1
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Mack NR, Bouras NN, Gao WJ. Prefrontal Regulation of Social Behavior and Related Deficits: Insights From Rodent Studies. Biol Psychiatry 2024; 96:85-94. [PMID: 38490368 DOI: 10.1016/j.biopsych.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The prefrontal cortex (PFC) is well known as the executive center of the brain, combining internal states and goals to execute purposeful behavior, including social actions. With the advancement of tools for monitoring and manipulating neural activity in rodents, substantial progress has been made in understanding the specific cell types and neural circuits within the PFC that are essential for processing social cues and influencing social behaviors. Furthermore, combining these tools with translationally relevant behavioral paradigms has also provided novel insights into the PFC neural mechanisms that may contribute to social deficits in various psychiatric disorders. This review highlights findings from the past decade that have shed light on the PFC cell types and neural circuits that support social information processing and distinct aspects of social behavior, including social interactions, social memory, and social dominance. We also explore how the PFC contributes to social deficits in rodents induced by social isolation, social fear conditioning, and social status loss. These studies provide evidence that the PFC uses both overlapping and unique neural mechanisms to support distinct components of social cognition. Furthermore, specific PFC neural mechanisms drive social deficits induced by different contexts.
Collapse
Affiliation(s)
- Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Kolling LJ, Khan K, Wang R, Pierson SR, Hartman BD, Balasubramanian N, Guo DF, Rahmouni K, Marcinkiewcz CA. Interaction of serotonin/GLP-1 circuitry in a dual preclinical model for psychiatric disorders and metabolic dysfunction. Psychiatry Res 2024; 337:115951. [PMID: 38735240 PMCID: PMC11267813 DOI: 10.1016/j.psychres.2024.115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.
Collapse
Affiliation(s)
- Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Kanza Khan
- Psychological Sciences, Daemen University, Amherst, New York, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin D Hartman
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
5
|
Csikós V, Dóra F, Láng T, Darai L, Szendi V, Tóth A, Cservenák M, Dobolyi A. Social Isolation Induces Changes in the Monoaminergic Signalling in the Rat Medial Prefrontal Cortex. Cells 2024; 13:1043. [PMID: 38920671 PMCID: PMC11201939 DOI: 10.3390/cells13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.
Collapse
Affiliation(s)
- Vivien Csikós
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Luca Darai
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
6
|
Tamura H, Miyazaki A, Kawamura T, Gotoh H, Yamamoto N, Narita M. Chronic ingestion of soy peptide supplementation reduces aggressive behavior and abnormal fear memory caused by juvenile social isolation. Sci Rep 2024; 14:11557. [PMID: 38773352 PMCID: PMC11109177 DOI: 10.1038/s41598-024-62534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.
Collapse
Affiliation(s)
- Hideki Tamura
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan.
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.
| | - Akiko Miyazaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Takashi Kawamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Hikaru Gotoh
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Minoru Narita
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Lallai V, Congiu C, Craig G, Manca L, Chen YC, Dukes AJ, Fowler CD, Dazzi L. Social isolation postweaning alters reward-related dopamine dynamics in a region-specific manner in adolescent male rats. Neurobiol Stress 2024; 30:100620. [PMID: 38486879 PMCID: PMC10937317 DOI: 10.1016/j.ynstr.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Early development is characterized by dynamic transitions in brain maturation, which may be impacted by environmental factors. Here, we sought to determine the effects of social isolation from postweaning and during adolescence on reward behavior and dopaminergic signaling in male rats. Subjects were socially isolated or group housed at postnatal day 21. Three weeks later, extracellular dopamine concentrations were examined in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAc) during a feeding bout. Surprisingly, opposing effects were found in which increased mPFC dopamine concentrations were observed in group housed, but not isolated, rats. In stark contrast, increased dopamine levels were found in the NAc of isolated, but not group housed, rats. Moreover, the absence of an effect in the mPFC of the isolated rats could not be reversed by subsequent group housing, demonstrating the remarkable long-term effects on dopamine signaling dynamics. When provided a highly palatable food, the isolated subjects exhibited a dramatic increase in mPFC dopamine levels when the chocolate was novel, but no effects following chronic chocolate consumption. In contrast, the group housed subjects showed significantly increased dopamine levels only with chronic chocolate consumption. The dopamine changes were correlated with differences in behavioral measures. Importantly, the deficit in reward-related behavior during isolation could be reversed by microinjection of either dopamine or cocaine into the mPFC. Together, these data provide evidence that social isolation from postweaning and during adolescence alters reward-induced dopamine levels in a brain region-specific manner, which has important functional implications for reward-related behavior.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Centre of Excellence for the Neurobiology of Dependence, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Cristina Congiu
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Centre of Excellence for the Neurobiology of Dependence, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Giulia Craig
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Centre of Excellence for the Neurobiology of Dependence, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Centre of Excellence for the Neurobiology of Dependence, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Angeline J. Dukes
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Laura Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Centre of Excellence for the Neurobiology of Dependence, University of Cagliari, 09042, Monserrato, CA, Italy
| |
Collapse
|
8
|
Lodha J, Brocato ER, Nash M, Marcus MM, Pais AC, Pais AB, Miles MF, Wolstenholme JT. Adolescent social housing protects against adult emotional and cognitive deficits and alters the PFC and NAc transcriptome in male and female C57BL/6J mice. Front Neurosci 2023; 17:1287584. [PMID: 38130694 PMCID: PMC10733512 DOI: 10.3389/fnins.2023.1287584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Adolescence is a critical period in cognitive and emotional development, characterized by high levels of social interaction and increases in risk-taking behavior including binge drinking. Adolescent exposure to social stress and binge ethanol have individually been associated with the development of social, emotional, and cognitive deficits, as well as increased risk for alcohol use disorder. Disruption of cortical development by early life social stress and/or binge drinking may partly underlie these enduring emotional, cognitive, and behavioral effects. The study goal is to implement a novel neighbor housing environment to identify the effects of adolescent neighbor housing and/or binge ethanol drinking on (1) a battery of emotional and cognitive tasks (2) adult ethanol drinking behavior, and (3) the nucleus accumbens and prefrontal cortex transcriptome. Methods Adolescent male and female C57BL/6J mice were single or neighbor housed with or without access to intermittent ethanol. One cohort underwent behavioral testing during adulthood to determine social preference, expression of anxiety-like behavior, cognitive performance, and patterns of ethanol intake. The second cohort was sacrificed in late adolescence and brain tissue was used for transcriptomics analysis. Results As adults, single housed mice displayed decreased social interaction, deficits in the novel object recognition task, and increased anxiety-like behavior, relative to neighbor-housed mice. There was no effect of housing condition on adolescent or adult ethanol consumption. Adolescent ethanol exposure did not alter adult ethanol intake. Transcriptomics analysis revealed that adolescent housing condition and ethanol exposure resulted in differential expression of genes related to synaptic plasticity in the nucleus accumbens and genes related to methylation, the extracellular matrix and inflammation in the prefrontal cortex. Discussion The behavioral results indicate that social interaction during adolescence via the neighbor housing model may protect against emotional, social, and cognitive deficits. In addition, the transcriptomics results suggest that these behavioral alterations may be mediated in part by dysregulation of transcription in the frontal cortex or the nucleus accumbens.
Collapse
Affiliation(s)
- Jyoti Lodha
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - McKenzie Nash
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Madison M. Marcus
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - A. Chris Pais
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alex B. Pais
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F. Miles
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer Theresa Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Guimarães DM, Valério-Gomes B, Vianna-Barbosa RJ, Oliveira W, Neves GÂ, Tovar-Moll F, Lent R. Social isolation leads to mild social recognition impairment and losses in brain cellularity. Brain Struct Funct 2023; 228:2051-2066. [PMID: 37690044 DOI: 10.1007/s00429-023-02705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.
Collapse
Affiliation(s)
- Daniel Menezes Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Robarts Research Institute, University of Western Ontario, London, Canada.
| | - Bruna Valério-Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Washington Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Ângela Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute of Research and Education, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
So YH, Shin HS, Lee SH, Moon HJ, Jang HJ, Lee EH, Jung EM. Maternal exposure to polystyrene microplastics impairs social behavior in mouse offspring with a potential neurotoxicity. Neurotoxicology 2023; 99:206-216. [PMID: 37918694 DOI: 10.1016/j.neuro.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
As plastic production has been increasing steadily, environmental pollution resulting from microplastics (MPs) continues to draw considerable attention of the researchers. Several studies have reported that MPs are risk factors for various cellular and systemic dysfunctions. However, the effects of chronic MP exposure from the embryonic stage to adulthood on mouse brain remain unclear. Accordingly, determining the impacts of maternal exposure to MPs on mouse offspring was the main goal of this study. To this end, single cells of primary cortical neurons were isolated from mouse embryos. Subsequently, the cells were exposed to 2 µm polystyrene microplastics (PS-MPs), which resulted in a notable reduction in dendritic length, and PS-MPs cannot pass through the cellular membrane of neurons. Moreover, exposure to PS-MPs caused the proliferation increase and apoptosis in primary cortical neuronal cells. We then evaluated the neurotoxicity associated with chronic PS-MP exposure from the embryonic stage to adulthood in C57BL/6 J mouse offspring. PS-MPs were found to accumulate in the digestive and excretory organs of the offspring but not in the brain tissue. However, offspring exposed to PS-MPs exhibited no differences in the levels of expression of genes related to brain cell markers or synaptic organization. Nevertheless, PS-MP-exposed mice exhibited impaired social novelty preferences; however, no changes were observed in the emotional, compulsive, or cognitive behaviors. Taken together, these results demonstrate the potential neurotoxic effects of chronic exposure to PS-MPs in mouse offspring.
Collapse
Affiliation(s)
- Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon Jung Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
11
|
Cavieres G, Bozinovic F, Bogdanovich JM, Rivera DS. Impact of prolonged chronic social isolation stress on behavior and multifractal complexity of metabolic rate in Octodon degus. Front Behav Neurosci 2023; 17:1239157. [PMID: 37928446 PMCID: PMC10622977 DOI: 10.3389/fnbeh.2023.1239157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Social interaction can improve animal performance through the prevention of stress-related events, the provision of security, and the enhancement of reproductive output and survival. We investigated the effects of prolonged chronic social isolation stress on behavioral, cognitive, and physiological performance in the social, long-lived rodent Octodon degus. Degu pups were separated into two social stress treatments: control (CTRL) and chronically isolated (CI) individuals from post-natal and post-weaning until adulthood. We quantified anxiety-like behavior and cognitive performance with a battery of behavioral tests. Additionally, we measured their basal metabolic rate (BMR) and analyzed the multifractal properties of the oxygen consumption time series using Multifractal Detrended Fluctuation Analysis, a well-known method for assessing the fractal characteristics of biological signals. Our results showed that CI induced a significant increase in anxiety-like behaviors and led to a reduction in social and working memory in male degus. In addition, CI-treated degus reduced the multifractal complexity of BMR compared to CTRL, which implies a decrease in the ability to respond to environmental stressors and, as a result, an unhealthy state. In contrast, we did not observe significant effects of social stress on BMR. Multivariate analyses showed a clear separation of behavior and physiological variables into two clusters, corresponding to CI and CTRL degus. This study provides novel insights into the effects of prolonged chronic social isolation stress on behavior, cognitive performance, and metabolic complexity in this rodent animal model. To the best of our knowledge, it is the first study to integrate cognitive-behavioral performance and multifractal dynamics of a physiological signal in response to prolonged social isolation. These findings highlight the importance of social interactions for the well-being and overall performance of social animals.
Collapse
Affiliation(s)
- Grisel Cavieres
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Miguel Bogdanovich
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
12
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
13
|
Naumova AA, Oleynik EA, Grigorieva YS, Nikolaeva SD, Chernigovskaya EV, Glazova MV. In search of stress: analysis of stress-related markers in mice after hindlimb unloading and social isolation. Neurol Res 2023; 45:957-968. [PMID: 37642364 DOI: 10.1080/01616412.2023.2252280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES Hindlimb unloading (HU), widely used to simulate microgravity effects, is known to induce a stress response. However, as single-housed animals are usually used in such experiments, social isolation (SI) stress can affect experimental results. In the present study, we aimed to delineate stressful effects of 3-day HU and SI in mice. METHODS Three animal groups, HU, SI, and group-housed (GH) control mice, were recruited. A comprehensive analysis of stress-related markers was performed using ELISA, western blotting, and immunohistochemistry. RESULTS Our results showed that blood corticosterone and activity of glucocorticoid receptors and cAMP response element-binding protein (CREB) in the hippocampus of SI and HU animals did not differ from GH control. However, SI mice demonstrated upregulation of the hippocampal corticotropin-releasing hormone (CRH), inducible NO synthase (iNOS), vesicular glutamate transporter 1 (VGLUT1), and glutamate decarboxylases 65/67 (GAD65/67) along with activation of Fos-related antigen 1 (Fra-1) in the amygdala confirming the expression of stress. In HU mice, the same increase in GAD65/67 and Fra-1 indicated the contribution of SI. The special HU effect was expressed only in neurogenesis attenuation. DISCUSSION Thus, our data indicated that 3-day HU could not be characterized as physiological stress, but SI stress contributed to the negative effects of HU.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Yulia S Grigorieva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Penman SL, Roeder NM, Berthold EC, Senetra AS, Marion M, Richardson BJ, White O, Fearby NL, McCurdy CR, Hamilton J, Sharma A, Thanos PK. FABP5 is important for cognitive function and is an important regulator of the physiological effects and pharmacokinetics of acute Δ9 tetrahydrocannabinol inhalation in mice. Pharmacol Biochem Behav 2023; 231:173633. [PMID: 37716413 DOI: 10.1016/j.pbb.2023.173633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Fatty acid binding protein 5 (FABP5) interacts with the endocannabinoid system in the brain via intracellular transport of anandamide, as well as Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. Previous work has established the behavioral effects of genetic deletion of FABP5, but not in the presence of THC. The present study sought to further elucidate the role of FABP5 on the pharmacokinetic and behavioral response to THC through global deletion. Adult FABP5+/+ and FABP5-/- mice were tested for behavioral response to THC using Open Field (OF), Novel Object Recognition (NOR), T-Maze, Morris Water Maze (MWM), and Elevated Plus Maze (EPM). An additional cohort of mice was used to harvest blood, brains, and liver samples to measure THC and metabolites after acute administration of THC. Behavioral tests showed that some cognitive deficits from FABP5 deletion, particularly in MWM, were blocked by THC administration, while this was not observed in other measures of memory and anxiety (such as T-Maze and EPM). Measurement of THC and metabolites in blood serum and brain tissue through UPLC-MS/MS analysis showed that the pharmacokinetics of THC was altered by FABP5. The present study shows further evidence of the importance of FABP5 in cognitive function. Additionally, results showed that FABP5 is an important regulator of the physiological effects and pharmacokinetics of THC.
Collapse
Affiliation(s)
- Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nathan L Fearby
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Huang C, Voglewede MM, Ozsen EN, Wang H, Zhang H. SHANK3 Mutations Associated with Autism and Schizophrenia Lead to Shared and Distinct Changes in Dendritic Spine Dynamics in the Developing Mouse Brain. Neuroscience 2023; 528:1-11. [PMID: 37532012 PMCID: PMC10528879 DOI: 10.1016/j.neuroscience.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Autism Spectrum Disorders (ASD) and schizophrenia are distinct neurodevelopmental disorders that share certain symptoms and genetic components. Both disorders show abnormalities in dendritic spines, which are the main sites of excitatory synaptic inputs. Recent studies have identified the synaptic scaffolding protein Shank3 as a leading candidate gene for both disorders. Mutations in the SHANK3 gene have been linked to both ASD and schizophrenia; however, how patient-derived mutations affect the structural plasticity of dendritic spines during brain development is unknown. Here we use live two photon in vivo imaging to examine dendritic spine structural plasticity in mice with SHANK3 mutations associated with ASD and schizophrenia. We identified shared and distinct phenotypes in dendritic spine morphogenesis and plasticity in the ASD-associated InsG3680 mutant mice and the schizophrenia-associated R1117X mutant mice. No significant changes in dendritic arborization were observed in either mutant, raising the possibility that synaptic dysregulation may be a key contributor to the behavioral defects previously reported in these mice. These findings shed light on how patient-linked mutations in SHANK3 affect dendritic spine dynamics in the developing brain, which provides insight into the synaptic basis for the distinct phenotypes observed in ASD and schizophrenia.
Collapse
Affiliation(s)
- Chengyu Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mikayla M Voglewede
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
16
|
EKİNALAN KAYHAN H, OKUDAN N, BELVİRANLI M. Comparison of the effect of postweaning social isolation, enriched environment, and exercise training on learning and memory functions in rats. Turk J Med Sci 2023; 53:1412-1420. [PMID: 38812994 PMCID: PMC10763796 DOI: 10.55730/1300-0144.5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2023] [Accepted: 06/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim To assess the effects of postweaning social isolation, an enriched environment, and exercise training on learning and memory functions in rats, as well as their relation with the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) concentrations in the hippocampus. Materials and methods Randomly assigned into 4 groups were 35 female postweaning rats (25 day old), as the control (C), social isolation (SI), enriched environment (EE), and exercise training (E) groups. The SI and the EE groups were housed under their specific conditions and the E and the C groups were housed under standard conditions for 6 weeks. The rats in the E group swam for 60 min/day, 5 days a week, for 6 weeks. After 6 weeks, the rats were evaluated in the Morris water maze (MWM). Following MWM assessment, hippocampal tissue and blood samples were taken to measure the BDNF and NGF. Results According to the results of the MWM probe trial session, the thigmotaxis behavior was higher in the SI group compared to the C group (p < 0,05). Furthermore, the time spent in the target quadrant (quadrant with an escape platform) was lower in the SI group compared to the EE group (p < 0.05). The BDNF and NGF levels in the hippocampus and plasma were not different between the groups (p < 0.05). Conclusion Postweaning social isolation may increase thigmotaxis behaviors. Postweaning social isolation, enriched environment, and exercise training did not affect the spatial learning, memory function, hippocampal BDNF or NGF levels in female rats.
Collapse
Affiliation(s)
- Hatice EKİNALAN KAYHAN
- Department of Radiotherapy, Vocational School of Health Services, Ankara University, Ankara,
Turkiye
| | - Nilsel OKUDAN
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya,
Turkiye
| | - Muaz BELVİRANLI
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya,
Turkiye
| |
Collapse
|
17
|
Kolling LJ, Khan K, Balasubramanian N, Guo DF, Rahmouni K, Marcinkiewcz CA. Involvement of a serotonin/GLP-1 circuit in adolescent isolation-induced diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544498. [PMID: 37398179 PMCID: PMC10312607 DOI: 10.1101/2023.06.12.544498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In 2020, stay-at-home orders were implemented to stem the spread of SARS-CoV-2 worldwide. Social isolation can be particularly harmful to children and adolescents-during the pandemic, the prevalence of obesity increased by ∼37% in persons aged 2-19. Obesity is often comorbid with type 2 diabetes, which was not assessed in this human pandemic cohort. Here, we investigated whether male mice isolated throughout adolescence develop type 2 diabetes in a manner consistent with human obesity-induced diabetes, and explored neural changes that may underlie such an interaction. We find that isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes. We observed fasted hyperglycemia, diminished glucose clearance in response to an insulin tolerance test, decreased insulin signaling in skeletal muscle, decreased insulin staining of pancreatic islets, increased nociception, and diminished plasma cortisol levels compared to group-housed control mice. Using Promethion metabolic phenotyping chambers, we observed dysregulation of sleep and eating behaviors, as well as a time-dependent shift in respiratory exchange ratio of the adolescent-isolation mice. We profiled changes in neural gene transcription from several brain areas and found that a neural circuit between serotonin-producing and GLP-1-producing neurons is affected by this isolation paradigm. Overall, spatial transcription data suggest decreased serotonin neuron activity (via decreased GLP-1-mediated excitation) and increased GLP-1 neuron activity (via decreased serotonin-mediated inhibition). This circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes, as well as a pharmacologically-relevant circuit to explore the effects of serotonin and GLP-1 receptor agonists. Article Highlights Isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes, presenting with fasted hyperglycemia.Adolescent-isolation mice have deficits in insulin responsiveness, impaired peripheral insulin signaling, and decreased pancreatic insulin production.Transcriptional changes across the brain include the endocannabinoid, serotonin, and GLP-1 neurotransmitters and associated receptors. The neural serotonin/GLP-1 circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes. Serotonin-producing neurons of adolescent-isolation mice produce fewer transcripts for the GLP-1 receptor, and GLP-1 neurons produce fewer transcripts for the 5-HT 1A serotonin receptor.
Collapse
|
18
|
Dill LK, Teymornejad S, Sharma R, Bozkurt S, Christensen J, Chu E, Rewell SS, Shad A, Mychasiuk R, Semple BD. Modulating chronic outcomes after pediatric traumatic brain injury: Distinct effects of social and environmental enrichment. Exp Neurol 2023; 364:114407. [PMID: 37059414 DOI: 10.1016/j.expneurol.2023.114407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Impairments in social and cognitive function are a common consequence of pediatric traumatic brain injury (TBI). Rehabilitation has the potential to promote optimal behavioral recovery. Here, we evaluated whether an enhanced social and/or cognitive environment could improve long-term outcomes in a preclinical model of pediatric TBI. Male C57Bl/6 J mice received a moderately-severe TBI or sham procedure at postnatal day 21. After one week, mice were randomized to different social conditions (minimal socialization, n = 2/cage; or social grouping, n = 6/cage), and housing conditions (standard cage, or environmental enrichment (EE), incorporating sensory, motor, and cognitive stimuli). After 8 weeks, neurobehavioral outcomes were assessed, followed by post-mortem neuropathology. We found that TBI mice exhibited hyperactivity, spatial memory deficits, reduced anxiety-like behavior, and reduced sensorimotor performance compared to age-matched sham controls. Pro-social and sociosexual behaviors were also reduced in TBI mice. EE increased sensorimotor performance, and the duration of sociosexual interactions. Conversely, social housing reduced hyperactivity and altered anxiety-like behavior in TBI mice, and reduced same-sex social investigation. TBI mice showed impaired spatial memory retention, except for TBI mice exposed to both EE and group housing. In the brain, while TBI led to significant regional tissue atrophy, social housing had modest neuroprotective effects on hippocampal volumes, neurogenesis, and oligodendrocyte progenitor numbers. In conclusion, manipulation of the post-injury environment has benefit for chronic behavioral outcomes, but the benefits are specific to the type of enrichment available. This study improves understanding of modifiable factors that may be harnessed to optimize long-term outcomes for survivors of early-life TBI.
Collapse
Affiliation(s)
- Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sadaf Teymornejad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sarah S Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
19
|
Mancini GF, Meijer OC, Campolongo P. Stress in adolescence as a first hit in stress-related disease development: Timing and context are crucial. Front Neuroendocrinol 2023; 69:101065. [PMID: 37001566 DOI: 10.1016/j.yfrne.2023.101065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, however, represents another highly sensitive developmental window during which exposure to stressful events may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is experienced in two different life stages.
Collapse
Affiliation(s)
- Giulia F Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
20
|
Individualized Housing Modifies the Immune–Endocrine System in CD1 Adult Male Mice. Animals (Basel) 2023; 13:ani13061026. [PMID: 36978567 PMCID: PMC10044133 DOI: 10.3390/ani13061026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In the last years, different research groups have made considerable efforts to improve the care and use of animals in research. Mice (Mus musculus) are the most widely used animal species in research in the European Union and are sociable and hierarchical creatures. During experiments, researchers tend to individualize males, but no consideration is given to whether this social isolation causes them stress. The aim of this study was, therefore, to explore whether 4 weeks of social isolation could induce changes in different physiological parameters in adult Crl:CD1(ICR) (CD1) males, which may interfere with experimental results. Body weight, blood cells, and fecal corticosterone metabolites levels were the analyzed parameters. Blood and fecal samples were collected at weeks 1 and 4 of the experimental procedure. Four weeks of single housing produced a significant time-dependent decrease in monocytes and granulocytes. Fecal corticosterone metabolite levels were higher in single-housed mice after 1 week and then normalized after 4 weeks of isolation. Body weight, red blood cells, and platelets remained unchanged in both groups during this period. We can, therefore, conclude that social isolation affects some immune and endocrine parameters, and that this should be taken into account in the interpretation of research data.
Collapse
|
21
|
Si L, Xiao L, Xie Y, Xu H, Yuan G, Xu W, Wang G. Social isolation after chronic unpredictable mild stress perpetuates depressive-like behaviors, memory deficits and social withdrawal via inhibiting ERK/KEAP1/NRF2 signaling. J Affect Disord 2023; 324:576-588. [PMID: 36584714 DOI: 10.1016/j.jad.2022.12.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Social withdrawal in patients with depression can aggravate depressive symptoms. However, few studies focus on the behavioral changes of social isolation after CUMS. NRF2 had been reported to be down-regulated after CUMS. But whether NRF2 participates in behavioral changes induced by social isolation after CUMS remains unclear. This study aims to develop a new model combined social isolation with CUMS, and investigate whether such behavioral changes are related to NRF2 signaling. METHODS This study included two stages. In Stage 1, rats were subjected to 4-week CUMS and CUMS-susceptible rats were selected. In Stage 2, the CUMS-susceptible rats received 4-week social isolation or social support. Behavioral tests were carried out to observe behavioral changes, including sucrose preference test, forced swimming test, open field test, novel object recognition and social interaction test. QRT-PCR, western blot and immunofluorescence staining detected the ERK/KEAP1/NRF2 signaling. RESULTS CUMS-susceptible rats exhibited depressive-like behaviors accompanied by the down-regulated ERK/KEAP1/NRF2 signaling in hippocampus. In Stage 2, compared with 4-week social support (group CUMSG), 4-week social isolation (group CUMSI) perpetuated the depressive-like behaviors, memory deficits and social withdrawal in CUMS-susceptible rats, as well as lower levels of p-ERK, NRF2, p-NRF2, HO-1 and NQO1, and the higher levels of KEAP1 in hippocampus. CONCLUSION These findings suggested that social isolation after CUMS perpetuated depressive-like behaviors, memory deficits and social withdrawal via inhibiting ERK/KEAP1/NRF2 signaling. This study provided molecular evidence for the effects of post-stress social isolation on mental health, and the antioxidant stress signaling might be a target to rescue these.
Collapse
Affiliation(s)
- Lujia Si
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.
| | - Ling Xiao
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Yinping Xie
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.
| | - Hong Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Guohao Yuan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Wenqian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China
| | - Gaohua Wang
- Department of Psychiatry and Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Abdelfattah AM, Abuelezz SA, Hendawy N, Negm EA, Nawishy SAEK, Khalil AMM. Sonic hedgehog pathway as a new target of atypical antipsychotics: Revisiting of amisulpride and aripiprazole effects in a rat model of schizophrenia. Life Sci 2023; 316:121366. [PMID: 36649751 DOI: 10.1016/j.lfs.2022.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Schizophrenia is a chronic mental illness presented by cognitive deficits that precede its positive and negative symptoms. Sonic hedgehog (Shh)-pathway contributes to its pathophysiology. Shh has a role in neurogenesis as it regulates proliferation and survival of neural cells. In this study, effects of the anti-psychotics Amisulpride and/or Aripiprazole on the Shh-pathway and its relation to cognitive functions and neurogenesis in a rat model of schizophrenia were tested. METHODS 60 male Wistar rats were allocated into the following groups: control, socially isolated, amisulpride and/or aripiprazole-treated groups. Rats were then subjected to behavioral, biochemical, and histopathological tests to assess the impact of these drugs on Shh-pathway. KEY FINDINGS Cognitive-dysfunction was evidenced in socially isolated group in novel object, three-chamber, and Morris water maze tests, associated by disorganised Shh-pathway proteins levels concentrations, increased glial fibrillary acidic protein (GFAP)-stained astrocytes. Treated groups favorably reversed these changes evidenced by increased Shh, transmembrane patched-1 and smoothened, glioma-associated-oncogene (GLI)-1 levels, dopamine-1 receptors and brain derived neurotrophic factor, and decreased GLI-3 protein, GFAP immune reaction in astrocytes and inflammatory markers compared to socially isolated group. CONCLUSION Amisulpride and/or aripiprazole have a favorable role in turning on Shh-pathway with subsequent beneficial cognitive and neurogenesis effects.
Collapse
Affiliation(s)
- Ahmed M Abdelfattah
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Cairo, Egypt.
| | - Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A Negm
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
23
|
Ren Y, Savadlou A, Park S, Siska P, Epp JR, Sargin D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer's Disease. Front Neuroendocrinol 2023; 69:101061. [PMID: 36758770 DOI: 10.1016/j.yfrne.2023.101061] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.
Collapse
Affiliation(s)
- Yi Ren
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Aisouda Savadlou
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Soobin Park
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Paul Siska
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Canada; Department of Physiology & Pharmacology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
24
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Vasilopoulou F, Bellver-Sanchis A, Companys-Alemany J, Jarne-Ferrer J, Irisarri A, Palomera-Ávalos V, Gonzalez-Castillo C, Ortuño-Sahagún D, Sanfeliu C, Pallàs M, Griñán-Ferré C. Cognitive Decline and BPSD Are Concomitant with Autophagic and Synaptic Deficits Associated with G9a Alterations in Aged SAMP8 Mice. Cells 2022; 11:cells11162603. [PMID: 36010679 PMCID: PMC9406492 DOI: 10.3390/cells11162603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Behavioural and psychological symptoms of dementia (BPSD) are presented in 95% of Alzheimer’s Disease (AD) patients and are also associated with neurotrophin deficits. The molecular mechanisms leading to age-related diseases are still unclear; however, emerging evidence has suggested that epigenetic modulation is a key pathophysiological basis of ageing and neurodegeneration. In particular, it has been suggested that G9a methyltransferase and its repressive histone mark (H3K9me2) are important in shaping learning and memory by modulating autophagic activity and synaptic plasticity. This work deepens our understanding of the epigenetic mechanisms underlying the loss of cognitive function and BPSD in AD. For this purpose, several tasks were performed to evaluate the parameters of sociability (three-chamber test), aggressiveness (resident intruder), anxiety (elevated plus maze and open field) and memory (novel object recognition test) in mice, followed by the evaluation of epigenetic, autophagy and synaptic plasticity markers at the molecular level. The behavioural alterations presented by senescence-accelerated mice prone 8 (SAMP8) of 12 months of age compared with their senescence-accelerated mouse resistant mice (SAMR1), the healthy control strain was accompanied by age-related cognitive deficits and alterations in epigenetic markers. Increased levels of G9a are concomitant to the dysregulation of the JNK pathway in aged SAMP8, driving a failure in autophagosome formation. Furthermore, lower expression of the genes involved in the memory-consolidation process modulated by ERK was observed in the aged male SAMP8 model, suggesting the implication of G9a. In any case, two of the most important neurotrophins, namely brain-derived neurotrophic factor (Bdnf) and neurotrophin-3 (NT3), were found to be reduced, along with a decrease in the levels of dendritic branching and spine density presented by SAMP8 mice. Thus, the present study characterizes and provides information regarding the non-cognitive and cognitive states, as well as molecular alterations, in aged SAMP8, demonstrating the AD-like symptoms presented by this model. In any case, our results indicate that higher levels of G9a are associated with autophagic deficits and alterations in synaptic plasticity, which could further explain the BPSD and cognitive decline exhibited by the model.
Collapse
Affiliation(s)
- Foteini Vasilopoulou
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Júlia Jarne-Ferrer
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
26
|
Breach MR, Dye CN, Galan A, Lenz KM. Prenatal allergic inflammation in rats programs the developmental trajectory of dendritic spine patterning in brain regions associated with cognitive and social behavior. Brain Behav Immun 2022; 102:279-291. [PMID: 35245680 PMCID: PMC9070022 DOI: 10.1016/j.bbi.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
Allergic inflammation during pregnancy increases risk for a diagnosis of neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) in the offspring. Previously, we found a model of such inflammation, allergy-induced maternal immune activation (MIA), produced symptoms analogous to those associated with neurodevelopmental disorders in rats, including reduced juvenile play behavior, hyperactivity, and cognitive inflexibility. These behaviors were preceded by perinatal changes in microglia colonization and phenotype in multiple relevant brain regions. Given the role that microglia play in synaptic patterning as well as evidence for altered synaptic architecture in neurodevelopmental disorders, we investigated whether allergic MIA altered the dynamics of dendritic spine patterning throughout key regions of the rat forebrain across neurodevelopment. Adult virgin female rats were sensitized to the allergen, ovalbumin, with alum adjuvant, bred, and allergically challenged on gestational day 15. Brain tissue was collected from male and female offspring on postnatal days (P) 5, 15, 30, and 100-120 and processed for Golgi-Cox staining. Mean dendritic spine density was calculated for neurons in brain regions associated with cognition and social behavior, including the medial prefrontal cortex (mPFC), basal ganglia, septum, nucleus accumbens (NAc), and amygdala. Allergic MIA reduced dendritic spine density in the neonatal (P5) and juvenile (P15) mPFC, but these mPFC spine deficits were normalized by P30. Allergic inflammation reduced spine density in the septum of juvenile (P30) rats, with an interaction suggesting increased density in males and reduced density in females. MIA-induced reductions in spine density were also found in the female basal ganglia at P15, as well as in the NAc at P30. Conversely, MIA-induced increases were found in the NAc in adulthood. While amygdala dendritic spine density was generally unaffected throughout development, MIA reduced density in both medial and basolateral subregions in adult offspring. Correlational analyses revealed disruption to amygdala-related networks in the neonatal animals and cortico-striatal related networks in juvenile and adult animals in a sex-specific manner. Collectively, these data suggest that communication within and between these cognitive and social brain regions may be altered dynamically throughout development after prenatal exposure to allergic inflammation. They also provide a basis for future intervention studies targeted at rescuing spine and behavior changes via immunomodulatory treatments.
Collapse
Affiliation(s)
- Michaela R. Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Lodha J, Brocato E, Wolstenholme JT. Areas of Convergence and Divergence in Adolescent Social Isolation and Binge Drinking: A Review. Front Behav Neurosci 2022; 16:859239. [PMID: 35431830 PMCID: PMC9009335 DOI: 10.3389/fnbeh.2022.859239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a critical developmental period characterized by enhanced social interactions, ongoing development of the frontal cortex and maturation of synaptic connections throughout the brain. Adolescents spend more time interacting with peers than any other age group and display heightened reward sensitivity, impulsivity and diminished inhibitory self-control, which contribute to increased risky behaviors, including the initiation and progression of alcohol use. Compared to adults, adolescents are less susceptible to the negative effects of ethanol, but are more susceptible to the negative effects of stress, particularly social stress. Juvenile exposure to social isolation or binge ethanol disrupts synaptic connections, dendritic spine morphology, and myelin remodeling in the frontal cortex. These structural effects may underlie the behavioral and cognitive deficits seen later in life, including social and memory deficits, increased anxiety-like behavior and risk for alcohol use disorders (AUD). Although the alcohol and social stress fields are actively investigating the mechanisms through which these effects occur, significant gaps in our understanding exist, particularly in the intersection of the two fields. This review will highlight the areas of convergence and divergence in the fields of adolescent social stress and ethanol exposure. We will focus on how ethanol exposure or social isolation stress can impact the development of the frontal cortex and lead to lasting behavioral changes in adulthood. We call attention to the need for more mechanistic studies and the inclusion of the evaluation of sex differences in these molecular, structural, and behavioral responses.
Collapse
Affiliation(s)
- Jyoti Lodha
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
28
|
Post-weaning social isolation causes sex-specific alterations to dendritic spine density in subregions of the prefrontal cortex and nucleus accumbens of adult mice. Brain Res 2022; 1777:147755. [PMID: 34932973 PMCID: PMC8802216 DOI: 10.1016/j.brainres.2021.147755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Post-weaning social isolation stress has been shown to increase addiction-like behavior in adulthood. These long-term behavioral alterations may be due to long lasting isolation-induced structural changes to neurons in brain regions involved in reward processing. Previous studies have shown that various stressors alter dendritic spine density in the prefrontal cortex (PFC) and the nucleus accumbens, though many of these studies examine the short-term effects of stress, and are primarily conducted in males. There is mounting evidence that males and females exhibit differences in their stress responses, with some studies showing sex differences in stress-induced plasticity. To determine the long-lasting, sex-specific alterations in spine density following post-weaning social isolation, male and female mice were either isolated or group housed at weaning and spine density was measured once they reached adulthood. Post-weaning isolation increased spine density in the PFC of both the males and females, although the effects in the infralimbic cortex were more pronounced in the females. In the nucleus accumbens, adolescent isolation increased spine density in males only in the core and shell. Females also had higher baseline spine density than males in the nucleus accumbens core. Together these data suggest that adolescent social isolation causes long-term, sex-specific alterations to the prefrontal cortex and the nucleus accumbens.
Collapse
|
29
|
Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage 2021; 245:118740. [PMID: 34808365 DOI: 10.1016/j.neuroimage.2021.118740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Social isolation (SI) leads to various mental health disorders. Despite abundant studies on behavioral and neurobiological changes induced by post-weaning SI, the characterization of its imaging correlates, such as resting-state functional connectivity (RSFC), is critically lacking. In addition, the effects of resocialization after isolation remain unclear. Therefore, this study aimed to explore the effects of 1) SI on cortical functional connectivity and 2) subsequent resocialization on behavior and functional connectivity. METHODS Behavioral tests were conducted to validate the post-weaning SI mouse model, which is isolated during the juvenile period. Wide-field optical mapping was performed to observe both neuronal and hemodynamic signals in the cortex under anesthesia. Using seed-based and graph theoretical analyses, RSFC was analyzed. SI mice were then resocialized and the array of behavior and imaging tests was conducted. RESULTS Behaviorally, SI mice showed elevated anxiety, social preference, and aggression. RSFC analyses using the seed-based approach revealed decreased cortical functional connectivity in SI mice, especially in the frontal region. Graph network analyses demonstrated significant reduction in network segregation measures. After resocialization, mice exhibited recovered anxiogenic and aggressive behavior, but RSFC data did not show significant changes. CONCLUSIONS We observed an overall decrease in functional connectivity in SI mice. Moreover, resocialization restored the disruptions in behavioral patterns but functional connectivity was not recovered. To our knowledge, this is the first study to report that, despite the recovering tendencies of behavior in resocialized mice, similar changes in RSFC were not observed. This suggests that disruptions in functional connectivity caused by social isolation remain as long-term sequelae.
Collapse
|
30
|
Galal A, El-Bakly WM, El-Kilany SS, Ali AA, El-Demerdash E. Fenofibrate ameliorates olanzapine's side effects without altering its central effect: emphasis on FGF-21-adiponectin axis. Behav Pharmacol 2021; 32:615-629. [PMID: 34637209 DOI: 10.1097/fbp.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.
Collapse
Affiliation(s)
- Aya Galal
- Cardiac Surgery Hospital, Ain Shams University
| | | | - Sara S El-Kilany
- Department of Anatomy, Faculty of Medicine, Ain Shams University
| | - Azza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar university (Girls Branch)
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
31
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
32
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. "Live together, die alone": The effect of re-socialization on behavioural performance and social-affective brain-related proteins after a long-term chronic social isolation stress. Neurobiol Stress 2021; 14:100289. [PMID: 33426200 PMCID: PMC7785960 DOI: 10.1016/j.ynstr.2020.100289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
Loneliness affects group-living mammals triggering a cascade of stress-dependent physiological disorders. Indeed, social isolation stress is a major risk factor for several neuropsychiatric disorders including anxiety and depression. Furthermore, social isolation has a negative impact on health and fitness. However, the neurobiological consequences of long-term chronic social isolation stress (LTCSIS) manifested during the adulthood of affected individuals are not fully understood. Our study assessed the impact of LTCSIS and social buffering (re-socialization) on the behavioural performance and social-affective brain-related proteins in diurnal, social, and long-lived Octodon degus (degus). Thereby, anxiety-like and social behaviour, and social recognition memory were assessed in male and female animals subjected to a variety of stress-inducing treatments applied from post-natal and post-weaning until their adulthood. Additionally, we evaluated the relationship among LTCSIS, Oxytocin levels (OXT), and OXT-Ca2+-signalling proteins in the hypothalamus, the hippocampus, and the prefrontal cortex. Our findings suggest that LTCSIS induces anxiety like-behaviour and impairs social novelty preference whereas sociability is unaffected. On the other hand, re-socialization can revert both isolation-induced anxiety and social memory impairment. However, OXT and its signalling remained reduced in the abovementioned brain areas, suggesting that the observed changes in OXT-Ca2+ pathway proteins were permanent in male and female degus. Based on these findings, we conclude degus experience social stress differently, suggesting the existence of sex-related mechanisms to cope with specific adaptive challenges.
Collapse
Affiliation(s)
- Daniela S. Rivera
- GEMA Center for Genomics, Ecology & Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B. Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A. Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
33
|
Park G, Ryu C, Kim S, Jeong SJ, Koo JW, Lee YS, Kim SJ. Social isolation impairs the prefrontal-nucleus accumbens circuit subserving social recognition in mice. Cell Rep 2021; 35:109104. [PMID: 33979617 DOI: 10.1016/j.celrep.2021.109104] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Although medial prefrontal cortex (mPFC) is known to play important roles in social behaviors, how early social experiences affect the mPFC and its subcortical circuit remains unclear. We report that mice singly housed (SH) for 8 weeks after weaning show a social recognition deficit, even after 4 weeks of resocialization. In SH mice, prefrontal infralimbic (IL) neurons projecting to the shell region of nucleus accumbens (NAcSh) show decreased excitability compared with group-housed (GH) mice. NAcSh-projecting IL neurons are activated when GH mice encounter a familiar conspecific, which is not observed in SH mice. Chemogenetic inhibition of NAcSh-projecting IL neurons in normal mice impairs social recognition without affecting social preference, whereas activation of these neurons reverses social recognition deficit in SH mice. Our findings demonstrate that early social experience critically affects mPFC IL-NAcSh projection, the activation of which is required for social recognition by encoding information for social familiarity.
Collapse
Affiliation(s)
- Gaeun Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Changhyeon Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soobin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Se Jin Jeong
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
34
|
Zhang X, Xun Y, Wang L, Zhang J, Hou W, Ma H, Cai W, Li L, Guo Q, Li Y, Lv Z, Jia R, Tai F, He Z. Involvement of the dopamine system in the effect of chronic social isolation during adolescence on social behaviors in male C57 mice. Brain Res 2021; 1765:147497. [PMID: 33894223 DOI: 10.1016/j.brainres.2021.147497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
In the early stage of life, experiencing social isolation can generate long-lasting deleterious effects on behaviors and brain development. However, the effects of chronic social isolation during adolescence on social behaviors and its underlying neurobiological mechanisms remain unclear. The present study found that four weeks of social isolation during adolescence impaired social recognition ability in the three-chamber test and five-trial social recognition test, and increased aggressive-like behaviors, but reduced environmental exploration, as showed in the social interaction test. Chronic social isolation decreased levels of dopamine D2 receptor in the shell of the nucleus accumbens (NAcc) and medial prefrontal cortex. It also reduced TH in the NAcc. Using in vivo fiber photometry, it was also found that isolated mice displayed a reduction in NAcc shell activity upon exploring unfamiliar social stimuli. An injection of a 100 ng dose of the D2R agonist quinpirole into the shell of the NAcc reversed behavioral abnormalities induced by chronic social isolation. These data suggest that the dopamine system is involved in alterations in social behaviors induced by chronic social isolation. This finding sheds light on the mechanism underlying abnormalities in social behavior induced by adolescent chronic social isolation and provides a promising target to treat mental diseases relevant to social isolation.
Collapse
Affiliation(s)
- Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yufeng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
35
|
Social context shapes cognitive abilities: associative memories are modulated by fight outcome and social isolation in the crab Neohelice granulata. Anim Cogn 2021; 24:1007-1026. [PMID: 33788037 PMCID: PMC8009927 DOI: 10.1007/s10071-021-01492-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Cognitive abilities of an animal can be influenced by distinct social experiences. However, the extent of this modulation has not been addressed in different learning scenarios: are all tasks similarly affected by social experiences? In the present study, we analyzed the effect of social dominance in aversive and appetitive memory processes in the crab Neohelice granulata. In addition, we studied the influence of social isolation on memory ability. Social dominance experiments consisted of an agonistic phase immediately followed by a memory phase. During the agonistic phase, matched pairs of male crabs were staged in 10-min encounters and the dominant or subordinate condition of each member of the dyad was determined. During the memory phase, crabs were trained to acquire aversive or appetitive memory and tested 24 h later. Results showed that the agonistic encounter can modulate long-term memory according to the dominance condition in such a way that memory retention of subordinates results higher than their respective dominant. Remarkably, this result was found for both aversive and appetitive memory tasks. In addition, we found that isolated animals showed no memory retention when compared with animals that remained grouped. Altogether this work emphasizes the importance of social context as a modulator of cognitive abilities.
Collapse
|
36
|
Diminished excitatory synaptic transmission correlates with impaired spatial working memory in neurodevelopmental rodent models of schizophrenia. Pharmacol Biochem Behav 2021; 202:173103. [PMID: 33444600 DOI: 10.1016/j.pbb.2021.173103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Neurodevelopmental abnormalities are associated with cognitive dysfunction in schizophrenia. In particular, deficits of working memory, are consistently observed in schizophrenia, reflecting prefrontal cortex (PFc) dysfunction. To elucidate the mechanism of such deficits in working memory, the pathophysiological properties of PFc neurons and synaptic transmission have been studied in several developmental models of schizophrenia. Given the pathogenetic heterogeneity of schizophrenia, comparison of PFc synaptic transmission between models of prenatal and postnatal defect would promote our understanding on the developmental components of the biological vulnerability to schizophrenia. In the present study, we investigated the excitatory synaptic transmission onto pyramidal cells localized in layer 5 of the medial PFc (mPFc) in two developmental models of schizophrenia: gestational methylazoxymethanol acetate (MAM) administration and post-weaning social isolation (SI). We found that both models exhibited defective spatial working memory, as indicated by lower spontaneous alternations in a Y-maze paradigm. The recordings from pyramidal neurons in both models exhibited decreased spontaneous excitatory postsynaptic current (sEPSC), representing the reduction of excitatory synaptic transmission in the mPFc. Interestingly, a positive correlation between the impaired spontaneous alternation behavior and the decreased excitatory synaptic transmission of pyramidal neurons was found in both models. These findings suggest that diminished excitatory neurotransmission in the mPFc could be a common pathophysiology regardless of the prenatal and postnatal pathogenesis in developmental models of schizophrenia, and that it might underlie the mechanism of defective working memory in those models.
Collapse
|
37
|
Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021; 91:24-47. [PMID: 32755644 DOI: 10.1016/j.bbi.2020.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100β-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
38
|
Grífols R, Zamora C, Ortega-Saez I, Azkona G. Postweaning Grouping as a Strategy to Reduce Singly Housed Male Mice. Animals (Basel) 2020; 10:ani10112135. [PMID: 33212955 PMCID: PMC7698342 DOI: 10.3390/ani10112135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary It is important to raise laboratory mice in stable groups. However, sometimes we can find litters with only one male. Unfortunately, age is a factor to consider when grouping a newly weaned mouse with other males due to inter-male aggressiveness. Our results showed that CD1 and SCID Beige newly weaned males can be safely grouped with juvenile and pubescent mice. However, only juvenile C57BL/6J will accept a newly weaned mouse as a new member of the group. This strategy could be helpful to reduce the number of singly housed male mice used for scientific purposes. Abstract Rearing laboratory mice in groups is important since social isolation after weaning induces brain alterations, which entails behavioral abnormalities in adulthood. Age is an important factor when grouping males of different litters due to inter-male aggressiveness. The aim of this study was to determine whether newly weaned mice could safely be grouped with late juvenile or early and late pubescent mice, and whether cage cleaning, the number of the hosting group members and testosterone plasma levels have any influence. Newly weaned C57BL/6J, CD1, and SCID Beige male mice were systematically grouped with same strain late juvenile, early or late pubescent male mice in clean or dirty cages of 1, 2 or 3 hosting members. We also analyzed plasma testosterone levels at different postnatal days. Our result showed that only strain and hosting male’s age influence agonistic behavior toward newly weaned mice. Thus, in order not to house a recently weaned male alone, we would recommend grouping it with late juvenile same strain mice in all studied strains. In the same way, CD1 and SCID Beige pubescent mice will admit a newly weaned mouse in their group. However, we would not recommend grouping newly weaned and pubescent C57BL/6J males.
Collapse
Affiliation(s)
- Roger Grífols
- Charles River Laboratories in PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain; (R.G.); (C.Z.)
| | - Carolina Zamora
- Charles River Laboratories in PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain; (R.G.); (C.Z.)
| | - Iván Ortega-Saez
- Parc de Recerca Biomèdica de Barcelona (PRBB) Animal Facility, Doctor Aiguader, 88, 08003 Barcelona, Spain;
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and Their Development, School of Psychology, Euskal Herriko Unibertsitatea (UPV/EHU), Tolosa Hiribidea, 70, 20018 Donostia, Spain
- Correspondence: ; Tel.: +34-943-015-437
| |
Collapse
|
39
|
Love J, Zelikowsky M. Stress Varies Along the Social Density Continuum. Front Syst Neurosci 2020; 14:582985. [PMID: 33192349 PMCID: PMC7606998 DOI: 10.3389/fnsys.2020.582985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Social stress is ubiquitous in the lives of social animals. While significant research has aimed to understand the specific forms of stress imparted by particular social interactions, less attention has been paid to understanding the behavioral effects and neural underpinnings of stress produced by the presence and magnitude of social interactions. However, in humans and rodents alike, chronically low and chronically high rates of social interaction are associated with a suite of mental health issues, suggesting the need for further research. Here, we review literature examining the behavioral and neurobiological findings associated with changing social density, focusing on research on chronic social isolation and chronic social crowding in rodent models, and synthesize findings in the context of the continuum of social density that can be experienced by social animals. Through this synthesis, we aim to both summarize the state of the field and describe promising avenues for future research that would more clearly define the broad effects of social interaction on the brain and behavior in mammals.
Collapse
Affiliation(s)
- Jay Love
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
40
|
Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, Wu T, Du H, Yu ZP, Zhao QQ, Ling Y, Zhang ZY, Shen HW. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology 2020; 177:108231. [DOI: 10.1016/j.neuropharm.2020.108231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 07/04/2020] [Indexed: 11/30/2022]
|
41
|
Gilissen SR, Arckens L. Posterior parietal cortex contributions to cross-modal brain plasticity upon sensory loss. Curr Opin Neurobiol 2020; 67:16-25. [PMID: 32777707 DOI: 10.1016/j.conb.2020.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Sensory loss causes compensatory behavior, like echolocation upon vision loss or improved visual motion detection upon deafness. This is enabled by recruitment of the deprived cortical area by the intact senses. Such cross-modal plasticity can however hamper rehabilitation via sensory substitution devices. To steer rehabilitation towards the desired outcome for the patient, having control over the cross-modal take-over is essential. Evidence accumulates to support a role for the posterior parietal cortex (PPC) in multimodal plasticity. This area shows increased activity after sensory loss, keeping similar functions but driven by other senses. Patient-specific factors like stress, social situation, age and attention, have a significant influence on the PPC and on cross-modal plasticity. We propose that understanding the response of the PPC to sensory loss and context is extremely important for determining the best possible implant-based therapies, and that mouse research holds potential to help unraveling the underlying anatomical, cellular and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Sara Rj Gilissen
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
42
|
Rivera-Irizarry JK, Skelly MJ, Pleil KE. Social Isolation Stress in Adolescence, but not Adulthood, Produces Hypersocial Behavior in Adult Male and Female C57BL/6J Mice. Front Behav Neurosci 2020; 14:129. [PMID: 32792924 PMCID: PMC7394086 DOI: 10.3389/fnbeh.2020.00129] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic stress during the developmental period of adolescence increases susceptibility to many neuropsychiatric diseases in adulthood, including anxiety, affective, and alcohol/substance use disorders. Preclinical rodent models of adolescent stress have produced varying results that are species, strain, sex, and laboratory-dependent. However, adolescent social isolation is a potent stressor in humans that has been reliably modeled in male rats, increasing adult anxiety-like and alcohol drinking behaviors, among others. In this study, we examined the generalizability and sex-dependence of this model in C57BL/6J mice, the most commonly used rodent strain in neuroscience research. We also performed a parallel study using social isolation in adulthood to understand the impact of adult social isolation on basal behavioral phenotypes. We found that 6 weeks of social isolation with minimal handling in adolescence through early adulthood [postnatal day (PD) 28-70] produced a hypersocial phenotype in both male and female mice and an anxiolytic phenotype in the elevated plus-maze in female mice. However, it had no effects in other assays for avoidance behavior or on fear conditioning, alcohol drinking, reward or aversion sensitivity, or novel object exploration in either sex. In contrast, 6 weeks of social isolation in adulthood beginning at PD77 produced an anxiogenic phenotype in the light/dark box but had no effects on any other assays. Altogether, our results suggest that: (1) adolescence is a critical period for social stress in C57BL/6J mice, producing aberrant social behavior in a sex-independent manner; and (2) chronic individual housing in adulthood does not alter basal behavioral phenotypes that may confound interpretation of behavior following other laboratory manipulations.
Collapse
Affiliation(s)
- Jean K. Rivera-Irizarry
- Graduate Program in Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY, United States
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Kristen E. Pleil
- Graduate Program in Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Graduate Program in Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
43
|
Pro-neurogenic effect of fluoxetine in the olfactory bulb is concomitant to improvements in social memory and depressive-like behavior of socially isolated mice. Transl Psychiatry 2020; 10:33. [PMID: 32066672 PMCID: PMC7026434 DOI: 10.1038/s41398-020-0701-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Although loneliness is a human experience, it can be estimated in laboratory animals deprived from physical contact with conspecifics. Rodents under social isolation (SI) tend to develop emotional distress and cognitive impairment. However, it is still to be determined whether those conditions present a common neural mechanism. Here, we conducted a series of behavioral, morphological, and neurochemical analyses in adult mice that underwent to 1 week of SI. We observed that SI mice display a depressive-like state that can be prevented by enriched environment, and the antidepressants fluoxetine (FLX) and desipramine (DES). Interestingly, chronic administration of FLX, but not DES, was able to counteract the deleterious effect of SI on social memory. We also analyzed cell proliferation, neurogenesis, and astrogenesis after the treatment with antidepressants. Our results showed that the olfactory bulb (OB) was the neurogenic niche with the highest increase in neurogenesis after the treatment with FLX. Considering that after FLX treatment social memory was rescued and depressive-like behavior decreased, we propose neurogenesis in the OB as a possible mechanism to unify the FLX ability to counteract the deleterious effect of SI.
Collapse
|
44
|
Pais AB, Pais AC, Elmisurati G, Park SH, Miles MF, Wolstenholme JT. A Novel Neighbor Housing Environment Enhances Social Interaction and Rescues Cognitive Deficits from Social Isolation in Adolescence. Brain Sci 2019; 9:E336. [PMID: 31766669 PMCID: PMC6956193 DOI: 10.3390/brainsci9120336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Adolescence is characterized by high levels of playful social interaction, cognitive development, and increased risk-taking behavior. Juvenile exposure to social isolation or social stress can reduce myelin content in the frontal cortex, alter neuronal excitability, and disrupt hypothalamic pituitary adrenal (HPA) axis function. As compared to group housed animals, social isolation increases anxiety-like phenotypes and reduces social and cognitive performance in adulthood. We designed a neighbor housing environment to alleviate issues related to social isolation that still allowed individual homecages. Neighbor housing consists of four standard mouse cages fused together with semi-permeable ports that allow visual, olfactory, and limited social contact between mice. Adolescent C57BL/6J males and females were group housed (4/cage), single housed (1/cage), or neighbor housed (4/complex). As adults, mice were tested for social, anxiety-like, and cognitive behaviors. Living in this neighbor environment reduced anxiety-like behavior in the social interaction task and in the light-dark task. It also rescued cognitive deficits from single housing in the novel object recognition task. These data suggest that neighbor housing may partially ameliorate the social anxiety and cognitive deficits induced by social isolation. These neighbor cage environments may serve as a conduit by which researchers can house mice in individual cages while still enabling limited social interactions to better model typical adolescent development.
Collapse
Affiliation(s)
- Alexander B. Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
| | - Anthony C. Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
| | - Gabriel Elmisurati
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
| | - So Hyun Park
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA;
| | - Michael F. Miles
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA;
| | - Jennifer T. Wolstenholme
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA;
| |
Collapse
|