1
|
Dias ALA, Drieskens D, Belo JA, Duarte EH, Laplagne DA, Tort ABL. Breathing Modulates Network Activity in Frontal Brain Regions during Anxiety. J Neurosci 2025; 45:e1191242024. [PMID: 39528274 PMCID: PMC11714350 DOI: 10.1523/jneurosci.1191-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Anxiety elicits various physiological responses, including changes in the respiratory rate and neuronal activity within specific brain regions such as the medial prefrontal cortex (mPFC). Previous research suggests that the olfactory bulb (OB) modulates the mPFC through respiration-coupled oscillations (RCOs), which have been linked to fear-related freezing behavior. Nevertheless, the impact of breathing on frontal brain networks during other negative emotional responses, such as anxiety-related states characterized by higher breathing rates, remains unclear. To address this, we subjected rats to the elevated plus maze (EPM) paradigm while simultaneously recording respiration and local field potentials in the OB and mPFC. Our findings demonstrate distinct respiratory patterns during EPM exploration: slower breathing frequencies prevailed in the closed arms, whereas faster frequencies were observed in the open arms, independent of locomotor activity, indicating that anxiety-like states are associated with increased respiratory rates. Additionally, we identified RCOs at different frequencies, mirroring the bimodal distribution of respiratory frequencies. RCOs exhibited higher power during open-arm exploration, when they showed greater coherence with breathing at faster frequencies. Furthermore, we confirmed that nasal respiration drives RCOs in frontal brain regions and found a stronger effect during faster breathing. Interestingly, we observed that the frequency of prefrontal gamma oscillations modulated by respiration increased with breathing frequency. Overall, our study provides evidence for a significant influence of breathing on prefrontal cortex networks during anxious states, shedding light on the complex interplay between respiratory physiology and emotional processing.
Collapse
Affiliation(s)
- Ana L A Dias
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Davi Drieskens
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Joseph A Belo
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Elis H Duarte
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Diego A Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| |
Collapse
|
2
|
Mercado E, Zhuo J. Do rodents smell with sound? Neurosci Biobehav Rev 2024; 167:105908. [PMID: 39343078 DOI: 10.1016/j.neubiorev.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Chemosensation via olfaction is a critical process underlying social interactions in many different species. Past studies of olfaction in mammals often have focused on its mechanisms in isolation from other systems, limiting the generalizability of findings from olfactory research to perceptual processes in other modalities. Studies of chemical communication, in particular, have progressed independently of research on vocal behavior and acoustic communication. Those bioacousticians who have considered how sound production and reception might interact with olfaction often portray odors as cues to the kinds of vocalizations that might be functionally useful. In the olfaction literature, vocalizations are rarely mentioned. Here, we propose that ultrasonic vocalizations may affect what rodents smell by altering the deposition of inhaled particles and that rodents coordinate active sniffing with sound production specifically to enhance reception of pheromones. In this scenario, rodent vocalizations may contribute to a unique mode of active olfactory sensing, in addition to whatever roles they serve as social signals. Consideration of this hypothesis highlights the perceptual advantages that parallel coordination of multiple sensorimotor processes may provide to individuals exploring novel situations and environments, especially those involving dynamic social interactions.
Collapse
Affiliation(s)
- Eduardo Mercado
- University at Buffalo, The State University of New York, USA.
| | | |
Collapse
|
3
|
Okabe S, Takayanagi Y, Tachibana RO, Inutsuka A, Yoshida M, Onaka T. Behavioural response of female Lewis rats toward 31-kHz ultrasonic calls. Behav Processes 2024; 223:105111. [PMID: 39326717 DOI: 10.1016/j.beproc.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Rodent ultrasonic vocalisations can be used to assess social behaviour and have attracted increasing attention. Rats emit 50-kHz and 22-kHz calls during appetitive and aversive states, respectively. These calls induce behavioural and neural responses in the receiver by transmitting the internal states of the rats, thus serving communicative functions. Recently, we discovered that female Lewis rats emit 31-kHz calls under social isolation and inequality conditions; however, the biological significance of 31-kHz calls remains unknown. In the present study, we conducted three playback experiments to examine the behavioural effects of 31-kHz calls. In the first experiment, Lewis female rats were exposed to four types of sound: 22-kHz, 50-kHz, 31-kHz calls, and environmental noise. As a result, rats stayed significantly longer in the area with a sound-producing speaker, regardless of the sound type, than in the silent speaker area. The duration spent around the sound-producing speaker was particularly extended during the 50-kHz or 31-kHz call playback, compared to the environmental noise or 22-kHz call playback. In the second experiment, rats were exposed to refined versions of sound stimuli that were synthesised to preserve prominent frequency components while removing background noise from original calls. Rats significantly preferred to stay around the speaker for the synthesised 50-kHz and 31-kHz sounds, but not for the synthesised 22-kHz sound. However, in the third experiment, additional 31-kHz sound synthesised from calls emitted by a different rat did not elicit a significant preference for the source side. These results suggest that the rats paid attention to the 31-kHz call, although it is plausible that acoustic variability in the 31-kHz USV may affect their approach behaviour.
Collapse
Affiliation(s)
- Shota Okabe
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Japan.
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Japan
| | - Ryosuke O Tachibana
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Japan
| |
Collapse
|
4
|
Arakawa H, Tokashiki M. The posterior intralaminar thalamic nucleus promotes nose-to-nose contacts leading to prosocial reception in the sequence of mouse social interaction. Eur J Neurosci 2024; 60:5731-5749. [PMID: 39210622 DOI: 10.1111/ejn.16520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Efficient social interaction is essential for an adaptive life and consists of sequential processes of multisensory events with social counterparts. Social touch/contact is a unique component that promotes a sequence of social behaviours initiated by detection and approach to assess a social stimulus and subsequent touch/contact interaction to form prosocial relationships. We hypothesized that the thalamic sensory relay circuit from the posterior intralaminar nucleus of the thalamus (pIL) to the paraventricular nucleus of the hypothalamus (PVN) and the medial amygdala (MeA) plays a key role in the social contact-mediated sequence of events. We found that neurons in the pIL along with the PVN and MeA were activated by social encounters and that pIL activity was more abundant in a direct physical encounter, whereas MeA activity was dominant in an indirect through grid encounter. Chemogenetic inhibition of pIL neurons selectively decreased the investigatory approach and sniffing of a same-sex, but not an opposite-sex, stimulus mouse in an indirect encounter situation and decreased the facial/snout contact ratio in a direct encounter setting. Furthermore, chemogenetic pIL inhibition had no impact on anxiety-like behaviours or body coordinative motor behaviours, but it impaired whisker-related and plantar touch tactile sense. We propose that the pIL circuit can relay social tactile sensations and mediate the sequence of nonsexual prosocial interactions through an investigatory approach to tactile contact and thus plays a significant role in establishing prosocial relationships in mouse models.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Mana Tokashiki
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
5
|
MacDonald A, Hebling A, Wei XP, Yackle K. The breath shape controls intonation of mouse vocalizations. eLife 2024; 13:RP93079. [PMID: 38963785 PMCID: PMC11223766 DOI: 10.7554/elife.93079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.
Collapse
Affiliation(s)
- Alastair MacDonald
- Department of Physiology, University of California-San FranciscoSan FranciscoUnited States
| | - Alina Hebling
- Neuroscience Graduate Program, University of California-San FranciscoSan FranciscoUnited States
| | - Xin Paul Wei
- Department of Physiology, University of California-San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California-San FranciscoSan FranciscoUnited States
| | - Kevin Yackle
- Department of Physiology, University of California-San FranciscoSan FranciscoUnited States
| |
Collapse
|
6
|
Dasgupta D, Schneider-Luftman D, Schaefer AT, Harris JJ. Wireless monitoring of respiration with EEG reveals relationships between respiration, behavior, and brain activity in freely moving mice. J Neurophysiol 2024; 132:290-307. [PMID: 38810259 PMCID: PMC11383384 DOI: 10.1152/jn.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Active sampling in the olfactory domain is a fundamental aspect of mouse behavior, and there is increasing evidence that respiration-entrained neural activity outside of the olfactory system sets an important global brain rhythm. It is therefore crucial to accurately measure breathing during natural behaviors. We develop a new approach to do this in freely moving animals, by implanting a telemetry-based pressure sensor into the right jugular vein, which allows for wireless monitoring of thoracic pressure. After verifying this technique against standard head-fixed respiration measurements, we combined it with EEG and EMG recording and used evolving partial coherence analysis to investigate the relationship between respiration and brain activity across a range of experiments in which the mice could move freely. During voluntary exploration of odors and objects, we found that the association between respiration and cortical activity in the delta and theta frequency range decreased, whereas the association between respiration and cortical activity in the alpha range increased. During sleep, however, the presentation of an odor was able to cause a transient increase in sniffing without changing dominant sleep rhythms (delta and theta) in the cortex. Our data align with the emerging idea that the respiration rhythm could act as a synchronizing scaffold for specific brain rhythms during wakefulness and exploration, but suggest that respiratory changes are less able to impact brain activity during sleep. Combining wireless respiration monitoring with different types of brain recording across a variety of behaviors will further increase our understanding of the important links between active sampling, passive respiration, and neural activity.NEW & NOTEWORTHY Animals can alter their respiration rate to actively sample their environment, and increasing evidence suggests that neurons across the brain align their firing to this changing rhythm. We developed a new approach to measure sniffing in freely moving mice while simultaneously recording brain activity, and uncovered how specific cortical rhythms changed their coherence with respiration rhythm during natural behaviors and across arousal states.
Collapse
Affiliation(s)
- Debanjan Dasgupta
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Neural Circuit Dynamics Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Deborah Schneider-Luftman
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Julia J Harris
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, United Kingdom
| |
Collapse
|
7
|
Trevizan-Baú P, Stanić D, Furuya WI, Dhingra RR, Dutschmann M. Neuroanatomical frameworks for volitional control of breathing and orofacial behaviors. Respir Physiol Neurobiol 2024; 323:104227. [PMID: 38295924 DOI: 10.1016/j.resp.2024.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Breathing is the only vital function that can be volitionally controlled. However, a detailed understanding how volitional (cortical) motor commands can transform vital breathing activity into adaptive breathing patterns that accommodate orofacial behaviors such as swallowing, vocalization or sniffing remains to be developed. Recent neuroanatomical tract tracing studies have identified patterns and origins of descending forebrain projections that target brain nuclei involved in laryngeal adductor function which is critically involved in orofacial behavior. These nuclei include the midbrain periaqueductal gray and nuclei of the respiratory rhythm and pattern generating network in the brainstem, specifically including the pontine Kölliker-Fuse nucleus and the pre-Bötzinger complex in the medulla oblongata. This review discusses the functional implications of the forebrain-brainstem anatomical connectivity that could underlie the volitional control and coordination of orofacial behaviors with breathing.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute, University of Melbourne, Victoria, Australia; Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Davor Stanić
- The Florey Institute, University of Melbourne, Victoria, Australia
| | - Werner I Furuya
- The Florey Institute, University of Melbourne, Victoria, Australia
| | - Rishi R Dhingra
- The Florey Institute, University of Melbourne, Victoria, Australia; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mathias Dutschmann
- The Florey Institute, University of Melbourne, Victoria, Australia; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Perrodin C, Verzat C, Bendor D. Courtship behaviour reveals temporal regularity is a critical social cue in mouse communication. eLife 2023; 12:RP86464. [PMID: 38149925 PMCID: PMC10752583 DOI: 10.7554/elife.86464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
While animals navigating the real world face a barrage of sensory input, their brains evolved to perceptually compress multidimensional information by selectively extracting the features relevant for survival. Notably, communication signals supporting social interactions in several mammalian species consist of acoustically complex sequences of vocalisations. However, little is known about what information listeners extract from such time-varying sensory streams. Here, we utilise female mice's natural behavioural response to male courtship songs to identify the relevant acoustic dimensions used in their social decisions. We found that females were highly sensitive to disruptions of song temporal regularity and preferentially approached playbacks of intact over rhythmically irregular versions of male songs. In contrast, female behaviour was invariant to manipulations affecting the songs' sequential organisation or the spectro-temporal structure of individual syllables. The results reveal temporal regularity as a key acoustic cue extracted by mammalian listeners from complex vocal sequences during goal-directed social behaviour.
Collapse
Affiliation(s)
- Catherine Perrodin
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| | - Colombine Verzat
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College LondonLondonUnited Kingdom
- Idiap Research InstituteMartignySwitzerland
| | - Daniel Bendor
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
John SR, Tiwari R, Goussha Y, Amar R, Bizer A, Netser S, Wagner S. Simultaneous recording of ultrasonic vocalizations and sniffing from socially interacting individual rats using a miniature microphone. CELL REPORTS METHODS 2023; 3:100638. [PMID: 37939710 PMCID: PMC10694494 DOI: 10.1016/j.crmeth.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Vocalizations are pivotal in mammalian communication, especially in humans. Rodents accordingly rely on ultrasonic vocalizations (USVs) that reflect their internal state as a primary channel during social interactions. However, attributing vocalizations to specific individuals remains challenging, impeding internal state assessment. Rats emit 50-kHz USVs to indicate positive states and intensify sniffing during alertness and social interactions. Here, we present a method involving a miniature microphone attached to the rat nasal cavity that allows to capture both male and female individual rat vocalizations and sniffing patterns during social interactions. We found that while the emission of 50-kHz USVs increases during close interactions, these signals lack specific behavioral associations. Moreover, a previously unreported low-frequency vocalization type marking rat social interactions was uncovered. Finally, different dynamics of sniffing and vocalization activities point to distinct underlying internal states. Thus, our method facilitates the exploration of internal states concurrent with social behaviors.
Collapse
Affiliation(s)
- Shanah Rachel John
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Rishika Tiwari
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Yizhaq Goussha
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Rotem Amar
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Alex Bizer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
10
|
Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly AM, Hechavarria JC. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Sci Rep 2023; 13:11173. [PMID: 37429931 PMCID: PMC10333300 DOI: 10.1038/s41598-023-38051-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
In humans, screams have strong amplitude modulations (AM) at 30 to 150 Hz. These AM correspond to the acoustic correlate of perceptual roughness. In bats, distress calls can carry AMs, which elicit heart rate increases in playback experiments. Whether amplitude modulation occurs in fearful vocalisations of other animal species beyond humans and bats remains unknown. Here we analysed the AM pattern of rats' 22-kHz ultrasonic vocalisations emitted in a fear conditioning task. We found that the number of vocalisations decreases during the presentation of conditioned stimuli. We also observed that AMs do occur in rat 22-kHz vocalisations. AMs are stronger during the presentation of conditioned stimuli, and during escape behaviour compared to freezing. Our results suggest that the presence of AMs in vocalisations emitted could reflect the animal's internal state of fear related to avoidance behaviour.
Collapse
Affiliation(s)
| | - Julie Boulanger-Bertolus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Maryne Dupin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Anne-Marie Mouly
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France.
| | - Julio C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Burand Jr. AJ, Waltz TB, Manis AD, Hodges MR, Stucky CL. HomeCageScan analysis reveals ongoing pain in Fabry rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100113. [PMID: 36660199 PMCID: PMC9843259 DOI: 10.1016/j.ynpai.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
HomeCageScan (HCS) is an automated behavioral scoring system that can be used to classify and quantify rodent behaviors in the home cage. Although HCS has been used for a number of inducible models of severe pain, little has been done to test this system in clinically relevant genetic disease models associated with chronic pain such as Fabry disease. Rats with Fabry disease exhibit mechanical hypersensitivity, however, it is unclear if these rodents also exhibit ongoing non-evoked pain. Therefore, we analyzed HCS data from male and female rats with Fabry disease. Using hierarchical clustering and principal component analysis, we found both sex and genotype differences in several home cage behaviors. Additionally, we used hierarchical clustering to derive behavioral clusters in an unbiased manner. Analysis of these behavioral clusters showed that primarily female Fabry animals moved less, spent less time caring for themselves (e.g., less time spent grooming and drinking), explored less, and slept more; changes that are similar to lifestyle changes observed in patients with long lasting chronic pain. We also show that sniffing, one of the exploratory behaviors that is depressed in Fabry animals, can be partly restored with the analgesic gabapentin, suggesting that depressed sniffing may reflect ongoing pain. Therefore, this approach to HCS data analysis can be used to assess drug efficacy in Fabry disease and potentially other genetic and inducible rodent models associated with persistent pain.
Collapse
Affiliation(s)
- Anthony J. Burand Jr.
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Tyler B. Waltz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Anna D. Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
12
|
Janke E, Bhattarai JP, Ma M. Intranasal Pressure Recording for Monitoring Mouse Respiration. Methods Mol Biol 2023; 2710:49-60. [PMID: 37688723 PMCID: PMC10712686 DOI: 10.1007/978-1-0716-3425-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Respiration is a highly dynamic signal that influences voluntary behaviors including odor sampling and entrains rhythmic activity in the brain. Many techniques exist to record respiration with each exhibiting strengths and drawbacks given the ultimate goals of the respiration recording. Intranasal cannula implantation, coupled with pressure sensor recording, allows for temporal precision and detailed feature extraction of the respiratory waveform. Here we describe the implantation process and necessary recording equipment to effectively conduct intranasal pressure recording of respiration. This is an ideal method for understanding the dynamics of odor sampling in conjunction with olfactory sensory transmission.
Collapse
Affiliation(s)
- Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Pranic NM, Kornbrek C, Yang C, Cleland TA, Tschida KA. Rates of ultrasonic vocalizations are more strongly related than acoustic features to non-vocal behaviors in mouse pups. Front Behav Neurosci 2022; 16:1015484. [PMID: 36600992 PMCID: PMC9805956 DOI: 10.3389/fnbeh.2022.1015484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mouse pups produce. ultrasonic vocalizations (USVs) in response to isolation from the nest (i.e., isolation USVs). Rates and acoustic features of isolation USVs change dramatically over the first two weeks of life, and there is also substantial variability in the rates and acoustic features of isolation USVs at a given postnatal age. The factors that contribute to within age variability in isolation USVs remain largely unknown. Here, we explore the extent to which non-vocal behaviors of mouse pups relate to the within age variability in rates and acoustic features of their USVs. We recorded non-vocal behaviors of isolated C57BL/6J mouse pups at four postnatal ages (postnatal days 5, 10, 15, and 20), measured rates of isolation USV production, and applied a combination of pre-defined acoustic feature measurements and an unsupervised machine learning-based vocal analysis method to examine USV acoustic features. When we considered different categories of non-vocal behavior, our analyses revealed that mice in all postnatal age groups produce higher rates of isolation USVs during active non-vocal behaviors than when lying still. Moreover, rates of isolation USVs are correlated with the intensity (i.e., magnitude) of non-vocal body and limb movements within a given trial. In contrast, USVs produced during different categories of non-vocal behaviors and during different intensities of non-vocal movement do not differ substantially in their acoustic features. Our findings suggest that levels of behavioral arousal contribute to within age variability in rates, but not acoustic features, of mouse isolation USVs.
Collapse
|
14
|
Gutierrez-Castellanos N, Husain BFA, Dias IC, Lima SQ. Neural and behavioral plasticity across the female reproductive cycle. Trends Endocrinol Metab 2022; 33:769-785. [PMID: 36253276 DOI: 10.1016/j.tem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Sex is fundamental for the evolution and survival of most species. However, sex can also pose danger, because it increases the risk of predation and disease transmission, among others. Thus, in many species, cyclic fluctuations in the concentration of sex hormones coordinate sexual receptivity and attractiveness with female reproductive capacity, promoting copulation when fertilization is possible and preventing it otherwise. In recent decades, numerous studies have reported a wide variety of sex hormone-dependent plastic rearrangements across the entire brain, including areas relevant for female sexual behavior. By contrast, how sex hormone-induced plasticity alters the computations performed by such circuits, such that collectively they produce the appropriate periodic switches in female behavior, is mostly unknown. In this review, we highlight the myriad sex hormone-induced neuronal changes known so far, the full repertoire of behavioral changes across the reproductive cycle, and the few examples where the relationship between sex hormone-dependent plasticity, neural activity, and behavior has been established. We also discuss current challenges to causally link the actions of sex hormones to the modification of specific cellular pathways and behavior, focusing on rodents as a model system while drawing a comparison between rodents and humans wherever possible.
Collapse
Affiliation(s)
| | - Basma F A Husain
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Inês C Dias
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
15
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
17
|
Gachomba MJM, Esteve-Agraz J, Caref K, Maroto AS, Bortolozzo-Gleich MH, Laplagne DA, Márquez C. Multimodal cues displayed by submissive rats promote prosocial choices by dominants. Curr Biol 2022; 32:3288-3301.e8. [PMID: 35803272 DOI: 10.1016/j.cub.2022.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Animals often display prosocial behaviors, performing actions that benefit others. Although prosociality is essential for social bonding and cooperation, we still know little about how animals integrate behavioral cues from those in need to make decisions that increase their well-being. To address this question, we used a two-choice task where rats can provide rewards to a conspecific in the absence of self-benefit and investigated which conditions promote prosociality by manipulating the social context of the interacting animals. Although sex or degree of familiarity did not affect prosocial choices in rats, social hierarchy revealed to be a potent modulator, with dominant decision-makers showing faster emergence and higher levels of prosocial choices toward their submissive cage mates. Leveraging quantitative analysis of multimodal social dynamics prior to choice, we identified that pairs with dominant decision-makers exhibited more proximal interactions. Interestingly, these closer interactions were driven by submissive animals that modulated their position and movement following their dominants and whose 50-kHz vocalization rate correlated with dominants' prosociality. Moreover, Granger causality revealed stronger bidirectional influences in pairs with dominant focals and submissive recipients, indicating increased behavioral coordination. Finally, multivariate analysis highlighted body language as the main information dominants use on a trial-by-trial basis to learn that their actions have effects on others. Our results provide a refined understanding of the behavioral dynamics that rats use for action-selection upon perception of socially relevant cues and navigate social decision-making.
Collapse
Affiliation(s)
- Michael Joe Munyua Gachomba
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Joan Esteve-Agraz
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Kevin Caref
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Aroa Sanz Maroto
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Maria Helena Bortolozzo-Gleich
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Diego Andrés Laplagne
- Laboratory of Behavioural Neurophysiology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cristina Márquez
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
18
|
Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol 2022; 20:e3001509. [PMID: 34986157 PMCID: PMC8765613 DOI: 10.1371/journal.pbio.3001509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/18/2022] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli. Intracranial recordings from human olfactory cortex reveal a characteristic spectrotemporal response to odors, including theta, beta and gamma oscillations, and show that high-frequency responses are critical for accurate perception of odors.
Collapse
|
19
|
|
20
|
Kamitakahara AK, Ali Marandi Ghoddousi R, Lanjewar AL, Magalong VM, Wu HH, Levitt P. MET Receptor Tyrosine Kinase Regulates Lifespan Ultrasonic Vocalization and Vagal Motor Neuron Development. Front Neurosci 2021; 15:768577. [PMID: 34803597 PMCID: PMC8600253 DOI: 10.3389/fnins.2021.768577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The intrinsic muscles of the larynx are innervated by the vagal motor nucleus ambiguus (nAmb), which provides direct motor control over vocal production in humans and rodents. Here, we demonstrate in mice using the Phox2b Cre line, that conditional embryonic deletion of the gene encoding the MET receptor tyrosine kinase (MET) in the developing brainstem (cKO) results in highly penetrant, severe deficits in ultrasonic vocalization in early postnatal life. Major deficits and abnormal vocalization patterns persist into adulthood in more than 70% of mice, with the remaining recovering the ability to vocalize, reflecting heterogeneity in circuit restitution. We show that underlying the functional deficits, conditional deletion of Met results in a loss of approximately one-third of MET+ nAmb motor neurons, which begins as early as embryonic day 14.5. The loss of motor neurons is specific to the nAmb, as other brainstem motor and sensory nuclei are unaffected. In the recurrent laryngeal nerve, through which nAmb motor neurons project to innervate the larynx, there is a one-third loss of axons in cKO mice. Together, the data reveal a novel, heterogenous MET-dependence, for which MET differentially affects survival of a subset of nAmb motor neurons necessary for lifespan ultrasonic vocal capacity.
Collapse
Affiliation(s)
- Anna K. Kamitakahara
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Ramin Ali Marandi Ghoddousi
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Valerie M. Magalong
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Hsiao-Huei Wu
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
21
|
Chelule PK, Mbentse A. Rat Infestation in Gauteng Province: Lived Experiences of Kathlehong Township Residents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111280. [PMID: 34769796 PMCID: PMC8583045 DOI: 10.3390/ijerph182111280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Background: Rat infestation is a major public health issue globally, and particularly in poor urban communities in South Africa. Rats pose significant threats to residents in the form of disease spread and sustained physical injuries. The dearth of knowledge about the experiences of affected residents may curtail the initiation of rat control programs. This study aimed to explore the lived experiences of rat infestation among residents of Katlehong Township in Gauteng Province. Methods: This was a qualitative research study where data were gathered from selected community participants from Katlehong Township in Gauteng Province. A semi-structured interview guide was used to collect data through in-depth interviews. The interviews were digitally recorded and transcribed verbatim, and thematic data analysis was conducted using NVivo12 data processing software. The data were presented in themes and quotations that reflect the views of the participants. Results: Exactly 20 community members aged between 18 and 56 years participated in the study, 80% being females. Over half of the participants were unemployed (60%), inclusive of students. Majority of the participants were either Zulu or Xhosa speakers. Several themes emerged from the data, which included the residents’ experiences of rat infestation, troublesome rats, dirty rats, reasons for rat infestation, and sustained physical injuries. Participants intimated that waste in the environment and overcrowding in homes contributed to rodent infestation. Conclusion: Rat infestation remains a problem that causes severe distress among the residents of Katlehong Township. The experiences reported varied from psychological trauma to bite injuries and destruction of household property. Effective rodent control strategies need to be put in place to manage both the physical and mental risks posed by rat infestation in socially underprivileged communities.
Collapse
|
22
|
Volodin IA, Yurlova DD, Ilchenko OG, Volodina EV. Ontogeny of audible squeaks in yellow steppe lemming Eolagurus luteus: trend towards shorter and low-frequency calls is reminiscent of those in ultrasonic vocalization. BMC ZOOL 2021; 6:27. [PMID: 37170373 PMCID: PMC10127023 DOI: 10.1186/s40850-021-00092-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rodents are thought to be produced their human-audible calls (AUDs, below 20 kHz) with phonation mechanism based on vibration of the vocal folds, whereas their ultrasonic vocalizations (USVs, over 20 kHz) are produced with aerodynamic whistle mechanism. Despite of different production mechanisms, the acoustic parameters (duration and fundamental frequency) of AUDs and USVs change in the same direction along ontogeny in collared lemming Dicrostonyx groenlandicus and fat-tailed gerbil Pachyuromys duprasi. We hypothesize that this unidirectional trend of AUDs and USVs is a common rule in rodents and test whether the AUDs of yellow steppe lemmings Eolagurus luteus would display the same ontogenetic trajectory (towards shorter and low-frequency calls) as their USVs, studied previously in the same laboratory colony. RESULTS We examined for acoustic variables 1200 audible squeaks emitted during 480-s isolation-and-handling procedure by 120 individual yellow steppe lemmings (at 12 age classes from neonates to breeding adults, 10 individuals per age class, up to 10 calls per individual, each individual tested once). We found that the ontogenetic pathway of the audible squeaks, towards shorter and lower frequency calls, was the same as the pathway of USVs revealed during 120-s isolation procedure in a previous study in the same laboratory population. Developmental milestone for the appearance of mature patterns of the squeaks (coinciding with eyes opening at 9-12 days of age), was the same as previously documented for USVs. Similar with ontogeny of USVs, the chevron-like squeaks were prevalent in neonates whereas the squeaks with upward contour were prevalent after the eyes opening. CONCLUSION This study confirms a hypothesis of common ontogenetic trajectory of call duration and fundamental frequency for AUDs and USVs within species in rodents. This ontogenetic trajectory is not uniform across species.
Collapse
Affiliation(s)
- Ilya A Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Daria D Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga G Ilchenko
- Department of Small Mammals, Moscow Zoo, Moscow, 123242, Russia
| | - Elena V Volodina
- Department of Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
23
|
Tryon SC, Sakamoto IM, Kellis DM, Kaigler KF, Wilson MA. Individual Differences in Conditioned Fear and Extinction in Female Rats. Front Behav Neurosci 2021; 15:740313. [PMID: 34489657 PMCID: PMC8418198 DOI: 10.3389/fnbeh.2021.740313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
The inability to extinguish a traumatic memory is a key aspect of post-traumatic stress disorder (PTSD). While PTSD affects 10–20% of individuals who experience a trauma, women are particularly susceptible to developing the disorder. Despite this notable female vulnerability, few studies have investigated this particular resistance to fear extinction observed in females. Similar to humans, rodent models of Pavlovian fear learning and extinction show a wide range of individual differences in fear learning and extinction, although female rodents are considerably understudied. Therefore, the present study examined individual differences in fear responses, including freezing behavior and ultrasonic vocalizations (USVs), of female Long–Evans rats during acquisition of fear conditioning and cued fear extinction. Similar to prior studies in males, female rats displayed individual variation in freezing during cued fear extinction and were divided into extinction competent (EC) and extinction resistant (ER) phenotypes. Differences in freezing between ER and EC females were accompanied by shifts in rearing during extinction, but no darting was seen in any trial. Freezing behavior during fear learning did not differ between the EC and ER females. Vocalizations emitted in the 22 and 50 kHz ranges during fear learning and extinction were also examined. Unlike vocalizations seen in previous studies in males, very few 22 kHz distress vocalizations were emitted by female rats during fear acquisition and extinction, with no difference between ER and EC groups. Interestingly, all female rats produced significant levels of 50 kHz USVs, and EC females emitted significantly more 50 kHz USVs than ER rats. This difference in 50 kHz USVs was most apparent during initial exposure to the testing environment. These results suggest that like males, female rodents show individual differences in both freezing and USVs during fear extinction, although females appear to vocalize more in the 50 kHz range, especially during initial periods of exposure to the testing environment, and emit very few of the 22 kHz distress calls that are typically observed in males during fear learning or extinction paradigms. Overall, these findings show that female rodents display fear behavior repertoires divergent from males.
Collapse
Affiliation(s)
- Sarah C Tryon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Iris M Sakamoto
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Devin M Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,Columbia VA Health Care System, Columbia, SC, United States
| |
Collapse
|
24
|
Volodin IA, Dymskaya MM, Smorkatcheva AV, Volodina EV. Ultrasound from underground: cryptic communication in subterranean wild-living and captive northern mole voles (Ellobius talpinus). BIOACOUSTICS 2021. [DOI: 10.1080/09524622.2021.1960191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Margarita M. Dymskaya
- Department of Vertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Elena V. Volodina
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Heinla I, Chu X, Ågmo A, Snoeren E. Rat ultrasonic vocalizations and novelty-induced social and non-social investigation behavior in a seminatural environment. Physiol Behav 2021; 237:113450. [PMID: 33957149 DOI: 10.1016/j.physbeh.2021.113450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
Although rats are known to emit ultrasonic vocalizations (USVs), it remains unclear whether these calls serve an auditory communication purpose. For USVs to be part of communication, the vocal signals will need to be a transfer of information between two or more conspecifics, and with the possibility to induce changes in the behavior of the recipient. Therefore, the aim of our study was to investigate the role of USVs in adult rats' social and non-social investigation strategies when introduced into a large novel environment with unfamiliar conspecifics. We quantified a wide range of social and non-social behaviors in the seminatural environment, which could be affected by subtle signals, including USVs. We found that during the first hour in the seminatural environment the ability to vocalize did not affect how quickly adult rats met each other, their overall social investigation behavior, their passive social behavior nor their aggressive behavior. Furthermore, the non-social exploratory behaviors and behaviors reflecting anxiety/stress-like states were also unaffected. These results demonstrated that a disability to vocalize did not result in significant disadvantages (or changes) compared to intact conspecifics regarding social and non-social behaviors. This suggests that other (multi)sensory cues are more relevant in social interactions than USVs.
Collapse
Affiliation(s)
- Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - Xi Chu
- Department of Psychology, Norwegian University of Science and Technology, Norway
| | - Anders Ågmo
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - Eelke Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Norway.
| |
Collapse
|
26
|
Discomfort-related changes of call rate and acoustic variables of ultrasonic vocalizations in adult yellow steppe lemmings Eolagurus luteus. Sci Rep 2021; 11:14969. [PMID: 34294820 PMCID: PMC8298583 DOI: 10.1038/s41598-021-94489-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Potential of ultrasonic vocalizations (USVs) to reflect a degree of discomfort of a caller is mostly investigated in laboratory rats and mice but poorly known in other rodents. We examined 36 (19 male, 17 female) adult yellow steppe lemmings Eolagurus luteus for presence of USVs during 8-min experimental trials including 2-min test stages of increasing discomfort: isolation, touch, handling and body measure. We found that 33 of 36 individuals vocalized at isolation stage, i.e., without any human impact. For 14 (6 male and 8 female) individuals, a repeated measures approach revealed that increasing discomfort from isolation to handling stages resulted in increase of call power quartiles and fundamental frequency, whereas call rate remained unchanged. We discuss that, in adult yellow steppe lemmings, the discomfort-related changes of USV fundamental frequency and power variables follow the same common rule as the audible calls of most mammals, whereas call rate shows a different trend. These data contribute to research focused on searching the universal acoustic cues to discomfort in mammalian USVs.
Collapse
|
27
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
28
|
Chen J, Markowitz JE, Lilascharoen V, Taylor S, Sheurpukdi P, Keller JA, Jensen JR, Lim BK, Datta SR, Stowers L. Flexible scaling and persistence of social vocal communication. Nature 2021; 593:108-113. [PMID: 33790464 PMCID: PMC9153763 DOI: 10.1038/s41586-021-03403-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022]
Abstract
Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA
| | | | - Varoth Lilascharoen
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sandra Taylor
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Pete Sheurpukdi
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Lisa Stowers
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
29
|
Kozhevnikova JD, Volodin IA, Zaytseva AS, Ilchenko OG, Volodina EV. Pup ultrasonic isolation calls of six gerbil species and the relationship between acoustic traits and body size. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201558. [PMID: 33959325 PMCID: PMC8074943 DOI: 10.1098/rsos.201558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Among Gerbillinae rodents, ultrasonic calls of adults of small-sized species are typically higher frequency than those of adults of large-sized species. This study investigates whether a similar relationship can be found in pups of six gerbil species (Dipodillus campestris, Gerbillus perpallidus, Meriones unguiculatus, Meriones vinogradovi, Sekeetamys calurus and Pachyuromys duprasi). We compared the average values of acoustic variables (duration, fundamental and peak frequency) of ultrasonic calls (20 calls per pup, 1200 in total) recorded from 6- to 10-day-old pups (10 pups per species, 60 in total) isolated for 2 min at 22°C and then weighed and measured for body variables. The longest calls (56 ± 33 ms) were found in the largest species, and the highest frequency calls (74.8 ± 5.59 kHz) were found in the smallest species. However, across species, call duration (ranging from 56 to 159 ms among species) did not display a significant relationship with pup body size; and, among frequency variables, only the minimum fundamental frequency depended on pup body size. Discriminant analysis assigned 100% of calls to the correct species. The effect of species identity on the acoustics was stronger than the effect of body size. We discuss these results with the hypotheses of acoustic adaptation, social complexity, hearing ranges and phylogeny.
Collapse
Affiliation(s)
- Julia D. Kozhevnikova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, 119234 Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, 119234 Moscow, Russia
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexandra S. Zaytseva
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, 119234 Moscow, Russia
- Department of Small Mammals, Moscow Zoo, Moscow, Russia
| | | | - Elena V. Volodina
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
30
|
Zhou FW, Puche AC. Short-Term Plasticity in Cortical GABAergic Synapses on Olfactory Bulb Granule Cells Is Modulated by Endocannabinoids. Front Cell Neurosci 2021; 15:629052. [PMID: 33633545 PMCID: PMC7899975 DOI: 10.3389/fncel.2021.629052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
Olfactory bulb and higher processing areas are synaptically interconnected, providing rapid regulation of olfactory bulb circuit dynamics and sensory processing. Short-term plasticity changes at any of these synapses could modulate sensory processing and potentially short-term sensory memory. A key olfactory bulb circuit for mediating cortical feedback modulation is granule cells, which are targeted by multiple cortical regions including both glutamatergic excitatory inputs and GABAergic inhibitory inputs. There is robust endocannabinoid modulation of excitatory inputs to granule cells and here we explored whether there was also endocannabinoid modulation of the inhibitory cortical inputs to granule cells. We expressed light-gated cation channel channelrhodopsin-2 (ChR2) in GABAergic neurons in the horizontal limb of the diagonal band of Broca (HDB) and their projections to granule cells in olfactory bulb. Selective optical activation of ChR2 positive axons/terminals generated strong, frequency-dependent short-term depression of GABAA-mediated-IPSC in granule cells. As cannabinoid type 1 (CB1) receptor is heavily expressed in olfactory bulb granule cell layer (GCL) and there is endogenous endocannabinoid release in GCL, we investigated whether activation of CB1 receptor modulated the HDB IPSC and short-term depression at the HDB→granule cell synapse. Activation of the CB1 receptor by the exogenous agonist Win 55,212-2 significantly decreased the peak amplitude of individual IPSC and decreased short-term depression, while blockade of the CB1 receptor by AM 251 slightly increased individual IPSCs and increased short-term depression. Thus, we conclude that there is tonic endocannabinoid activation of the GABAergic projections of the HDB to granule cells, similar to the modulation observed with glutamatergic projections to granule cells. Modulation of inhibitory synaptic currents and frequency-dependent short-term depression could regulate the precise balance of cortical feedback excitation and inhibition of granule cells leading to changes in granule cell mediated inhibition of olfactory bulb output to higher processing areas.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
32
|
Urbanus BHA, Peter S, Fisher SE, De Zeeuw CI. Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Sci Rep 2020; 10:21631. [PMID: 33303861 PMCID: PMC7730140 DOI: 10.1038/s41598-020-78531-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
FOXP2 has been identified as a gene related to speech in humans, based on rare mutations that yield significant impairments in speech at the level of both motor performance and language comprehension. Disruptions of the murine orthologue Foxp2 in mouse pups have been shown to interfere with production of ultrasonic vocalizations (USVs). However, it remains unclear which structures are responsible for these deficits. Here, we show that conditional knockout mice with selective Foxp2 deletions targeting the cerebral cortex, striatum or cerebellum, three key sites of motor control with robust neural gene expression, do not recapture the profile of pup USV deficits observed in mice with global disruptions of this gene. Moreover, we observed that global Foxp2 knockout pups show substantive reductions in USV production as well as an overproduction of short broadband noise “clicks”, which was not present in the brain region-specific knockouts. These data indicate that deficits of Foxp2 expression in the cortex, striatum or cerebellum cannot solely explain the disrupted vocalization behaviours in global Foxp2 knockouts. Our findings raise the possibility that the impact of Foxp2 disruption on USV is mediated at least in part by effects of this gene on the anatomical prerequisites for vocalizing.
Collapse
Affiliation(s)
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands. .,Netherlands Institute for Neuroscience, KNAW, 1105 CA, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Zala SM, Nicolakis D, Marconi MA, Noll A, Ruf T, Balazs P, Penn DJ. Primed to vocalize: Wild-derived male house mice increase vocalization rate and diversity after a previous encounter with a female. PLoS One 2020; 15:e0242959. [PMID: 33296411 PMCID: PMC7725367 DOI: 10.1371/journal.pone.0242959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Males in a wide variety of taxa, including insects, birds and mammals, produce vocalizations to attract females. Male house mice emit ultrasonic vocalizations (USVs), especially during courtship and mating, which are surprising complex. It is often suggested that male mice vocalize at higher rates after interacting with a female, but the evidence is mixed depending upon the strain of mice. We conducted a study with wild-derived house mice (Mus musculus musculus) to test whether male courtship vocalizations (i.e., vocalizations emitted in a sexual context) are influenced by a prior direct interaction with a female, and if so, determine how long the effect lasts. We allowed sexually naïve males to directly interact with a female for five minutes (sexual priming), and then we recorded males'vocalizations either 1, 10, 20, or 30 days later when presented with an unfamiliar female (separated by a perforated partition) and female scent. We automatically detected USVs and processed recordings using the Automatic Mouse Ultrasound Detector (A-MUD version 3.2), and we describe our improved version of this tool and tests of its performance. We measured vocalization rate and spectro-temporal features and we manually classified USVs into 15 types to investigate priming effects on vocal repertoire diversity and composition. After sexual priming, males emitted nearly three times as many USVs, they had a larger repertoire diversity, and their vocalizations had different spectro-temporal features (USV length, slope and variability in USV frequency) compared to unprimed controls. Unprimed control males had the most distinctive repertoire composition compared to the primed groups. Most of the effects were found when comparing unprimed to all primed males (treatment models), irrespective of the time since priming. Timepoint models showed that USV length increased 1 day after priming, that repertoire diversity increased 1 and 20 days after priming, and that the variability of USV frequencies was lower 20 and 30 days after priming. Our results show that wild-derived male mice increased the number and diversity of courtship vocalizations if they previously interacted with a female. Thus, the USVs of house mice are not only context-dependent, they depend upon previous social experience and perhaps the contexts of these experiences. The effect of sexual priming on male courtship vocalizations is likely mediated by neuro-endocrine-mechanisms, which may function to advertise males' sexual arousal and facilitate social recognition.
Collapse
Affiliation(s)
- Sarah M. Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | | - Anton Noll
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
34
|
Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020; 15:e0228892. [PMID: 32045453 PMCID: PMC7015103 DOI: 10.1371/journal.pone.0228892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023] Open
Abstract
Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.
Collapse
Affiliation(s)
- Daria D. Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
35
|
Burgdorf JS, Brudzynski SM, Moskal JR. Using rat ultrasonic vocalization to study the neurobiology of emotion: from basic science to the development of novel therapeutics for affective disorders. Curr Opin Neurobiol 2020; 60:192-200. [DOI: 10.1016/j.conb.2019.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
|
36
|
Zhou FW, Shao ZY, Shipley MT, Puche AC. Short-term plasticity in glomerular inhibitory circuits shapes olfactory bulb output. J Neurophysiol 2020; 123:1120-1132. [PMID: 31995427 DOI: 10.1152/jn.00628.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Short-term plasticity is a fundamental synaptic property thought to underlie memory and neural processing. The glomerular microcircuit comprises complex excitatory and inhibitory interactions and transmits olfactory nerve signals to the excitatory output neurons, mitral/tufted cells (M/TCs). The major glomerular inhibitory interneurons, short axon cells (SACs) and periglomerular cells (PGCs), both provide feedforward and feedback inhibition to M/TCs and have reciprocal inhibitory synapses between each other. Olfactory input is episodically driven by sniffing. We hypothesized that frequency-dependent short-term plasticity within these inhibitory circuits could influence signals sent to higher-order olfactory networks. To assess short-term plasticity in glomerular circuits and MC outputs, we virally delivered channelrhodopsin-2 (ChR2) in glutamic acid decarboxylase-65 promotor (GAD2-cre) or tyrosine hydroxylase promoter (TH-cre) mice and selectively activated one of these two populations while recording from cells of the other population or from MCs. Selective activation of TH-ChR2-expressing SACs inhibited all recorded GAD2-green fluorescent protein(GFP)-expressing presumptive PGC cells, and activation of GAD2-ChR2 cells inhibited TH-GFP-expressing SACs, indicating reciprocal inhibitory connections. SAC synaptic inhibition of GAD2-expressing cells was significantly facilitated at 5-10 Hz activation frequencies. In contrast, GAD2-ChR2 cell inhibition of TH-expressing cells was activation-frequency independent. Both SAC and PGC inhibition of MCs also exhibited short-term plasticity, pronounced in the 5-20 Hz range corresponding to investigative sniffing frequency ranges. In paired SAC and olfactory nerve electrical stimulations, the SAC to MC synapse was able to markedly suppress MC spiking. These data suggest that short-term plasticity across investigative sniffing ranges may differentially regulate intra- and interglomerular inhibitory circuits to dynamically shape glomerular output signals to downstream targets.NEW & NOTEWORTHY Short-term plasticity is a fundamental synaptic property that modulates synaptic strength based on preceding activity of the synapse. In rodent olfaction, sensory input arrives episodically driven by sniffing rates ranging from quiescent respiration (1-2 Hz) through to investigative sniffing (5-10 Hz). Here we show that glomerular inhibitory networks are exquisitely sensitive to input frequencies and exhibit plasticity proportional to investigative sniffing frequencies. This indicates that olfactory glomerular circuits are dynamically modulated by episodic sniffing input.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zuo-Yi Shao
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Riede T, Schaefer C, Stein A. Role of deep breaths in ultrasonic vocal production of Sprague-Dawley rats. J Neurophysiol 2020; 123:966-979. [PMID: 31967929 DOI: 10.1152/jn.00590.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male's interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation.NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Charles Schaefer
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Amy Stein
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| |
Collapse
|
38
|
Schilling WP, McGrath MK, Yang T, Glazebrook PA, Faingold CL, Kunze DL. Simultaneous cardiac and respiratory inhibition during seizure precedes death in the DBA/1 audiogenic mouse model of SUDEP. PLoS One 2019; 14:e0223468. [PMID: 31634345 PMCID: PMC6802840 DOI: 10.1371/journal.pone.0223468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023] Open
Abstract
This study was designed to evaluate cardiac and respiratory dysfunction in a mouse model of sudden unexpected death in epilepsy i.e., SUDEP. We simultaneously monitored respiration via plethysmography and the electrocardiogram via telemetry before, during, and after an audiogenic seizure. DBA/1 mice responded to an acoustic stimulus with one or two cycles of circling and jumping before entering a clonic/tonic seizure. This was followed by death unless the mice were resuscitated by mechanical ventilation using room air. During the initial clonic phase, respiration declined and cardiac rhythm is slowed. By the tonic phase, respiration had ceased, atrial P-waves were absent or dissociated from the QRS complex, and heart rate had decreased from 771±11 to 252±16 bpm. Heart rate further deteriorated terminating in asystole unless the mice were resuscitated at the end of the tonic phase which resulted in abrupt recovery of P-waves and a return to normal sinus rhythm, associated with gasping. Interestingly, P-waves were preserved in the mice treated with methylatropine during the pre-ictal period (to block parasympathetic stimulation) and heart rate remained unchanged through the end of the tonic phase (765±8 vs. 748±21 bpm), but as in control, methylatropine treated mice died from respiratory arrest. These results demonstrate that a clonic/tonic seizure in the DBA/1 mouse results in abrupt and simultaneous respiratory and cardiac depression. Although death clearly results from respiratory arrest, our results suggest that seizure activates two central nervous system pathways in this model-one inhibits respiratory drive, whereas the other inhibits cardiac function via vagal efferents. The abrupt and simultaneous recovery of both respiration and cardiac function with mechanical ventilation within an early post-ictal timeframe shows that the vagal discharge can be rapidly terminated. Understanding the central mechanism associated with the abrupt cardiorespiratory dysfunction and equally abrupt recovery may provide clues for therapeutic targets for SUDEP.
Collapse
Affiliation(s)
- William P. Schilling
- Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - Morgan K. McGrath
- Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tianen Yang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Patricia A. Glazebrook
- Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Carl L. Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Diana L. Kunze
- Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
39
|
Haney MM, Hamad A, Woldu HG, Ciucci M, Nichols N, Bunyak F, Lever TE. Recurrent laryngeal nerve transection in mice results in translational upper airway dysfunction. J Comp Neurol 2019; 528:574-596. [PMID: 31512255 DOI: 10.1002/cne.24774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The recurrent laryngeal nerve (RLN) is responsible for normal vocal-fold (VF) movement, and is at risk for iatrogenic injury during anterior neck surgical procedures in human patients. Injury, resulting in VF paralysis, may contribute to subsequent swallowing, voice, and respiratory dysfunction. Unfortunately, treatment for RLN injury does little to restore physiologic function of the VFs. Thus, we sought to create a mouse model with translational functional outcomes to further investigate RLN regeneration and potential therapeutic interventions. To do so, we performed ventral neck surgery in 21 C57BL/6J male mice, divided into two groups: Unilateral RLN Transection (n = 11) and Sham Injury (n = 10). Mice underwent behavioral assays to determine upper airway function at multiple time points prior to and following surgery. Transoral endoscopy, videofluoroscopy, ultrasonic vocalizations, and whole-body plethysmography were used to assess VF motion, swallow function, vocal function, and respiratory function, respectively. Affected outcome metrics, such as VF motion correlation, intervocalization interval, and peak inspiratory flow were identified to increase the translational potential of this model. Additionally, immunohistochemistry was used to investigate neuronal cell death in the nucleus ambiguus. Results revealed that RLN transection created ipsilateral VF paralysis that did not recover by 13 weeks postsurgery. Furthermore, there was evidence of significant vocal and respiratory dysfunction in the RLN transection group, but not the sham injury group. No significant differences in swallow function or neuronal cell death were found between the two groups. In conclusion, our mouse model of RLN injury provides several novel functional outcome measures to increase the translational potential of findings in preclinical animal studies. We will use this model and behavioral assays to assess various treatment options in future studies.
Collapse
Affiliation(s)
- Megan M Haney
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Ali Hamad
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Henok G Woldu
- Department of Health Management & Informatics, University of Missouri, Columbia, Missouri
| | - Michelle Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicole Nichols
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Teresa E Lever
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
40
|
Ultrasonic Vocalizations Emitted during Defensive Behavior Alter the Influence of the Respiratory Rhythm on Brain Oscillatory Dynamics in the Fear Circuit of Rats. eNeuro 2019; 6:6/5/ENEURO.0280-19.2019. [PMID: 31506357 PMCID: PMC6749141 DOI: 10.1523/eneuro.0280-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Highlighted Research Paper:New Insights from 22-kHz Ultrasonic Vocalizations to Characterize Fear Responses: Relationship with Respiration and Brain Oscillatory Dynamics, by Maryne Dupin, Samuel Garcia, Julie Boulanger-Bertolus, Nathalie Buonviso, and Anne-Marie Mouly
Collapse
|
41
|
Tschida K, Michael V, Takatoh J, Han BX, Zhao S, Sakurai K, Mooney R, Wang F. A Specialized Neural Circuit Gates Social Vocalizations in the Mouse. Neuron 2019; 103:459-472.e4. [PMID: 31204083 PMCID: PMC6687542 DOI: 10.1016/j.neuron.2019.05.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Vocalizations are fundamental to mammalian communication, but the underlying neural circuits await detailed characterization. Here, we used an intersectional genetic method to label and manipulate neurons in the midbrain periaqueductal gray (PAG) that are transiently active in male mice when they produce ultrasonic courtship vocalizations (USVs). Genetic silencing of PAG-USV neurons rendered males unable to produce USVs and impaired their ability to attract females. Conversely, activating PAG-USV neurons selectively triggered USV production, even in the absence of any female cues. Optogenetic stimulation combined with axonal tracing indicates that PAG-USV neurons gate downstream vocal-patterning circuits. Indeed, activating PAG neurons that innervate the nucleus retroambiguus, but not those innervating the parabrachial nucleus, elicited USVs in both male and female mice. These experiments establish that a dedicated population of PAG neurons gives rise to a descending circuit necessary and sufficient for USV production while also demonstrating the communicative salience of male USVs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katherine Tschida
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie Michael
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
42
|
New Insights from 22-kHz Ultrasonic Vocalizations to Characterize Fear Responses: Relationship with Respiration and Brain Oscillatory Dynamics. eNeuro 2019; 6:ENEURO.0065-19.2019. [PMID: 31064837 PMCID: PMC6506822 DOI: 10.1523/eneuro.0065-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022] Open
Abstract
Fear behavior depends on interactions between the medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA), and the expression of fear involves synchronized activity in θ and γ oscillatory activities. In addition, freezing, the most classical measure of fear response in rodents, temporally coincides with the development of sustained 4-Hz oscillations in prefrontal-amygdala circuits. Interestingly, these oscillations were recently shown to depend on the animal’s respiratory rhythm, supporting the growing body of evidence pinpointing the influence of nasal breathing on brain rhythms. During fearful states, rats also emit 22-kHz ultrasonic vocalizations (USVs) which drastically affect respiratory rhythm. However, the relationship between 22-kHz USV, respiration, and brain oscillatory activities is still unknown. Yet such information is crucial for a comprehensive understanding of how the different components of fear response collectively modulate rat’s brain neural dynamics. Here, we trained male rats in an odor fear conditioning task, while recording simultaneously local field potentials (LFPs) in BLA, mPFC, and olfactory piriform cortex (PIR), together with USV calls and respiration. We show that USV calls coincide with an increase in delta and gamma power and a decrease in theta power. In addition, during USV emission in contrast to silent freezing, there is no coupling between respiratory rate and delta frequency, and the modulation of fast oscillations amplitude relative to the phase of respiration is modified. We propose that sequences of USV calls could result in a differential gating of information within the network of structures sustaining fear behavior, thus potentially modulating fear expression/memory.
Collapse
|
43
|
Perl O, Ravia A, Rubinson M, Eisen A, Soroka T, Mor N, Secundo L, Sobel N. Human non-olfactory cognition phase-locked with inhalation. Nat Hum Behav 2019; 3:501-512. [PMID: 31089297 DOI: 10.1038/s41562-019-0556-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 01/29/2023]
Abstract
Olfactory stimulus acquisition is perfectly synchronized with inhalation, which tunes neuronal ensembles for incoming information. Because olfaction is an ancient sensory system that provided a template for brain evolution, we hypothesized that this link persisted, and therefore nasal inhalations may also tune the brain for acquisition of non-olfactory information. To test this, we measured nasal airflow and electroencephalography during various non-olfactory cognitive tasks. We observed that participants spontaneously inhale at non-olfactory cognitive task onset and that such inhalations shift brain functional network architecture. Concentrating on visuospatial perception, we observed that nasal inhalation drove increased task-related brain activity in specific task-related brain regions and resulted in improved performance accuracy in the visuospatial task. Thus, mental processes with no link to olfaction are nevertheless phase-locked with nasal inhalation, consistent with the notion of an olfaction-based template in the evolution of human brain function.
Collapse
Affiliation(s)
- Ofer Perl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel. .,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
| | - Aharon Ravia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Mica Rubinson
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Ami Eisen
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Nofar Mor
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Lavi Secundo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel. .,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
44
|
Sanchez L, Ohdachi SD, Kawahara A, Echenique‐Diaz LM, Maruyama S, Kawata M. Acoustic emissions of Sorex unguiculatus (Mammalia: Soricidae): Assessing the echo-based orientation hypothesis. Ecol Evol 2019; 9:2629-2639. [PMID: 30891204 PMCID: PMC6405488 DOI: 10.1002/ece3.4930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/31/2018] [Indexed: 11/19/2022] Open
Abstract
Shrew species have been proposed to utilize an echo-based orientation system to obtain additional acoustic information while surveying their environments. This system has been supported by changes in vocal emission rates when shrews encounter different habitats of varying complexity, although detailed acoustic features in this system have not been reported. In this study, behavioral experiments were conducted using the long-clawed shrew (Sorex unguiculatus) to assess this orientation system. Three experimental conditions were set, two of which contained obstacles. Short-click, noisy, and different types of tonal calls in the audible-to-ultrasonic frequency range were recorded under all experimental conditions. The results indicated that shrews emit calls more frequently when they are facing obstacles or exploring the experimental environment. Shrews emitted clicks and several different types of tonal calls while exploring, and modified the use of different types of calls for varying behavior. Furthermore, shrews modified the dominant frequency and duration of squeak calls for different types of obstacles, that is, plants and acrylic barriers. The vocalizations emitted at short inter-pulse intervals could not be observed when shrews approached these obstacles. These results are consistent with the echo-based orientation hypothesis according to which shrews use a simple echo-orientation system to obtain information from their surrounding environments, although further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Lida Sanchez
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Atsushi Kawahara
- Hokkaido Regional Environment OfficeMinistry of EnvironmentSapporoJapan
| | | | | | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
45
|
Okobi DE, Banerjee A, Matheson AMM, Phelps SM, Long MA. Motor cortical control of vocal interaction in neotropical singing mice. Science 2019; 363:983-988. [PMID: 30819963 DOI: 10.1126/science.aau9480] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/23/2019] [Indexed: 11/29/2024]
Abstract
Like many adaptive behaviors, acoustic communication often requires rapid modification of motor output in response to sensory cues. However, little is known about the sensorimotor transformations that underlie such complex natural behaviors. In this study, we examine vocal exchanges in Alston's singing mouse (Scotinomys teguina). We find that males modify singing behavior during social interactions on a subsecond time course that resembles both traditional sensorimotor tasks and conversational speech. We identify an orofacial motor cortical region and, via a series of perturbation experiments, demonstrate a hierarchical control of vocal production, with the motor cortex influencing the pacing of singing behavior on a moment-by-moment basis, enabling precise vocal interactions. These results suggest a systems-level framework for understanding the sensorimotor transformations that underlie natural social interactions.
Collapse
Affiliation(s)
- Daniel E Okobi
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Arkarup Banerjee
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Andrew M M Matheson
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Steven M Phelps
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
46
|
Gerson CA, Mac Cionnaith CE, Quintana GR, Pfaus JG. Effects of ovarian hormones on the emission of 50-kHz ultrasonic vocalizations during distributed clitoral stimulation in the rat. Horm Behav 2019; 109:1-9. [PMID: 30690029 DOI: 10.1016/j.yhbeh.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Fifty-kHz ultrasonic vocalizations (USVs) are emitted by adult rats during appetitive phases of behavior in response to stimuli thought to be associated with a positive affective state. In particular, 50-kHz USVs with rapid frequency oscillations, known as trills and flat-trills, in which these oscillations are flanked by a monotonic portion, are together positively correlated with appetitive behaviors such as rough and tumble play, drug and natural reward, and mating. Female rats produce 50-kHz USVs during a variety of sexual contexts, yet data are still vague as female sexual behavior is seldom studied on its own. Distributed clitoral stimulation (CLS) offers a unique approach to investigating female 50-kHz USVs as it mimics stimulation received during mating. Although CLS induces a sexual reward state, it is unknown whether CLS elicits trills and flat-trills. We addressed this question using eight ovariectomized rats, we investigated whether ovarian hormones augmented these call subtypes in response to CLS. The combined and separate effects of estradiol benzoate (EB) and progesterone (P), and oil vehicle were assessed through comparison of these call subtypes between CLS and inter-CLS interval. We found that CLS with EB + P significantly increased call duration and rate, lowered peak frequency, and widened the bandwidth of trills. Flat-trills showed a similar pattern except for call duration. Call distribution during the CLS and inter-CLS interval suggest that trill and flat-trills may be indicative of both anticipatory and sexual reward.
Collapse
Affiliation(s)
- Christine A Gerson
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada.
| | - Conall E Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Gonzalo Renato Quintana
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada.
| |
Collapse
|
47
|
Kurnikova A, Deschênes M, Kleinfeld D. Functional brain stem circuits for control of nose motion. J Neurophysiol 2019; 121:205-217. [PMID: 30461370 PMCID: PMC6383659 DOI: 10.1152/jn.00608.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/22/2022] Open
Abstract
Rodents shift their nose from side to side when they actively explore and lateralize odors in the space. This motor action is driven by a pair of muscles, the deflector nasi. We studied the premotor control of this motion. We used replication-competent rabies virus to transsynaptically label inputs to the deflector nasi muscle and find putative premotor labeling throughout the parvocellular, intermediate, and gigantocellular reticular formations, as well as the trigeminal nuclei, pontine reticular formation, midbrain reticular formation, red nucleus, and superior colliculus. Two areas with extensive labeling were analyzed for their impact on nose movement. One area is in the reticular formation caudal to the facial motor nucleus and is denoted the nose retrofacial area. The second is in the caudal part of the intermediate reticular region near the oscillator for whisking (the nose IRt). Functionally, we find that optogenetic activation of glutamatergic cells in both areas drives deflection of the nose. Ablation of cells in the nose retrofacial area, but not the nose IRt, impairs movement of the nose in response to the presentation of odorants but otherwise leaves movement unaffected. These data suggest that the nose retrofacial area is a conduit for a sensory-driven orofacial motor action. Furthermore, we find labeling of neurons that are immediately upstream of premotor neurons in the preBötzinger complex that presumably synchronizes a small, rhythmic component of nose motion to breathing. NEW & NOTEWORTHY We identify two previously undescribed premotor areas in the medulla that control deflection of the nose. This includes a pathway for directed motion of the nose in response to an odorant.
Collapse
Affiliation(s)
- Anastasia Kurnikova
- Neurosciences Graduate Program, University of California San Diego , La Jolla, California
| | - Martin Deschênes
- Centre de Recherche Université Laval Robert-Giffard , Quebec City, Quebec , Canada
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California
- Section of Neurobiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
48
|
Castellucci GA, Calbick D, McCormick D. The temporal organization of mouse ultrasonic vocalizations. PLoS One 2018; 13:e0199929. [PMID: 30376572 PMCID: PMC6207298 DOI: 10.1371/journal.pone.0199929] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
House mice, like many tetrapods, produce multielement calls consisting of individual vocalizations repeated in rhythmic series. In this study, we examine the multielement ultrasonic vocalizations (USVs) of adult male C57Bl/6J mice and specifically assess their temporal properties and organization. We found that male mice produce two classes of USVs which display unique temporal features and arise from discrete respiratory patterns. We also observed that nearly all USVs were produced in repetitive series exhibiting a hierarchical organization and a stereotyped rhythmic structure. Furthermore, series rhythmicity alone was determined to be sufficient for the mathematical discrimination of USVs produced by adult males, adult females, and pups, underscoring the known importance of call timing in USV perception. Finally, the gross spectrotemporal features of male USVs were found to develop continuously from birth and stabilize by P50, suggesting that USV production in infants and adults relies on common biological mechanisms. In conclusion, we demonstrate that the temporal organization of multielement mouse USVs is both stable and informative, and we propose that call timing be explicitly assessed when examining mouse USV production. Furthermore, this is the first report of putative USV classes arising from distinct articulatory patterns in mice, and is the first to empirically define multielement USV series and provide a detailed description of their temporal structure and development. This study therefore represents an important point of reference for the analysis of mouse USVs, a commonly used metric of social behavior in mouse models of human disease, and furthers the understanding of vocalization production in an accessible mammalian species.
Collapse
Affiliation(s)
- Gregg A. Castellucci
- Neuroscience Institute, New York University School of Medicine, New York, NY, United States of America
- Haskins Laboratories, New Haven, CT, United States of America
- Department of Genetics, Yale University of Medicine, New Haven, CT, United States of America
| | - Daniel Calbick
- Department of Genetics, Yale University of Medicine, New Haven, CT, United States of America
| | - David McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
- Department of Biology, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
49
|
Ashbrook DG, Roy S, Clifford BG, Riede T, Scattoni ML, Heck DH, Lu L, Williams RW. Born to Cry: A Genetic Dissection of Infant Vocalization. Front Behav Neurosci 2018; 12:250. [PMID: 30420800 PMCID: PMC6216097 DOI: 10.3389/fnbeh.2018.00250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
Infant vocalizations are one of the most fundamental and innate forms of behavior throughout avian and mammalian orders. They have a critical role in motivating parental care and contribute significantly to fitness and reproductive success. Dysregulation of these vocalizations has been reported to predict risk of central nervous system pathologies such as hypoxia, meningitis, or autism spectrum disorder. Here, we have used the expanded BXD family of mice, and a diallel cross between DBA/2J and C57BL/6J parental strains, to begin the process of genetically dissecting the numerous facets of infant vocalizations. We calculate heritability, estimate the role of parent-of-origin effects, and identify novel quantitative trait loci (QTLs) that control ultrasonic vocalizations (USVs) on postnatal days 7, 8, and 9; a stage that closely matches human infants at birth. Heritability estimates for the number and frequency of calls are low, suggesting that these traits are under high selective pressure. In contrast, duration and amplitude of calls have higher heritabilities, indicating lower selection, or their importance for kin recognition. We find suggestive evidence that amplitude of infant calls is dependent on the maternal genotype, independent of shared genetic variants. Finally, we identify two loci on Chrs 2 and 14 influencing call frequency, and a third locus on Chr 8 influencing the amplitude of vocalizations. All three loci contain strong candidate genes that merit further analysis. Understanding the genetic control of infant vocalizations is not just important for understanding the evolution of parent–offspring interactions, but also in understanding the earliest innate behaviors, the development of parent–offspring relations, and the early identification of behavioral abnormalities.
Collapse
Affiliation(s)
- David George Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Snigdha Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany G Clifford
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tobias Riede
- Department of Physiology, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
50
|
Burke K, Screven LA, Dent ML. CBA/CaJ mouse ultrasonic vocalizations depend on prior social experience. PLoS One 2018; 13:e0197774. [PMID: 29874248 PMCID: PMC5991354 DOI: 10.1371/journal.pone.0197774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 01/31/2023] Open
Abstract
Mouse ultrasonic vocalizations (USVs) have variable spectrotemporal features, which researchers use to parse them into different categories. USVs may be important for communication, but it is unclear whether the categories that researchers have developed are relevant to the mice. Instead, other properties such as the number, rate, peak frequency, or bandwidth of the vocalizations may be important cues that the mice are using to interpret the nature of the social interaction. To investigate this, a comprehensive catalog of the USVs that mice are producing across different social contexts must be created. Forty male and female adult CBA/CaJ mice were recorded in isolation for five minutes following either a one-hour period of isolation or an exposure to a same- or opposite-sex mouse. Vocalizations were separated into nine categories based on the frequency composition of each USV. Additionally, USVs were quantified based on the bandwidth, duration, peak frequency, total number, and proportion of vocalizations produced. Results indicate that mice differentially produce their vocalizations across social encounters. There were significant differences in the number of USVs that mice produce across exposure conditions, the proportional probability of producing the different categories of USVs across sex and conditions, and the features of the USVs across conditions. In sum, there are sex-specific differences in production of USVs by laboratory mice, and prior social experiences matter for vocalization production. Furthermore, this study provides critical evidence that female mice probably produce vocalizations in opposite-sex interactions, which is important because this is an often overlooked variable in mouse communication research.
Collapse
Affiliation(s)
- Kali Burke
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, United States of America
| | - Laurel A. Screven
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, United States of America
| | - Micheal L. Dent
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|