1
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Ye M, Zhu H, Lu X, Yang R, Wang H, Peng J, Pan H, Fang Y, Shi R, Li F, Chen Z, Hu W, Huang C. Central innate immunization induces tolerance against post-traumatic stress disorder-like behavior and neuroinflammatory responses in male mice. Brain Behav Immun 2024; 122:368-387. [PMID: 39197543 DOI: 10.1016/j.bbi.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder associated with abnormally elevated neuroinflammatory responses. Suppression of neuroinflammation is considered to be effective in ameliorating PTSD-like behaviors in rodents. Since pre-stimulation of microglia prior to stress exposure can prevent neuroinflammation, we hypothesized that pre-stimulation of microglia may prevent PTSD in animals. The results show that a single injection of a classical immune stimulant, lipopolysaccharide (LPS), at 50, 100 or 500, but not 10 μg/kg, one day before stress exposure, prevented the anxiety- and fear-like behaviors induced by modified single prolonged stress (mSPS). The time-dependent analysis shows that a single injection of LPS (100 μg/kg) either one or five, but not ten, days before stress prevented mSPS-induced anxiety- and fear-like behaviors. A second low-dose LPS injection 10 days after the first injection or a repeated LPS injection (4 × ) 10 days before stress induced tolerance to mSPS. Mechanistic studies show that a single injection of LPS one day before stress stimulation prevented mSPS-induced increases in levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6 mRNA in the hippocampus and medial prefrontal cortex. Inhibition of microglia by pretreatment with minocycline or depletion of microglia by PLX3397 abolished the preventive effect of low-dose LPS pre-injection on mSPS-induced anxiety- and fear-like behavior and neuroinflammatory responses. These results suggest that pre-stimulation of microglia may prevent the development of PTSD-like behaviors by attenuating the development of neuroinflammatory responses. This could help to develop new strategies to prevent the damaging effects of harmful stress on the brain.
Collapse
Affiliation(s)
- Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, #388 Zuchongzhi South Road, Kunshan, Suzhou 215300, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Macau, Taipa 999078, China
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou 213000, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, the Second Affiliated Hospital of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006, Jiangsu, China
| | - Wenfeng Hu
- Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shijidadao, Nantong 226007, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Keshavarz Shahbaz S, Koushki K, Keshavarz Hedayati S, McCloskey AP, Kesharwani P, Naderi Y, Sahebkar A. Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases. Med Res Rev 2024; 44:2793-2824. [PMID: 39031446 DOI: 10.1002/med.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadije Koushki
- Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yazdan Naderi
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Quintanilla ME, Morales P, Santapau D, Gallardo J, Rebolledo R, Riveras G, Acuña T, Herrera-Marschitz M, Israel Y, Ezquer F. Morphine self-administration is inhibited by the antioxidant N-acetylcysteine and the anti-inflammatory ibudilast; an effect enhanced by their co-administration. PLoS One 2024; 19:e0312828. [PMID: 39471200 PMCID: PMC11521314 DOI: 10.1371/journal.pone.0312828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND The treatment of opioid addiction mainly involves the medical administration of methadone or other opioids, aimed at gradually reducing dependence and, consequently, the need for illicit opioid procurement. Thus, initiating opioid maintenance therapy with a lower level of dependence would be advantageous. There is compelling evidence indicating that opioids induce brain oxidative stress and associated glial activation, resulting in the dysregulation of glutamatergic homeostasis, which perpetuates drug intake. The present study aimed to determine whether inhibiting oxidative stress and/or neuroinflammation reduces morphine self-administration in an animal model of opioid dependence. METHODS Morphine dependence, assessed as voluntary morphine self-administration, was evaluated in Wistar-derived UChB rats. Following an extended period of morphine self-administration, animals were administered either the antioxidant N-acetylcysteine (NAC; 40 mg/kg/day), the anti-inflammatory ibudilast (7.5 mg/kg/day) or the combination of both agents. Oxidative stress and neuroinflammation were evaluated in the hippocampus, a region involved in drug recall that feeds into the nucleus accumbens, where the levels of the glutamate transporters GLT-1 and xCT were further assessed. RESULTS Daily administration of either NAC or ibudilast led to a mild reduction in voluntary morphine intake, while the co-administration of both therapeutic agents resulted in a marked inhibition (-57%) of morphine self-administration. The administration of NAC or ibudilast markedly reduced both the oxidative stress induced by chronic morphine intake and the activation of microglia and astrocytes in the hippocampus. However, only the combined administration of NAC + ibudilast was able to restore the normal levels of the glutamate transporter GLT-1 in the nucleus accumbens. CONCLUSION Separate or joint administration of an antioxidant and anti-inflammatory agent reduced voluntary opioid intake, which could have translational value for the treatment of opioid use disorders, particularly in settings where the continued maintenance of oral opioids is a therapeutic option.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Specialized Center for the Prevention of Substance use and the Treatment of Addictions (CESA), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Specialized Center for the Prevention of Substance use and the Treatment of Addictions (CESA), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Santapau
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rocío Rebolledo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Riveras
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tirso Acuña
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Specialized Center for the Prevention of Substance use and the Treatment of Addictions (CESA), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
- Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
5
|
Ju IG, Lee S, Im H, Kim JH, Eo H, Oh MS. Artemisiae Iwayomogii Herba mitigates excessive neuroinflammation and Aβ accumulation by regulating the pro-inflammatory response and autophagy-lysosomal pathway in microglia in 5xFAD mouse model of Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01388-6. [PMID: 39433702 DOI: 10.1007/s11357-024-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Alzheimer's disease (AD) presents a growing societal challenge, driven by an aging population. It is characterized by neurodegeneration linked to β-amyloid (Aβ) and tau protein aggregation. Reactive glial cell-mediated neuroinflammation exacerbates disease progression by facilitating the accumulation of Aβ and impairing its clearance, thus highlighting potential therapeutic targets. Aerial parts of Artemisia iwayomogi (AIH), a kind of mugwort, has been consumed as a medicinal herb in East Asia for relieving inflammation-related diseases. Previously, AIH was found to exert potent inhibitory effects on neuroinflammation. This study aimed to examine whether AIH mitigates AD pathogenesis by regulating neuroinflammation and reducing Aβ deposition. AIH treatment to primary mixed glial cultures attenuated the pro-inflammatory responses evoked by Aβ stimulation. When treated to 5 × familial AD (5xFAD) mice, AIH improved learning and cognitive ability and reduced Aβ burden in the brain. AIH suppressed glial overactivation, as well as inhibited the expressions of pro-inflammatory mediators in the brain. Moreover, AIH regulated AKT signaling and elevated the expression of autophagy-lysosomal mediators in vitro. It was confirmed that lysosome-associated membrane protein 1 (LAMP1) was increased in the Aβ-associated microglia in the mouse hippocampus. Finally, it was observed that tau phosphorylation was alleviated, and synaptic protein expression was increased in AIH-treated 5xFAD mice. Overall, this study demonstrated that AIH ameliorated excessive neuroinflammation and Aβ accumulation by regulating microglial activation and autophagy-lysosomal pathway, thereby suggesting AIH as a promising therapeutic candidate for AD treatment.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, and Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Hyeri Im
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jae Hoon Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, and Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, and Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Lai Z, Ye T, Zhang M, Mu Y. Exosomes as Vehicles for Noncoding RNA in Modulating Inflammation: A Promising Regulatory Approach for Ischemic Stroke and Myocardial Infarction. J Inflamm Res 2024; 17:7485-7501. [PMID: 39464334 PMCID: PMC11505480 DOI: 10.2147/jir.s484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Exosomes have grown as promising carriers for noncoding RNAs (ncRNAs) in the treatment of inflammation, particularly in conditions like ischemic stroke and myocardial infarction. These ncRNAs, which include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play a crucial role in regulating inflammatory pathways, presenting new therapeutic opportunities. In both ischemic stroke and myocardial infarction, inflammation significantly influences disease progression and severity. Exosomes can deliver ncRNAs directly to specific cells and tissues, providing a targeted approach to modulate gene expression and reduce inflammation. Their biocompatibility and low risk of inducing immune responses make exosomes ideal therapeutic vehicles. Ongoing research is focused on optimizing the loading of ncRNAs into exosomes, ensuring efficient delivery, and understanding the mechanisms by which these ncRNAs mitigate inflammation. In ischemic stroke, exosome-derived ncRNAs originate from various cell types, including neurons, M2 microglia, patient serum, genetically engineered HEK293T cells, and mesenchymal stromal cells. In the case of myocardial infarction, these ncRNAs are sourced from mesenchymal stem cells, endothelial cells, and patient plasma. These exosome-loaded ncRNAs play a significant role in modulating inflammation in both ischemic stroke and myocardial infarction. As this research advances, therapies based on exosomes may completely change how diseases linked to inflammation are treated, offering new avenues for patient care and recovery. This review explores the latest advancements in understanding how exosomes impact specific inflammatory components, with a particular emphasis on the role of ncRNAs contained in exosomes. The review concludes by highlighting the clinical potential of exosome-derived ncRNAs as innovative therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Zhuhong Lai
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Tingqiao Ye
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Mingjun Zhang
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Ying Mu
- Department of Cardiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| |
Collapse
|
7
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Xiao R, Huang X, Gao S, Duan J, Zhang Y, Zhang M. Microglia in retinal diseases: From pathogenesis towards therapeutic strategies. Biochem Pharmacol 2024; 230:116550. [PMID: 39307318 DOI: 10.1016/j.bcp.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Microglia, a widely dispersed cohort of immune cells in the retina, are intricately involved in a diverse range of pivotal biological processes, including inflammation, vascular development, complement activation, antigen presentation, and phagocytosis. Within the retinal milieu, microglia are crucial for the clearance of dead cells and cellular debris, release of anti-inflammatory agents, and orchestration of vascular network remodeling to maintain homeostasis. In addition, microglia are key mediators of neuroinflammation. Triggered by oxidative stress, elevated intraocular pressure, genetic anomalies, and immune dysregulation, microglia release numerous inflammatory cytokines, contributing to the pathogenesis of various retinal disorders. Recent studies on the ontogeny and broad functions of microglia in the retina have elucidated their characteristics during retinal development, homeostasis, and disease. Furthermore, therapeutic strategies that target microglia and their effector cytokines have been developed and shown positive results for some retinal diseases. Therefore, we systematically review the microglial ontogeny in the retina, elucidate their dual roles in retinal homeostasis and disease pathogenesis, and demonstrate microglia-based targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sheng Gao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Duan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Lin S, Shu Y, Shen R, Zhou Y, Pan H, He L, Fang F, Zhu X, Wang X, Wang Y, Xu W, Ding J. The regulation of NFKB1 on CD200R1 expression and their potential roles in Parkinson's disease. J Neuroinflammation 2024; 21:229. [PMID: 39294682 PMCID: PMC11409543 DOI: 10.1186/s12974-024-03231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Overactivated microglia are a key contributor to Parkinson's disease (PD) by inducing neuroinflammation. CD200R1, a membrane glycoprotein mainly found on microglia, is crucial for maintaining quiescence with its dysregulation linked to microglia's abnormal activation. We and other groups have reported a decline in CD200R1 levels in several neurological disorders including PD. However, the mechanism regulating CD200R1 expression and the specific reasons for its reduction in PD remain largely unexplored. Given the pivotal role of transcription factors in gene expression, this study aimed to elucidate the transcriptional regulation of CD200R1 and its implications in PD. METHODS The CD200R1 promoter core region was identified via luciferase assays. Potential transcription factors were predicted using the UCSC ChIP-seq database and JASPAR. NFKB1 binding to the CD200R1 core promoter was substantiated through electrophoretic mobility shift and chromatin immunoprecipitation assays. Knocking-down or overexpressing NFKB1 validated its regulatory effect on CD200R1. Correlation between decreased CD200R1 and deficient NFKB1 was studied using Genotype-Tissue Expression database. The clinical samples of the peripheral blood mononuclear cells were acquired from 44 PD patients (mean age 64.13 ± 9.78, 43.2% male, median Hoehn-Yahr stage 1.77) and 45 controls (mean age 64.70 ± 9.41, 52.1% male). NFKB1 knockout mice were utilized to study the impact of NFKB1 on CD200R1 expression and to assess their roles in PD pathophysiology. RESULTS The study identified the CD200R1 core promoter region, located 482 to 146 bp upstream of its translation initiation site, was directly regulated by NFKB1. Significant correlation between NFKB1 and CD200R1 expression was observed in human PMBCs. Both NFKB1 and CD200R1 were significantly decreased in PD patient samples. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. CONCLUSION Our study identified that NFKB1 served as a direct regulator of CD200R1. Reduced NFKB1 played a critical role in CD200R1 dysregulation and subsequent microglia overactivation in PD. These findings provide evidence that targeting the NFKB1-CD200R1 axis would be a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Aging, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinrui Wang
- Maternity and child care centers, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200135, China.
| |
Collapse
|
10
|
Dundee JM, Brown GC. The microglial P2Y 6 receptor as a therapeutic target for neurodegenerative diseases. Transl Neurodegener 2024; 13:47. [PMID: 39243044 PMCID: PMC11380353 DOI: 10.1186/s40035-024-00438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative diseases are associated with chronic neuroinflammation in the brain, which can result in microglial phagocytosis of live synapses and neurons that may contribute to cognitive deficits and neuronal loss. The microglial P2Y6 receptor (P2Y6R) is a G-protein coupled receptor, which stimulates microglial phagocytosis when activated by extracellular uridine diphosphate, released by stressed neurons. Knockout or inhibition of P2Y6R can prevent neuronal loss in mouse models of Alzheimer's disease (AD), Parkinson's disease, epilepsy, neuroinflammation and aging, and prevent cognitive deficits in models of AD, epilepsy and aging. This review summarises the known roles of P2Y6R in the physiology and pathology of the brain, and its potential as a therapeutic target to prevent neurodegeneration and other brain pathologies.
Collapse
Affiliation(s)
- Jacob M Dundee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Zhai C, Wang Z, Cai J, Fang L, Li X, Jiang K, Shen Y, Wang Y, Xu X, Liu W, Wang T, Wu Q. Repeated trans-spinal magnetic stimulation promotes microglial phagocytosis of myelin debris after spinal cord injury through LRP-1. Exp Neurol 2024; 379:114844. [PMID: 38830500 DOI: 10.1016/j.expneurol.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Spinal cord injury (SCI) is a serious trauma of the central nervous system. The clearance of myelin debris is a critical step in the functional recovery following spinal cord injury (SCI). Recent studies have begun to reveal critical roles for professional phagocytes in the central nervous system, microglia, and their receptors in the control of myelin debris in neurodegenerative disease. Repeated trans-spinal magnetic stimulation (rTSMS) has been demonstrated as a noninvasive SCI treatment that enhances tissue repair and functional recovery. In this study, we investigated the role and molecular mechanism of rTSMS on microglial phagocytosis of myelin debris in a rat SCI model. In our studies, we found that rTSMS significantly promoted the motor function recovery of SCI rats associated with the inhibition the neuroinflammation and glia scar formation. Immunofluorescence results further showed that the rTSMS promotes the clearance of myelin debris by microglia in vivo and in vitro. Additionally, receptor-associated protein (RAP), a Low-density lipoprotein receptor-related protein-1 (LRP-1) inhibitor, could cancel the accelerated microglial phagocytosis of myelin debris after rTSMS in vitro experiments. Simultaneously, Elisa's results and western blotting respectively showed that rTSMS significantly decreased the levels of soluble LRP-1(sLRP-1) and the LRP-1 splicing enzyme of ADAM17. In conclusion, rTSMS could promote the clearance of myelin debris by microglia through LRP-1 to improve the functional recovery of SCI rats.
Collapse
Affiliation(s)
- Chenyuan Zhai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zun Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Rehabilitation medicine department, School of Acupuncture and Tuina, School of Health and Rehabilitation, Nanjing university of Chinese medicine, Nanjing 210023, China
| | - Jili Cai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lu Fang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangzhe Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China
| | - Kunmao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingjun Xu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qi Wu
- Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421000, China.
| |
Collapse
|
12
|
Mattei D, Ivanov A, Hammer J, Ugursu B, Schalbetter S, Richetto J, Weber-Stadlbauer U, Mueller F, Scarborough J, Wolf SA, Kettenmann H, Wollscheid B, Beule D, Meyer U. Microglia undergo molecular and functional adaptations to dark and light phases in male laboratory mice. Brain Behav Immun 2024; 120:571-583. [PMID: 38986723 DOI: 10.1016/j.bbi.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Microglia are increasingly recognized to contribute to brain health and disease. Preclinical studies using laboratory rodents are essential to advance our understanding of the physiological and pathophysiological roles of these cells in the central nervous system. Rodents are nocturnal animals, and they are mostly maintained in a defined light-dark cycle within animal facilities, with many laboratories investigating the molecular and functional profiles of microglia exclusively during the animals' light (sleep) phase. However, only a few studies have considered possible differences in microglial functions between the active and sleep phases. Based on initial evidence suggesting that microglial intrinsic clock genes can affect their phenotypes, we sought to investigate differences in transcriptional, proteotype and functional profiles of microglia between light (sleep) and dark (active) phases, and how these changes are affected in pathological models. We found marked transcriptional and proteotype differences between microglia harvested from male mice during the light or dark phase. Amongst others, these differences related to genes and proteins associated with immune responses, motility, and phagocytosis, which were reflected by functional alterations in microglial synaptic pruning and response to bacterial stimuli. Possibly accounting for such changes, we found RNA and protein regulation in SWI/SNF and NuRD chromatin remodeling complexes between light and dark phases. Importantly, we also show that the time of microglial sample collection influences the nature of microglial transcriptomic changes in a model of immune-mediated neurodevelopmental disorders. Our findings emphasize the importance of considering diurnal factors in studying microglial cells and indicate that implementing a circadian perspective is pivotal for advancing our understanding of their physiological and pathophysiological roles in brain health and disease.
Collapse
Affiliation(s)
- Daniele Mattei
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin, Berlin, Germany
| | - Jacqueline Hammer
- Institute of Molecular Systems Biology and Department for Health Sciences and Technology, ETH Zürich, Switzerland
| | - Bilge Ugursu
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Germany; Psychoneuroimmunology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sina Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Flavia Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland
| | - Susanne A Wolf
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Germany; Psychoneuroimmunology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernd Wollscheid
- Institute of Molecular Systems Biology and Department for Health Sciences and Technology, ETH Zürich, Switzerland
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin, Berlin, Germany
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Carrier M, Robert MÈ, St-Pierre MK, Ibáñez FG, Gonçalves de Andrade E, Laroche A, Picard K, Vecchiarelli HA, Savage JC, Boilard É, Desjardins M, Tremblay MÈ. Bone marrow-derived myeloid cells transiently colonize the brain during postnatal development and interact with glutamatergic synapses. iScience 2024; 27:110037. [PMID: 39021809 PMCID: PMC11253522 DOI: 10.1016/j.isci.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Although the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3+IBA1+). FLT3+IBA1+ cells were confirmed to be transiently present in the healthy brain during early postnatal development. FLT3+IBA1+ cells have a distinct morphology index at postnatal day(P)0, P7, and P14 compared with neighboring microglia. FLT3+IBA1+ cells also express the microglial markers P2RY12 and TMEM119 and interact with VGLUT1 synapses at P14. Scanning electron microscopy indeed showed that FLT3+ cells contact and engulf pre-synaptic elements. Our findings suggest FLT3+IBA1+ cells might assist microglia in their physiological functions in the developing brain including synaptic pruning which is performed using their purinergic sensors. Our findings stimulate further investigation on the involvement of peripheral macrophages during homeostatic and pathological development.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Marie-Ève Robert
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Audrée Laroche
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | | | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Éric Boilard
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC G1V 0A6, Canada
- Oncology Division, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
15
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
16
|
Tiwari PC, Chaudhary MJ, Pal R, Nath R. Role of Nitric Oxide Modulators in Neuroprotective Effects of Mangiferin in 6-Hydroxydopamine-induced Parkinson's Disease in Rats. Ann Neurosci 2024; 31:186-203. [PMID: 39156628 PMCID: PMC11325687 DOI: 10.1177/09727531231184698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/12/2023] [Indexed: 08/20/2024] Open
Abstract
Background Parkinson's disease (PD) is typified by inflammation of dopaminergic neurons leading to the release of various inflammatory mediators. These mediators activate the transcription factor NF-κB, which in turn activates inducible nitric oxide synthase (iNOS), leading to increased inflammation. Purpose This study was intended to study the effect of combination of mangiferin, a specific inhibitor of NF-κB with low-dose nitric oxide (NO) modulators. Methods A total of eight Wistar rats weighing 200-250 g were used in each group. Stereotactic surgery was performed to induce 6-hydroxydopamine (6-OHDA) lesions. The treatment period extended from day 14 to day 42, during which time behavioral tests were performed to evaluate the effects of mangiferin and its combination with NO modulators. On day 42, the brains of the rats were removed for biochemical and molecular analyzes. Results Mangiferin significantly improved locomotor activity and decreased inflammatory chemokines levels in rats with 6-OHDA lesions. Mangiferin therapy decreased myeloperoxidase (MPO) levels and reduced oxidative stress. In particular, caspase-3, caspase-9 and COX-2 activities were significantly reduced after the mangiferin treatment. A combination of 45-µg mangiferin and 10-mg/kg L-NAME showed the greatest improvement in locomotor, behavioral, biochemical, and molecular parameters impaired by 6-OHDA. Conclusion In this study, mangiferin was found to protect rats with 6-OHDA lesions by inhibiting inflammation causing chemokines such as TNF-α and IL-6. Besides, the grouping of iNOS inhibitor L-NAME at a dose of 10 mg/kg with 45-µg mangiferin enhanced the anti-inflammatory and anti-Parkinsonian activity of mangiferin. Consequently, the combination therapy of mangiferin and L-NAME is promising for the treatment of PD. However, clinical trials will be required to evaluate the efficacy of this combination therapy in humans.
Collapse
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J. Chaudhary
- Department of Physiology, Government Medical College, Tirwa Road, Kannauj, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Fritze J, Muralidharan C, Stamp E, Ahlenius H. Microglia undergo disease-associated transcriptional activation and CX3C motif chemokine receptor 1 expression regulates neurogenesis in the aged brain. Dev Neurobiol 2024; 84:128-141. [PMID: 38616340 DOI: 10.1002/dneu.22939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024]
Abstract
Adult neurogenesis continues throughout life but declines dramatically with age and in neurodegenerative disorders such as Alzheimer's disease. In parallel, microglia become activated resulting in chronic inflammation in the aged brain. A unique type of microglia, suggested to support neurogenesis, exists in the subventricular zone (SVZ), but little is known how they are affected by aging. We analyzed the transcriptome of aging microglia and identified a unique neuroprotective activation profile in aged SVZ microglia, which is partly shared with disease-associated microglia (DAM). CX3C motif chemokine receptor 1 (CX3CR1) is characteristically expressed by brain microglia where it directs migration to targets for phagocytosis. We show that Cx3cr1 expression, as in DAM, is downregulated in old SVZ microglia and that heterozygous Cx3cr1 mice have increased proliferation and neuroblast number in the aged SVZ but not in the dentate gyrus, identifying CX3CR1 signaling as a novel age and brain region-specific regulator of neurogenesis.
Collapse
Affiliation(s)
- Jonas Fritze
- Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Chandramouli Muralidharan
- Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Molecular Neurogenetics Group, Lund University, Lund, Sweden
| | - Eleanor Stamp
- Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Henrik Ahlenius
- Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| |
Collapse
|
18
|
Chinnathambi S, Desale SE. The crosstalk between extracellular matrix proteins and Tau. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:447-466. [PMID: 38960482 DOI: 10.1016/bs.apcsb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease is progressive neurodegenerative disease characterize by the presence of extracellular accumulation of amyloid-β plaques and intracellular deposits of neurofibrillary tangles of Tau. Apart from axonal depositions pathological aggregated Tau protein is known to secrete into extracellular spaces and propagate through seeding mechanism. Microglia, the immune cells of the brain display modest ability to internalize the extracellular Tau and degrade it through endolysosomal pathway. However, the excessive burden of pathoproteins weakens the phagocytic ability of microglia. Extracellular supplementation of omega-3 fatty acids (n-3) may regulate the phagocytosis of microglia as they mediate the anti-inflammatory polarization of microglia through membrane lipid compositions changes. The internalization of extracellular Tau in the microglia is regulated by cortical membrane-associated actin remodeling driven by interplay of actin-binding proteins. On the other hand, Tau display capability bind and interact with various actin-binding protein owing to the presence of proline-rich domain in the structure and regulate their activation. In this study, we hypothesize that internalization of Tau in the presence of omega-3 fatty acids would propagate the Tau-mediated activation of actin-binding proteins as well as extracellular matrix and in turn modulate cortical actin remodeling for phagocytosis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Smita Eknath Desale
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
19
|
Murphy DP, Dickson DC, Fatema AN, Carrasco NG, Doyle KP, Trouard TP, Morrison HW. Chronic consequences of ischemic stroke: Profiling brain injury and inflammation in a mouse model with reperfusion. Physiol Rep 2024; 12:e16118. [PMID: 38923318 PMCID: PMC11194179 DOI: 10.14814/phy2.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a pervasive and debilitating global health concern, necessitating innovative therapeutic strategies, especially during recovery. While existing literature often focuses on acute interventions, our study addresses the uniqueness of brain tissue during wound healing, emphasizing the chronic phase following the commonly used middle cerebral artery (MCA) occlusion model. Using clinically relevant endpoints in male and female mice such as magnetic resonance imaging (MRI) and plasma neurofilament light (NFL) measurement, along with immunohistochemistry, we describe injury evolution. Our findings document significant alterations in edema, tissue remodeling, and gadolinium leakage through MRI. Plasma NFL concentration remained elevated at 30 days poststroke. Microglia responses are confined to the region adjacent to the injury, rather than continued widespread activation, and boron-dipyrromethene (BODIPY) staining demonstrated the persistent presence of foam cells within the infarct. Additional immunohistochemistry highlighted sustained B and T lymphocyte presence in the poststroke brain. These observations underscore potentially pivotal roles played by chronic inflammation brought on by the lipid-rich brain environment, and chronic blood-brain barrier dysfunction, in the development of secondary neurodegeneration. This study sheds light on the enduring consequences of ischemic stroke in the most used rodent stroke model and provides valuable insights for future research, clinical strategies, and therapeutic development.
Collapse
Affiliation(s)
- Devin P. Murphy
- Department of Biomedical Engineering, College of EngineeringUniversity of ArizonaTucsonArizonaUSA
| | | | - Arisha N. Fatema
- Department of Biomedical Engineering, College of EngineeringUniversity of ArizonaTucsonArizonaUSA
| | | | - Kristian P. Doyle
- Department of Immunology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Theodore P. Trouard
- Department of Biomedical Engineering, College of EngineeringUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
20
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595814. [PMID: 38826204 PMCID: PMC11142229 DOI: 10.1101/2024.05.24.595814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ada J. Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haakon B. Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D. De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Nusraty S, Boddeti U, Zaghloul KA, Brown DA. Microglia in Glioblastomas: Molecular Insight and Immunotherapeutic Potential. Cancers (Basel) 2024; 16:1972. [PMID: 38893093 PMCID: PMC11171200 DOI: 10.3390/cancers16111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and devastating primary brain tumors, with a median survival of 15 months following diagnosis. Despite the intense treatment regimen which routinely includes maximal safe neurosurgical resection followed by adjuvant radio- and chemotherapy, the disease remains uniformly fatal. The poor prognosis associated with GBM is multifactorial owing to factors such as increased proliferation, angiogenesis, and metabolic switching to glycolytic pathways. Critically, GBM-mediated local and systemic immunosuppression result in inadequate immune surveillance and ultimately, tumor-immune escape. Microglia-the resident macrophages of the central nervous system (CNS)-play crucial roles in mediating the local immune response in the brain. Depending on the specific pathological cues, microglia are activated into either a pro-inflammatory, neurotoxic phenotype, known as M1, or an anti-inflammatory, regenerative phenotype, known as M2. In either case, microglia secrete corresponding pro- or anti-inflammatory cytokines and chemokines that either promote or hinder tumor growth. Herein, we review the interplay between GBM cells and resident microglia with a focus on contemporary studies highlighting the effect of GBM on the subtypes of microglia expressed, the associated cytokines/chemokines secreted, and ultimately, their impact on tumor pathogenesis. Finally, we explore how understanding the intricacies of the tumor-immune landscape can inform novel immunotherapeutic strategies against this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Desmond A. Brown
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (S.N.); (U.B.); (K.A.Z.)
| |
Collapse
|
22
|
Ayerra L, Abellanas MA, Basurco L, Tamayo I, Conde E, Tavira A, Trigo A, Vidaurre C, Vilas A, San Martin-Uriz P, Luquin E, Clavero P, Mengual E, Hervás-Stubbs S, Aymerich MS. Nigrostriatal degeneration determines dynamics of glial inflammatory and phagocytic activity. J Neuroinflammation 2024; 21:92. [PMID: 38610019 PMCID: PMC11015575 DOI: 10.1186/s12974-024-03091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.
Collapse
Grants
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- FPU19/03255 Ministerio de Ciencia, Innovación y Universidades
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- FPU18/02244 Ministerio de Ciencia, Innovación y Universidades,Spain
- FPU21/01545 Ministerio de Ciencia, Innovación y Universidades,Spain
Collapse
Affiliation(s)
- Leyre Ayerra
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Miguel Angel Abellanas
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Leyre Basurco
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Ibon Tamayo
- CIMA-Universidad de Navarra, Pamplona, España
| | | | - Adriana Tavira
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Amaya Trigo
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Clara Vidaurre
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Amaia Vilas
- CIMA-Universidad de Navarra, Pamplona, España
| | | | - Esther Luquin
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, Pamplona, Spain
| | - Pedro Clavero
- Servicio de Neurología, Hospital Universitario de Navarra, Pamplona, Spain
| | - Elisa Mengual
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- CIMA-Universidad de Navarra, Pamplona, España
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Maria S Aymerich
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain.
- CIMA-Universidad de Navarra, Pamplona, España.
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
23
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
24
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
25
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
26
|
Sian-Hulsmann J, Riederer P. Virus-induced brain pathology and the neuroinflammation-inflammation continuum: the neurochemists view. J Neural Transm (Vienna) 2024:10.1007/s00702-023-02723-5. [PMID: 38261034 DOI: 10.1007/s00702-023-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 01/24/2024]
Abstract
Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood-brain barrier and the "cytokine storm", appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson's and Alzheimer's disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aβ deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it's highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the "multiple hit hypothesis". Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate "neuroinflammation" and "inflammation" with regard to the involvement of the blood-brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark, Winslows Vey 18, 5000, Odense, J.B, Denmark.
| |
Collapse
|
27
|
Millet A, Ledo JH, Tavazoie SF. An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer's brains. Immunity 2024; 57:153-170.e6. [PMID: 38159571 PMCID: PMC10805152 DOI: 10.1016/j.immuni.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The dominant risk factors for late-onset Alzheimer's disease (AD) are advanced age and the APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses identified a reactive microglial population defined by the concomitant expression of inflammatory signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden. An analogous population was detectable in the brains of human AD patients, including in the cortical tissue, using multiplexed spatial transcriptomics. This population, which we designate as terminally inflammatory microglia (TIM), exhibited defects in amyloid-β clearance and altered cell-cell communication during aducanumab treatment. TIM may represent an exhausted-like state for inflammatory microglia in the AD milieu that contributes to AD risk and pathology in APOE4 carriers and the elderly, thus presenting a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Alon Millet
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, The Rockefeller University, New York, NY 10065, USA
| | - Jose Henrique Ledo
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA; Department of Pathology and Laboratory of Medicine, Department of Neuroscience, South Carolina Alzheimer's Disease Research Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Paciello F, Pisani A, Rolesi R, Montuoro R, Mohamed-Hizam V, Boni G, Ripoli C, Galli J, Sisto R, Fetoni AR, Grassi C. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J Neuroinflammation 2024; 21:4. [PMID: 38178142 PMCID: PMC10765700 DOI: 10.1186/s12974-023-02996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giammarco Boni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Jacopo Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università Degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
29
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
30
|
Jucá PM, de Almeida Duque É, Covre LHH, Mariano KAA, Munhoz CD. Microglia and Systemic Immunity. ADVANCES IN NEUROBIOLOGY 2024; 37:287-302. [PMID: 39207698 DOI: 10.1007/978-3-031-55529-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are specialized immune cells that reside in the central nervous system (CNS) and play a crucial role in maintaining the homeostasis of the brain microenvironment. While traditionally regarded as a part of the innate immune system, recent research has highlighted their role in adaptive immunity. The CNS is no longer considered an immune-privileged organ, and increasing evidence suggests bidirectional communication between the immune system and the CNS. Microglia are sensitive to systemic immune signals and can respond to systemic inflammation by producing various inflammatory cytokines and chemokines. This response is mediated by activating pattern recognition receptors (PRRs), which recognize pathogen- and danger-associated molecular patterns in the systemic circulation. The microglial response to systemic inflammation has been implicated in several neurological conditions, including depression, anxiety, and cognitive impairment. Understanding the complex interplay between microglia and systemic immunity is crucial for developing therapeutic interventions to modulate immune responses in the CNS.
Collapse
Affiliation(s)
- Paloma Marinho Jucá
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Érica de Almeida Duque
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Luiza Helena Halas Covre
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil.
| |
Collapse
|
31
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
32
|
Marín-Teva JL, Sepúlveda MR, Neubrand VE, Cuadros MA. Microglial Phagocytosis During Embryonic and Postnatal Development. ADVANCES IN NEUROBIOLOGY 2024; 37:151-161. [PMID: 39207691 DOI: 10.1007/978-3-031-55529-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia play decisive roles during the development of the central nervous system (CNS). Phagocytosis is one of the classical functions attributed to microglia, being involved in nearly all phases of the embryonic and postnatal development of the brain, such as rapid clearance of cell debris to avoid an inflammatory response, controlling the number of neuronal and glial cells or their precursors, contribution to axon guidance and to refinement of synaptic connections. To carry out all these tasks, microglial cells are equipped with a panoply of receptors, that convert microglia to the "professional phagocytes" of the nervous parenchyma. These receptors are modulated by spatiotemporal cues that adapt the properties of microglia to the needs of the developing CNS. Thus, in this chapter, we will discuss the role of microglial phagocytosis in all the aforementioned processes. First, we will explain the general phagocytic process, to describe afterward the performance of microglial cells in detail.
Collapse
Affiliation(s)
- José L Marín-Teva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Cuadros
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Sun C, Deng J, Ma Y, Meng F, Cui X, Li M, Li J, Li J, Yin P, Kong L, Zhang L, Tang P. The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects. Exp Neurol 2023; 370:114570. [PMID: 37852469 DOI: 10.1016/j.expneurol.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition that is frequently accompanied by neuropathic pain, resulting in significant physical and psychological harm to a vast number of individuals globally. Despite the high prevalence of neuropathic pain following SCI, the precise underlying mechanism remains incompletely understood. Microglia are a type of innate immune cell that are present in the central nervous system (CNS). They have been observed to have a significant impact on neuropathic pain following SCI. This article presents a comprehensive overview of recent advances in understanding the role of microglia in the development of neuropathic pain following SCI. Specifically, the article delves into the detrimental and protective effects of microglia on neuropathic pain following SCI, as well as the mechanisms underlying their interconversion. Furthermore, the article provides a thorough overview of potential avenues for future research in this area.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yifei Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
34
|
Dundee JM, Puigdellívol M, Butler R, Brown GC. P2Y 6 Receptor-Dependent Microglial Phagocytosis of Synapses during Development Regulates Synapse Density and Memory. J Neurosci 2023; 43:8090-8103. [PMID: 37758475 PMCID: PMC10697425 DOI: 10.1523/jneurosci.1089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
During brain development, excess synapses are pruned (i.e., removed), in part by microglial phagocytosis, and dysregulated synaptic pruning can lead to behavioral deficits. The P2Y6 receptor (P2Y6R) is known to regulate microglial phagocytosis of neurons, and to regulate microglial phagocytosis of synapses in cell culture and in vivo during aging. However, currently it is unknown whether P2Y6R regulates synaptic pruning during development. Here, we show that P2Y6R KO mice of both sexes had strongly reduced microglial internalization of synaptic material, measured as Vglut1 within CD68-staining lysosomes of microglia at postnatal day 30 (P30), suggesting reduced microglial phagocytosis of synapses. Consistent with this, we found an increased density of synapses in the somatosensory cortex and the CA3 region and dentate gyrus of the hippocampus at P30. We also show that adult P2Y6R KO mice have impaired short- and long-term spatial memory and impaired short- and long-term recognition memory compared with WT mice, as measured by novel location recognition, novel object recognition, and Y-maze memory tests. Overall, this indicates that P2Y6R regulates microglial phagocytosis of synapses during development, and this contributes to memory capacity.SIGNIFICANCE STATEMENT The P2Y6 receptor (P2Y6R) is activated by uridine diphosphate released by neurons, inducing microglial phagocytosis of such neurons or synapses. We tested whether P2Y6R regulates developmental synaptic pruning in mice and found that P2Y6R KO mice have reduced synaptic material within microglial lysosomes, and increased synaptic density in the brains of postnatal day 30 mice, consistent with reduced synaptic pruning during development. We also found that adult P2Y6R KO mice had reduced memory, consistent with persistent deficits in brain function, resulting from impaired synaptic pruning. Overall, the results suggest that P2Y6R mediates microglial phagocytosis of synapses during development, and the absence of this results in memory deficits in the adult.
Collapse
Affiliation(s)
- Jacob M Dundee
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
- Institute of Neurosciences, University of Barcelona, Barcelona, 08035, Spain
| | - Richard Butler
- The Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| |
Collapse
|
35
|
Chen K, Forrest A, Gonzalez Burgos G, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565852. [PMID: 37986883 PMCID: PMC10659303 DOI: 10.1101/2023.11.06.565852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near the chronically implanted microelectrode. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how does the FBR impact affect the functional stability of neural circuits near implanted Brain-Computer Interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders. Approach This study utilized multisite Michigan-style microelectrodes that span all cortical layers and the hippocampal CA1 region to collect spontaneous and visually-evoked electrophysiological activity. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of LFP and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation. Main Results The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations. Significance This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.
Collapse
|
36
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
37
|
Elguero JE, Liu G, Tiemeyer K, Bandyadka S, Gandevia H, Duro L, Yan Z, McCall K. Defective phagocytosis leads to neurodegeneration through systemic increased innate immune signaling. iScience 2023; 26:108052. [PMID: 37854687 PMCID: PMC10579427 DOI: 10.1016/j.isci.2023.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
In nervous system development, disease, and injury, neurons undergo programmed cell death, leaving behind cell corpses that are removed by phagocytic glia. Altered glial phagocytosis has been implicated in several neurological diseases including Alzheimer's disease. To untangle the links between glial phagocytosis and neurodegeneration, we investigated Drosophila mutants lacking the phagocytic receptor Draper. Loss of Draper leads to persistent neuronal cell corpses and age-dependent neurodegeneration. Here we investigate whether the phagocytic defects observed in draper mutants lead to chronic increased immune activation that promotes neurodegeneration. We found that the antimicrobial peptide Attacin-A is highly upregulated in the fat body of aged draper mutants and that the inhibition of the Immune deficiency (Imd) pathway in the glia and fat body of draper mutants led to reduced neurodegeneration. Taken together, these findings indicate that phagocytic defects lead to neurodegeneration via increased immune signaling, both systemically and locally in the brain.
Collapse
Affiliation(s)
- Johnny E. Elguero
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Guangmei Liu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Katherine Tiemeyer
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Shruthi Bandyadka
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Heena Gandevia
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Lauren Duro
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Zhenhao Yan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| |
Collapse
|
38
|
Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, Di Cesare Mannelli L, Ghelardini C. Anti-Hyperalgesic Efficacy of Acetyl L-Carnitine (ALCAR) Against Visceral Pain Induced by Colitis: Involvement of Glia in the Enteric and Central Nervous System. Int J Mol Sci 2023; 24:14841. [PMID: 37834289 PMCID: PMC10573187 DOI: 10.3390/ijms241914841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (A.T.); (C.C.); (F.M.); (L.D.C.M.); (C.G.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
40
|
Wang X, Wang H, Yi P, Baker C, Casey G, Xie X, Luo H, Cai J, Fan X, Soong L, Hu H, Shi PY, Liang Y, Sun J. Metformin restrains ZIKV replication and alleviates virus-induced inflammatory responses in microglia. Int Immunopharmacol 2023; 121:110512. [PMID: 37343373 DOI: 10.1016/j.intimp.2023.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
The re-emergence of Zika virus (ZIKV) remains a major public health threat that has raised worldwide attention. Accumulating evidence suggests that ZIKV can cause serious pathological changes to the human nervous system, including microcephaly in newborns. Recent studies suggest that metformin, an established treatment for diabetes may play a role in viral infection; however, little is known about the interactions between ZIKV infection and metformin administration. Using fluorescent ZIKV by flow cytometry and immunofluorescence imaging, we found that ZIKV can infect microglia in a dose-dependent manner. Metformin diminished ZIKV replication without the alteration of viral entry and phagocytosis. Our study demonstrated that metformin downregulated ZIKV-induced inflammatory response in microglia in a time- and dose-dependent manner. Our RNA-Seq and qRT-PCR analysis found that type I and III interferons (IFN), such as IFNα2, IFNβ1 and IFNλ3 were upregulated in ZIKV-infected cells by metformin treatment, accompanied with the downregulation of GBP4, OAS1, MX1 and ISG15. Together, our results suggest that metformin-mediated modulation in multiple pathways may attribute to restraining ZIKV infection in microglia, which may provide a potential tool to consider for use in unique clinical circumstances.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, China; Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Coleman Baker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gonzales Casey
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
41
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
42
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
43
|
Sangha A, Quon M, Pfeffer G, Orton SM. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 2023; 15:2978. [PMID: 37447304 DOI: 10.3390/nu15132978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological condition that involves both inflammatory demyelinating and neurodegenerative components. MS research and treatments have traditionally focused on immunomodulation, with less investigation of neuroprotection, and this holds true for the role of vitamin D in MS. Researchers have already established that vitamin D plays an anti-inflammatory role in modulating the immune system in MS. More recently, researchers have begun investigating the potential neuroprotective role of vitamin D in MS. The active form of vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in remyelination and/or the prevention of demyelination. The most notable finding relevant to MS is that 1,25(OH)2D3 promotes stem cell proliferation and drives the differentiation of neural stem cells into oligodendrocytes, which carry out remyelination. In addition, 1,25(OH)2D3 counteracts neurodegeneration and oxidative stress by suppressing the activation of reactive astrocytes and M1 microglia. 1,25(OH)2D3 also promotes the expression of various neuroprotective factors, including neurotrophins and antioxidant enzymes. 1,25(OH)2D3 decreases blood-brain barrier permeability, reducing leukocyte recruitment into the central nervous system. These neuroprotective effects, stimulated by 1,25(OH)2D3, all enhance neuronal survival. This review summarizes and connects the current evidence supporting the vitamin D-mediated mechanisms of action for neuroprotection in MS.
Collapse
Affiliation(s)
- Amarpreet Sangha
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Michaela Quon
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah-Michelle Orton
- Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| |
Collapse
|
44
|
Anwer DM, Gubinelli F, Kurt YA, Sarauskyte L, Jacobs F, Venuti C, Sandoval IM, Yang Y, Stancati J, Mazzocchi M, Brandi E, O’Keeffe G, Steece-Collier K, Li JY, Deierborg T, Manfredsson FP, Davidsson M, Heuer A. A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates. PLoS One 2023; 18:e0284480. [PMID: 37126506 PMCID: PMC10150977 DOI: 10.1371/journal.pone.0284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Collapse
Affiliation(s)
- Danish M. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Yunus A. Kurt
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Livija Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Febe Jacobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Chiara Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Jennifer Stancati
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Martina Mazzocchi
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Edoardo Brandi
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Gerard O’Keeffe
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Kathy Steece-Collier
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Marcus Davidsson
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| |
Collapse
|
45
|
Lin M, Yu H, Xie Q, Xu Z, Shang P. Role of microglia autophagy and mitophagy in age-related neurodegenerative diseases. Front Aging Neurosci 2023; 14:1100133. [PMID: 37180741 PMCID: PMC10169626 DOI: 10.3389/fnagi.2022.1100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/16/2023] Open
Abstract
Microglia, characterized by responding to damage, regulating the secretion of soluble inflammatory mediators, and engulfing specific segments in the central nervous system (CNS), function as key immune cells in the CNS. Emerging evidence suggests that microglia coordinate the inflammatory responses in CNS system and play a pivotal role in the pathogenesis of age-related neurodegenerative diseases (NDDs). Remarkably, microglia autophagy participates in the regulation of subcellular substances, which includes the degradation of misfolded proteins and other harmful constituents produced by neurons. Therefore, microglia autophagy regulates neuronal homeostasis maintenance and process of neuroinflammation. In this review, we aimed at highlighting the pivotal role of microglia autophagy in the pathogenesis of age-related NDDs. Besides the mechanistic process and the co-interaction between microglia autophagy and different kinds of NDDs, we also emphasized potential therapeutic agents and approaches that could be utilized at the onset and progression of these diseases through modulating microglia autophagy, including promising nanomedicines. Our review provides a valuable reference for subsequent studies focusing on treatments of neurodegenerative disorders. The exploration of microglia autophagy and the development of nanomedicines greatly enhances current understanding of NDDs.
Collapse
Affiliation(s)
- Mingkai Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
β-Adrenoceptor Blockade Moderates Neuroinflammation in Male and Female EAE Rats and Abrogates Sexual Dimorphisms in the Major Neuroinflammatory Pathways by Being More Efficient in Males. Cell Mol Neurobiol 2023; 43:1237-1265. [PMID: 35798933 DOI: 10.1007/s10571-022-01246-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Our previous studies showed more severe experimental autoimmune encephalomyelitis (EAE) in male compared with female adult rats, and moderating effect of propranolol-induced β-adrenoceptor blockade on EAE in females, the effect associated with transcriptional stimulation of Nrf2/HO-1 axis in spinal cord microglia. This study examined putative sexual dimorphism in propranolol action on EAE severity. Propranolol treatment beginning from the onset of clinical EAE mitigated EAE severity in rats of both sexes, but to a greater extent in males exhibiting higher noradrenaline levels and myeloid cell β2-adrenoceptor expression in spinal cord. This correlated with more prominent stimulatory effects of propranolol not only on CX3CL1/CX3CR1/Nrf2/HO-1 cascade, but also on Stat3/Socs3 signaling axis in spinal cord microglia/myeloid cells (mirrored in the decreased Stat3 and the increased Socs3 expression) from male rats compared with their female counterparts. Propranolol diminished the frequency of activated cells among microglia, increased their phagocyting/endocyting capacity, and shifted cytokine secretory profile of microglia/blood-borne myeloid cells towards an anti-inflammatory/neuroprotective phenotype. Additionally, it downregulated the expression of chemokines (CCL2, CCL19/21) driving T-cell/monocyte trafficking into spinal cord. Consequently, in propranolol-treated rats fewer activated CD4+ T cells and IL-17+ T cells, including CD4+IL17+ cells coexpressing IFN-γ/GM-CSF, were recovered from spinal cord of propranolol-treated rats compared with sex-matched saline-injected controls. All the effects of propranolol were more prominent in males. The study as a whole disclosed that sexual dimorphism in multiple molecular mechanisms implicated in EAE development may be responsible for greater severity of EAE in male rats and sexually dimorphic action of substances affecting them. Propranolol moderated EAE severity more effectively in male rats, exhibiting greater spinal cord noradrenaline (NA) levels and myeloid cell β2-adrenoceptor (β2-AR) expression than females. Propranolol affected CX3CR1/Nrf2/HO-1 and Stat3/Socs3 signaling axes in myeloid cells, favored their anti-inflammatory/neuroprotective phenotype and, consequently, reduced Th cell reactivation and differentiation into highly pathogenic IL-17/IFN-γ/GM-CSF-producing cells.
Collapse
|
47
|
Zhou W, Zhou Y, He J, Rao Y, Fei P, Li J. TREM2 deficiency in microglia accelerates photoreceptor cell death and immune cell infiltration following retinal detachment. Cell Death Dis 2023; 14:219. [PMID: 36977680 PMCID: PMC10050330 DOI: 10.1038/s41419-023-05735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Retinal detachment (RD) occurs in several major retinal conditions and often causes irreversible vision loss due to photoreceptor cell death. Retinal residential microglial cells are activated following RD and participate in photoreceptor cell death via direct phagocytosis and the regulation of inflammatory responses. Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor exclusively expressed on microglial cells in the retina, and has been reported to affect microglial cell homeostasis, phagocytosis and inflammatory responses in the brain. In this study, increased expression of multiple cytokines and chemokines in the neural retina was observed starting at 3 h following RD. Trem2 knockout (Trem2-/-) mice exhibited significantly more photoreceptor cell death than wild-type controls at 3 days after RD, and the number of TUNEL positive photoreceptor cells progressively decreased from day 3 to day 7 post-RD. A significant thinning of the outer nuclear layer (ONL), with multiple folds was observed in the Trem2-/- mice at 3 days post-RD. Trem2 deficiency reduced microglial cell infiltration and phagocytosis of stressed photoreceptors. There were more neutrophils in Trem2-/- retina following RD than in controls. Using purified microglial cells, we found Trem2 knockout is associated with increased CXCL12 expression. The aggravated photoreceptor cell death was largely reversed by blocking the CXCL12-CXCR4 mediated chemotaxis in Trem2-/- mice after RD. Our findings suggested that retinal microglia are protective in preventing further photoreceptor cell death following RD by phagocytosing presumably stressed photoreceptor cells and by regulating inflammatory responses. TREM2 is largely responsible for such protective effect and CXCL12 plays an important role in regulating neutrophil infiltration after RD. Collectively, our study pinpointed TREM2 as a potential target of microglial cells to ameliorate RD-induced photoreceptor cell death.
Collapse
Affiliation(s)
- Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
48
|
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023; 12:cells12071012. [PMID: 37048085 PMCID: PMC10093562 DOI: 10.3390/cells12071012] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Uskudar, Istanbul 34662, Turkey
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Correspondence: ; Tel.: +90-216-400-2222 (ext. 2462)
| | - Bercem Yeman Kiyak
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Medicine, Institute of Hamidiye Health Sciences, University of Health Sciences, Uskudar, Istanbul 34668, Turkey
| | - Rumeysa Akbayir
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Rama Seyhali
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Tahire Arpaci
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| |
Collapse
|
49
|
Poppell M, Hammel G, Ren Y. Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. Int J Mol Sci 2023; 24:5925. [PMID: 36982999 PMCID: PMC10059890 DOI: 10.3390/ijms24065925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages can be characterized as a very multifunctional cell type with a spectrum of phenotypes and functions being observed spatially and temporally in various disease states. Ample studies have now demonstrated a possible causal link between macrophage activation and the development of autoimmune disorders. How these cells may be contributing to the adaptive immune response and potentially perpetuating the progression of neurodegenerative diseases and neural injuries is not fully understood. Within this review, we hope to illustrate the role that macrophages and microglia play as initiators of adaptive immune response in various CNS diseases by offering evidence of: (1) the types of immune responses and the processes of antigen presentation in each disease, (2) receptors involved in macrophage/microglial phagocytosis of disease-related cell debris or molecules, and, finally, (3) the implications of macrophages/microglia on the pathogenesis of the diseases.
Collapse
Affiliation(s)
| | | | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
50
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|