensity, and duration of skeletal muscle contractions, cardiac cycle, blood velocity, and vessel dilation. During cyclic muscle activity, these elements may change proportionally with or without direct optimal temporal alignment, likely influencing BF to active muscle. Ideally, the pulsed delivery of blood to active muscle timed with the inactive phase of muscle duty-cycle would enhance the peak and average BF. To investigate the phenomenon of muscle contraction and pulse synchronicity, electrically evoked muscle contractions (trains of 20 Hz, 200-ms duration) were synchronized with each systolic phase of the anterograde blood velocity spectrum (aBVS). Specifically, unilateral quadriceps contractions matched in-phase (IP) with the aBVS were compared with contractions matched out-of-phase (OP) with the aBVS in 10 healthy participants (26 ± 3 yr). During each trial, femoral BF of the contracting limb and central hemodynamics were recorded for 5 min with an ultrasound Doppler, a plethysmograph, and a cardioimpedance device. At steady state (5th min) IP BF (454 ± 30 mL/min) and vascular conductance (4.3 ± 0.2 mL·min-1·mmHg-1), and OP MAP (108 ± 2 mmHg) were significantly lower (P < 0.001) in comparison to OP BF (784 ± 25 mL/min) and vascular conductance (6.7 ± 0.2 mL·min-1·mmHg-1), and IP MAP (113 ± 3 mmHg). On the contrary, no significant difference (all, P > 0.05) was observed between IP and OP central hemodynamics (HR: 79 ± 10 vs. 76 ± 11 bpm, CO: 8.0 ± 1.6 vs. 7.3 ± 1.6 L/min), and ventilatory patterns (V̇e:14 ± 2 vs. 14 ± 1 L/min, V̇o2:421 ± 70 vs. 397 ± 34 mL/min). The results suggest that muscle contractions occurring during OP that do not interfere with aBVS elicit a maximization of muscle functional hyperemia.NEW & NOTEWORTHY When muscle contraction is synchronized with the pulsed delivery of blood flow to active muscle, muscle functional hyperemia can be either maximized or minimized. This suggests a possibility to couple different strategies to enhance the acute and chronic effects of exercise on the cardiovascular system.
Collapse
Affiliation(s)
- Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stephen J Ives
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, New York
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Lorenzo Bortolan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Ruzzante
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Camilla Martignon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Antonio Cevese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
49
|
O'Connor D, Lennon O, Minogue C, Caulfield B. Design considerations for the development of neuromuscular electrical stimulation (NMES) exercise in cancer rehabilitation. Disabil Rehabil 2020; 43:3117-3126. [PMID: 32116053 DOI: 10.1080/09638288.2020.1726510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of this narrative review is to explore design considerations for effective neuromuscular electrical stimulation exercise prescription in cancer rehabilitation, with simultaneous consideration for fundamental principles of exercise training and the current state of the art in neuromuscular electrical stimulation technologies and application methodologies.Method: Narrative review.Results: First, we consider the key neuromuscular electrical stimulation exercise design considerations, with a focus on training objectives and individual training requirements and constraints for individuals with cancer. Here, we contend that concurrent, low and high frequency neuromuscular electrical stimulation exercise, individually prescribed and progressed may be optimal for enhancing physical function. Second, we review the appropriate literature to identify the most appropriate stimulation parameters (pulse frequency, intensity, duration and duty cycle) to deliver effective neuromuscular electrical stimulation in cancer rehabilitation.Conclusions: We propose an informed and innovative neuromuscular electrical stimulation exercise intervention design and provide practical information for clinicians and practitioners who may work with and implement neuromuscular electrical stimulation exercise in cancer.Implications for rehabilitationNeuromuscular electrical stimulation is an emerging technology in cancer rehabilitation to help provide an aerobic and muscle strengthening exercise stimulus.Neuromuscular electrical stimulation may help improve aerobic exercise capacity, muscle strength and augment quality of life.Current prescription in cancer lacks adherence to the fundamental principles of exercise training, which may negatively affect adherence.
Collapse
Affiliation(s)
- Dominic O'Connor
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | | | - Brian Caulfield
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Age- and sex-specific effects in paravertebral surface electromyographic back extensor muscle fatigue in chronic low back pain. GeroScience 2019; 42:251-269. [PMID: 31773454 PMCID: PMC7031171 DOI: 10.1007/s11357-019-00134-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023] Open
Abstract
The impact of aging on the back muscles is not well understood, yet may hold clues to both normal aging and chronic low back pain (cLBP). This study sought to investigate whether the median frequency (MF) surface electromyographic (SEMG) back muscle fatigue method—a proxy for glycolytic muscle metabolism—would be able to detect age- and sex-specific differences in neuromuscular and muscle metabolic functions in individuals with cLBP in a reliable way, and whether it would be as sensitive as when used on healthy individuals. With participants seated on a dynamometer (20° trunk anteflexion), paraspinal SEMG activity was recorded bilaterally from the multifidus (L5), longissimus (L2), and iliolumbalis (L1) muscles during isometric, sustained back extensions loaded at 80% of maximum from 117 younger (58 females) and 112 older (56 female) cLBP individuals. Tests were repeated after 1–2 days and 6 weeks. Median frequency, the SEMG variable indicating neuromuscular fatigue, was analyzed. Maximum back extensor strength was comparable between younger and older participants. Significantly less MF-SEMG back muscle fatigue was observed in older as compared to younger, and in older female as compared to older male cLBP individuals. Relative reliability was excellent, but absolute reliability appeared large for this SEMG-fatigue measure. Findings suggest that cLBP likely does not mask the age-specific diagnostic potential of the MF-SEMG back extensor fatigue method. Thus, this method possesses a great potential to be further developed into a valuable biomarker capable of detecting back muscle function at risk of sarcopenia at very early stages.
Collapse
|