1
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
2
|
Li C, Zhu C, Tu G, Chen Z, Mo Z, Luo C. Impact of Altered Gut Microbiota on Ketamine-Induced Conditioned Place Preference in Mice. Neuropsychiatr Dis Treat 2024; 20:1725-1740. [PMID: 39318552 PMCID: PMC11421448 DOI: 10.2147/ndt.s476420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Objects Ketamine is a drug of abuse worldwide and current treatments for ketamine abuse are inadequate. It is an urgent need to develop novel anti-addictive strategy. Since gut microbiota plays a crucial role in drug abuse, the present study investigates the impact and mechanisms of the gut microbiota in addictive behaviors induced by ketamine addiction. Methods Conditioned place preference (CPP) was employed to assess addiction, followed by 16S rRNA gene sequencing to elucidate alterations in the gut microbiota. Furthermore, qRT-PCR, ELISA, and immunohistochemistry were conducted to evaluate the expression levels of crucial genes and proteins associated with the gut-brain axis. Additionally, we investigated whether ketamine addiction is regulated through the gut microbiota by orally administering antibiotics to establish pseudo-germ-free mice. Results We found that repeated ketamine administration (20 mg/kg) induced CPP and significantly altered gut microbiota diversity and composition, as revealed by 16S rRNA gene sequencing. Compared to the control group, ketamine exposure exhibited differences in the relative abundance of 5 microbial families, with 4 (Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae and Family-XIII) showing increases, while one (Prevotellaceae) displayed a decrease. At the genus level, five genera were upregulated, while one was downregulated. Furthermore, COG analysis revealed significant differences in protein functionality between the two groups. Additionally, axis series studies showed that ketamine dependence reduced levels of tight junction proteins, GABA and GABRA1, while increasing BDNF and 5-HT. Moreover, an oral antibiotic cocktail simulating pseudo germ-free conditions in mice did not enhance the addictive behavior induced by ketamine. Conclusion Our study supports the hypothesis that ketamine-induced CPP is mediated through the gut microbiota. The present study provides new insights into improvement of efficient strategy for addiction treatment.
Collapse
Affiliation(s)
- Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- School of Life Sciences, Guangzhou University, Guangzhou, People's Republic of China
| | - Chen Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, People's Republic of China
| | - Zhijie Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, People's Republic of China
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Calzadilla N, Jayawardena D, Qazi A, Sharma A, Mongan K, Comiskey S, Eathara A, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Serotonin Transporter Deficiency Induces Metabolic Alterations in the Ileal Mucosa. Int J Mol Sci 2024; 25:4459. [PMID: 38674044 PMCID: PMC11049861 DOI: 10.3390/ijms25084459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Serotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT-/- mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood. This study investigated the hypothesis that SERT deficiency impacts lipid and microbial metabolite abundances in the ileal mucosa, where SERT is highly expressed. Ileal mucosal metabolomics was performed by Metabolon on wild-type (WT) and homozygous SERT knockout (KO) mice. Fluorescent-activated cell sorting (FACS) was utilized to measure immune cell populations in ileal lamina propria to assess immunomodulatory effects caused by SERT deficiency. SERT KO mice exhibited a unique ileal mucosal metabolomic signature, with the most differentially altered metabolites being lipids. Such changes included increased diacylglycerols and decreased monoacylglycerols in the ileal mucosa of SERT KO mice compared to WT mice. Further, the ileal mucosa of SERT KO mice exhibited several changes in microbial-related metabolites known to play roles in intestinal inflammation and insulin resistance. SERT KO mice also had a significant reduction in the abundance of ileal group 3 innate lymphoid cells (ILC3). In conclusion, SERT deficiency induces complex alterations in the ileal mucosal environment, indicating potential links between serotonergic signaling, gut microbiota, mucosal immunity, intestinal inflammation, and metabolic syndrome.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Aisha Qazi
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Anchal Sharma
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Kai Mongan
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Shane Comiskey
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Abhijith Eathara
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA; (D.J.); (A.Q.); (A.S.); (K.M.); (S.C.); (A.E.); (S.S.); (P.K.D.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Bai Y, Shu C, Hou Y, Wang GH. Adverse childhood experience and depression: the role of gut microbiota. Front Psychiatry 2024; 15:1309022. [PMID: 38628262 PMCID: PMC11019508 DOI: 10.3389/fpsyt.2024.1309022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Depression is the most common psychiatric disorder that burdens modern society heavily. Numerous studies have shown that adverse childhood experiences can increase susceptibility to depression, and depression with adverse childhood experiences has specific clinical-biological features. However, the specific neurobiological mechanisms are not yet precise. Recent studies suggest that the gut microbiota can influence brain function and behavior associated with depression through the "microbe-gut-brain axis" and that the composition and function of the gut microbiota are influenced by early stress. These studies offer a possibility that gut microbiota mediates the relationship between adverse childhood experiences and depression. However, few studies directly link adverse childhood experiences, gut microbiota, and depression. This article reviews recent studies on the relationship among adverse childhood experiences, gut microbiota, and depression, intending to provide insights for new research.
Collapse
Affiliation(s)
- Yu Bai
- Department of Psychiatry, Renmin Hospital of Wuhan University, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Hou
- Peking University China-Japan Friendship School of Clinical Medicine, Department of Neurology, Beijing, China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, Zulfiqar A, Fatima A, Jahan Q, Tariq H, Saeed F, Ahmed A, Asghar A, Ateeq H, Afzaal M, Khan MR. Exploring the serotonin-probiotics-gut health axis: A review of current evidence and potential mechanisms. Food Sci Nutr 2024; 12:694-706. [PMID: 38370053 PMCID: PMC10867509 DOI: 10.1002/fsn3.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Modulatory effects of serotonin (5-Hydroxytryptamine [5-HT]) have been seen in hepatic, neurological/psychiatric, and gastrointestinal (GI) disorders. Probiotics are live microorganisms that confer health benefits to their host. Recent research has suggested that probiotics can promote serotonin signaling, a crucial pathway in the regulation of mood, cognition, and other physiological processes. Reviewing the literature, we find that peripheral serotonin increases nutrient uptake and storage, regulates the composition of the gut microbiota, and is involved in mediating neuronal disorders. This review explores the mechanisms underlying the probiotic-mediated increase in serotonin signaling, highlighting the role of gut microbiota in the regulation of serotonin production and the modulation of neurotransmitter receptors. Additionally, this review discusses the potential clinical implications of probiotics as a therapeutic strategy for disorders associated with altered serotonin signaling, such as GI and neurological disorders. Overall, this review demonstrates the potential of probiotics as a promising avenue for the treatment of serotonin-related disorders and signaling of serotonin.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Rushba Irfan
- Faculty of Food Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural & Medical Science Research CenterUniversity of NizwaNizwaOman
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Toobaa Zahid
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Zulfiqar
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Areeja Fatima
- National Institute of Food Science & TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Qudsia Jahan
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Hira Tariq
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
6
|
Anmella G, Amoretti S, Safont G, Meseguer A, Vieta E, Pons-Cabrera MT, Alfonso M, Hernández C, Sanchez-Autet M, Pérez-Baldellou F, González-Blanco L, García-Portilla MP, Bernardo M, Arranz B. Intestinal permeability and low-grade chronic inflammation in schizophrenia: A multicentre study on biomarkers. Rationale, objectives, protocol and preliminary results. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023:S2950-2853(23)00040-6. [PMID: 38591828 DOI: 10.1016/j.sjpmh.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND Altered intestinal permeability and low-grade chronic inflammation disrupt the integrity of the blood-brain barrier (microbiota-gut-brain axis), probably playing a role in the pathophysiology of schizophrenia-spectrum disorders. However, studies assessing the microbiota-gut-brain axis are inconsistent. This article describes the rationale, objectives, protocol, and presents descriptive results for a new project. METHODS The sample of this study came from an observational, cross-sectional and multisite study including four centers in Spain (PI17/00246) recruiting adult patients with DSM-5 schizophrenia-spectrum disorders at any stage of the disease. The aims of the project are to assess the interrelation between intestinal permeability and low-grade chronic inflammation in schizophrenia-spectrum disorders and the role of peripheral biomarkers, diet, exercise, metabolic syndrome, disease severity and functioning as well as cognition. Assessments included the following variables: (1) anthropometric, (2) intestinal permeability, diet, and physical exercise, (3) clinical and functional, (4) neuropsychological and cognitive reserve, and (5) peripheral biomarkers from blood. RESULTS A total of 646 patients were enrolled (257, 39.7% female). Mean age was 43.2±13.6 years, illness duration 15.1±11.5 years. 55.8% consumed tobacco. Positive PANSS score was 13.68±6.55, and 20.38±8.69 in the negative symptoms. CGI was 4.16±2.22 and GAF was 60.00±14.84. CONCLUSION The results obtained by this project are expected to contribute toward the understanding of the physiopathology of schizophrenia-spectrum disorders. This will likely aid to personalize treatments in real-world clinical practice, potentially including variables related to intestinal permeability and inflammation.
Collapse
Affiliation(s)
- Gerard Anmella
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain
| | - Silvia Amoretti
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Gemma Safont
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Mutua de Terrassa, Universitat de Barcelona, Barcelona, Spain
| | - Ana Meseguer
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Maria Teresa Pons-Cabrera
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain
| | - Miqueu Alfonso
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Carla Hernández
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Monica Sanchez-Autet
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Ferran Pérez-Baldellou
- Department of Psychiatry, Hospital Universitari Mutua de Terrassa, Universitat de Barcelona, Barcelona, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, University of Oviedo, Servicio de Salud Mental del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), INEUROPA, Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Oviedo, Spain
| | - Maria Paz García-Portilla
- Department of Psychiatry, University of Oviedo, Servicio de Salud Mental del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), INEUROPA, Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Oviedo, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Institute of Neuroscience, University of Barcelona, IDIBAPS, Spain.
| | - Belén Arranz
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Barcelona, Spain; Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
7
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Shaffer ZD, Theis KR, Kuhn DM. Cocaine hydrochloride, cocaine methiodide and methylenedioxypyrovalerone (MDPV) cause distinct alterations in the structure and composition of the gut microbiota. Sci Rep 2023; 13:13754. [PMID: 37612353 PMCID: PMC10447462 DOI: 10.1038/s41598-023-40892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Cocaine is a highly addictive psychostimulant drug of abuse that constitutes an ongoing public health threat. Emerging research is revealing that numerous peripheral effects of this drug may serve as conditioned stimuli for its central reinforcing properties. The gut microbiota is emerging as one of these peripheral sources of input to cocaine reward. The primary objective of the present study was to determine how cocaine HCl and methylenedioxypyrovalerone, both of which powerfully activate central reward pathways, alter the gut microbiota. Cocaine methiodide, a quaternary derivative of cocaine that does not enter the brain, was included to assess peripheral influences on the gut microbiota. Both cocaine congeners caused significant and similar alterations of the gut microbiota after a 10-day course of treatment. Contrary to expectations, the effects of cocaine HCl and MDPV on the gut microbiota were most dissimilar. Functional predictions of metabolic alterations caused by the treatment drugs reaffirmed that the cocaine congeners were similar whereas MDPV was most dissimilar from the other two drugs and controls. It appears that the monoamine transporters in the gut mediate the effects of the treatment drugs. The effects of the cocaine congeners and MDPV on the gut microbiome may form the basis of interoceptive cues that can influence their abuse properties.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zachary D Shaffer
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
8
|
Castellini G, Cassioli E, Vitali F, Rossi E, Dani C, Melani G, Flaccomio D, D'Andria M, Mejia Monroy M, Galli A, Cavalieri D, Ricca V, Bartolucci GL, De Filippo C. Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders. Sci Rep 2023; 13:11753. [PMID: 37474544 PMCID: PMC10359458 DOI: 10.1038/s41598-023-38665-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Eating disorders (EDs) are syndromes with a multifactorial etiopathogenesis, involving childhood traumatic experiences, as well as biological factors. Human microbiome has been hypothesised to play a fundamental role, impacting on emotion regulation, as well as with eating behaviours through its metabolites such as short chain fatty acids (SCFAs). The present study investigated the interactions between psychopathology of EDs, the gut microbiome and SCFAs resulting from bacterial community metabolic activities in a population of 47 patients with Anorexia Nervosa, Bulimia Nervosa, and Binge Eating Disorder and in healthy controls (HCs). Bacterial gut microbiota composition differences were found between subjects with EDs and HCs, especially in association with different pathological behaviours (binge-purge vs restricting). A mediation model of early trauma and ED-specific psychopathology linked reduction of microbial diversity to a typical microbiota-derived metabolite such as butyric acid. A possible interpretation for this model might be that childhood trauma represents a risk factor for gut dysbiosis and for a stable modification of mechanisms responsible for SCFAs production, and that this dysfunctional community is inherited in the passage from childhood to adulthood. These findings might open the way to novel interventions of butyric acid-like compounds as well as faecal transplant.
Collapse
Affiliation(s)
| | - Emanuele Cassioli
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Eleonora Rossi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Cristiano Dani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Melani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Dario Flaccomio
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Martina D'Andria
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Valdo Ricca
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy.
| |
Collapse
|
9
|
Sun Z, Lee-Sarwar K, Kelly RS, Lasky-Su JA, Litonjua AA, Weiss ST, Liu YY. Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. EBioMedicine 2023; 90:104491. [PMID: 36868051 PMCID: PMC9996363 DOI: 10.1016/j.ebiom.2023.104491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND It has been widely recognized that a critical time window for neurodevelopment occurs in early life and the host's gut microbiome plays an important role in neurodevelopment. Following recent demonstrations that the maternal prenatal gut microbiome influences offspring brain development in murine models, we aim to explore whether the critical time window for the association between the gut microbiome and neurodevelopment is prenatal or postnatal for human. METHODS Here we leverage a large-scale human study and compare the associations between the gut microbiota and metabolites from mothers during pregnancy and their children with the children's neurodevelopment. Specifically, using multinomial regression integrated in Songbird, we assessed the discriminating power of the maternal prenatal and child gut microbiome for children's neurodevelopment at early life as measured by the Ages & Stages Questionnaires (ASQ). FINDINGS We show that the maternal prenatal gut microbiome is more relevant than the children's gut microbiome to the children's neurodevelopment in the first year of life (maximum Q2 = 0.212 and 0.096 separately using the taxa at the class level). Moreover, we found that Fusobacteriia is more associated with high fine motor skills in ASQ in the maternal prenatal gut microbiota but become more associated with low fine motor skills in the infant gut microbiota (rank = 0.084 and -0.047 separately), suggesting the roles of the same taxa with respect to neurodevelopment can be opposite at the two stages of fetal neurodevelopment. INTERPRETATION These findings shed light, especially in terms of timing, on potential therapeutic interventions to prevent neurodevelopmental disorders. FUNDING This work was supported by the National Institutes of Health (grant numbers: R01AI141529, R01HD093761, RF1AG067744, UH3OD023268, U19AI095219, U01HL089856, R01HL141826, K08HL148178, K01HL146980), and the Charles A. King Trust Postdoctoral Fellowship.
Collapse
Affiliation(s)
- Zheng Sun
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, 61801, USA.
| |
Collapse
|
10
|
Duan H, Li J, Fan L. Agaricus bisporus Polysaccharides Ameliorates Behavioural Deficits in D-Galactose-Induced Aging Mice: Mediated by Gut Microbiota. Foods 2023; 12:424. [PMID: 36673515 PMCID: PMC9857696 DOI: 10.3390/foods12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
White button mushroom polysaccharide (WMP) has various health-promoting functions. However, whether these functions are mediated by gut microbiota has not been well explored. Therefore, this study evaluated the anti-aging capacity of WMP and its effects on the diversity and composition of gut microbiota in D-galactose-induced aging mice. WMP significantly improved locomotor activity and the spatial and recognition memory of the aging mice. It also alleviated oxidative stress and decreased the pro-inflammatory cytokine levels in the brain. Moreover, WMP increased α-diversity, the short-chain fatty acid (SCFA) level and the abundance of beneficial genera, such as Bacteroides and Parabacteroides. Moreover, its effect on Bacteroides at the species level was further determined, and the enrichments of B. acidifaciens, B. sartorii and B. stercorirosoris were found. A PICRUSt analysis revealed that WMP had a greater impact on the metabolism of carbon, fatty acid and amino acid, as well as the MAPK and PPAR signaling pathway. In addition, there was a strong correlation between the behavioral improvements and changes in SCFA levels and the abundance of Bacteroides, Parabacteroides, Mucispirillum and Desulfovibrio and Helicobacter. Therefore, WMP might be suitable as a functional foods to prevent or delay aging via the directed enrichment of specific species in Bacteroides.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
12
|
The Role of Dietary Lipids in Cognitive Health: Implications for Neurodegenerative Disease. Biomedicines 2022; 10:biomedicines10123250. [PMID: 36552006 PMCID: PMC9775642 DOI: 10.3390/biomedicines10123250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a group of disorders characterised by progressive loss of brain function. The most common of these is Alzheimer's disease, a form of dementia. Intake of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components of neural tissues and significantly affect cognitive function. The importance of functional foods in preventing cardiovascular disease is well-documented in the current literature. However, the significance of such foods for central nervous system health and neurodegenerative diseases is less recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are known to influence gut health. Thus, this review will discuss different sources of dietary lipids and their effect on cognitive functioning and their interaction with the gut microbiome in the context of neurodegenerative disease.
Collapse
|
13
|
Lukić I, Ivković S, Mitić M, Adžić M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front Behav Neurosci 2022; 16:987697. [PMID: 36172468 PMCID: PMC9510596 DOI: 10.3389/fnbeh.2022.987697] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.
Collapse
|
14
|
Iimura S, Takasugi S. Sensory Processing Sensitivity and Gastrointestinal Symptoms in Japanese Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9893. [PMID: 36011526 PMCID: PMC9408471 DOI: 10.3390/ijerph19169893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sensory processing sensitivity is a personality or temperamental trait defined as individual differences in the tendency to perceive and process both positive and negative stimuli and experiences. Studies have shown that high sensitivity is correlated with psychosocial health, including depression and anxiety. However, its relationship with physical health has not been clarified. To fill this gap, using a large sample size with sufficient statistical power, an adult sample not including university students, and a range of covariates, this study examined the association between gastrointestinal symptoms as an indicator of physical health and sensory processing sensitivity. METHODS In this cross-sectional study, the participants were 863 Japanese adults (female = 450; male = 413; Mage = 30.4 years; SD = 4.9) who completed a web-based questionnaire. We statistically controlled for sociodemographic characteristics and examined whether sensory processing sensitivity is correlated with gastrointestinal symptoms. RESULTS The results showed that highly sensitive individuals were more likely to experience a wide range of gastrointestinal symptoms in the past week, including reflux symptoms, abdominal pain, indigestion symptoms, diarrhea symptoms, and constipation symptoms, even when statistically controlling for the participants' sociodemographic characteristics. CONCLUSIONS Our findings suggest that high sensory processing sensitivity is associated with physical health. Some of the potential causes of this are also discussed.
Collapse
Affiliation(s)
- Shuhei Iimura
- Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Satoshi Takasugi
- R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
15
|
Ramsteijn AS, Verkaik-Schakel RN, Houwing DJ, Plösch T, Olivier JDA. Perinatal exposure to fluoxetine and maternal adversity affect myelin-related gene expression and epigenetic regulation in the corticolimbic circuit of juvenile rats. Neuropsychopharmacology 2022; 47:1620-1632. [PMID: 35102259 PMCID: PMC9283398 DOI: 10.1038/s41386-022-01270-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
Many pregnant women experience symptoms of depression, and are often treated with selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine. In utero exposure to SSRIs and maternal depressive symptoms is associated with sex-specific effects on the brain and behavior. However, knowledge about the neurobiological mechanisms underlying these sex differences is limited. In addition, most animal research into developmental SSRI exposure neglects the influence of maternal adversity. Therefore, we used a rat model relevant to depression to investigate the molecular effects of perinatal fluoxetine exposure in male and female juvenile offspring. We performed RNA sequencing and targeted DNA methylation analyses on the prefrontal cortex and basolateral amygdala; key regions of the corticolimbic circuit. Perinatal fluoxetine enhanced myelin-related gene expression in the prefrontal cortex, while inhibiting it in the basolateral amygdala. SSRI exposure and maternal adversity interacted to affect expression of genes such as myelin-associated glycoprotein (Mag) and myelin basic protein (Mbp). We speculate that altered myelination reflects altered brain maturation. In addition, these effects are stronger in males than in females, resembling known behavioral outcomes. Finally, Mag and Mbp expression correlated with DNA methylation, highlighting epigenetic regulation as a potential mechanism for developmental fluoxetine-induced changes in myelination.
Collapse
Affiliation(s)
- Anouschka S. Ramsteijn
- grid.4830.f0000 0004 0407 1981Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands ,grid.7107.10000 0004 1936 7291Present Address: Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Rikst Nynke Verkaik-Schakel
- grid.4830.f0000 0004 0407 1981Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Danielle J. Houwing
- grid.4830.f0000 0004 0407 1981Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands ,grid.10417.330000 0004 0444 9382Present Address: Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Torsten Plösch
- grid.4830.f0000 0004 0407 1981Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jocelien D. A. Olivier
- grid.4830.f0000 0004 0407 1981Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Gu Y, Wang C, Qin X, Zhou B, Liu X, Liu T, Xie R, Liu J, Wang B, Cao H. Saccharomyces boulardii, a yeast probiotic, inhibits gut motility through upregulating intestinal serotonin transporter and modulating gut microbiota. Pharmacol Res 2022; 181:106291. [PMID: 35690329 DOI: 10.1016/j.phrs.2022.106291] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022]
Abstract
Saccharomyces boulardii (Sb) is a widely used fungal probiotic in treating various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of Sb relieving IBS remain unclear. The abnormal serotonin transporter (SERT) / 5-hydroxytryptamine (5-HT) system could cause disordered gastrointestinal sensation and motility, which closely related to IBS pathogenesis. The aim of this study was to explore the effects and mechanisms of Sb on regulating gut motility. Sb supernatant (SbS) was administered to intestinal epithelial cells and mice. SbS upregulated SERT expression via enhancing heparin-binding epidermal growth factor (HB-EGF) release to activate epidermal growth factor receptor (EGFR). EGFR kinase inhibitor treatment or HB-EGF siRNA transfection in cells blocked SbS upregulating SERT. Consistently, SbS-treated mice presented inhibited gut motility, and EGFR activation and SERT upregulation were found. Moreover, 16 S rDNA sequence presented an evident decrease in Firmicutes / Bacteroidetes ratio in SbS group. In genus level, SbS reduced Escherichia_Shigella, Alistipes, Clostridium XlVa, and Saccharibacteria_genera_incertae_sedis, meanwhile, increased Parasutterella. The abundance of Saccharibacteria_genera_incertae_sedis positively correlated with defecation parameters and intestinal 5-HT content. Fecal microbiota transplantation showed that SbS could modulate gut microbiota to influence gut motility. Interestingly, elimination of gut microbiota with antibiotic cocktail did not entirely block SbS regulating gut motility. Furthermore, SbS administration to IBS-D mice significantly upregulated SERT and inhibited gut motility. In conclusion, SbS could upregulate SERT by EGFR activation, and modulate gut microbiota to inhibit gut motility. This finding would provide more evidence for the application of this yeast probiotic in IBS and other diarrheal disorders.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Chen Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Bingqian Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Jinghua Liu
- Department of Gastroenterology, Tianjin TeDa Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China.
| |
Collapse
|
17
|
Liu J, Fang Y, Cui L, Wang Z, Luo Y, Gao C, Ge W, Huang T, Wen J, Zhou T. Butyrate emerges as a crucial effector of Zhi-Zi-Chi decoctions to ameliorate depression via multiple pathways of brain-gut axis. Biomed Pharmacother 2022; 149:112861. [PMID: 35339110 DOI: 10.1016/j.biopha.2022.112861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/09/2022] Open
Abstract
Gut microbiota has emerged as a crucial target of gut-brain axis to influence depression. Zhi-Zi-Chi decoctions (ZZCD), as a classic oral formula in clinic, is widely applied in depression treatment nowadays. However, the underlying mechanism in the antidepressant activity of ZZCD remains unknown. A classic depression model of chronic mild unpredictable stress (CUMS) was established in rats based on the results of behavioral tests and hippocampal histomorphology. 16S rRNA sequencing analysis indicated that ZZCD could increase short-chain fatty acid-producing and anti-inflammatory bacteria and reduce inflammatory and tryptophan-metabolizing bacteria. Furthermore, ZZCD reversed the alterations of BDNF, TNF-α, pro-inflammatory cytokines and neurotransmitters in the gut, blood and brain along the brain-gut axis and restored the decrease of butyrate in cecal content caused by CUMS. Then, butyrate was utilized to validate its ameliorative effect on pathological characteristics of depressive rats. Taken together, these results show that ZZCD exhibits antidepressant effect through modulating gut microbiota to facilitate the production of butyrate, which further regulate anti-inflammation, neurotransmitters, endocrine and BDNF along the gut-brain axis. Hence, this study fills the gap of the antidepressive mechanism of ZZCD in the light of the brain-gut axis and established a multi-targets and multi-levels platform eventually for further research into the mechanism of other TCM efficacy.
Collapse
Affiliation(s)
- Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yichao Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lixun Cui
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhongzhao Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Changzheng hospital, second affiliated hospital of Second Military Medical University, Shanghai 200003, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Congcong Gao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Ge
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Zhan Y, Wen Y, Du LJ, Wang XX, Tang SY, Kong PF, Huang WG, Tang XG. Effects of Maren Pills on the Intestinal Microflora and Short-Chain Fatty Acid Profile in Drug-Induced Slow Transit Constipation Model Rats. Front Pharmacol 2022; 13:804723. [PMID: 35496291 PMCID: PMC9039019 DOI: 10.3389/fphar.2022.804723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Slow transit constipation (STC) is becoming a common and frequently occurring disease in today’s society, and it is necessary to explore the safe and effective treatment of STC. Method: Our study aimed to investigate whether the laxative effect of Maren pills (MRW) is associated with the regulation of intestinal microflora and intestinal metabolism in the colon. Loperamide hydrochloride-induced STC rats received MRW intragastrically for two consecutive weeks to evaluate the laxative effect of MRW involving the regulation of intestinal microflora, intestinal metabolism, and 5-HT signaling pathway. Intestinal microflora was detected by 16s rDNA sequencing, intestinal metabolism of short-chain fatty acids (SCFAs) was detected by HPLC, and the 5-HT signaling pathway was detected by WB, ELISA, immunofluorescence, and immunohistochemical analysis. Results: Our results revealed that the treatments with MRW increased not only the body weight, 24-h fecal number, 24-h wet fecal weight, 24-h dry fecal weight, fecal water content, and the intestinal propulsion rate but also the colonic goblet cell number, colonic Muc-2 protein expression, and colonic mucus layer thickness in the STC model rats. Moreover, MRW activated the 5-HT pathway by increasing the levels of 5-HT, 5-HIAA, 5-HT4R, CFTR, cAMP, and PKA in the colon tissue of STC rats. The 16S rDNA sequencing results showed that MRW improved the colonic microflora structure in colonic contents of STC rats, mainly by increasing Lactobacillus and decreasing Prevotella. Finally, we found that MRW regulated the SCFA metabolism in the colonic contents of the STC rats, mainly by increasing the contents of acetic acid, propionic acid, and butyric acid; the relative abundance of Lactobacillus was positively correlated with either contents of acetic acid, propionic acid, and butyric acid, and the relative abundance of Clostridium was negatively correlated. Conclusion: Our study further showed that MRW could improve constipation in STC rats, and the mechanism may be by regulating the intestinal microflora structure and improving the metabolism of SCFAs.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Anorectal, Affiliated Hospital of Integrative Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu, China
- Department of Anorectal, Chengdu First People's Hospital, Chengdu, China
| | - Yong Wen
- Department of Anorectal, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Juan Du
- Department of Anorectal, The Third People's Hospital of Chengdu, Chengdu, China
| | - Xiao-Xiang Wang
- Department of Digestive medicine, Chengdu First People's Hospital, Chengdu, China
| | - Shi-Yu Tang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng-Fei Kong
- Department of Anorectal Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei-Guo Huang
- Department of Anorectal, Chengdu First People's Hospital, Chengdu, China
| | - Xue-Gui Tang
- Department of Anorectal Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
19
|
Knudsen JK, Michaelsen TY, Bundgaard-Nielsen C, Nielsen RE, Hjerrild S, Leutscher P, Wegener G, Sørensen S. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Sci Rep 2021; 11:21869. [PMID: 34750433 PMCID: PMC8575883 DOI: 10.1038/s41598-021-01248-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023] Open
Abstract
Differences in gut microbiota composition have been observed in patients with major depressive disorder (MDD) compared to healthy individuals. Here, we investigated if faecal microbiota transplantation (FMT) from patients with MDD into rats could induce a depressive-like phenotype. We performed FMT from patients with MDD (FMT-MDD) and healthy individuals (FMT-Healthy) into male Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats and assessed depressive-like behaviour. No behavioural differences were observed in the FSL rats. In FRL rats, the FMT-Healthy group displayed significantly less depressive-like behaviour than the FMT-MDD group. However, there was no difference in behaviour between FMT-MDD FRL rats and negative controls, indicating that FMT-Healthy FRL rats received beneficial bacteria. We additionally found different taxa between the FMT-MDD and the FMT-Healthy FRL rats, which could be traced to the donors. Four taxa, three belonging to the family Ruminococcaceae and the genus Lachnospira, were significantly elevated in relative abundance in FMT-MDD rats, while the genus Coprococcus was depleted. In this study, the FMT-MDD group was different from the FMT-Healthy group based on behaviour and intestinal taxa.
Collapse
Affiliation(s)
- Julie Kristine Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Simon Hjerrild
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjørring, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
20
|
Hovens IB, van Leeuwen BL, Falcao-Salles J, de Haan JJ, Schoemaker RG. Enteral enriched nutrition to prevent cognitive dysfunction after surgery; a study in rats. Brain Behav Immun Health 2021; 16:100305. [PMID: 34589797 PMCID: PMC8474614 DOI: 10.1016/j.bbih.2021.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Inflammation plays an important role in postoperative cognitive dysfunction (POCD), particularly in elderly patients. Enteral enriched nutrition was shown to inhibit the response on inflammatory stimuli. Aim of the present study was to explore the therapeutic potential of enteral enriched nutrition in our rat model for POCD. The anticipated mechanism of action was examined in young rats, while responses in the target group of elderly patients were evaluated in old rats. Methods Male 3 and 23 months old Wistar rats received a bolus of enteral fat/protein-enriched nutrition 2 h and 30 min before surgery. The inflammatory response was evaluated by systemic inflammation markers and brain microglia activity. Additionally, in old rats, the role of the gut-brain axis was studied by microbiome analyses of faecal samples. Days 9–14 after surgery, rats were subjected to cognitive testing. Day 16, rats were sacrificed and brains were collected for immunohistochemistry. Results In young rats, enriched nutrition improved long-term spatial learning and memory in the Morris Water Maze, reduced plasma IL1-β and VEGF levels, but left microglia activity and neurogenesis unaffected. In contrast, in old rats, enriched nutrition improved short-term memory in the novel object- and novel location recognition tests, but impaired development of long-term memory in the Morris Water Maze. Systemic inflammation was not affected, but microglia activity seemed even increased. Gut integrity and microbiome were not affected. Conclusion Enteral enriched nutrition before surgery in young rats indeed reduced systemic inflammation and improved cognitive performance after surgery, whereas old rats showed a mixed favorable/unfavorable cognitive response, without effect on systemic inflammation. Anti-inflammatory effects of enriched nutrition were not reflected in decreased microglia activity. Neither was an important role for the gut-brain axis observed. Since the relatively straight forward effects of enriched nutrition in young rats could not be shown in old rats, as indicated by a mixed beneficial/detrimental cognitive outcome in the latter, caution is advised by translating effects seen in younger patients to older ones. Enriched nutrition reduced inflammation after surgery in young rats. Enriched nutrition improved postoperative cognitive outcome in young rats. Enteral enriched nutrition did not inhibit neuroinflammation. Effects in young rats do not predict effects in old rats. Enteral enriched nutrition caused mixed improved/declined cognition in old rats.
Collapse
Affiliation(s)
- Iris B Hovens
- Department of Neurobiology, GELIFES, University of Groningen, Netherlands
| | | | - Joana Falcao-Salles
- Department of Microbial Ecology, GELIFES, University of Groningen, Netherlands
| | - Jacco J de Haan
- Department of Medical Oncology, University Medical Center Groningen, Netherlands
| | | |
Collapse
|
21
|
Karen C, Shyu DJH, Rajan KE. Lactobacillus paracasei Supplementation Prevents Early Life Stress-Induced Anxiety and Depressive-Like Behavior in Maternal Separation Model-Possible Involvement of Microbiota-Gut-Brain Axis in Differential Regulation of MicroRNA124a/132 and Glutamate Receptors. Front Neurosci 2021; 15:719933. [PMID: 34531716 PMCID: PMC8438336 DOI: 10.3389/fnins.2021.719933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
This study was designed to investigate stressful social experience (SSE) in early life by examining how it can induce alterations in the microbiota-gut-brain axis. To test this, different experimental groups of pups experienced the presence of either a stranger (S) with mother (M+P+S) or without their mother (MS+S-M). Animals were assessed for anxiety-like behavior and high-throughput bacterial 16s rRNA sequencing was performed to analyze the structure of the gut microbiota. Our analysis revealed that early life SSE induced anxiety-like behavior and reduced the diversity and richness of gut microbiota. In the second experiment, all groups were supplemented with Lactobacillus paracasei HT6. The findings indicated that Lactobacillus supplementation had a significant beneficial effect on anxiety-like behavior in stressed rats (MS, M+P+S, and MS + S-M) accompanied by normalized levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), glucocorticoid receptor (GR), serotonin (5-HT), dopamine (DA), and noradrenaline (NA). Concomitantly, the expression of microRNA (miR)-124a was down-regulated and miR-132, caspase-3, glutamate receptors (GluR1, GluR 2; NR2A, and NR2B) were up-regulated in stressed groups but remained unchanged by Lactobacillus supplementation in stressed individuals. This indicates that stress-associated GluR1-GR altered interactions can be significantly prevented by Lactobacillus supplementation. Analysis of the fecal metabolite profile was undertaken to analyze the effect of Lactobacillus, revealing that five predicted neuroactive microbial metabolites were reduced by early life SSE. Our results showed a potential link between Lactobacillus supplementation and beneficial effects on anxiety-like behavior, the mechanism of which could be potentially mediated through stress hormones, neurotransmitters, and expression of miRNAs, glutamate receptors, and the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Douglas J H Shyu
- Functional Genomics Laboratory, Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
22
|
Chen Y, Meng P, Cheng S, Jia Y, Wen Y, Yang X, Yao Y, Pan C, Li C, Zhang H, Zhang J, Zhang Z, Zhang F. Assessing the effect of interaction between C-reactive protein and gut microbiome on the risks of anxiety and depression. Mol Brain 2021; 14:133. [PMID: 34481527 PMCID: PMC8418706 DOI: 10.1186/s13041-021-00843-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Cumulative evidence shows that gut microbiome can influence brain function and behavior via the inflammatory processes. However, the role of interaction between gut dysbiosis and C-reactive protein (CRP) in the development of anxiety and depression remains to be elucidated. In this study, a total of 3321 independent single nucleotide polymorphism (SNP) loci associated with gut microbiome were driven from genome-wide association study (GWAS). Using individual level genotype data from UK Biobank, we then calculated the polygenetic risk scoring (PRS) of 114 gut microbiome related traits. Moreover, regression analysis was conducted to evaluate the possible effect of interaction between gut microbiome and CRP on the risks of Patient Health Questionnaire-9 (PHQ-9) (N = 113,693) and Generalized Anxiety Disorder-7 (GAD-7) (N = 114,219). At last, 11 candidate CRP × gut microbiome interaction with suggestive significance was detected for PHQ-9 score, such as F_Ruminococcaceae (β = - 0.009, P = 2.2 × 10-3), G_Akkermansia (β = - 0.008, P = 7.60 × 10-3), F_Acidaminococcaceae (β = 0.008, P = 1.22 × 10-2), G_Holdemanella (β = - 0.007, P = 1.39 × 10-2) and O_Lactobacillales (β = 0.006, P = 1.79× 10-2). 16 candidate CRP × gut microbiome interaction with suggestive significance was detected for GAD-7 score, such as O_Bacteroidales (β = 0.010, P = 4.00× 10-4), O_Selenomonadales (β = - 0.010, P = 1.20 × 10-3), O_Clostridiales (β = 0.009, P = 2.70 × 10-3) and G_Holdemanella (β = - 0.008, P = 4.20 × 10-3). Our results support the significant effect of interaction between CRP and gut microbiome on the risks of anxiety and depression, and identified several candidate gut microbiomes for them.
Collapse
Affiliation(s)
- Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China.
| |
Collapse
|
23
|
Hantsoo L, Zemel BS. Stress gets into the belly: Early life stress and the gut microbiome. Behav Brain Res 2021. [DOI: 10.1016/j.bbr.2021.113474
expr 831417737 + 864631554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
24
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
25
|
Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol 2021; 41:326-345. [PMID: 34289794 DOI: 10.1080/08830185.2021.1954638] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tryptophan is an essential amino acid, going through three different metabolic pathways in the intestines. Indole pathway in the gut microbiota, serotonin system in the enterochromaffin cells and kynurenine pathway in the immune cells and intestinal lining are the three arms of tryptophan metabolism in the intestines. Clinical, in vivo and in vitro studies showed that each one of these arms has a significant impact on IBD. This review explains how different metabolites of tryptophan are involved in the pathophysiology of IBD and colorectal cancer, as a major complication of IBD. Indole metabolites alleviate colitis and protect against colorectal cancer while serotonin arm follows a more complicated and receptor-specific pattern. Indole metabolites and kynurenine interact with aryl hydrocarbon receptor (AHR) to induce T regulatory cells differentiation, confine Th17 and Th1 response and produce anti-inflammatory mediators. Kynurenine decreases tumor-infiltrating CD8+ cells and mediates tumor cells immune evasion. Serotonin system also increases colorectal cancer cells proliferation and metastasis while, indole metabolites can profoundly decrease colorectal cancer growth. Targeted therapy for tryptophan metabolites may improve the management of IBD and colorectal cancer, e.g. supplementation of indole metabolites such as indole-3-carbinol (I3C), inhibition of kynurenine monooxygenase (KMO) and selective stimulation or inhibition of specific serotonergic receptors can mitigate colitis. Furthermore, it will be explained how indole metabolites supplementation, inhibition of indoleamine 2,3-dioxygenase 1 (IDO1), KMO and serotonin receptors can protect against colorectal cancer. Additionally, extensive molecular interactions between tryptophan metabolites and intracellular signaling pathways will be thoroughly discussed.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
26
|
Hantsoo L, Zemel BS. Stress gets into the belly: Early life stress and the gut microbiome. Behav Brain Res 2021; 414:113474. [PMID: 34280457 DOI: 10.1016/j.bbr.2021.113474] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Research has established that stress "gets under the skin," impacting neuroendocrine and neuroimmune pathways to influence risk for physical and mental health outcomes. These effects can be particularly significant for early life stress (ELS), or adverse childhood experiences (ACEs). In this review, we explore whether stress gets "into the belly," that is, whether psychosocial stress affects the gut microbiome. We review animal and human research utilizing a variety of stress paradigms (acute laboratory stressors, chronic stress, stressful life events, perceived stress, ELS, in utero stress) and their impacts on the gut microbiota, with a particular focus on ELS. We also review data on dietary interventions to moderate impact of stress on the gut microbiome. Our review suggests strong evidence that acute laboratory stress, chronic stress, and ELS affect the gut microbiota in rodents, and growing evidence that perceived stress and ELS may impact the gut microbiota in humans. Emerging data also suggests, particularly in rodents, that dietary interventions such as omega-3 fatty acids and pre- and pro-biotics may buffer against the effects of stress on the gut microbiome, but more research is needed. In sum, growing evidence suggests that stress impacts not only the neuroendocrine and neuroimmune axes, but also the microbiota-gut-brain-axis, providing a pathway by which stress may get "into the belly" to influence health risk.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway Street, Baltimore, MD 21205, USA.
| | - Babette S Zemel
- Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
| |
Collapse
|
27
|
Oberman K, Hovens I, de Haan J, Falcao-Salles J, van Leeuwen B, Schoemaker R. Acute pre-operative ibuprofen improves cognition in a rat model for postoperative cognitive dysfunction. J Neuroinflammation 2021; 18:156. [PMID: 34238316 PMCID: PMC8265047 DOI: 10.1186/s12974-021-02206-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is considered a key factor in the development of postoperative cognitive dysfunction (POCD). Therefore, we hypothesized that pre-operative anti-inflammatory treatment with ibuprofen would inhibit POCD in our rat-model. METHODS Male Wistar rats of 3 or 23 months old received a single injection of ibuprofen (15 mg/kg i.p.) or were control handled before abdominal surgery. Timed blood and fecal samples were collected for analyses of inflammation markers and gut microbiome changes. Behavioral testing was performed from 9 to 14 days after surgery, in the open field, novel object- and novel location-recognition tests and Morris water maze. Neuroinflammation and neurogenesis were assessed by immune histochemistry after sacrifice on postoperative day 14. RESULTS Ibuprofen improved short-term spatial memory in the novel location recognition test, and increased hippocampal neurogenesis. However, these effects were associated with increased hippocampal microglia activity. Whereas plasma cytokine levels (IL1-β, IL6, IL10, and TNFα) were not significantly affected, VEGF levels increased and IFABP levels decreased after ibuprofen. Long-term memory in the Morris water maze was not significantly improved by ibuprofen. The gut microbiome was neither significantly affected by surgery nor by ibuprofen treatment. In general, effects in aged rats appeared similar to those in young rats, though less pronounced. CONCLUSION A single injection of ibuprofen before surgery improved hippocampus-associated short-term memory after surgery and increased neurogenesis. However, this favorable outcome seemed not attributable to inhibition of (neuro)inflammation. Potential contributions of intestinal and blood-brain barrier integrity need further investigation. Although less pronounced compared to young rats, effects in aged rats indicate that even elderly individuals could benefit from ibuprofen treatment.
Collapse
Affiliation(s)
- Klaske Oberman
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Iris Hovens
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Jacco de Haan
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Joana Falcao-Salles
- Department of Microbial Ecology, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Barbara van Leeuwen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Regien Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
28
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Glover ME, Cohen JL, Singer JR, Sabbagh MN, Rainville JR, Hyland MT, Morrow CD, Weaver CT, Hodes GE, Kerman IA, Clinton SM. Examining the Role of Microbiota in Emotional Behavior: Antibiotic Treatment Exacerbates Anxiety in High Anxiety-Prone Male Rats. Neuroscience 2021; 459:179-197. [PMID: 33540050 PMCID: PMC7965353 DOI: 10.1016/j.neuroscience.2021.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Intestinal microbiota are essential for healthy gastrointestinal function and also broadly influence brain function and behavior, in part, through changes in immune function. Gastrointestinal disorders are highly comorbid with psychiatric disorders, although biological mechanisms linking these disorders are poorly understood. The present study utilized rats bred for distinct emotional behavior phenotypes to examine relationships between emotionality, the microbiome, and immune markers. Prior work showed that Low Novelty Responder (LR) rats exhibit high levels of anxiety- and depression-related behaviors as well as myriad neurobiological differences compared to High Novelty Responders (HRs). Here, we hypothesized that the divergent HR/LR phenotypes are accompanied by changes in fecal microbiome composition. We used next-generation sequencing to assess the HR/LR microbiomes and then treated adult HR/LR males with an antibiotic cocktail to test whether it altered behavior. Given known connections between the microbiome and immune system, we also analyzed circulating cytokines and metabolic factors to determine relationships between peripheral immune markers, gut microbiome components, and behavioral measures. There were no baseline HR/LR microbiome differences, and antibiotic treatment disrupted the microbiome in both HR and LR rats. Antibiotic treatment exacerbated aspects of HR/LR behavior, increasing LRs' already high levels of anxiety-like behavior while reducing passive stress coping in both strains. Our results highlight the importance of an individual's phenotype to their response to antibiotics, contributing to the understanding of the complex interplay between gut microbes, immune function, and an individual's emotional phenotype.
Collapse
Affiliation(s)
- M E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - J L Cohen
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - J R Singer
- MD/PhD Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA
| | - M N Sabbagh
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J R Rainville
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M T Hyland
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C D Morrow
- Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - C T Weaver
- Department of Pathology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - G E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| | - S M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
30
|
Park HJ, Kim SA, Kang WS, Kim JW. Early-Life Stress Modulates Gut Microbiota and Peripheral and Central Inflammation in a Sex-Dependent Manner. Int J Mol Sci 2021; 22:1899. [PMID: 33672958 PMCID: PMC7918891 DOI: 10.3390/ijms22041899] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1-21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.J.P.); (S.A.K.)
| | - Sang A. Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.J.P.); (S.A.K.)
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
31
|
Yaghoubfar R, Behrouzi A, Fateh A, Nojoumi SA, Vaziri F, Khatami S, Siadat SD. Effects of Akkermansia muciniphila and Faecalibacterium prausnitzii on serotonin transporter expression in intestinal epithelial cells. J Diabetes Metab Disord 2021; 20:1-5. [PMID: 34222056 DOI: 10.1007/s40200-020-00539-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Purpose The highest level of peripheral serotonin in the body can be found in the gastrointestinal (GI) tract as its reservoir. There is complete interaction between human gastrointestinal microbiota and serotonin system. Serotonin in the GI is transferred by serotonin transporters (SERTs), which play a crucial role in the bioavailability of serotonin in the GI. SERT impairment is associated with the pathology of GI disorders. It is known that intestinal microbiota can regulate the SERT function. Therefore, it may be useful to regulate of SERT expression by modulation of microbiota and improvement of intestinal motility and GI sensation. In this study, we aimed to evaluate the effects of two next-generation probiotics, including Akkermansia muciniphila and Faecalibacterium prausnitzii, and their supernatants on SERT gene expression in human epithelial colorectal adenocarcinoma cells (Caco-2). Methods The Caco-2 cells were treated with multiplicity of infection (MOI) ratio of 100 of A. muciniphila and F. prausnitzii, as well as their supernatants. After 24 h, SERT gene expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Results A. muciniphila up-regulated the SERT mRNA level by 3.01 folds, compared to the control group. F. prausnitzii, similar to A. muciniphila, increased the expression of SERT gene in Caco-2 cells by 3.43 folds (P < 0.001). Moreover, the supernatants of A. muciniphila and F. prausnitzii significantly up-regulated the expression of SERT gene in the cell line by 2.4 and 5.7 folds, respectively, compared to the control group (P < 0.001). Conclusions The present results showed that A. muciniphila and F. prausnitzii, as well as their supernatants, increased the expression of SERT gene in Caco-2 cells. Therefore, they might be helpful in the microbiota-modulating treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Rezvan Yaghoubfar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Correlation of gut microbiota and neurotransmitters in a rat model of post-traumatic stress disorder. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders. Ann Med 2020; 52:423-443. [PMID: 32772900 PMCID: PMC7877977 DOI: 10.1080/07853890.2020.1808239] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION As individuals age, the prevalence of neurocognitive and mental health disorders increases. Current biomedical treatments do not completely address the management of these conditions. Despite new pharmacological therapy the challenges of managing these diseases remain.There is increasing evidence that the Gut Microbiome (GM) and microbial dysbiosis contribute to some of the more prevalent mental health and neurocognitive disorders, such as depression, anxiety, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), schizophrenia, bipolar disorder (BP), and dementia as well as the behavioural and psychological symptoms of dementia (BPSD) through the microbiota-gut-brain axis. Methodology: Scoping review about the effect of gut microbiota on neurocognitive and mental health disorders. RESULTS This scoping review found there is an evolving evidence of the involvement of the gut microbiota in the pathophysiology of neurocognitive and mental health disorders. This manuscript also discusses how the psychotropics used to treat these conditions may have an antimicrobial effect on GM, and the potential for new strategies of management with probiotics and faecal transplantation. CONCLUSIONS This understanding can open up the need for a gut related approach in these disorders as well as unlock the door for the role of gut related microbiota management. KEY MESSAGES Challenges of managing mental health conditions remain in spite of new pharmacological therapy. Gut dysbiosis is seen in various mental health conditions. Various psychotropic medications can have an influence on the gut microbiota by their antimicrobial effect.
Collapse
Affiliation(s)
- Tyler Halverson
- Department of Medicine, Division of Psychiatry, University of Alberta, Edmonton, Alberta Canada
| | - Kannayiram Alagiakrishnan
- Department of Medicine, Division of Geriatric Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry 2020; 25:2905-2918. [PMID: 31391545 DOI: 10.1038/s41380-019-0475-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that gut microbiota plays a role in the pathogenesis of schizophrenia via the microbiota-gut-brain axis. This study sought to investigate whether transplantation of fecal microbiota from drug-free patients with schizophrenia into specific pathogen-free mice could cause schizophrenia-like behavioral abnormalities. The results revealed that transplantation of fecal microbiota from schizophrenic patients into antibiotic-treated mice caused behavioral abnormalities such as psychomotor hyperactivity, impaired learning and memory in the recipient animals. These mice also showed elevation of the kynurenine-kynurenic acid pathway of tryptophan degradation in both periphery and brain, as well as increased basal extracellular dopamine in prefrontal cortex and 5-hydroxytryptamine in hippocampus, compared with their counterparts receiving feces from healthy controls. Furthermore, colonic luminal filtrates from the mice transplanted with patients' fecal microbiota increased both kynurenic acid synthesis and kynurenine aminotransferase II activity in cultured hepatocytes and forebrain cortical slices. Sixty species of donor-derived bacteria showed significant difference between the mice colonized with the patients' and the controls' fecal microbiota, highlighting 78 differentially enriched functional modules including tryptophan biosynthesis function. In conclusion, our study suggests that the abnormalities in the composition of gut microbiota contribute to the pathogenesis of schizophrenia partially through the manipulation of tryptophan-kynurenine metabolism.
Collapse
|
35
|
Houwing DJ, Schuttel K, Struik EL, Arling C, Ramsteijn AS, Heinla I, Olivier JDA. Perinatal fluoxetine treatment and dams' early life stress history alter affective behavior in rat offspring depending on serotonin transporter genotype and sex. Behav Brain Res 2020; 392:112657. [PMID: 32339551 DOI: 10.1016/j.bbr.2020.112657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/06/2023]
Abstract
Many women diagnosed with a major depression continue or initiate antidepressant treatment during pregnancy. Both maternal stress and selective serotonin inhibitor (SSRI) antidepressant treatment during pregnancy have been associated with changes in offspring behavior, including increased anxiety and depressive-like behavior. Our aim was to investigate the effects of the SSRI fluoxetine (FLX), with and without the presence of a maternal depression, on affective behavior in male and female rat offspring. As reduced serotonin transporter (SERT) availability has been associated with altered behavioral outcome, both offspring with normal (SERT+/+) and reduced (SERT+/-) SERT expression were included. For our animal model of maternal depression, SERT+/- dams exposed to early life stress were used. Perinatal FLX treatment and early life stress in dams (ELSD) had sex- and genotype-specific effects on affective behavior in the offspring. In female offspring, perinatal FLX exposure interacted with SERT genotype to increase anxiety and depressive-like behavior in SERT+/+, but not SERT+/-, females. In male offspring, ELSD reduced anxiety and interacted with SERT genotype to decrease depressive-like behavior in SERT+/-, but not SERT+/+, males. Altogether, SERT+/+ female offspring appear to be more sensitive than SERT+/- females to the effects of perinatal FLX exposure, while SERT+/- male offspring appear more sensitive than SERT+/+ males to the effects of ELSD on affective behavior. Our data suggest a role for offspring SERT genotype and sex in FLX and ELSD-induced effects on affective behavior, thereby contributing to our understanding of the effects of perinatal SSRI treatment on offspring behavior later in life.
Collapse
Affiliation(s)
- Danielle J Houwing
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kirsten Schuttel
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Eline L Struik
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Chantal Arling
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anouschka S Ramsteijn
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - I Heinla
- Department of Psychology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Jocelien D A Olivier
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
36
|
Ramsteijn AS, Jašarević E, Houwing DJ, Bale TL, Olivier JDA. Antidepressant treatment with fluoxetine during pregnancy and lactation modulates the gut microbiome and metabolome in a rat model relevant to depression. Gut Microbes 2020; 11:735-753. [PMID: 31971855 PMCID: PMC7524305 DOI: 10.1080/19490976.2019.1705728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Up to 10% of women use selective serotonin reuptake inhibitor (SSRI) antidepressants during pregnancy and postpartum. Recent evidence suggests that SSRIs are capable of altering the gut microbiota. However, the interaction between maternal depression and SSRI use on bacterial community composition and the availability of microbiota-derived metabolites during pregnancy and lactation is not clear. We studied this using a rat model relevant to depression, where adult females with a genetic vulnerability and stressed as pups show depressive-like behaviors. Throughout pregnancy and lactation, females received the SSRI fluoxetine or vehicle. High-resolution 16S ribosomal RNA marker gene sequencing and targeted metabolomic analysis were used to assess the fecal microbiome and metabolite availability, respectively. Not surprisingly, we found that pregnancy and lactation segregate in terms of fecal microbiome diversity and composition, accompanied by changes in metabolite availability. However, we also showed that fluoxetine treatment altered important features of this transition from pregnancy to lactation most clearly in previously stressed dams, with lower fecal amino acid concentrations. Amino acid concentrations, in turn, correlated negatively with the relative abundance of bacterial taxa such as Prevotella and Bacteroides. Our study demonstrates an important relationship between antidepressant use during the perinatal period and maternal fecal metabolite availability in a rat model relevant to depression, possibly through parallel changes in the gut microbiome. Since microbial metabolites contribute to homeostasis and development, insults to the maternal microbiome by SSRIs might have health consequences for mother and offspring.
Collapse
Affiliation(s)
- Anouschka S Ramsteijn
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands,Center for Host-Microbial Interactions,Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eldin Jašarević
- Center for Host-Microbial Interactions,Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Pharmacology, Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Danielle J Houwing
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Tracy L Bale
- Center for Host-Microbial Interactions,Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Pharmacology, Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jocelien DA Olivier
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands,CONTACT Jocelien DA Olivier Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen9747 AG, The Netherlands
| |
Collapse
|
37
|
Esquivel-Franco DC, de Boer SF, Waldinger M, Olivier B, Olivier JDA. Pharmacological Studies on the Role of 5-HT 1 A Receptors in Male Sexual Behavior of Wildtype and Serotonin Transporter Knockout Rats. Front Behav Neurosci 2020; 14:40. [PMID: 32296313 PMCID: PMC7136541 DOI: 10.3389/fnbeh.2020.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Brain serotonin (5-HT) neurotransmission plays an important role in male sexual behavior and it is well established that activating 5-HT1 A receptors in rats facilitate ejaculatory behavior. However, the relative contribution of 5-HT1 A somatodendritic autoreceptors and heteroreceptors in this pro-sexual behavior is unclear. Moreover, it is unclear whether the contribution of somatodendritic 5-HT1 A autoreceptors and postsynaptic 5-HT1 A heteroreceptors alter when extracellular 5-HT levels are chronically increased. Serotonin transporter knockout (SERT-/-) rats exhibit enhanced extracellular 5-HT levels and desensitized 5-HT1 A receptors. These rats model neurochemical changes underlying chronic SSRI-induced sexual dysfunction. We want to determine the role of presynaptic versus postsynaptic 5-HT1 A receptors in the pro-sexual effects of 5-HT1 A receptor agonists in SERT+/+ and in SERT-/- rats. Therefore, acute effects of the biased 5-HT1 A receptor agonists F-13714, a preferential 5-HT1 A autoreceptor agonist, or F-15599, a preferential 5-HT1 A heteroreceptor agonist, and S15535 a mixed 5-HT1 A autoreceptor agonist/heteroreceptor antagonist, on male sexual behavior were assessed. A clear and stable genotype effect was found after training where SERT+/+ performed sexual behavior at a higher level than SERT-/- rats. Both F-15599 and F-13714 induced pro-sexual activity in SERT+/+ and SERT-/- animals. Compared to SERT+/+, the F13714-dose-response curve in SERT-/- rats was shifted to the right. SERT+/+ and SERT-/- rats responded similar to F15599. Within both SERT+/+ and SERT-/- rats the potency of F-13714 was much stronger compared to F-15599. S15535 had no effect on sexual behavior in either genotype. In SERT+/+ and SERT-/- rats that were selected on comparable low sexual activity (SERT+/+ 3 or less ejaculations and SERT-/- 5 or less ejaculations in 10 weeks) S15535 also did not influence sexual behavior. The two biased compounds with differential effects on 5-HT1 A auto- and hetero-receptors, exerted pro-sexual activity in both SERT+/+ and SERT-/- rats. Applying these specific pharmacological tools has not solved whether pre- or post-synaptic 5-HT1 A receptors are involved in pro-sexual activity. Moreover, the inactivity of S15535 in male sexual behavior in either genotype was unexpected. The question is whether the in vivo pharmacological profile of the different 5-HT1 A receptor ligands used, is sufficient to differentiate pre- and/or post-synaptic 5-HT1 A receptor contributions in male rat sexual behavior.
Collapse
Affiliation(s)
- Diana Carolina Esquivel-Franco
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Marcel Waldinger
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Berend Olivier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, Netherlands.,Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Jocelien D A Olivier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Stasi C, Sadalla S, Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr Drug Metab 2020; 20:646-655. [PMID: 31345143 DOI: 10.2174/1389200220666190725115503] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serotonin (5-HT) has a pleiotropic function in gastrointestinal, neurological/psychiatric and liver diseases. The aim of this review was to elucidate whether the gut-microbiota played a critical role in regulating peripheral serotonin levels. METHODS We searched for relevant studies published in English using the PubMed database from 1993 to the present. RESULTS Several studies suggested that alterations in the gut-microbiota may contribute to a modulation of serotonin signalling. The first indication regarded the changes in the composition of the commensal bacteria and the intestinal transit time caused by antibiotic treatment. The second indication regarded the changes in serotonin levels correlated to specific bacteria. The third indication regarded the fact that decreased serotonin transporter expression was associated with a shift in gut-microbiota from homeostasis to inflammatory type microbiota. Serotonin plays a key role in the regulation of visceral pain, secretion, and initiation of the peristaltic reflex; however, its altered levels are also detected in many different psychiatric disorders. Symptoms of some gastrointestinal functional disorders may be due to deregulation in central nervous system activity, dysregulation at the peripheral level (intestine), or a combination of both (brain-gut axis) by means of neuro-endocrine-immune stimuli. Moreover, several studies have demonstrated the profibrogenic role of 5-HT in the liver, showing that it works synergistically with platelet-derived growth factor in stimulating hepatic stellate cell proliferation. CONCLUSION Although the specific interaction mechanisms are still unclear, some studies have suggested that there is a correlation between the gut-microbiota, some gastrointestinal and liver diseases and the serotonin metabolism.
Collapse
Affiliation(s)
- Cristina Stasi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Sinan Sadalla
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Milani
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
39
|
Angoa-Pérez M, Zagorac B, Winters AD, Greenberg JM, Ahmad M, Theis KR, Kuhn DM. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One 2020; 15:e0227774. [PMID: 31978078 PMCID: PMC6980639 DOI: 10.1371/journal.pone.0227774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The list of pharmacological agents that can modify the gut microbiome or be modified by it continues to grow at a high rate. The greatest amount of attention on drug-gut microbiome interactions has been directed primarily at pharmaceuticals used to treat infection, diabetes, cardiovascular conditions and cancer. By comparison, drugs of abuse and addiction, which can powerfully and chronically worsen human health, have received relatively little attention in this regard. Therefore, the main objective of this study was to characterize how selected synthetic psychoactive cathinones (aka “Bath Salts”) and amphetamine stimulants modify the gut microbiome. Mice were treated with mephedrone (40 mg/kg), methcathinone (80 mg/kg), methamphetamine (5 mg/kg) or 4-methyl-methamphetamine (40 mg/kg), following a binge regimen consisting of 4 injections at 2h intervals. These drugs were selected for study because they are structural analogs that contain a β-keto substituent (methcathinone), a 4-methyl group (4-methyl-methamphetamine), both substituents (mephedrone) or neither (methamphetamine). Mice were sacrificed 1, 2 or 7 days after treatment and DNA from caecum contents was subjected to 16S rRNA sequencing. We found that all drugs caused significant time- and structure-dependent alterations in the diversity and taxonomic structure of the gut microbiome. The two phyla most changed by drug treatments were Firmicutes (methcathinone, 4-methyl-methamphetamine) and Bacteriodetes (methcathinone, 4-methyl-methamphetamine, methamphetamine, mephedrone). Across time, broad microbiome changes from the phylum to genus levels were characteristic of all drugs. The present results signify that these selected psychoactive drugs, which are thought to exert their primary effects within the CNS, can have profound effects on the gut microbiome. They also suggest new avenues of investigation into the possibility that gut-derived signals could modulate drug abuse and addiction via altered communication along the gut-brain axis.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Andrew D. Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jonathan M. Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Madison Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Donald M. Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
40
|
Houwing DJ, de Waard J, Ramsteijn AS, Woelders T, de Boer SF, Wams EJ, Olivier JDA. Perinatal fluoxetine exposure disrupts the circadian response to a phase-shifting challenge in female rats. Psychopharmacology (Berl) 2020; 237:2555-2568. [PMID: 32533210 PMCID: PMC7351858 DOI: 10.1007/s00213-020-05556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE Selective serotonin reuptake inhibitor (SSRI) antidepressants are increasingly prescribed during pregnancy. Changes in serotonergic signaling during human fetal development have been associated with changes in brain development and with changes in affective behavior in adulthood. The suprachiasmatic nucleus (SCN) is known to be modulated by serotonin and it is therefore assumed that SSRIs may affect circadian rhythms. However, effects of perinatal SSRI treatment on circadian system functioning in the offspring are largely unknown. OBJECTIVE Our aim was to investigate the effects of perinatal exposure to the SSRI fluoxetine (FLX) on circadian behavior, affective behavior, and 5-HT1A receptor sensitivity in female rats. In addition, we studied the expression of clock genes and the 5-HT1A receptor in the SCN, as they are potentially involved in underlying mechanisms contributing to changes in circadian rhythms. RESULTS Perinatal FLX exposure shortened the free-running tau in response to the 5-HT1A/7 agonist 8-OH-DPAT. However, FLX exposure did not alter anxiety, stress coping, and 5-HT1A receptor sensitivity. No differences were found in 5-HT1A receptor and clock genes Per1, Per2, Cry1, and Cry2 SCN gene expression. CONCLUSIONS Perinatal FLX exposure altered the response to a phase-shifting challenge in female rats, whether this may pose health risks remains to be investigated.
Collapse
Affiliation(s)
- Danielle J Houwing
- Department of Neurobiology, unit Behavioral Neuroscience, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Jolien de Waard
- Department of Neurobiology, unit Behavioral Neuroscience, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Anouschka S Ramsteijn
- Department of Neurobiology, unit Behavioral Neuroscience, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Tom Woelders
- Department of Neurobiology, unit Chronobiology, GELIFES, Univ. Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sietse F de Boer
- Department of Neurobiology, unit Behavioral Neuroscience, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Emma J Wams
- Department of Neurobiology, unit Behavioral Neuroscience, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Jocelien D A Olivier
- Department of Neurobiology, unit Behavioral Neuroscience, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
41
|
Perinatal fluoxetine treatment and dams' early life stress history have opposite effects on aggressive behavior while having little impact on sexual behavior of male rat offspring. Psychopharmacology (Berl) 2020; 237:2589-2600. [PMID: 32676774 PMCID: PMC7501125 DOI: 10.1007/s00213-020-05535-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 01/18/2023]
Abstract
RATIONALE Many depressed women continue antidepressant treatment during pregnancy. Selective serotonin reuptake inhibitor (SSRI) treatment during pregnancy increases the risk for abnormal social development of the child, including increased aggressive or defiant behavior, with unknown effects on sexual behavior. OBJECTIVES Our aim was to investigate the effects of perinatal SSRI treatment and maternal depression, both separately and combined, on aggressive and sexual behavior in male rat offspring. METHODS Heterozygous serotonin transporter (SERT± ) knockout dams exposed to early life stress (ELSD) were used as an animal model of maternal depression. Early life stress consisted of separating litters from their mother for 6 h a day on postnatal day (PND)2-15, resulting in a depressive-like phenotype in adulthood. Depressive-like dams were treated with fluoxetine (FLX, 10 mg/kg) or vehicle throughout pregnancy and lactation (gestational day 1 until PND 21). Male offspring were tested for aggressive and sexual behavior in adulthood. As lifelong reductions in SERT expression are known to alter behavioral outcome, offspring with normal (SERT+/+) and reduced (SERT± ) SERT expression were assessed. RESULTS Perinatal FLX treatment reduced offensive behavior and the number of animals attacking and increased the latency to attack, especially in SERT+/+ offspring. Perinatal FLX treatment reduced the mounting frequency in SERT+/+ offspring. ELSD increased offensive behavior, without affecting sexual behavior in SERT± offspring. CONCLUSIONS Overall, our research demonstrates that perinatal FLX treatment and ELSD have opposite effects on aggressive behavior, with little impact on sexual behavior of male offspring.
Collapse
|
42
|
Mashaqi S, Gozal D. Obstructive Sleep Apnea and Systemic Hypertension: Gut Dysbiosis as the Mediator? J Clin Sleep Med 2019; 15:1517-1527. [PMID: 31596218 PMCID: PMC6778338 DOI: 10.5664/jcsm.7990] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) and systemic hypertension (SH) are common and interrelated diseases. It is estimated that approximately 75% of treatment-resistant hypertension cases have an underlying OSA. Exploration of the gut microbiome is a new advance in medicine that has been linked to many comorbid illnesses, including SH and OSA. Here, we will review the literature in SH and gut dysbiosis, OSA and gut dysbiosis, and whether gut dysbiosis is common in both conditions. METHODS We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central. We identified a total of 230 articles. The literature search was conducted using the phrase "obstructive sleep apnea and gut dysbiosis." Only original research articles were included. This yielded a total of 12 articles. RESULTS Most of the research conducted in this field was on animal models, and almost all trials confirmed that intermittent hypoxia models resulted in gut dysbiosis. Gut dysbiosis, however, can cause a state of low-grade inflammation through damage to the gut wall barrier resulting in "leaky gut." Neuroinflammation is a hallmark of the pathophysiology of OSA-induced SH. CONCLUSIONS Gut dysbiosis seems to be an important factor in the pathophysiology of OSA-induced hypertension. Reversing gut dysbiosis at an early stage through prebiotics and probiotics and fecal microbiota transplantation combined with positive airway pressure therapy may open new horizons of treatment to prevent SH. More studies are needed in humans to elicit the effect of positive airway pressure therapy on gut dysbiosis.
Collapse
Affiliation(s)
- Saif Mashaqi
- Division of Sleep Medicine, University of North Dakota School of Medicine – Sanford Health, Fargo, North Dakota
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
43
|
Rincel M, Aubert P, Chevalier J, Grohard PA, Basso L, Monchaux de Oliveira C, Helbling JC, Lévy É, Chevalier G, Leboyer M, Eberl G, Layé S, Capuron L, Vergnolle N, Neunlist M, Boudin H, Lepage P, Darnaudéry M. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun 2019; 80:179-192. [PMID: 30872090 DOI: 10.1016/j.bbi.2019.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of adverse events in utero and during childhood differentially increases the vulnerability to psychiatric diseases in men and women. Gut microbiota is highly sensitive to the early environment and has been recently hypothesized to affect brain development. However, the impact of early-life adversity on gut microbiota, notably with regards to sex differences, remains to be explored. We examined the effects of multifactorial early-life adversity on behavior and microbiota composition in C3H/HeN mice of both sexes exposed to a combination of maternal immune activation (lipopolysaccharide injection on embryonic day 17, 120 µg/kg, i.p.), maternal separation (3hr per day from postnatal day (PND)2 to PND14) and maternal unpredictable chronic mild stress. At adulthood, offspring exposed to multi-hit early adversity showed sex-specific behavioral phenotypes with males exhibiting deficits in social behavior and females showing increased anxiety in the elevated plus maze and increased compulsive behavior in the marble burying test. Early adversity also differentially regulated gene expression in the medial prefrontal cortex (mPFC) according to sex. Interestingly, several genes such as Arc, Btg2, Fosb, Egr4 or Klf2 were oppositely regulated by early adversity in males versus females. Finally, 16S-based microbiota profiling revealed sex-dependent gut dysbiosis. In males, abundance of taxa belonging to Lachnospiraceae and Porphyromonadaceae families or other unclassified Firmicutes, but also Bacteroides, Lactobacillus and Alloprevotella genera was regulated by early adversity. In females, the effects of early adversity were limited and mainly restricted to Lactobacillus and Mucispirillum genera. Our work reveals marked sex differences in a multifactorial model of early-life adversity, both on emotional behaviors and gut microbiota, suggesting that sex should systematically be considered in preclinical studies both in neurogastroenterology and psychiatric research.
Collapse
Affiliation(s)
- Marion Rincel
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Philippe Aubert
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Julien Chevalier
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Pierre-Antoine Grohard
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Lilian Basso
- Institut de Recherche en Santé Digestive, INSERM UMR1220, INRA UMR1416, ENVT, UPS, Toulouse, France
| | - Camille Monchaux de Oliveira
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Jean Christophe Helbling
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Élodie Lévy
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | | | - Marion Leboyer
- Université Paris-est-Créteil, Laboratoire Psychiatrie translationnelle, INSERM U955, Hôpital Chenevier-Mondor, Créteil, France
| | - Gérard Eberl
- Unité Microenvironnement et Immunité, Institut Pasteur, Paris, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Lucile Capuron
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, INSERM UMR1220, INRA UMR1416, ENVT, UPS, Toulouse, France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Hélène Boudin
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Univ. Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
44
|
Shajib MS, Chauhan U, Adeeb S, Chetty Y, Armstrong D, Halder SLS, Marshall JK, Khan WI. Characterization of Serotonin Signaling Components in Patients with Inflammatory Bowel Disease. J Can Assoc Gastroenterol 2019; 2:132-140. [PMID: 31294376 PMCID: PMC6619411 DOI: 10.1093/jcag/gwy039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tryptophan hydroxylase (TPH)1 catalyzes the biosynthesis of serotonin (5-hydroxytrptamine; 5-HT) in enterochromaffin (EC) cells, the predominant source of gut 5-HT. Secreted 5-HT regulates various gut functions through diverse 5-HT receptor (5-HTR) families, and 5-HT transporter (5-HTT) sequesters its activity via uptake into surrounding cells. In inflammatory bowel disease (IBD) mucosal 5-HT signaling is altered, including upregulated EC cell numbers and 5-HT levels. We examined key mucosal 5-HT signaling components and blood 5-HT levels and, as part of a pilot study, investigated the association between 5-HTT gene-linked polymorphic region (5HTTLPR) and Crohn's disease (CD). METHODS In the context of inflammation, colonic expressions of TPH1, 5-HTT and 5-HTRs were studied in CD patients (n=15) and healthy controls (HC; n=10) using quantitative polymerase chain reaction (qPCR). We also investigated 5HTTLPR in 40 CD patients and HC utilizing PCR and measured platelet-poor plasma (PPP) and plasma 5-HT concentrations. RESULTS Compared with HC, inflammation in CD patients was associated with elevated TPH1, 5-HTR3, 5-HTR4, 5-HTR7 and downregulated 5-HTT expressions. In our second cohort of participants, significantly higher PPP and plasma 5-HT levels and higher S-genotype (L/S+S/S) than L/L genotype were observed in CD patients compared with HC. CONCLUSION Our results suggest that augmented mucosal 5-HT signaling and specific 5-HTTLPR genotype-associated decreased efficiency in 5-HT reuptake, the latter through increased 5-HT availability, may contribute to inflammation in CD patients. These findings revealed important information on various components of 5-HT signaling in intestinal inflammation which may ultimately lead to effective strategies targeting this pathway in IBD.
Collapse
Affiliation(s)
- Md Sharif Shajib
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Usha Chauhan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamiltion Health Sciences, Hamilton, Ontario, Canada
| | - Salman Adeeb
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yeshale Chetty
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Armstrong
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Smita L S Halder
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John K Marshall
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Correspondence: Dr Waliul I. Khan (nominated for communications with the editorial office), Department of Pathology & Molecular Medicine, McMaster University, HSC 3N7-1280 Main Street West, Hamilton, ON, L8S 4K1, Canada, e-mail
| |
Collapse
|
45
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
46
|
The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med 2019; 17:112. [PMID: 31215494 PMCID: PMC6582584 DOI: 10.1186/s12916-019-1346-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Atypical antipsychotics, also known as second-generation antipsychotics, are commonly prescribed as treatment for psychotic disorders in adults, as well as in children and adolescents with behavioral problems. However, in many cases, second-generation antipsychotics have unwanted side effects, such as weight gain, potentially further increasing risk for morbidities including obesity, diabetes, and cardiovascular disease. While various mechanisms for this weight gain have been proposed, including effects on metabolic hormone signaling, recent evidence points to the importance of the gut microbiome in this process. The microbial communities residing within the gut are affected by second-generation antipsychotics and can confer weight gain. MAIN TEXT This review summarizes recent findings and presents data linking second-generation antipsychotics, gut microbiota alterations and weight gain. The review focuses on children and adolescent populations, which have not previously received much attention, but are of great interest because they may be most vulnerable to gut microbiome changes and may carry long-term metabolic effects into adulthood. CONCLUSIONS We present correlations between second-generation antipsychotics, gut microbiota alterations and weight gain, and suggest some mechanisms that may link them. A better understanding of the underlying mechanisms may lead to the design of improved treatments for psychotic disorders with fewer harmful side effects.
Collapse
|
47
|
Rincel M, Olier M, Minni A, Monchaux de Oliveira C, Matime Y, Gaultier E, Grit I, Helbling JC, Costa AM, Lépinay A, Moisan MP, Layé S, Ferrier L, Parnet P, Theodorou V, Darnaudéry M. Pharmacological restoration of gut barrier function in stressed neonates partially reverses long-term alterations associated with maternal separation. Psychopharmacology (Berl) 2019; 236:1583-1596. [PMID: 31147734 DOI: 10.1007/s00213-019-05252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
RATIONALE Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.
Collapse
Affiliation(s)
- Marion Rincel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Maïwenn Olier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Amandine Minni
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | | | - Yann Matime
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Eric Gaultier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Isabelle Grit
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | | | - Anna Maria Costa
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Amandine Lépinay
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Laurent Ferrier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Patricia Parnet
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | - Vassilia Theodorou
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France.
| |
Collapse
|
48
|
Lukić I, Getselter D, Ziv O, Oron O, Reuveni E, Koren O, Elliott E. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry 2019; 9:133. [PMID: 30967529 PMCID: PMC6456569 DOI: 10.1038/s41398-019-0466-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/28/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence demonstrates that the gut microbiota affects brain function and behavior, including depressive behavior. Antidepressants are the main drugs used for treatment of depression. We hypothesized that antidepressant treatment could modify gut microbiota which can partially mediate their antidepressant effects. Mice were chronically treated with one of five antidepressants (fluoxetine, escitalopram, venlafaxine, duloxetine or desipramine), and gut microbiota was analyzed, using 16s rRNA gene sequencing. After characterization of differences in the microbiota, chosen bacterial species were supplemented to vehicle and antidepressant-treated mice, and depressive-like behavior was assessed to determine bacterial effects. RNA-seq analysis was performed to determine effects of bacterial treatment in the brain. Antidepressants reduced richness and increased beta diversity of gut bacteria, compared to controls. At the genus level, antidepressants reduced abundances of Ruminococcus, Adlercreutzia, and an unclassified Alphaproteobacteria. To examine implications of the dysregulated bacteria, we chose one of antidepressants (duloxetine) and investigated if its antidepressive effects can be attenuated by simultaneous treatment with Ruminococcus flavefaciens or Adlercreutzia equolifaciens. Supplementation with R. flavefaciens diminished duloxetine-induced decrease in depressive-like behavior, while A. equolifaciens had no such effect. R. flavefaciens treatment induced changes in cortical gene expression, up-regulating genes involved in mitochondrial oxidative phosphorylation, while down-regulating genes involved in neuronal plasticity. Our results demonstrate that various types of antidepressants alter gut microbiota composition, and further implicate a role for R. flavefaciens in alleviating depressive-like behavior. Moreover, R. flavefaciens affects gene networks in the brain, suggesting a mechanism for microbial regulation of antidepressant treatment efficiency.
Collapse
Affiliation(s)
- Iva Lukić
- 0000 0004 1937 0503grid.22098.31Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Dmitriy Getselter
- 0000 0004 1937 0503grid.22098.31Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Oren Ziv
- 0000 0004 1937 0503grid.22098.31Microbiome Research, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Oded Oron
- 0000 0004 1937 0503grid.22098.31Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Eli Reuveni
- 0000 0004 1937 0503grid.22098.31Drug discovery Laboratories, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Omry Koren
- 0000 0004 1937 0503grid.22098.31Microbiome Research, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Evan Elliott
- Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel.
| |
Collapse
|
49
|
Ranuh R, Athiyyah AF, Darma A, Risky VP, Riawan W, Surono IS, Sudarmo SM. Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: role of intestinal microbiota on the gut-brain axis. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:145-150. [PMID: 31341569 PMCID: PMC6635314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Microbial communities residing in the gut play a major role in the communication between the gut and the brain through neural, immune, and hormonal routes. Changes in abundance of beneficial intestinal bacteria can affect health of individuals. Conversely, drugs, disease, diet and other factors can alter the gut microbiome. However, there is limited information on the effect of exogenous factors on gut microbiota. In this study, we investigated whether a beneficial bacterium, the probiotic Lactobacillus plantarum IS-10506, can stimulate the gut-brain axis using Wistar rats. MATERIALS AND METHODS The animals were divided into two groups: one received L. plantarum IS strain 10506 supplementation, while the control group received no treatment. Activation of the gut-brain axis was evaluated by immunohistochemical analysis of intestinal and brain serotonin (5-HT) and brain neurotrophin (NT), serotonin transporter (5-HTT), and brain-derived neurotrophic factor (BDNF) levels. RESULTS The results showed that BDNF (p< 0.000), NT (p< 0.000007), and 5-HTT (p< 0.000007) expression was upregulated in the brain along with intestinal 5-HT (p< 0.000) level in rats treated with L. plantarum strain IS-10506 relative to the control group. CONCLUSION The probiotic L. plantarum IS-10506 stimulates the gut-brain axis and can potentially promote brain development and function.
Collapse
Affiliation(s)
- Reza Ranuh
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia,Corresponding author: Reza Ranuh, MD, Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia. Tel: +62-811379844,
| | - Alpha Fardah Athiyyah
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Andy Darma
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Vitria Prasetyo Risky
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Laboratory, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ingrid S. Surono
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Subijanto Marto Sudarmo
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
50
|
Houwing DJ, Staal L, Swart JM, Ramsteijn AS, Wöhr M, de Boer SF, Olivier JDA. Subjecting Dams to Early Life Stress and Perinatal Fluoxetine Treatment Differentially Alters Social Behavior in Young and Adult Rat Offspring. Front Neurosci 2019; 13:229. [PMID: 30914920 PMCID: PMC6423179 DOI: 10.3389/fnins.2019.00229] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Recently, the putative association between selective serotonin reuptake inhibitor (SSRI) exposure during pregnancy and the development of social disorders in children has gained increased attention. However, clinical studies struggle with the confounding effects of maternal depression typically co-occurring with antidepressant treatment. Furthermore, preclinical studies using an animal model of maternal depression to study effects of perinatal SSRI exposure on offspring social behavior are limited. Therefore, the aim of this study was to investigate effects of perinatal fluoxetine exposure on juvenile and adult social behavior in male and female rat offspring, using an animal model of maternal vulnerability. We exposed heterozygous serotonin transporter (SERT) deficient female rats to early life maternal separation stress, and used this as a model for maternal vulnerability. Control and early life stressed heterozygous serotonin transporter knockout (SERT) dams were treated with the SSRI fluoxetine or vehicle throughout gestation and lactation. Subsequently, both male and female wildtype (SERT+/+) and heterozygous (SERT+/-) rat offspring were tested for pup ultrasonic vocalizations (USVs), juvenile social play behavior and adult social interaction. Fluoxetine treatment of the dams resulted in a reduced total USV duration in pups at postnatal day 6, especially in SERT+/+ males. Perinatal fluoxetine exposure lowered social play behavior in male offspring from both control and early life stressed dams. However, in females a fluoxetine-induced reduction in juvenile play behavior was only present in offspring from control dams. Offspring genotype did not affect juvenile play behavior. Despite fluoxetine-induced behavioral effects at juvenile age, fluoxetine reduced male adult social behavior in offspring from control dams only. Effects of fluoxetine on female adult social behavior were virtually absent. Interestingly, early life stress in dams increased adult social exploration in vehicle exposed SERT+/+ female offspring and total social behavior in fluoxetine exposed adult SERT+/- male offspring. Furthermore, SERT+/- males appeared less social during adulthood compared to SERT+/+ males. Overall, the present study shows that chronic blockade of the serotonin transporter by fluoxetine during early development has a considerable impact on pup USVs, juvenile social play behavior in both male and female offspring, and to a lesser extent on male social interaction in adulthood.
Collapse
Affiliation(s)
- Danielle J. Houwing
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Laura Staal
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Judith M. Swart
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Anouschka S. Ramsteijn
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Markus Wöhr
- Experimental and Biological Psychology Department, University of Marburg, Marburg, Germany
| | - Sietse F. de Boer
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jocelien D. A. Olivier
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|