1
|
Chen Z, Yan Z, Xia S, Wang K, Han Q, Zhou M, Wang D, Yin J, Yin Y. Dietary Isatidis Root Residue Improves Diarrhea and Intestinal Function in Weaned Piglets. Animals (Basel) 2024; 14:2776. [PMID: 39409729 PMCID: PMC11475266 DOI: 10.3390/ani14192776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Weaning stress can trigger diarrhea, cause intestinal damage, and disrupt the intestinal flora of piglets, ultimately resulting in retarded growth or even the death of the animals. Traditional Chinese medicine residues encompass numerous bioactive compounds and essential nutrients; however, their efficient utilization remains a challenge. Consequently, our study sought to explore the impact of traditional Chinese medicine residues, specifically Isatidis Root residue (IRR), on the growth performance, intestinal function, and occurrence of weaning diarrhea in newly weaned piglets. Forty healthy, castrated Duroc × Landrace × Yorkshire males, weaned at 21 days old and exhibiting similar body conditions, were randomly allocated into five groups, with eight piglets in each group. The results indicated that the dietary inclusion of IRR at concentrations ranging from 0.5% to 4.0% notably decreased the incidence of diarrhea in weaned piglets compared to the control group (p < 0.05). Serum LDL-C and globulin (GLB) contents were reduced in response to dietary IRR concentrations (0.5% to 4.0%), while serum albumin (ALB) and albumin/globulin (A/G) contents were enhanced (p < 0.05). Dietary 0.5%, 1.0%, and 2.0% IRR resulted in significant increases in villus height (VH) and villus height/crypt depth (V/C) ratios in the jejunum, V/C ratios in the ileum, and the number of villi goblet cells both in the jejunum and ileum. IRR also led to a significant decrease in the crypt depth (CD) of the jejunum and ileum (p < 0.05). Furthermore, the expression of IL-6 in the jejunum was significantly increased in IRR-fed piglets (0.5% to 4.0%) (p < 0.05). IRR demonstrated inhibitory effects on harmful bacteria in the gastrointestinal microbiome, including Campylobacter, Actinobacillus minor, and Ralstonia pickettii, indicating its broad-spectrum bacteriostatic properties. In conclusion, dietary IRR alleviated diarrhea in weaned piglets and improved gut function and microbial compositions.
Collapse
Affiliation(s)
- Zhong Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
| | - Zenghao Yan
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou 510515, China; (Z.Y.); (D.W.)
| | - Siting Xia
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
| | - Kaijun Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
| | - Qi Han
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou 510515, China; (Z.Y.); (D.W.)
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (S.X.); (K.W.); (Q.H.); (M.Z.); (J.Y.)
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Guevara RD, López-Vergé S, Pastor JJ, Manteca X, Tedo G, Llonch P. When the neighbors are noisy: effect of social challenge in collateral pens of stressed animals. Front Vet Sci 2024; 11:1433628. [PMID: 39376919 PMCID: PMC11457045 DOI: 10.3389/fvets.2024.1433628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Regrouping practices are frequent in pig production, altering hierarchy and triggering aggressive behaviors. The present study aimed to investigate the physiological responses of piglets to an experimental model designed to induce stress through systematic social mixing in two trials. In Trial A, a total of 144 crossbred piglets (25 days postweaning) housed in one room within 36 pens (four piglets/pen) were used and randomly assigned to either a control group (piglets maintained in their pen, Ctrl-A) or a social challenge group (piglets mixed, SC-A). In Trial B, the same number of animals (33 days postweaning) and crossbreed line was used, and each piglet was assigned either to a control group (Ctrl-B) or a social challenge group (SC-B) in two independent rooms (rooms Ctrl and SC, 12 pens/ room, six piglets/pen). The social challenge consisted of daily moves of three out of four pen mates and five out of six pen mates, for Trials A and B, respectively. In the Ctrl groups, all piglets stayed in their original pen. Before the 1st mixing day and at the end of the 3rd mixing day, saliva (cortisol concentration) and blood (cortisol concentration changes, hemogram, and immunologic activation) samples were collected from two random piglets per pen. Skin lesion scores of all piglets were also recorded on the front, middle, and rear body regions. In Trial A, the total skin lesions score was higher in the SC-A group compared to the Ctrl-A group after the social challenge (0.53 vs. 0.17; p < 0.05), but an unexpected increase between sampling days in the Ctrl-A piglets (0.06 vs. 0.17; p < 0.05) was also recorded, suggesting that Ctrl-A pigs showed similar aggressivity levels to the SC-A group. Hematological parameters hemoglobin, red blood cell counts, and leukocyte counts present similar changes in both treatment groups after the social challenge. Contrarily, in Trial B, the lesion score only increased in the piglets in room SC (0.08 vs. 0.34; p < 0.05). Results suggest that stable groups may show aggressive behaviors if they are in the same room with socially challenged pigs. Thus, the physical separation of treatment groups in social stress studies is recommended.
Collapse
Affiliation(s)
- Raúl David Guevara
- AWEC Advisors S.L., Animal Welfare Education Centre (AWEC), Cerdanyola del Vallès, Spain
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi López-Vergé
- Animal Science Innovation Division, Lucta, Cerdanyola del Vallès, Spain
| | - Jose J. Pastor
- Animal Science Innovation Division, Lucta, Cerdanyola del Vallès, Spain
| | - Xavier Manteca
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Tedo
- Animal Science Innovation Division, Lucta, Cerdanyola del Vallès, Spain
| | - Pol Llonch
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Kasper C. Animal board invited review: Heritability of nitrogen use efficiency in fattening pigs: Current state and possible directions. Animal 2024; 18:101225. [PMID: 39013333 DOI: 10.1016/j.animal.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Pork, an important component of human nutrition worldwide, contributes considerably to anthropogenic nitrogen and greenhouse gas emissions. Reducing the environmental impact of pig production is therefore essential. This can be achieved through system-level strategies, such as optimising resource use, improving manure management and recycling leftovers from human food production, and at the individual animal level by maintaining pig health and fine-tuning dietary protein levels to individual requirements. Breeding, coupled with nutritional strategies, offers a lasting solution to improve nitrogen use efficiency (NUE) - the ratio of nitrogen retained in the body to nitrogen ingested. With a heritability as high as 0.54, incorporating NUE into breeding programmes appears promising. Nitrogen use efficiency involves multiple tissues and metabolic processes, and is influenced by the environment and individual animal characteristics, including its genetic background. Heritable genetic variation in NUE may therefore occur in many different processes, including the central nervous regulation of feed intake, the endocrine system, the gastrointestinal tract where digestion and absorption take place, and the composition of the gut microbiome. An animal's postabsorptive protein metabolism might also harbour important genetic variation, especially in the maintenance requirements of tissues and organs. Precise phenotyping, although challenging and costly, is essential for successful breeding. Various measurement techniques, such as imaging techniques and mechanistic models, are being explored for their potential in genetic analysis. Despite the difficulties in phenotyping, some studies have estimated the heritability and genetic correlations of NUE. These studies suggest that direct selection for NUE is more effective than indirect methods through feed efficiency. The complexity of NUE indicates a polygenic trait architecture, which has been confirmed by genome-wide association studies that have been unable to identify significant quantitative trait loci. Building sufficiently large reference populations to train genomic prediction models is an important next step. However, this will require the development of truly high-throughput phenotyping methods. In conclusion, breeding pigs with higher NUE is both feasible and necessary but will require increased efforts in high-throughput phenotyping and improved genome annotation.
Collapse
Affiliation(s)
- C Kasper
- Animal GenoPhenomics, Agroscope, Posieux, Switzerland.
| |
Collapse
|
4
|
Nguyen TQ, Martínez-Álvaro M, Lima J, Auffret MD, Rutherford KMD, Simm G, Dewhurst RJ, Baima ET, Roehe R. Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Front Microbiol 2023; 14:1197371. [PMID: 38029169 PMCID: PMC10670831 DOI: 10.3389/fmicb.2023.1197371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition. The application of the porcine stress model resulted in a significant increase in salivary cortisol concentration over the course of the trial and decreased growth performance and appetite. The applied social stress resulted in 32 bacteria being either enriched (13) or depleted (19) in the intestine and feces. Fecal samples showed a greater number of microbial genera influenced by stress than caecum or colon samples. Our trial revealed that the opportunistic pathogens Treponema and Clostridium were enriched in colonic and fecal samples from stressed pigs. Additionally, genera such as Streptococcus, Parabacteroides, Desulfovibrio, Terrisporobacter, Marvinbryantia, and Romboutsia were found to be enriched in response to social stress. In contrast, the genera Prevotella, Faecalibacterium, Butyricicoccus, Dialister, Alloprevotella, Megasphaera, and Mitsuokella were depleted. These depleted bacteria are of great interest because they synthesize metabolites [e.g., short-chain fatty acids (SCFA), in particular, butyrate] showing beneficial health benefits due to inhibitory effects on pathogenic bacteria in different animal species. Of particular interest are Dialister and Faecalibacterium, as their depletion was identified in a human study to be associated with inferior quality of life and depression. We also revealed that some pigs were more susceptible to pathogens as indicated by large enrichments of opportunistic pathogens of Clostridium, Treponema, Streptococcus and Campylobacter. Generally, our results provide further evidence for the microbiota-gut-brain axis as indicated by an increase in cortisol concentration due to social stress regulated by the hypothalamic-pituitary-adrenal axis, and a change in microbiota composition, particularly of bacteria known to be associated with pathogenicity and mental health diseases.
Collapse
Affiliation(s)
- Tuan Q. Nguyen
- Scotland’s Rural College, Edinburgh, United Kingdom
- Department of Animal Breeding, Faculty of Animal Science and Veterinary Medicine, Nong Lam University – Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Joana Lima
- Scotland’s Rural College, Edinburgh, United Kingdom
| | | | | | - Geoff Simm
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eric T. Baima
- Zoetis Inc., Parsippany-Troy Hills, NJ, United States
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Jaillardon L, Kaiser M. Pathogenesis of the crosstalk between reproductive function and stress in animals - part 2: Prolactin, thyroid, inflammation and oxidative stress. Reprod Domest Anim 2023; 58 Suppl 2:137-143. [PMID: 37724656 DOI: 10.1111/rda.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Stress has a significant impact on reproductive health and fertility in both humans as well as various animal species. In particular, chronic stress can disrupt the delicate balance of the hormonal system that regulates reproductive function, leading to a variety of reproductive disorders and fertility issues. Beside the action of the hypothalamic-pituitary-adrenal (HPA) system and the sympatho-adrenomedullary system (SAM), other subsequent mechanisms have been incriminated. Thus, stress has also been associated with increased prolactin level, resulting in an inhibition of the hypothalamo-pituitary-gonadal (HPG) system leading to several reproductive disorders. Thyroid function is inhibited during chronic stress, and therefore considered an important regulator of reproductive function. Thus, and in particular by interfering with the HPA system, stress-induced immune dysregulation can have adverse effects on reproduction. In addition, oxidative stress and inflammation have been proposed as potential mechanisms by which chronic stress affects reproductive function. This is caused by an increase in reactive oxygen species (ROS) production that has a harmful effect on cells. Furthermore, inflammation can lead to tissue damage and scarring, which can affect fertility. The present review completes the complex mechanism linking stress and reproduction through the current knowledge in various animal species in a comparative point of view.
Collapse
Affiliation(s)
- Laetitia Jaillardon
- Oniris, LabOniris, Nantes Atlantic National College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| | - Marianne Kaiser
- Management and Modelling, Department of Animal and Veterinary Sciences, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
6
|
Oliviero C. Offspring of hyper prolific sows: Immunity, birthweight, and heterogeneous litters. Mol Reprod Dev 2023; 90:580-584. [PMID: 35460115 DOI: 10.1002/mrd.23572] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023]
Abstract
In Europe, in the last 3 decades, there has been a constant increase in litter size due to the use of superior maternal line genetics. Those sows giving birth to more piglets than their average number of functional teats are identified as hyperprolific sows (HPS). The large number of piglets born within a litter implies not only a challenge for their access to vital resources like colostrum and milk but has a direct effect on their average birth weight and heterogeneity. These conditions are detrimental to piglets' vitality in the first hours of life and also to their immunity development. An exceptionally large number of growing fetuses in HPS leads to intrauterine crowding and consequently to an increased number of piglets suffering from intrauterine growth retardation (IUGR), which put piglets at a high risk of mortality after birth and up to later stages of life. Increased heterogeneity of birth weight within large litters increases the competition for colostrum intake, with the smaller piglets being less competitive and vital, and therefore affecting negatively their immunity. Low birth weight, long interval to reach the udder, and long duration of farrowing, all have negative effects on piglets' immunoglobulin absorption. In HPS litters, colostrum management should be focused on low birth weight piglets, anticipating their impaired capabilities associated with ingesting adequate colostrum, by shortening the time to reach the udder and reducing competition among piglets. The vitality of neonate piglets, especially low in birth weight or affected by IUGR should be enhanced to improve their body temperature and their early life stage energy metabolism.
Collapse
Affiliation(s)
- Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Zappaterra M, Faucitano L, Nanni Costa L. Road Transport: A Review of Its Effects on the Welfare of Piglets. Animals (Basel) 2023; 13:ani13101604. [PMID: 37238033 DOI: 10.3390/ani13101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this review is to present the best available scientific knowledge on key effects of pre-transport and transport factors influencing the response of piglets to transport stress and post-transport recovery. To date, research on piglet transportation particularly focused on the effects of season (i.e., heat and cold stress), vehicle design features (ventilation type and deck/compartment location), space allowance and transport duration, and piglet genetics. More specifically, in this review the effect of transport duration has been dealt with through its impact on death rate, behaviour and physiological response, and feeling of hunger and thirst. Based on the available literature, clear conclusions can be drawn on the vulnerability of piglets to heat stress during transport. Both short and long transportation have an effect on piglet welfare, with effects being biased by the genetic background, ambient conditions and vehicle design. Further studies investigating the impact of factors such as vehicle design, truck stocking density and environment, piglet genetic background, and weaning age are needed.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Luigi Faucitano
- Agriculture and Agri-Food Canada (AAFC), Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada
| | - Leonardo Nanni Costa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| |
Collapse
|
8
|
Fermented Chinese Herbal Medicine Promoted Growth Performance, Intestinal Health, and Regulated Bacterial Microbiota of Weaned Piglets. Animals (Basel) 2023; 13:ani13030476. [PMID: 36766365 PMCID: PMC9913397 DOI: 10.3390/ani13030476] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
To investigate the effects of fermented Chinese herbal medicine on growth performance, diarrhea rate, nutrient digestibility, and intestinal health of weaned piglets, and to provide the theoretical basis for applying fermented Chinese herbal medicines to weaned piglet production, a total of 162 weaned and castrated piglets at 25 days of age (Duroc × Landrace × Yorkshire, half male and half female) with an initial body weight of 7.77 ± 0.03 kg were randomly divided into the following three groups according to the principle of similar body weight: basal diet (CON) group, basal diet + 3 kg/t fermented Chinese herbal medicine (LFHM) group, and basal diet + 5 g/kg fermented Chinese herbal medicine (HFHM) group. Each group underwent six replicates and there were nine piglets in each replicate. The experiment lasted 24 days, i.e., 3 days for preliminary feeding, and 21 days for the experiment. From Day 1 of the experiment, the piglets were observed and recorded for diarrhea each day. As compared with the CON group, the results indicated: Following the addition of fermented Chinese herbal medicine, the piglets in the LFHM and HFHM groups increased final weight (FW); average daily feed intake (ADFI); average daily gain (ADG) (p < 0.01); apparent digestibility of crude protein (CP) (p < 0.05); as well as chymotrypsin, α-amylase, and lipase activities (p < 0.01). In addition, α-amylase activity in the LFHM group was higher than that in the HFHM group (p < 0.05); chymotrypsin activity in the LFHM group was lower than that in the HFHM group (p < 0.05); as compared with the CON group, the LFHM and the HFHM increased villus height (VH) and crypt depth (CD) in piglet jejunum; isovaleric acid concentration with the HFHM was higher than those with the CON and the LFHM (p < 0.05), but butyrate concentration with the HFFM was lower than those with the CON and the LFHM (p < 0.05). The high-throughput 16S rRNA sequencing of intestinal microbiota results showed that the LFHM and the HFHM affected the microbial α diversity index in weaned piglet colon (p < 0.01). In conclusion, fermented Chinese herbs can improve the growth performance of weaned piglets by promoting the secretion of intestinal digestive enzymes, changing intestinal microbial diversity, regulating the contents of intestinal short chain fatty acids (SCFAs), promoting intestinal health, and improving nutrients digestibility.
Collapse
|
9
|
da Fonseca de Oliveira AC, Webber SH, Ramayo-Caldas Y, Dalmau A, Costa LB. Hierarchy Establishment in Growing Finishing Pigs: Impacts on Behavior, Growth Performance, and Physiological Parameters. Animals (Basel) 2023; 13:292. [PMID: 36670831 PMCID: PMC9854468 DOI: 10.3390/ani13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In recent years, an increased number of studies have dealt with the analysis of social dominance related to animal behavior, physiology, and performance. This study aimed to investigate whether hierarchical ranking affects the coping style, non-social behavior during open field and novel object tests, performance, and physiological parameters of pigs. A total of 48 growing pigs (24 barrows and 24 females) were mixed three times during the growing-finishing period. The social and non-social behaviors of pigs were directly noted, and three behavioral tests were performed during the experimental period. Performance and physiological parameters were also recorded. Statistical analysis considered hierarchical classification (dominant vs. intermediary vs. subordinate) and p-values ≤ 0.05 were considered significant. After three regroupings, the pigs in different hierarchical classifications showed no change in hair cortisol values and open-field and novel object tests. Mean corpuscular hemoglobin concentration and leukocyte values increased in intermediary pigs, and the lowest counts were found in pigs classified as dominants. Furthermore, dominant pigs visited the feeder more but spent shorter time there compared to subordinate and intermediary pigs. Our results suggest that hierarchical classification influenced feeding behavior and physiological parameters without affecting cortisol values and growth performance, demonstrating a possible compensation skill.
Collapse
Affiliation(s)
| | - Saulo Henrique Webber
- Graduate Program of Animal Science, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba 80215-901, Brazil
| | - Yuliaxis Ramayo-Caldas
- Institut de Recerca i Tecnologia Agroalimentàries-IRTA, Porcine Control and Evaluation, 17121 Monells, Spain
| | - Antoni Dalmau
- Institut de Recerca i Tecnologia Agroalimentàries-IRTA, Porcine Control and Evaluation, 17121 Monells, Spain
| | - Leandro Batista Costa
- Graduate Program of Animal Science, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba 80215-901, Brazil
| |
Collapse
|
10
|
Gimsa U, Brückmann R, Tuchscherer A, Tuchscherer M, Kanitz E. Early-life maternal deprivation affects the mother-offspring relationship in domestic pigs, as well as the neuroendocrine development and coping behavior of piglets. Front Behav Neurosci 2022; 16:980350. [PMID: 36275850 PMCID: PMC9582528 DOI: 10.3389/fnbeh.2022.980350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Early-life adversity may have programming effects on the psychological and physiological development of offspring. Domestic pigs (Sus scrofa) are an excellent model species for studying these effects because of their many physiological similarities to humans. Piglets from 10 sows were subjected to daily 2-h maternal deprivation on postnatal days (PND) 2–15 alone (DA) or in a group of littermates (DG). Control piglets (C) from 10 sows stayed with their mothers. Mother-offspring interaction, milk oxytocin, and cortisol were analyzed. An open-field/novel-object (OF/NO) test was performed with piglets on PNDs 16 and 40. Plasma cortisol and immune parameters were determined on PND 5 and 16. Two piglets from each group and sow were sacrificed on PND 20 and stress-related gene expression in the limbic system and prefrontal cortex (PFC), as well as splenic lymphocyte proliferative abilities, were examined. The milk cortisol of sows increased during the first separation of mother and offspring on the second day of lactation, whereas milk oxytocin did not change. The increase in cortisol by the OF/NO test on PND 16 was greater in C piglets than in DA and DG ones. DA piglets showed less agitated behavior than DG and C piglets in the OF/NO test at PND 16, but appeared more fearful. On PND 40, DA piglets showed more arousal than DG and C piglets in the OF/NO test. Neither plasma IgA nor N/L ratios in blood nor mitogen-induced proliferation of spleen lymphocytes were affected by deprivation. We found a higher mRNA expression of CRHR1 in the hypothalamus and a higher expression of MR in the hippocampus in DA piglets than in DG ones. The expression of GR, MR, and CRHR1 genes in the PFC was reduced by maternal deprivation, however, the expression of arginine vasopressin and oxytocin receptors was not affected. Repeated maternal deprivation induces sustained effects on stress reactivity and behavior of domestic piglets. Some of these effects were buffered by the presence of littermates. In addition, we found sex-specific differences in behavior and gene expression.
Collapse
Affiliation(s)
- Ulrike Gimsa
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Ulrike Gimsa,
| | - Roberto Brückmann
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Armin Tuchscherer
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ellen Kanitz
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
11
|
Madapong A, Saeng-chuto K, Tantituvanont A, Nilubol D. Using a concurrent challenge with porcine circovirus 2 and porcine reproductive and respiratory syndrome virus to compare swine vaccination programs. Sci Rep 2022; 12:15524. [PMID: 36109529 PMCID: PMC9477171 DOI: 10.1038/s41598-022-19529-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of the present study were to evaluate the immune response of six commercial vaccines against PRRSV-2 and PCV2, administered as monovalent or combined products via intramuscular (IM) or intradermal (ID) routes. Seventy-two, 3-week-old pigs were randomly allocated into 8 treatments with 9 pigs each: IMPP0/PCVMH7, IDPP0/PCVMH7, IMING0/PCVMH7, IMPP0/PCVMH0, IDPP0/PCVMH0, IMTRF0, NV/CH, and NV/NC. IMPP0/PCVMH0 and IMPP0/PCVMH7 groups were IM vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 days post-vaccination (DPV), followed by single IM vaccination with Porcilis PCV M Hyo (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. IDPP0/PCVMH0 and IDPP0/PCVMH7 groups were ID vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 DPV, followed by a single concurrent ID injection of Porcilis PCV ID (MSD Animal Health, The Netherlands) and Porcilis M Hyo ID ONCE (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. The IMING0/PCVMH7 group was IM vaccinated once with Ingelvac PRRS MLV (Boehringer Ingelheim, Germany) at 0 DPV, and subsequently IM vaccinated with Ingelvac CircoFLEX (Boehringer Ingelheim, Germany) and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 7 DPV. The IMTRF0 group was IM vaccinated once with combined products of Ingelvac PRRS MLV (Boehringer Ingelheim, Germany), Ingelvac CircoFLEX (Boehringer Ingelheim, Germany), and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 0 DPV. The NV/CH and NV/NC groups were left unvaccinated. At 28 DPV (0 days post-challenge, DPC), pigs were intranasally inoculated with a 4 ml of mixed cell culture inoculum containing HP-PRRSV-2 (105.6 TCID50/ml) and PCV2d (105.0 TCID50/ml). Antibody response, IFN-γ-secreting cells (SC), and IL-10 secretion in supernatants of stimulated PBMC were monitored. Sera were collected and quantified for the PRRSV RNA and PCV2 DNA using qPCR. Three pigs from each group were necropsied at 7 DPC, lung lesions were evaluated. Tissues were collected and performed immunohistochemistry (IHC). Our study demonstrated that concurrent vaccination via the ID or the IM route did not introduce additional reactogenicity. We found no interference with the induction of immune response between vaccination timing. In terms of an immune response, ID vaccination resulted in significantly lower IL-10 levels and higher IFN-γ-SC values compared to the IM-vaccinated groups. In terms of clinical outcomes, only one IM-vaccinated group showed significantly better efficacy when antigens were injected separately compared with concurrently. While the vaccines were ID delivered, these effects disappeared. Our findings confirm that concurrent vaccination of PRRSV-2 MLV and PCV2 via either the IM or the ID routes could be a viable immunization strategy to assist with the control of PRDC. In situations where maximal efficacy is required, over all other factors, concurrent vaccination is possible with the ID route but might not be an ideal strategy if using the IM route.
Collapse
|
12
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
13
|
Sánchez J, Matas M, Ibáñez-López FJ, Hernández I, Sotillo J, Gutiérrez AM. The Connection Between Stress and Immune Status in Pigs: A First Salivary Analytical Panel for Disease Differentiation. Front Vet Sci 2022; 9:881435. [PMID: 35782547 PMCID: PMC9244398 DOI: 10.3389/fvets.2022.881435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
This paper analyzes the association between stress and immune response activations in different diseases, based on the salivary analytics. Moreover, a first attempt to discriminate between diseases was performed by principal component analysis. The salivary analytics consisted of the measurement of psychosocial stress (cortisol and salivary alpha-amylase) indicators, innate (acute phase proteins: C-reactive protein and haptoglobin), and adaptive immune (adenosine deaminase, Cu and Zn) markers and oxidative stress parameters (antioxidant capacity and oxidative status). A total of 107 commercial growing pigs in the field were divided into six groups according to the signs of disease after proper veterinary clinical examination, especially, healthy pigs, pigs with rectal prolapse, tail-biting lesions, diarrhea, lameness, or dyspnea. Associations between stress and immune markers were observed with different intensities. High associations (r = 0.61) were observed between oxidative stress markers and adaptive immune markers. On the other hand, moderate associations (r = 0.31–0.48) between psychosocial stress markers with both innate and adaptive immune markers were observed. All pathological conditions showed statistically significant differences in at least 4 out of the 11 salivary markers studied, with no individual marker dysregulated in all the diseases. Moreover, each disease condition showed differences in the degree of activation of the analyzed systems which could be used to create different salivary profiles. A total of two dimensions were selected through the principal component analysis to explain the 48.3% of the variance of our data. Lameness and rectal prolapse were the two pathological conditions most distant from the healthy condition followed by dyspnea. Tail-biting lesions and diarrhea were also far from the other diseases but near to healthy animals. There is still room for improvements, but these preliminary results displayed a great potential for disease detection and characterization using salivary biomarkers profiling in the near future.
Collapse
Affiliation(s)
- J. Sánchez
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
- Cefu SA, Murcia, Spain
| | - M. Matas
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - F. J. Ibáñez-López
- Statistical Support Service (SAE), Scientific and Technological Research Area (ACTI), CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - I. Hernández
- Statistical Support Service (SAE), Scientific and Technological Research Area (ACTI), CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - J. Sotillo
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - A. M. Gutiérrez
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
- *Correspondence: A. M. Gutiérrez
| |
Collapse
|
14
|
Moscovice LR, Gimsa U, Otten W, Eggert A. Salivary Cortisol, but Not Oxytocin, Varies With Social Challenges in Domestic Pigs: Implications for Measuring Emotions. Front Behav Neurosci 2022; 16:899397. [PMID: 35677575 PMCID: PMC9169876 DOI: 10.3389/fnbeh.2022.899397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
Animals respond to inherently rewarding or punishing stimuli with changes in core affective states, which can be investigated with the aid of appropriate biomarkers. In this study we evaluate salivary cortisol (sCORT) and salivary oxytocin (sOXT) concentrations under baseline conditions and in response to two negatively- and two positively-valenced social challenges in 75 young pigs (Sus scrofa domesticus), housed and tested in eight social groups. We predicted that: (1) Relative to baseline, weaning and brief social isolation would be associated with increases in sCORT, due to psychosocial stress, and reductions in sOXT, due to a lack of opportunities for social support; and (2) Opportunities for social play, and reunions with group members after a separation would be associated with weaker sCORT responses, and increases in sOXT concentrations compared to baseline and to negative social challenges. Testing and sample collection occurred between 28 and 65 days of age and involved a within-subject design, in which every subject was sampled multiple times in neutral (baseline), negative and positive social contexts. We also recorded behavioral data and measured rates of agonism, play and affiliative interactions in the different contexts, prior to saliva sampling. As expected, negative social challenges were associated with robust cortisol responses. Relative to baseline, pigs also had higher sCORT responses to positive social challenges, although these differences were only significant during reunions. Salivary oxytocin concentrations did not differ between the different social conditions, although sOXT was lowest during the brief social isolation. Behavioral analyses confirmed predictions about the expected changes in social interactions in different social contexts, with increases in agonism following weaning, increases in coordinated locomotor play in the play context and high rates of affiliative interactions during reunions. Relative sCORT reactivity to different contexts may reflect the intensity of emotional responses, with greater increases occurring in response to challenges that involve more psychosocial stress. Our results suggest that sOXT is not a reliable indicator of emotional valence in pigs, although more research is needed to characterize sOXT responses to various challenges with and without access to social support.
Collapse
Affiliation(s)
- Liza R. Moscovice
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Liza R. Moscovice
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Anja Eggert
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
15
|
Taha A, Bobi J, Dammers R, Dijkhuizen RM, Dreyer AY, van Es ACGM, Ferrara F, Gounis MJ, Nitzsche B, Platt S, Stoffel MH, Volovici V, Del Zoppo GJ, Duncker DJ, Dippel DWJ, Boltze J, van Beusekom HMM. Comparison of Large Animal Models for Acute Ischemic Stroke: Which Model to Use? Stroke 2022; 53:1411-1422. [PMID: 35164533 PMCID: PMC10962757 DOI: 10.1161/strokeaha.121.036050] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Translation of acute ischemic stroke research to the clinical setting remains limited over the last few decades with only one drug, recombinant tissue-type plasminogen activator, successfully completing the path from experimental study to clinical practice. To improve the selection of experimental treatments before testing in clinical studies, the use of large gyrencephalic animal models of acute ischemic stroke has been recommended. Currently, these models include, among others, dogs, swine, sheep, and nonhuman primates that closely emulate aspects of the human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, significantly influence the suitability of a model to address specific research questions. In this article, we review key characteristics of the main large animal models used in translational studies of acute ischemic stroke, regarding (1) anatomy and physiology of the cerebral vasculature, including brain morphology, coagulation characteristics, and immune function; (2) ischemic stroke modeling, including vessel occlusion approaches, reproducibility of infarct size, procedural complications, and functional outcome assessment; and (3) implementation aspects, including ethics, logistics, and costs. This review specifically aims to facilitate the selection of the appropriate large animal model for studies on acute ischemic stroke, based on specific research questions and large animal model characteristics.
Collapse
Affiliation(s)
- Aladdin Taha
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Stroke Center (A.T., D.W.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joaquim Bobi
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Stroke Center (R.D., V.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M.D.)
| | - Antje Y Dreyer
- Max Planck Institute for Infection Biology, Campus Charité Mitte, Berlin, Germany (A.Y.D.)
| | - Adriaan C G M van Es
- Department of Radiology, Leiden University Medical Center, the Netherlands (A.C.G.M.v.E.)
| | - Fabienne Ferrara
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany (F.F.)
| | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester (M.J.G.)
| | - Björn Nitzsche
- Institute of Anatomy, Faculty of Veterinary Medicine (B.N.), University of Leipzig, Germany
- Department of Nuclear Medicine (B.N.), University of Leipzig, Germany
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens (S.P.)
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Switzerland (M.H.S.)
| | - Victor Volovici
- Department of Neurosurgery, Stroke Center (R.D., V.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Gregory J Del Zoppo
- Division of Hematology (G.J.d.Z.), University of Washington School of Medicine, Seattle
- Department of Medicine (G.J.d.Z.), University of Washington School of Medicine, Seattle
- Department of Neurology (G.J.d.Z.), University of Washington School of Medicine, Seattle
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Stroke Center (A.T., D.W.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johannes Boltze
- School of Life Sciences, Faculty of Science, University of Warwick, Coventry, United Kingdom (J.B.)
| | - Heleen M M van Beusekom
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Effect of Phase Feeding, Space Allowance and Mixing on Productive Performance of Grower-Finisher Pigs. Animals (Basel) 2022; 12:ani12030390. [PMID: 35158712 PMCID: PMC8833425 DOI: 10.3390/ani12030390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of space allowance (SA), mixing and phase feeding (PF) on performance of grower-finisher pigs. Three trials (T) were conducted. In T1 and T2, 345 pigs/trial were moved to finisher stage at 11 weeks of age and assigned to two SAs: 0.96 (n = 15 pens; 10 pigs/pen) and 0.78 (n = 15; 13 pigs/pen) m2/pig. Mixing was applied to 5 pens of each SA leading to a 2 × 2 factorial arrangement (SA × Mixing). For PF, 2 diets with 0.95 and 0.82 g SID Lys/MJ NE were applied to 5 pens of each SA (not mixed) leading to another 2 × 2 factorial arrangement (SA × PF). In T3, 230 pigs were moved to the grower-finisher stage at 11 weeks of age, mixed, and assigned to 4 treatments (SA × PF; n = 5 pens). Data were analyzed using general linear mixed models. SA did not affect performance (p > 0.05). Non-mixed pigs were 5.40 (T1) and 5.25 (T2) kg heavier than mixed pigs at 21 weeks of age (p < 0.001). PF reduced performance of pigs by 3.45 (T1) and 4.05 (T2) kg at 21 weeks of age (p < 0.001). In conclusion, mixing and reducing SID Lys:NE ratio from 0.95 to 0.82 g/MJ at 15-16 weeks of age, have a more marked impact on performance than reducing SA from 0.96 to 0.78 m2/pig.
Collapse
|
17
|
Girault C, Priymenko N, Helsly M, Duranton C, Gaunet F. Dog behaviours in veterinary consultations: Part 1. Effect of the owner’s presence or absence. Vet J 2022; 280:105788. [DOI: 10.1016/j.tvjl.2022.105788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
18
|
Effect of functional oils or probiotics on performance and microbiota profile of newly weaned piglets. Sci Rep 2021; 11:19457. [PMID: 34593866 PMCID: PMC8484476 DOI: 10.1038/s41598-021-98549-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to evaluate a commercial blend of functional oils based on liquid from the cashew nutshell and castor oil as a growth promoter in newly weaned piglets. A total of 225 piglets, castrated males and females with 28 days of age were randomly distributed in pens with 15 animals composing three treatments and five repetitions. The treatments were: control (without the inclusion of additives), probiotics, or functional oils. The performance was evaluated. At 50 days of age, a pool of fresh feces from 3 animals/repetition was collected to perform the sequencing of microbiota using the Illumina MiSeq platform. Supplementation with functional oils improved the piglets' daily weight gain and feed conversion ratio (P < 0.05) in the first weeks of the experiment, which resulted in higher final live weight (P < 0.05) in the phase when compared to the control treatment (24.34 kg and 21.55 kg, respectively). The animals that received probiotics showed an intermediate performance (23.66 kg final live weight) at the end of the 38 experimental days. Both additives were effective in increasing groups essential for intestinal health, such as Ruminococcaceae and Lachnospiraceae. The functional oils were more effective in reducing pathogenic bacteria, such as Campylobacter and Escherichia coli. In conclusion, the use of functional oils optimized performance and effectively modulated the microbiota of newly weaned piglets.
Collapse
|
19
|
Mota-Rojas D, Napolitano F, Strappini A, Orihuela A, Martínez-Burnes J, Hernández-Ávalos I, Mora-Medina P, Velarde A. Quality of Death in Fighting Bulls during Bullfights: Neurobiology and Physiological Responses. Animals (Basel) 2021; 11:2820. [PMID: 34679841 PMCID: PMC8532837 DOI: 10.3390/ani11102820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
During bullfights, bulls undergo physiometabolic responses such as glycolysis, anaerobic reactions, cellular oedema, splenic contraction, and hypovolemic shock. The objective of this review article is to present the current knowledge on the factors that cause stress in fighting bulls during bullfights, including their dying process, by discussing the neurobiology and their physiological responses. The literature shows that biochemical imbalances occur during bullfights, including hypercalcaemia, hypermagnesaemia, hyperphosphataemia, hyperlactataemia, and hyperglycaemia, associated with increased endogenous cortisol and catecholamine levels. Creatine kinase, citrate synthase, and lactate dehydrogenase levels also increase, coupled with decreases in pH, blood bicarbonate levels, excess base, partial oxygen pressure, and oxygen saturation. The intense exercise also causes a marked decrease of glycogen in type I and II muscle fibres that can produce myoglobinuria and muscular necrosis. Other observations suggest the presence of osteochondrosis. The existing information allows us to conclude that during bullfights, bulls face energy and metabolic demands due to the high intensity and duration of the exercise performed, together with muscular injuries, physiological changes, and high enzyme concentrations. In addition, the final stage of the bullfight causes a slow dying process for an animal that is sentient and conscious of its surroundings.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi Della Basilicata, 85100 Potenza, Italy;
| | - Ana Strappini
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Faculty of Veterinary Medicine, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico;
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), State of Mexico 54714, Mexico; (I.H.-Á.); (P.M.-M.)
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), State of Mexico 54714, Mexico; (I.H.-Á.); (P.M.-M.)
| | - Antonio Velarde
- IRTA, Animal Welfare Program, Veinat Sies S-N, 17121 Monells, Spain;
| |
Collapse
|
20
|
Gley K, Hadlich F, Trakooljul N, Haack F, Murani E, Gimsa U, Wimmers K, Ponsuksili S. Multi-Transcript Level Profiling Revealed Distinct mRNA, miRNA, and tRNA-Derived Fragment Bio-Signatures for Coping Behavior Linked Haplotypes in HPA Axis and Limbic System. Front Genet 2021; 12:635794. [PMID: 34490028 PMCID: PMC8417057 DOI: 10.3389/fgene.2021.635794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
The molecular basis of porcine coping behavior (CB) relies on a sophisticated interplay of genetic and epigenetic features. Deep sequencing technologies allowed the identification of a plethora of new regulatory small non-coding RNA (sncRNA). We characterized mRNA and sncRNA profiles of central parts of the physiological stress response system including amygdala, hippocampus, hypothalamus and adrenal gland using systems biology for integration. Therefore, ten each of high- (HR) and low- (LR) reactive pigs (n = 20) carrying a CB associated haplotype in a prominent QTL-region on SSC12 were selected for mRNA and sncRNA expression profiling. The molecular markers related to the LR group included ATP1B2, MPDU1, miR-19b-5p, let-7g-5p, and 5′-tiRNALeu in the adrenal gland, miR-194a-5p, miR-125a-5p, miR-7-1-5p, and miR-107-5p in the hippocampus and CBL and PVRL1 in the hypothalamus. Interestingly, amygdalae of the LR group showed 5′-tiRNA and 5′-tRF (5′-tRFLys, 5′-tiRNALys, 5′-tiRNACys, and 5′-tiRNAGln) enrichment. Contrarily, molecular markers associated with the HR group encompassed miR-26b-5p, tRNAArg, tRNAGlyiF in the adrenal gland, IGF1 and APOD in the amygdala and PBX1, TOB1, and C18orf1 in the hippocampus and miR-24 in the hypothalamus. In addition, hypothalami of the HR group were characterized by 3′-tiRNA enrichment (3′-tiRNAGln, 3′-tiRNAAsn, 3′-tiRNAVal, 3′-tRFPro, 3′-tiRNACys, and 3′-tiRNAAla) and 3′-tRFs enrichment (3′-tRFAsn, 3′-tRFGlu, and 3′-tRFVal). These evidence suggest that tRNA-derived fragments and their cleavage activity are a specific marker for coping behavior. Data integration revealed new bio-signatures of important molecular interactions on a multi-transcript level in HPA axis and limbic system of pigs carrying a CB-associated haplotype.
Collapse
Affiliation(s)
- Kevin Gley
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Fiete Haack
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Ulrike Gimsa
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Behavioral Physiology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| |
Collapse
|
21
|
Falendysz EA, Calhoun DM, Smith CA, Sleeman JM. Outside the Box: Working With Wildlife in Biocontainment. ILAR J 2021; 61:72-85. [PMID: 34428796 DOI: 10.1093/ilar/ilab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Research with captive wildlife in Animal Biosafety Level 2 (ABSL2) and 3 (ABSL3) facilities is becoming increasingly necessary as emerging and re-emerging diseases involving wildlife have increasing impacts on human, animal, and environmental health. Utilizing wildlife species in a research facility often requires outside the box thinking with specialized knowledge, practices, facilities, and equipment. The USGS National Wildlife Health Center (NWHC) houses an ABSL3 facility dedicated to understanding wildlife diseases and developing tools to mitigate their impacts on animal and human health. This review presents considerations for utilizing captive wildlife for infectious disease studies, including, husbandry, animal welfare, veterinary care, and biosafety. Examples are drawn from primary literature review and collective 40-year experience of the NWHC. Working with wildlife in ABSL2 and ABSL3 facilities differs from laboratory animals in that typical laboratory housing systems, husbandry practices, and biosafety practices are not designed for work with wildlife. This requires thoughtful adaptation of standard equipment and practices, invention of customized solutions and development of appropriate enrichment plans using the natural history of the species and the microbiological characteristics of introduced and native pathogens. Ultimately, this task requires critical risk assessment, understanding of the physical and psychological needs of diverse species, creativity, innovation, and flexibility. Finally, continual reassessment and improvement are imperative in this constantly changing specialty area of infectious disease and environmental hazard research.
Collapse
Affiliation(s)
- Elizabeth A Falendysz
- US Geological Survey, National Wildlife Health Center in Madison, Madison, Wisconsin, USA
| | - Dana M Calhoun
- Department of EBIO, University of Colorado Boulder, Boulder, Colorado, USA
| | - Carrie A Smith
- US Geological Survey, National Wildlife Health Center in Madison, Madison, Wisconsin, USA
| | - Jonathan M Sleeman
- US Geological Survey, National Wildlife Health Center in Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Lim KS, Cheng J, Putz A, Dong Q, Bai X, Beiki H, Tuggle CK, Dyck MK, Canada PG, Fortin F, Harding JCS, Plastow GS, Dekkers JCM. Quantitative analysis of the blood transcriptome of young healthy pigs and its relationship with subsequent disease resilience. BMC Genomics 2021; 22:614. [PMID: 34384354 PMCID: PMC8361860 DOI: 10.1186/s12864-021-07912-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Disease resilience, which is the ability of an animal to maintain performance under disease, is important for pigs in commercial herds, where they are exposed to various pathogens. Our objective was to investigate population-level gene expression profiles in the blood of 912 healthy F1 barrows at ~ 27 days of age for associations with performance and health before and after their exposure to a natural polymicrobial disease challenge at ~ 43 days of age. Results Most significant (q < 0.20) associations of the level of expression of individual genes in blood of young healthy pigs were identified for concurrent growth rate and subjective health scores prior to the challenge, and for mortality, a combined mortality-treatment trait, and feed conversion rate after the challenge. Gene set enrichment analyses revealed three groups of gene ontology biological process terms that were related to disease resilience: 1) immune and stress response-related terms were enriched among genes whose increased expression was unfavorably associated with both pre- and post-challenge traits, 2) heme-related terms were enriched among genes that had favorable associations with both pre- and post-challenge traits, and 3) terms related to protein localization and viral gene expression were enriched among genes that were associated with reduced performance and health traits after but not before the challenge. Conclusions Gene expression profiles in blood from young healthy piglets provide insight into their performance when exposed to disease and other stressors. The expression of genes involved in stress response, heme metabolism, and baseline expression of host genes related to virus propagation were found to be associated with host response to disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07912-8.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | - Jian Cheng
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | - Austin Putz
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.,Swine Business Unit, Hendrix Genetics, Boxmeer, 5831, CK, The Netherlands
| | - Qian Dong
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.,Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xuechun Bai
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| | | | - Michael K Dyck
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Pig Gen Canada
- PigGen Canada Research Consortium, Guelph, Ontario, N1H4G8, Canada
| | - Frederic Fortin
- Centre de Développement du Porc du Québec Inc. (CDPQ), Québec City, QC, G1V 4M6, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A2, Canada
| | - Graham S Plastow
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
23
|
Keever-Keigher MR, Zhang P, Bolt CR, Rymut HE, Antonson AM, Caputo MP, Houser AK, Hernandez AG, Southey BR, Rund LA, Johnson RW, Rodriguez-Zas SL. Interacting impact of maternal inflammatory response and stress on the amygdala transcriptome of pigs. G3 (BETHESDA, MD.) 2021; 11:jkab113. [PMID: 33856433 PMCID: PMC8496236 DOI: 10.1093/g3journal/jkab113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Changes at the molecular level capacitate the plasticity displayed by the brain in response to stress stimuli. Weaning stress can trigger molecular changes that influence the physiology of the offspring. Likewise, maternal immune activation (MIA) during gestation has been associated with behavior disorders and molecular changes in the amygdala of the offspring. This study advances the understanding of the effects of pre- and postnatal stressors in amygdala gene networks. The amygdala transcriptome was profiled on female and male pigs that were either exposed to viral-elicited MIA or not and were weaned or nursed. Overall, 111 genes presented interacting or independent effects of weaning, MIA, or sex (FDR-adjusted P-value <0.05). PIGY upstream reading frame and orthodenticle homeobox 2 are genes associated with MIA-related neurological disorders, and presented significant under-expression in weaned relative to nursed pigs exposed to MIA, with a moderate pattern observed in non-MIA pigs. Enriched among the genes presenting highly over- or under-expression profiles were 24 Kyoto Encyclopedia of Genes and Genomes pathways including inflammation, and neurological disorders. Our results indicate that MIA and sex can modulate the effect of weaning stress on the molecular mechanisms in the developing brain. Our findings can help identify molecular targets to ameliorate the effects of pre- and postnatal stressors on behaviors regulated by the amygdala such as aggression and feeding.
Collapse
Affiliation(s)
- Marissa R Keever-Keigher
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Courtni R Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Adrienne M Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Megan P Caputo
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Alexandra K Houser
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Alvaro G Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
24
|
Rymut HE, Rund LA, Bolt CR, Villamil MB, Southey BR, Johnson RW, Rodriguez-Zas SL. The Combined Effect of Weaning Stress and Immune Activation during Pig Gestation on Serum Cytokine and Analyte Concentrations. Animals (Basel) 2021; 11:2274. [PMID: 34438732 PMCID: PMC8388404 DOI: 10.3390/ani11082274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Weaning stress can elicit changes in the metabolic, hormone and immune systems of pigs and interact with prolonged disruptions stemming from maternal immune activation (MIA) during gestation. The present study advances the characterization of the combined effects of weaning stress and MIA on blood chemistry, immune and hormone indicators that inform on the health of pigs. Three-week-old female and male offspring of control gilts or gilts infected with the porcine reproductive and respiratory syndrome virus were allocated to weaned or nursed groups. The anion gap and bilirubin profiles suggest that MIA enhances tolerance to the effects of weaning stress. Interleukin 1 beta and interleukin 2 were highest among weaned MIA females, and cortisol was higher among weaned relative to nursed pigs across sexes. Canonical discriminant analysis demonstrated that weaned and nursed pigs have distinct chemistry profiles, whereas MIA and control pigs have distinct cytokine profiles. The results from this study can guide management practices that recognize the effects of the interaction between MIA and weaning stress on the performance and health of pigs.
Collapse
Affiliation(s)
- Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Courtni R. Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Maria B. Villamil
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
26
|
Parenti M, McClorry S, Maga EA, Slupsky CM. Metabolomic changes in severe acute malnutrition suggest hepatic oxidative stress: a secondary analysis. Nutr Res 2021; 91:44-56. [PMID: 34134040 PMCID: PMC8311294 DOI: 10.1016/j.nutres.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Severe acute malnutrition (SAM), due to poor energy and/or protein intake, is associated with poor growth, depressed immune function, and long-term impacts on metabolic function. As the liver is a major metabolic organ and malnutrition poses metabolic stress, we hypothesize that SAM will be associated with alterations in the hepatic metabolome reflective of oxidative stress, gluconeogenesis, and ketogenesis. Thus, the purpose of this secondary analysis was to understand how SAM alters hepatic metabolism using a piglet model. Weanling piglets were feed either a reference (REF) or protein-energy deficient diet (MAL) for 5 weeks. After dietary treatment MAL piglets were severely underweight (weight-for-age Z-score of -3.29, Welch's t test, P = .0007), moderately wasted (weight-for-length Z-score of-2.49, Welch's t test, P = .003), and tended toward higher hepatic triglyceride content (Welch's t test, P = .07). Hematologic and blood biochemical measurements were assessed at baseline and after dietary treatment. The hepatic metabolome was investigated using 1H-NMR spectroscopy. Hepatic concentrations of betaine, cysteine, and glutathione tended to be lower in MAL (Welch's t test with FDR correction, P < .1), while inosine, lactate, and methionine sulfoxide concentrations were higher in MAL (inosine: P = .0448, lactate: P = .0258, methionine sulfoxide: P = .0337). These changes suggest that SAM is associated with elevated hepatic oxidative stress, increased gluconeogenesis, and alterations in 1-carbon metabolism.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, USA
| | | | - Elizabeth A Maga
- Department of Animal Science, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, USA; Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
27
|
Reiner G, Kuehling J, Loewenstein F, Lechner M, Becker S. Swine Inflammation and Necrosis Syndrome (SINS). Animals (Basel) 2021; 11:1670. [PMID: 34205208 PMCID: PMC8228460 DOI: 10.3390/ani11061670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/03/2023] Open
Abstract
Tail biting is a prevalent and undesirable behaviour in pigs and a major source of significant reduction in well-being. However, focusing on biting considers only one part of the solution, because tail damage can be found with a high prevalence without any action by other pigs. The lesions are not limited to the tail but can also be found in the ears, heels, soles, claw coronary bands, teats, navel, vulva, and face. Environmental improvement alone often fails to overcome the problem. This review addresses a new inflammation and necrosis syndrome in swine (SINS). It shows the clinical signs and the frequencies of occurrence in different age groups. It compiles scientific evidence from clinical and histopathological studies in newborn piglets that argue for a primary endogenous aetiology of the disease. Bringing together the findings of a broad body of research, the possible mechanisms leading to the disease are identified and then discussed. This part will especially focus on microbe-associated molecular patterns in the circulation and their role in activating defence mechanisms and inflammation. Finally, the methods are identified to ameliorate the problem by optimizing husbandry and selecting a suitable breeding stock.
Collapse
Grants
- 123 Tönnies Forschung, Rheda, Germany
- 456 Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz, Hessen, Germa-ny
- 789 Ministerium für Umwelt, Klima, Landwirtschaft und Verbraucherschutz, Nordrhein-Westfalen, Germany.
Collapse
Affiliation(s)
- Gerald Reiner
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (J.K.); (S.B.)
| | - Josef Kuehling
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (J.K.); (S.B.)
| | | | | | - Sabrina Becker
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (J.K.); (S.B.)
| |
Collapse
|
28
|
Xu W, Lu J, Chen Y, Wang Z, Cao J, Dong Y. Impairment of CRH in the intestinal mucosal epithelial barrier of pregnant Bama miniature pig induced by restraint stress. Endocr J 2021; 68:485-502. [PMID: 33408312 DOI: 10.1507/endocrj.ej20-0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Female, especially for pregnant female, are vulnerable to psychological stress. The morphology and metabolism of the maternal intestine are both obviously changed during pregnancy, thus making intestinal health status more fragile under psychological stress. The aim of the present study was to investigate the role of CRH and CRHR1 in the pregnant maternal intestine under psychological stress, thus exploring the mechanism of psychological stress in the pregnant maternal intestine. Bama miniature pigs were divided into the control and restraint stress groups from the first day of pregnancy. After restraint stress treatment for 18 consecutive days (D18), the plasma, duodenum, jejunum, ileum and colon were collected for study. Pregnant Bama miniature pigs subjected to restraint stress had significantly elevated CRH, adrenocorticotropic hormone (ACTH) and cortisol (COR) levels in plasma. Consistent with the increase in CRH levels, we observed enhanced oxidative stress levels in the intestine, which resulted in intestinal mucosal injury, including impaired intestinal morphology, a reduced number of goblet cells and proliferating cell nuclear antigen-positive cells, decreased expression of MUC2 and tight junctions, and elevated expression of CRHR1 and caspase-3. Moreover, exogenous CRH could directly promote IPEC-J2 cell apoptosis and influence its cell cycle (S and G2 phase) through CRHR1, and antalarmin could alleviate this phenomenon. Therefore, our results illustrated that the intestinal dysfunction of pregnant Bama miniature pigs was caused by restraint stress, and these changes were associated with the enhanced expression of CRH and CRHR1 in the intestine.
Collapse
Affiliation(s)
- Wenjiao Xu
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiayin Lu
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Inclusion of Oat and Yeast Culture in Sow Gestational and Lactational Diets Alters Immune and Antimicrobial Associated Proteins in Milk. Animals (Basel) 2021; 11:ani11020497. [PMID: 33672799 PMCID: PMC7918739 DOI: 10.3390/ani11020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This study investigated the impact that supplementing sow’s gestation and lactation feed with oat alone or together with brewer’s yeast has on milk proteins and piglet growth and health. Oat and yeast supplements increased abundance of several milk proteins involved in immune protection. Piglets born from either the oat- or yeast-supplemented sows had decreased incidence of diarrhea after weaning. The average birth weights for piglets born of dams that consumed Oat were significantly greater than those that did not. However, piglets born to sows that consumed yeast in combination with oat weighed less at weaning and gained the least amount of weight post-weaning. These data suggest that oat, and to a lesser extent, yeast, added to maternal diets during gestation and lactation can positively impact milk, growth, and health of offspring but given in combination can potentially negatively affect piglet weight gain. Abstract Maternal diet supplementation with pro- and prebiotics is associated with decreased incidence of diarrhea and greater piglet performance. This study investigated the impact adding whole ground oat as a prebiotic, alone or in combination with a probiotic, yeast culture (YC) (Saccharomyces cerevisiae), to sow gestation and lactation rations had on milk protein composition, piglet growth, and incidence of post-weaning diarrhea (PWD). Diets: control (CON), CON + yeast culture (YC) [5 g/kg], CON + oat (15% inclusion rate) (Oat) or CON+ YC [5 g/kg] + Oat (15%) were fed the last 30 days of gestation and throughout lactation (18–21 days). Shotgun proteome analysis of day 4 and 7 postpartum milk found 36 differentially abundant proteins (P-adj < 0.1) in both Oat and YC supplemented sows relative to CON. Notable was the increased expression of antimicrobial proteins, lactoferrin and chitinase in milk of Oat and YC sows compared to CON. The levels of IgA, IgM (within colostrum and milk) and IgG (within milk) were similar across treatments. However, colostral IgG levels in Oat-supplemented sows were significantly lower (p < 0.05) than that of the control sows, IgG from Oat-supplemented sows displayed greater reactivity to E. coli-antigens compared with CON and YC. Piglets from sows that consumed Oat alone or in combination weighed significantly more (p < 0.05) at birth compared to CON and YC. However, piglets in the Oat + YC group weighed less at weaning and had the lowest weight gain (p < 0.05) postweaning, compared with CON. Taken together with the observation that piglets of either YC- or Oat-fed sows had less PWD compared to CON and YC+ Oat suggests that Oat or YC supplementation positively impacts piglets through expression of certain milk-associated immune and antimicrobial proteins.
Collapse
|
30
|
Camp Montoro J, Boyle LA, Solà-Oriol D, Muns R, Gasa J, Garcia Manzanilla E. Effect of space allowance and mixing on growth performance and body lesions of grower-finisher pigs in pens with a single wet-dry feeder. Porcine Health Manag 2021; 7:7. [PMID: 33407880 PMCID: PMC7786905 DOI: 10.1186/s40813-020-00187-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low space allowance (SA) and mixing may result in reduced growth performance (GP) and animal welfare issues because of adverse social behaviours directed to pen mates. This could be exacerbated in pens with single space feeders owing to social facilitation of feeding behaviour. The present study aimed to investigate the effect of SA and mixing on GP and body lesions (BL) in pens with one single space wet-dry feeder. RESULTS Two experiments were conducted on grower-finisher pigs from 10 to 21 weeks of age. In Exp1, pigs (N = 216) were assigned to three SA; 0.96 m2/pig (n = 6 pens; 10 pigs/pen; SA96), 0.84 m2/pig (n = 6; 12 pigs/pen; SA84) and 0.72 m2/pig (n = 6; 14 pigs/pen; SA72), in a randomized design. In Exp2, pigs (N = 230) were used in a 2 × 2 factorial randomized design considering SA and mixing as treatments. Pigs were assigned to two SA; 0.96 m2/pig (n = 10 pens; 10 pigs/pen; SA96) and 0.78 m2/pig (n = 10; 13 pigs/pen; SA78) and were either mixed or not at the entry to the finishing facility. GP was not affected by SA (P > 0.05) in either experiment. In Exp2, non-mixed pigs were 5.4 kg heavier (P < 0.001), gained 74 g more per day (P = 0.004), consumed 101.8 g more of feed per day (P = 0.007) and tended to have higher feed efficiency (P = 0.079) than mixed pigs from 11 to 21 weeks of age. Number of BL was affected by SA in both experiments. In Exp1, SA72 pigs had 74.4 and 97.4% more BL than SA96 and SA84 pigs at 20 weeks of age respectively (P < 0.01). In Exp2, SA78 pigs had 48.6, 43.6 and 101.3% more BL than SA96 pigs at 12, 16 and 21 weeks of age respectively (P < 0.05). Mixing did not affect the number of BL from 12 to 21 weeks of age in Exp2 (P > 0.05). CONCLUSION Mixing had a considerable effect on growth performance thus, strategies to avoid or mitigate mixing should be considered. Although space allowance had no effect on growth performance, high number of body lesions in the lower space allowance indicates that space allowances equal or below 0.78 m2/pig are detrimental to the welfare of pigs despite following the EU legislation.
Collapse
Affiliation(s)
- Jordi Camp Montoro
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland. .,Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Laura Ann Boyle
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - David Solà-Oriol
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ramon Muns
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, Co Down, Northern Ireland, BT 26 6DR, UK
| | - Josep Gasa
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Edgar Garcia Manzanilla
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.,UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
31
|
Li Z, Kanitz E, Tuchscherer M, Tuchscherer A, Metges CC, Trakooljul N, Wimmers K, Murani E. A natural Ala610Val substitution causing glucocorticoid receptor hypersensitivity aggravates consequences of endotoxemia. Brain Behav Immun 2020; 90:174-183. [PMID: 32795657 DOI: 10.1016/j.bbi.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the crucial role of glucocorticoid receptor (GR) in proper immune responses, the effect of GR hypersensitivity on inflammation is rarely reported. To fill this knowledge gap, we exploited the natural gain-of-function substitution in the porcine glucocorticoid receptor (GRAla610Val) and challenged pigs carrying normal or hypersensitive GR using 50 µg/kg lipopolysaccharide (LPS) following pretreatment with either saline or single bolus of 60 µg/kg dexamethasone (DEX). The GRAla610Val substitution reduced baseline cortisol, adrenocorticotropic hormone (ACTH), and triglyceride concentration and granulocyte proportion whereas baseline platelet counts were elevated. Val-carriers, i.e. AlaVal as well as ValVal pigs, showed less LPS-induced cortisol rise but the cortisol fold change was similar in all genotypes. Differently, ACTH response to LPS was most significant in GRAla610Val heterozygotes (AlaVal). LPS-induced disorders, including sickness behaviors, anorexia, thrombocytopenia, cytokine production, and metabolic alterations were more intense in Val-carriers. On the other hand, Val-carriers were more sensitive to DEX effect than wild types (AlaAla) during endotoxemia, but not under unchallenged conditions. This is the first report revealing aggravated responses to endotoxemia by GR gain-of-function. Together, these results imply that GR hypersensitivity is difficult to diagnose but may represent a risk factor for endotoxemia and sepsis.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
32
|
Nordgreen J, Edwards SA, Boyle LA, Bolhuis JE, Veit C, Sayyari A, Marin DE, Dimitrov I, Janczak AM, Valros A. A Proposed Role for Pro-Inflammatory Cytokines in Damaging Behavior in Pigs. Front Vet Sci 2020; 7:646. [PMID: 33134341 PMCID: PMC7562715 DOI: 10.3389/fvets.2020.00646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Sickness can change our mood for the worse, leaving us sad, lethargic, grumpy and less socially inclined. This mood change is part of a set of behavioral symptoms called sickness behavior and has features in common with core symptoms of depression. Therefore, the physiological changes induced by immune activation, for example following infection, are in the spotlight for explaining mechanisms behind mental health challenges such as depression. While humans may take a day off and isolate themselves until they feel better, farm animals housed in groups have only limited possibilities for social withdrawal. We suggest that immune activation could be a major factor influencing social interactions in pigs, with outbreaks of damaging behavior such as tail biting as a possible result. The hypothesis presented here is that the effects of several known risk factors for tail biting are mediated by pro-inflammatory cytokines, proteins produced by the immune system, and their effect on neurotransmitter systems. We describe the background for and implications of this hypothesis.
Collapse
Affiliation(s)
- Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Ann Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Christina Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Amin Sayyari
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniela E. Marin
- National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | | | - Andrew M. Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol 2020; 42:559-572. [PMID: 33165716 PMCID: PMC7665974 DOI: 10.1007/s00281-020-00824-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
From a holistic point of view, aging results from the cumulative erosion of the various systems. Among these, the immune system is interconnected to the rest as immune cells are present in all organs and recirculate through bloodstream. Immunosenescence is the term used to define the remodelling of immune changes during aging. Because immune cells-and particularly lymphocytes-can further differentiate after their maturation in response to pathogen recognition, it is therefore unclear when senescence is induced in these cells. Additionally, it is also unclear which signals triggers senescence in immune cells (i) aging per se, (ii) specific response to pathogens, (iii) underlying conditions, or (iv) inflammaging. In this review, we will cover the current knowledge and concepts linked to immunosenescence and we focus this review on lymphocytes and T cells, which represent the typical model for replicative senescence. With the evidence presented, we propose to disentangle the senescence of immune cells from chronological aging.
Collapse
Affiliation(s)
- Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore
| | - Glenn Wong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos, Singapore, Singapore.
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
34
|
Omics Application in Animal Science-A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes (Basel) 2020; 11:genes11080920. [PMID: 32796712 PMCID: PMC7464449 DOI: 10.3390/genes11080920] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.
Collapse
|
35
|
Brückmann R, Tuchscherer M, Tuchscherer A, Gimsa U, Kanitz E. Early-Life Maternal Deprivation Predicts Stronger Sickness Behaviour and Reduced Immune Responses to Acute Endotoxaemia in a Pig Model. Int J Mol Sci 2020; 21:ijms21155212. [PMID: 32717860 PMCID: PMC7432595 DOI: 10.3390/ijms21155212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Early-life adversity may have programming effects on neuroendocrine and immune adaptation mechanisms in humans and socially living animals. Using a pig model, we investigated the effect of daily 2-h maternal and littermate deprivation from postnatal days 2–15, either alone (DA) or in a group of littermates (DG) on the neuroendocrine, immunological and behavioural responses of piglets challenged with the bacterial endotoxin lipopolysaccharide (LPS) on day 42. LPS increased plasma concentrations of cortisol, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) and induced typical signs of sickness in all piglets. DA+DG piglets showed stronger signs of sickness compared to control (C) piglets. Plasma TNF-α concentrations were significantly lower in DA+DG males. In addition, the TNF-α/IL-10 ratio was significantly lower in DA than in DG and C males. Gene expression analyses showed lower hypothalamic TNF-α mRNA expression and diminished mRNA expression of the mineralocorticoid receptor (MR) and IL-10 in the amygdala of DA+DG piglets in response to LPS. Interestingly, males showed a higher MR- and a lower IL-10 mRNA expression in the amygdala than females. The present data suggest that repeated maternal deprivation during early life may alter neuroendocrine and immune responses to acute endotoxaemia in a sex-specific manner.
Collapse
Affiliation(s)
- Roberto Brückmann
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Ulrike Gimsa
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
- Correspondence: (U.G.); (E.K.); Tel.: +49-38208-68-803 (U.G.); +49-38208-68-807 (E.K.)
| | - Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
- Correspondence: (U.G.); (E.K.); Tel.: +49-38208-68-803 (U.G.); +49-38208-68-807 (E.K.)
| |
Collapse
|
36
|
Reiske L, Schmucker S, Pfaffinger B, Weiler U, Steuber J, Stefanski V. Intravenous Infusion of Cortisol, Adrenaline, or Noradrenaline Alters Porcine Immune Cell Numbers and Promotes Innate over Adaptive Immune Functionality. THE JOURNAL OF IMMUNOLOGY 2020; 204:3205-3216. [DOI: 10.4049/jimmunol.2000269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
|
37
|
Chen Z, Liu NN, Xiao J, Wang YH, Dong R. The amygdala via the paraventricular nucleus regulates asthma attack in rats. CNS Neurosci Ther 2020; 26:730-740. [PMID: 32011093 PMCID: PMC7298979 DOI: 10.1111/cns.13293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/19/2023] Open
Abstract
Aims This study aimed to investigate the functions of the amygdala in rat asthma model. Main methods Wheat germ agglutinin‐horseradish peroxidase (WGA‐HRP) was used for tracing from the paraventricular nucleus (PVN) to the amygdala, and nuclear lesions were performed to observe changes in respiratory function and airway inflammation. Results This study showed that the extracellular neuronal discharged in the medial amygdala (MeA) and central amygdala (CeA), and the expression of Fos significantly increased in asthmatic rat compared to control group. The distribution of Fos‐ and oxytocin (OT)‐positive neurons and Fos/OT dual‐positive neurons evidently increased in the PVN. WGA‐HRP was injected into the PVN for tracing, and Fos/HRP‐dual‐positive neurons were observed to be distributed in the MeA. By using kainic acid (KA) to injure the MeA and CeA in asthmatic rats, expiratory and inspiratory times (TE/TI) and airway resistance (Raw) decreased, and minute ventilation volume (MVV) and dynamic pulmonary compliance (Cdyn) increased accordingly. In the bronchoalveolar lavage fluid (BALF), the number of eosinophils and the concentration of IL‐4 were lower than those of the control group, and the ratio of Th1/Th2 cells was higher than that of the control group. In the PVN, the distribution of Fos‐, OT‐positive cells and Fos/OT double‐positive cells decreased compared with those of the control group. The activities of the MeA and CeA and of OT neurons in the PVN of the rats were correlated with the occurrence of asthma. Conclusions Asthma attack could induce neural activities in the MeA and CeA, and OT neurons in the PVN may be involved in the process of asthma attack.
Collapse
Affiliation(s)
- Zhe Chen
- Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Ni-Na Liu
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Jian Xiao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Yue-Han Wang
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Rong Dong
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
38
|
Oliviero C, Junnikkala S, Peltoniemi O. The challenge of large litters on the immune system of the sow and the piglets. Reprod Domest Anim 2020; 54 Suppl 3:12-21. [PMID: 31512316 DOI: 10.1111/rda.13463] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023]
Abstract
The use of hyperprolific sow lines has increased litter size considerably in the last three decades. Nowadays, in some countries litters can reach up to 18-20 piglets being a major challenge for the sow's physiology during pregnancy, parturition and lactation. The increased number of piglets born per litter prolongs sensibly the duration of farrowing, decreases the piglets' average weight at birth and their vitality, increases the competition for colostrum intake and can affect negatively piglets' survival. This review aims to describe how large litters can affect the immune system of the sow and the piglets and proposes measures to improve this condition.
Collapse
Affiliation(s)
- Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sami Junnikkala
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Kress K, Weiler U, Schmucker S, Čandek-Potokar M, Vrecl M, Fazarinc G, Škrlep M, Batorek-Lukač N, Stefanski V. Influence of Housing Conditions on Reliability of Immunocastration and Consequences for Growth Performance of Male Pigs. Animals (Basel) 2019; 10:ani10010027. [PMID: 31877705 PMCID: PMC7022942 DOI: 10.3390/ani10010027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Surgical castration of male piglets is societally criticized as it is painful and violates the integrity of the animals. Pork production with boars and immunocastrates are possible alternatives. Even if immunocastration is an animal-welfare-friendly alternative, its market share is low and the reliability of this technique is discussed controversially within the pork chain. Currently, the number and the reason for non-responders to vaccination are not clear. Various factors may contribute to impaired immune response including adverse and stressful housing conditions. This study, therefore, examines the influence of different housing conditions on the immune response after two Improvac® vaccinations. To determine vaccination success, testosterone concentrations, GnRH-binding, and boar taint compounds were evaluated. Furthermore, the growth performance of male pigs was compared. The results show that immunocastration is reliable under different housing systems and prevents boar taint. Moreover, the growth performance of immunocastrates is high and even superior to that of boars and barrows after the 2nd vaccination. Accordingly, immunocastration is not only animal-welfare-friendly but also economically attractive and suitable for different housing systems. Abstract Immunocastration is a sustainable alternative to piglet castration but faces limited market acceptance. The phenomenon of non-responders has not to date been examined in detail, but adverse and stressful housing conditions (e.g., mixing of groups) might impair the success of vaccinations. Therefore, we evaluated the influence of housing conditions on the immune response after two Improvac® vaccinations at an age of 12 and 22 weeks, respectively. Boars, immunocastrates and barrows (n = 48 each) were assigned to three different housing conditions (n = 36 enriched, n = 36 standard n = 72 repeated social mixing). Immune response was quantified by measuring GnRH-binding and its consequences for testosterone concentrations, development of the genital tract and boar taint. Growth performance was evaluated via average daily gain (ADG). GnRH-binding and testosterone levels revealed that immunocastration reliably suppressed testicular functions after the 2nd vaccination. Housing conditions did not modify testicular function but influenced ADG as animals under mixing grew slower than those under enriched conditions. Gonadal status had only a slight impact on ADG except in immunocastrates, which showed a temporarily higher ADG after the 2nd vaccination. The results show that immunocastration is a reliable procedure under different housing conditions and competitive in terms of growth performance.
Collapse
Affiliation(s)
- Kevin Kress
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70599 Stuttgart, Germany; (U.W.); (S.S.); (V.S.)
- Correspondence: ; Tel.: +49-711-459-22536
| | - Ulrike Weiler
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70599 Stuttgart, Germany; (U.W.); (S.S.); (V.S.)
| | - Sonja Schmucker
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70599 Stuttgart, Germany; (U.W.); (S.S.); (V.S.)
| | - Marjeta Čandek-Potokar
- KIS–Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia; (M.Č.-P.); (M.Š.); (N.B.-L.)
| | - Milka Vrecl
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.V.); (G.F.)
| | - Gregor Fazarinc
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.V.); (G.F.)
| | - Martin Škrlep
- KIS–Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia; (M.Č.-P.); (M.Š.); (N.B.-L.)
| | - Nina Batorek-Lukač
- KIS–Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia; (M.Č.-P.); (M.Š.); (N.B.-L.)
| | - Volker Stefanski
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70599 Stuttgart, Germany; (U.W.); (S.S.); (V.S.)
| |
Collapse
|
40
|
Spiesberger K, Lürzel S, Patzl M, Futschik A, Waiblinger S. The Effects of Play Behavior, Feeding, and Time of Day on Salivary Concentrations of sIgA in Calves. Animals (Basel) 2019; 9:ani9090657. [PMID: 31491913 PMCID: PMC6769737 DOI: 10.3390/ani9090657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The focus of animal welfare science has shifted over the last decades from efforts to avoid negative states to ways of allowing animals the experience of positive emotions. The emotional state of an animal interacts with its immune system. Secretory immunoglobulin A, a class of antibodies present on mucosal surfaces and acting as the first line of defense against infections, is influenced by positive and negative emotions in humans; the few studies of its association with emotions in animals focused almost exclusively on the impact of negative emotions and yielded conflicting results. We present the first study that focuses on salivary immunoglobulin A to investigate a possible relationship between positive emotions and immune functioning in calves. We detected a circadian rhythm of immunoglobulin A concentrations, with lowest levels at 14:00 h. Immunoglobulin A concentrations were decreased directly after feeding, possibly due to increased saliva flow rates, and we did not find higher immunoglobulin A concentrations after play. The results are important for the design of future studies of positive emotions, although they do not support immunoglobulin A as an indicator of positive emotional states. Abstract The focus of animal welfare science has shifted over the last decades from efforts to avoid negative states to ways of allowing animals the experience of positive emotions. They may influence physiological processes in farmed animals, potentially providing health benefits; in addition, the physiological changes might be used as indicators of emotional states. We investigated calves’ salivary secretory immunoglobulin A (sIgA) concentrations with regard to a possible circadian rhythm and two situations that elicit positive emotions. Ten saliva samples of 14 calves were taken on two consecutive days; within the course of a day we observed a significant decline in salivary sIgA concentrations at 14:00 h. Further, we probed the animals before and after milk feeding and, contrarily to our prediction, detected lower sIgA concentrations 5 min after feeding than 15 min before. A probable explanation might be an increase in salivary flow rate caused by milk ingestion. We also took samples before and after we stimulated play behavior in calves. There was no significant difference in sIgA concentrations between samples taken before and after play. Although there was a significant correlation between the change in sIgA concentrations and the amount of play behavior shown, the correlation depended on an unexpected decrease of sIgA in animals that played little, and thus, does not support our hypothesis. In general, the data showed a large variability that might arise from different factors that are difficult to standardize in animals. Thus, the use of salivary sIgA concentrations as a marker of positive emotions in calves is not supported conclusively by the present data.
Collapse
Affiliation(s)
- Katrin Spiesberger
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Stephanie Lürzel
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Martina Patzl
- Institute of Immunology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Andreas Futschik
- Department of Applied Statistics, JK University Linz, Altenberger Str. 69, 4040 Linz, Austria.
| | - Susanne Waiblinger
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
41
|
Colpoys J, Van Sambeek D, Bruns C, Johnson A, Dekkers J, Dunshea F, Gabler N. Responsiveness of swine divergently selected for feed efficiency to exogenous adrenocorticotropic hormone and glucose challenges. Domest Anim Endocrinol 2019; 68:32-38. [PMID: 30784946 DOI: 10.1016/j.domaniend.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
Abstract
Increasing the feed efficiency of lean tissue gains is an important goal for improving sustainable pork production and profitability for swine producers. To study feed efficiency, genetic selection based on residual feed intake (RFI) was used to create two divergent lines. Low-RFI pigs consume less feed for equal weight gain compared with their less-efficient, high-RFI counterparts. As cortisol and insulin are important energy control and growth regulators, our objective was to evaluate the role of the adrenocorticotropic hormone (ACTH)-cortisol and the glucose-insulin axes in pigs divergently selected for RFI. Adrenocorticotropic hormone (0.2 IU/kg BW)-stimulated cortisol and non-esterified fatty acids (NEFA) concentrations and intravenous glucose tolerance test (IVGTT; 0.25 g/kg BW)-stimulated glucose, insulin, and NEFA concentrations were assessed in six low-RFI and six high-RFI gilts (68 ± 5.2 kg). Before the ACTH challenge, low-RFI gilts tended to have less baseline plasma cortisol (P = 0.08) but no difference in NEFA concentrations (P = 0.63) compared with high-RFI gilts. After the ACTH challenge, low-RFI gilts had less cortisol (P = 0.04) and NEFA concentrations (P = 0.05) compared with high-RFI gilts. Glucose, insulin, and NEFA concentrations did not differ between genetic lines before the IVGTT. After glucose infusion, low-RFI gilts had greater insulin concentrations (P = 0.003) but did not differ in glucose or NEFA concentrations compared with high-RFI gilts. These results indicate that genetic selection for reduced RFI (improved feed efficiency) resulted in less stress responsiveness and an increase in insulin after glucose infusion. These data have implications for identifying and selecting more feed efficient pigs and for understanding the physiological mechanisms underlying feed efficiency.
Collapse
Affiliation(s)
- J Colpoys
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - D Van Sambeek
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - C Bruns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - A Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - J Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - F Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - N Gabler
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
42
|
Nakov D, Hristov S, Stankovic B, Pol F, Dimitrov I, Ilieski V, Mormede P, Hervé J, Terenina E, Lieubeau B, Papanastasiou DK, Bartzanas T, Norton T, Piette D, Tullo E, van Dixhoorn IDE. Methodologies for Assessing Disease Tolerance in Pigs. Front Vet Sci 2019; 5:329. [PMID: 30687721 PMCID: PMC6334556 DOI: 10.3389/fvets.2018.00329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Features of intensive farming can seriously threaten pig homeostasis, well-being and productivity. Disease tolerance of an organism is the adaptive ability in preserving homeostasis and at the same time limiting the detrimental impact that infection can inflict on its health and performance without affecting pathogen burden per se. While disease resistance (DRs) can be assessed measuring appropriately the pathogen burden within the host, the tolerance cannot be quantified easily. Indeed, it requires the assessment of the changes in performance as well as the changes in pathogen burden. In this paper, special attention is given to criteria required to standardize methodologies for assessing disease tolerance (DT) in respect of infectious diseases in pigs. The concept is applied to different areas of expertise and specific examples are given. The basic physiological mechanisms of DT are reviewed. Disease tolerance pathways, genetics of the tolerance-related traits, stress and disease tolerance, and role of metabolic stress in DT are described. In addition, methodologies based on monitoring of growth and reproductive performance, welfare, emotional affective states, sickness behavior for assessment of disease tolerance, and methodologies based on the relationship between environmental challenges and disease tolerance are considered. Automated Precision Livestock Farming technologies available for monitoring performance, health and welfare-related measures in pig farms, and their limitations regarding DT in pigs are also presented. Since defining standardized methodologies for assessing DT is a serious challenge for biologists, animal scientists and veterinarians, this work should contribute to improvement of health, welfare and production in pigs.
Collapse
Affiliation(s)
- Dimitar Nakov
- Faculty of Agricultural Sciences and Food, University Ss. Cyril and Methodius in Skopje, Skopje, Macedonia
| | - Slavcha Hristov
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | | | - Françoise Pol
- Agence Nationale de Sécurité Sanitaire (ANSES), Université Bretagne-Loire, Ploufragan, France
| | - Ivan Dimitrov
- Department of Animal Breeding, Agricultural Institute, Stara Zagora, Bulgaria
| | - Vlatko Ilieski
- Faculty of Veterinary Medicine, University Ss. Cyril and Methodius in Skopje, Skopje, Macedonia
| | - Pierre Mormede
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Julie Hervé
- IECM, INRA, Oniris, Université Bretagne Loire, Nantes, France
| | - Elena Terenina
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | | | - Dimitrios K Papanastasiou
- Centre for Research and Technology Hellas, Institute of Bio-Economy and Agri-Technology, Volos, Greece
| | - Thomas Bartzanas
- Centre for Research and Technology Hellas, Institute of Bio-Economy and Agri-Technology, Volos, Greece
| | | | | | - Emanuela Tullo
- Department of Environmental Science and Policy, Milan, Italy
| | | |
Collapse
|
43
|
Pluske JR, Miller DW, Sterndale SO, Turpin DL. Associations between gastrointestinal-tract function and the stress response after weaning in pigs. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychosocial stress is a major factor driving gastrointestinal-tract (GIT) pathophysiology and disease susceptibility in both humans and animals. Young weaned pigs typically undergo psychosocial and environmental stressors associated with production practices, including separation from their dam, mixing and crowding stress, transport and changed temperature and air-quality parameters, all of which can have significant deleterious impacts not only on performance but also on GIT structure and function, and, therefore, pig health and welfare. Strategies addressing some of these issues are explored in the current review, as well as discussion pertaining to sexual dimorphism in young pigs linked to stressful experiences, with young female pigs seemingly adversely affected more than their male counterparts. However, mechanisms governing susceptibility to stress-induced GIT functionality and disease remain inadequately understood.
Collapse
|