1
|
Padmanaban N, Ambosie R, Choy S, Marcus S, Nilsson SR, Keene AC, Kowalko JE, Duboué ER. Automated behavioral profiling using neural networks reveals differences in stress-like behavior between cave and surface-dwelling Astyanax mexicanus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635725. [PMID: 39975198 PMCID: PMC11838477 DOI: 10.1101/2025.01.30.635725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Behavioral stress responses allow animals to quickly adapt to local environments and are critical for survival. Stress responses provide an ideal model for investigating the evolution of complex behaviors due to their conservation across species, critical role in survival, and integration of behavioral and physiological components. The Mexican cavefish (Astyanax mexicanus) has evolved dramatically different stress responses compared to river-dwelling surface fish morphs, providing a model to investigate the neural and evolutionary basis of stress-like responses. Surface morphs inhabit predator-rich environments whereas cave-dwelling morphs occupy predator-free habitats. While these key ecological variables may underlie differences in stress responses, the complexity of the behavioral differences has not been thoroughly examined. By leveraging automated pose-tracking and machine learning tools, we quantified a range of behaviors associated with stress, including freezing, bottom-dwelling, and hyperactivity, during a novel tank assay. Surface fish exhibited heightened stress responses characterized by prolonged bottom-dwelling and frequent freezing, while cavefish demonstrated reduced stress behaviors, marked by greater exploration and minimal freezing. Analysis of F2 hybrids revealed that a subset of behaviors, freezing and bottom-dwelling, co-segregated, suggesting shared genetic or physiological underpinnings. Our findings illustrate the power of computational tools for high-throughput behavioral phenotyping, enabling precise quantification of complex traits and revealing the genetic and ecological factors driving their evolution. This study provides a framework for understanding how integrated behavioral and physiological traits evolve, offering broader insights into the mechanisms underlying the diversification of animal behavior in natural systems.
Collapse
Affiliation(s)
- Naresh Padmanaban
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter FL 33458
| | - Rianna Ambosie
- Department of Biological Sciences, Lehigh University 111 Research Dr., Allentown PA, 18015
| | - Stefan Choy
- Department of Biological Sciences, Lehigh University 111 Research Dr., Allentown PA, 18015
| | - Shoshanah Marcus
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter FL 33458
| | | | - Alex C. Keene
- Texas A&M University, 3258 TAMU, College Station, Texas 77843
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University 111 Research Dr., Allentown PA, 18015
| | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter FL 33458
| |
Collapse
|
2
|
Castillo-Ramírez LA, Herget U, Ryu S, De Marco RJ. Early-life challenge enhances cortisol regulation in zebrafish larvae. Biol Open 2024; 13:bio061684. [PMID: 39607018 PMCID: PMC11625891 DOI: 10.1242/bio.061684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis in mammals and the hypothalamic-pituitary-interrenal (HPI) axis in fish are open systems that adapt to the environment during development. Little is known about how this adaptation begins and regulates early stress responses. We used larval zebrafish to examine the impact of prolonged forced swimming at 5 days post-fertilization (dpf), termed early-life challenge (ELC), on cortisol responses, neuropeptide expression in the nucleus preopticus (NPO), and gene transcript levels. At 6 dpf, ELC-exposed larvae showed normal baseline cortisol but reduced reactivity to an initial stressor. Conversely, they showed increased reactivity to a second stressor within the 30-min refractory period, when cortisol responses are typically suppressed. ELC larvae had fewer corticotropin-releasing hormone (crh), arginine vasopressin (avp), and oxytocin (oxt)-positive cells in the NPO, with reduced crh and avp co-expression. Gene expression analysis revealed upregulation of genes related to cortisol metabolism (hsd11b2, cyp11c1), steroidogenesis (star), and stress modulation (crh, avp, oxt). These results suggest that early environmental challenge initiates adaptive plasticity in the HPI axis, tuning cortisol regulation to balance responsiveness and protection during repeated stress. Future studies should explore the broader physiological effects of prolonged forced swimming and its long-term impact on cortisol regulation and stress-related circuits.
Collapse
Affiliation(s)
- Luis A. Castillo-Ramírez
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road EX4 4QD, Exeter, UK
| | - Rodrigo J. De Marco
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, L3 3AF Liverpool, UK
| |
Collapse
|
3
|
Castillo-Ramírez LA, Ryu S, De Marco RJ. Cortisol dynamics and GR-dependent feedback regulation in zebrafish larvae exposed to repeated stress. Biol Open 2024; 13:bio061683. [PMID: 39450931 PMCID: PMC11583980 DOI: 10.1242/bio.061683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Zebrafish larvae show a rapid increase in cortisol in response to acute stressors, followed by a decline. While these responses are documented, both the duration of the refractory period to repeated stressors and the role of glucocorticoid receptors (GR) in specific phases of the glucocorticoid negative feedback are still being clarified. We explored these questions using water vortices as stressors, combined with GR blockage and measurements of whole-body cortisol in zebrafish larvae subjected to single and repeated stress protocols. Cortisol levels were elevated 10 min after stress onset and returned to baseline within 30-40 min, depending on the stressor strength. In response to homotypic stress, cortisol levels rose above baseline if the second stressor occurred 60 or 120 min after the first, but not with a 30-min interval. This suggests a rapid cortisol-mediated feedback loop with a refractory period of at least 30 min. Treatment with a GR blocker delayed the return to baseline and suppressed the refractory period, indicating GR-dependent early-phase feedback regulation. These findings are consistent with mammalian models and provide a framework for further analyses of early-life cortisol responses and feedback in zebrafish larvae, ideal for non-invasive imaging and high-throughput screening.
Collapse
Affiliation(s)
- Luis A. Castillo-Ramírez
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Developmental Neurobiology of Resilience, German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Soojin Ryu
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Developmental Neurobiology of Resilience, German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
- Living Systems Institute, College of Medicine and Health, University of Exeter, Stocker Road EX4 4QD Exeter, UK
| | - Rodrigo J. De Marco
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Developmental Neurobiology of Resilience, German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
- School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AFUK
| |
Collapse
|
4
|
Nagpal J, Eachus H, Lityagina O, Ryu S. Optogenetic induction of chronic glucocorticoid exposure in early-life leads to blunted stress-response in larval zebrafish. Eur J Neurosci 2024; 59:3134-3146. [PMID: 38602078 DOI: 10.1111/ejn.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.
Collapse
Affiliation(s)
- Jatin Nagpal
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- APC Microbiome Ireland and School of Pharmacy and Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Olga Lityagina
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Soojin Ryu
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Nagase M, Nagashima T, Hamada S, Morishima M, Tohyama S, Arima-Yoshida F, Hiyoshi K, Hirano T, Ohtsuka T, Watabe AM. All-optical presynaptic plasticity induction by photoactivated adenylyl cyclase targeted to axon terminals. CELL REPORTS METHODS 2024; 4:100740. [PMID: 38521059 PMCID: PMC11045876 DOI: 10.1016/j.crmeth.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/08/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.
Collapse
Affiliation(s)
- Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | - Takashi Nagashima
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | - Shun Hamada
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Mieko Morishima
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | - Fumiko Arima-Yoshida
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | - Kanae Hiyoshi
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan
| | - Tomoha Hirano
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba 277-8567, Japan.
| |
Collapse
|
6
|
Herget U, Ryu S, De Marco RJ. Altered glucocorticoid reactivity and behavioral phenotype in rx3-/- larval zebrafish. Front Endocrinol (Lausanne) 2023; 14:1187327. [PMID: 37484970 PMCID: PMC10358986 DOI: 10.3389/fendo.2023.1187327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The transcription factor rx3 is important for the formation of the pituitary and parts of the hypothalamus. Mutant animals lacking rx3 function have been well characterized in developmental studies, but relatively little is known about their behavioral phenotypes. Methods We used cell type staining to reveal differences in stress axis architecture, and performed cortisol measurements and behavior analysis to study both hormonal and behavioral stress responses in rx3 mutants. Results and Discussion Consistent with the role of rx3 in hypothalamus and pituitary development, we show a distinct loss of corticotrope cells involved in stress regulation, severe reduction of pituitary innervation by hypothalamic cells, and lack of stress-induced cortisol release in rx3 mutants. Interestingly, despite these deficits, we report that rx3-/- larval zebrafish can still display nominal behavioral responses to both stressful and non-stressful stimuli. However, unlike wildtypes, mutants lacking proper pituitary-interrenal function do not show enhanced behavioral performance under moderate stress level, supporting the view that corticotroph cells are not required for behavioral responses to some types of stressful stimuli but modulate subtle behavioral adjustments under moderate stress.
Collapse
Affiliation(s)
- Ulrich Herget
- Research Group Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Soojin Ryu
- Research Group Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
- Living Systems Institute, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Rodrigo J. De Marco
- Research Group Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
- School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
7
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
9
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Groneberg AH, Marques JC, Martins AL, Diez Del Corral R, de Polavieja GG, Orger MB. Early-Life Social Experience Shapes Social Avoidance Reactions in Larval Zebrafish. Curr Biol 2020; 30:4009-4021.e4. [PMID: 32888479 DOI: 10.1016/j.cub.2020.07.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Social experiences greatly define subsequent social behavior. Lack of such experiences, especially during critical phases of development, can severely impede the ability to behave adequately in social contexts. To date, it is not well characterized how early-life social isolation leads to social deficits and impacts development. In many model species, it is challenging to fully control social experiences, because they depend on parental care. Moreover, complex social behaviors involve multiple sensory modalities, contexts, and actions. Hence, when studying social isolation effects, it is important to parse apart social deficits from general developmental effects, such as abnormal motor learning. Here, we characterized how social experiences during early development of zebrafish larvae modulate their social behavior at 1 week of age, when social avoidance reactions can be measured as discrete swim events. We show that raising larvae in social isolation leads to enhanced social avoidance, in terms of the distance at which larvae react to one another and the strength of swim movement they use. Specifically, larvae raised in isolation use a high-acceleration escape swim, the short latency C-start, more frequently during social interactions. These behavioral differences are absent in non-social contexts. By ablating the lateral line and presenting the fish with local water vibrations, we show that lateral line inputs are both necessary and sufficient to drive enhanced social avoidance reactions. Taken together, our results show that social experience during development is a critical factor in shaping mechanosensory avoidance reactions in larval zebrafish.
Collapse
Affiliation(s)
- Antonia H Groneberg
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - João C Marques
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - A Lucas Martins
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ruth Diez Del Corral
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Michael B Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
11
|
Hartig EI, Zhu S, King BL, Coffman JA. Chronic cortisol exposure in early development leads to neuroendocrine dysregulation in adulthood. BMC Res Notes 2020; 13:366. [PMID: 32746894 PMCID: PMC7398215 DOI: 10.1186/s13104-020-05208-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/28/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Chronic early life stress can affect development of the neuroendocrine stress system, leading to its persistent dysregulation and consequently increased disease risk in adulthood. One contributing factor is thought to be epigenetic programming in response to chronic cortisol exposure during early development. We have previously shown that zebrafish embryos treated chronically with cortisol develop into adults with constitutively elevated whole-body cortisol and aberrant immune gene expression. Here we further characterize that phenotype by assessing persistent effects of the treatment on cortisol tissue distribution and dynamics, chromatin accessibility, and activities of glucocorticoid-responsive regulatory genes klf9 and fkbp5. To that end cortisol levels in different tissues of fed and fasted adults were measured using ELISA, open chromatin in adult blood cells was mapped using ATAC-seq, and gene activity in adult blood and brain cells was measured using qRT-PCR. Results Adults derived from cortisol-treated embryos have elevated whole-body cortisol with aberrantly regulated tissue distribution and dynamics that correlate with differential activity of klf9 and fkbp5 in blood and brain.
Collapse
Affiliation(s)
| | - Shusen Zhu
- MDI Biological Laboratory, Salisbury Cove, Maine, USA
| | - Benjamin L King
- MDI Biological Laboratory, Salisbury Cove, Maine, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - James A Coffman
- MDI Biological Laboratory, Salisbury Cove, Maine, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
12
|
Xin N, Jiang Y, Liu S, Zhou Y, Cheng Y. Effects of prednisolone on behavior and hypothalamic-pituitary-interrenal axis activity in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103325. [PMID: 31924570 DOI: 10.1016/j.etap.2020.103325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/17/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Prednisolone is a synthetic glucocorticoid used clinically for treating allergies, inflammation, and autoimmune diseases. Long-term prednisolone use has been shown to have negative effects on physiology and mood. We aimed to study the pharmacology and toxicology of glucocorticoid-like drugs by investigating behavioral and hypothalamic-pituitary-interrenal (HPI) axis effects in a zebrafish model. Zebrafish embryos 24 h post fertilization were exposed to 25 μM prednisolone. Their behavior was investigated 5 days post fertilization (dpf), and their HPI axis-related activity and related neurotransmitter levels were investigated 3, 4, 5, and 6 dpf. The behavior results showed that exposure to prednisolone resulted in decreased autonomic activity and low sensitivity to light. qRT-PCR and ELISA results showed decreased activity of the HPI axis and increased secretion of dopamine and serotonin after exposure to prednisolone. This study provides us with new insights into understanding the effects of glucocorticoids on the HPI axis.
Collapse
Affiliation(s)
- Ning Xin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Yu Jiang
- Department of Orthopedics, The Affiliated Wuxi No. 2, People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Sha Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Yanlong Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Yanbo Cheng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| |
Collapse
|
13
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
14
|
Brun NR, van Hage P, Hunting ER, Haramis APG, Vink SC, Vijver MG, Schaaf MJM, Tudorache C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol 2019; 2:382. [PMID: 31646185 PMCID: PMC6802380 DOI: 10.1038/s42003-019-0629-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homoeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.
Collapse
Affiliation(s)
- Nadja R. Brun
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Patrick van Hage
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | | - Suzanne C. Vink
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Martina G. Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
15
|
Wong RY, French J, Russ JB. Differences in stress reactivity between zebrafish with alternative stress coping styles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181797. [PMID: 31218026 PMCID: PMC6549991 DOI: 10.1098/rsos.181797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Animals experience stress in a variety of contexts and the behavioural and neuroendocrine responses to stress can vary among conspecifics. The responses across stressors often covary within an individual and are consistently different between individuals, which represent distinct stress coping styles (e.g. proactive and reactive). While studies have identified differences in peak glucocorticoid levels, less is known about how cortisol levels differ between stress coping styles at other time points of the glucocorticoid stress response. Here we quantified whole-body cortisol levels and stress-related behaviours (e.g. depth preference, movement) at time points representing the rise and recovery periods of the stress response in zebrafish lines selectively bred to display the proactive and reactive coping style. We found that cortisol levels and stress behaviours are significantly different between the lines, sexes and time points. Further, individuals from the reactive line showed significantly higher cortisol levels during the rising phase of the stress response compared with those from the proactive line. We also observed a significant correlation between individual variation of cortisol levels and depth preference but only in the reactive line. Our results show that differences in cortisol levels between the alternative stress coping styles extend to the rising phase of the endocrine stress response and that cortisol levels may explain variation in depth preferences in the reactive line. Differences in the timing and duration of cortisol levels may influence immediate behavioural displays and longer lasting neuromolecular mechanisms that modulate future responses.
Collapse
Affiliation(s)
- Ryan Y. Wong
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Jeffrey French
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Jacalyn B. Russ
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|
16
|
Lee HB, Schwab TL, Sigafoos AN, Gauerke JL, Krug RG, Serres MR, Jacobs DC, Cotter RP, Das B, Petersen MO, Daby CL, Urban RM, Berry BC, Clark KJ. Novel zebrafish behavioral assay to identify modifiers of the rapid, nongenomic stress response. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12549. [PMID: 30588759 PMCID: PMC6446827 DOI: 10.1111/gbb.12549] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022]
Abstract
When vertebrates face acute stressors, their bodies rapidly undergo a repertoire of physiological and behavioral adaptations, which is termed the stress response. Rapid changes in heart rate and blood glucose levels occur via the interaction of glucocorticoids and their cognate receptors following hypothalamic-pituitary-adrenal axis activation. These physiological changes are observed within minutes of encountering a stressor and the rapid time domain rules out genomic responses that require gene expression changes. Although behavioral changes corresponding to physiological changes are commonly observed, it is not clearly understood to what extent hypothalamic-pituitary-adrenal axis activation dictates adaptive behavior. We hypothesized that rapid locomotor response to acute stressors in zebrafish requires hypothalamic-pituitary-interrenal (HPI) axis activation. In teleost fish, interrenal cells are functionally homologous to the adrenocortical layer. We derived eight frameshift mutants in genes involved in HPI axis function: two mutants in exon 2 of mc2r (adrenocorticotropic hormone receptor), five in exon 2 or 5 of nr3c1 (glucocorticoid receptor [GR]) and two in exon 2 of nr3c2 (mineralocorticoid receptor [MR]). Exposing larval zebrafish to mild environmental stressors, acute changes in salinity or light illumination, results in a rapid locomotor response. We show that this locomotor response requires a functioning HPI axis via the action of mc2r and the canonical GR encoded by nr3c1 gene, but not MR (nr3c2). Our rapid behavioral assay paradigm based on HPI axis biology can be used to screen for genetic and environmental modifiers of the hypothalamic-pituitary-adrenal axis and to investigate the effects of corticosteroids and their cognate receptor interactions on behavior.
Collapse
Affiliation(s)
- Han B. Lee
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesRochesterMinnesota
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Ashley N. Sigafoos
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Jennifer L. Gauerke
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Randall G. Krug
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesRochesterMinnesota
| | - MaKayla R. Serres
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Dakota C. Jacobs
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Ryan P. Cotter
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Biswadeep Das
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Morgan O. Petersen
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Camden L. Daby
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Bethany C. Berry
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Karl J. Clark
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesRochesterMinnesota
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| |
Collapse
|
17
|
Abstract
Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this ‘PAC-K’ silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest. Optogenetic tools enable precise experimental control of the behaviour of cells. Here, the authors introduce a genetically-encoded two-protein system that enables silencing of excitable cells such as neurons and cardiomyocytes using blue light, and demonstrate its utility both in vitro and In vivo.
Collapse
|
18
|
Nagpal J, Herget U, Choi MK, Ryu S. Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell Tissue Res 2018; 375:5-22. [PMID: 30109407 DOI: 10.1007/s00441-018-2900-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.
Collapse
Affiliation(s)
- Jatin Nagpal
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd. Mail Code 156-29, Pasadena, CA, 91125, USA
| | - Min K Choi
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Soojin Ryu
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017; 96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Collapse
|
20
|
Bronson DR, Preuss T. Cellular Mechanisms of Cortisol-Induced Changes in Mauthner-Cell Excitability in the Startle Circuit of Goldfish. Front Neural Circuits 2017; 11:68. [PMID: 29033795 PMCID: PMC5625080 DOI: 10.3389/fncir.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.
Collapse
Affiliation(s)
- Daniel R Bronson
- The Graduate Center, City University of New York, New York, NY, United States
| | - Thomas Preuss
- Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
21
|
Steenbergen PJ, Bardine N, Sharif F. Kinetics of glucocorticoid exposure in developing zebrafish: A tracer study. CHEMOSPHERE 2017; 183:147-155. [PMID: 28544900 DOI: 10.1016/j.chemosphere.2017.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
In the current study the dynamics of glucocorticoid uptake by zebrafish chorionated embryos from the surrounding medium were studied, using 2.5 μM cortisol or dexamethasone solutions complemented with their tritiated variant. We measured the uptake of radioactive cortisol by embryos during a 1 h submersion. Interestingly, the signal in chorionated embryos was 85% (exposure: 1-2 hpf) or 78% (exposure: 48-49 hpf) of the signal present in an equal volume medium. By comparing embryos measured without chorion, we found that 18-20% of the radioactivity present in chorionated embryos is actually bound to the chorion or located in the perivitelline space. Consequently, embryonic tissue contains radioactivity levels of 60% of a similar volume of medium after 1 h incubation. During early developmental stages (1-48 hpf) exposure of more than 24 h in cortisol was needed to achieve radioactivity levels similar to an equal volume of medium within the embryonic tissue and more than 48 h for dexamethasone. In glucocorticoid-free medium, radioactivity dropped rapidly below 10% for both glucocorticoids, suggesting that the major portion of the embryonic radioactivity was a result of simple diffusion. During later developmental stages (48-96 hpf) initial uptake dynamics were similar, but showed a decrease of tissue radioactivity to 20% of an equal volume of medium after hatching, probably due to development and activation of the hypothalamic pituitary interrenal axis. Uptake is dependent on the developmental stage of the embryo. Furthermore, the presence of the chorion during exposure should be taken into account even when small lipophilic molecules are being tested.
Collapse
Affiliation(s)
- Peter Johannes Steenbergen
- Department of Integrative Zoology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Nabila Bardine
- Department of Cell Biology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Faiza Sharif
- Department of Integrative Zoology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Interdisciplinary Reseach Centre in Biomedical Materials, COMSATS Institute of Information Technology Lahore, Pakistan.
| |
Collapse
|
22
|
Performance on innate behaviour during early development as a function of stress level. Sci Rep 2017; 7:7840. [PMID: 28798473 PMCID: PMC5552790 DOI: 10.1038/s41598-017-08400-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022] Open
Abstract
What is the relationship between the level of acute stress and performance on innate behaviour? The diversity of innate behaviours and lack of sufficient data gathered under the same experimental conditions leave this question unresolved. While evidence points to an inverted-U shaped relationship between the level of acute stress and various measures of learning and memory function, it is unknown the extent to which such a non-linear function applies to performance on innate behaviour, which develops without example or practice under natural circumstances. The fundamental prediction of this view is that moderate stress levels will improve performance, while higher levels will not. Testing this proposition has been difficult because it entails an overall effect that must be invariant to the nature of the stressor, the behaviour under scrutiny and the stimulus that drives it. Here, we report new experimental results showing that developing zebrafish (Danio rerio) under moderate but not higher levels of stress improved their performance on instinctive activities driven by visual, hydrodynamic and thermal inputs. Our findings reveal, for the first time, the existence of an inverted-U shaped performance function according to stress level during early development in a series of innate behaviours.
Collapse
|
23
|
Jansen V, Jikeli JF, Wachten D. How to control cyclic nucleotide signaling by light. Curr Opin Biotechnol 2017; 48:15-20. [PMID: 28288335 DOI: 10.1016/j.copbio.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
Optogenetics allows to non-invasively manipulate cellular functions with spatio-temporal precision by combining genetic engineering with the control of protein function by light. Since the discovery of channelrhodopsin has pioneered the field, the optogenetic toolkit has been ever expanding and allows now not only to control neuronal activity by light, but rather a multitude of other cellular functions. One important application that has been established in recent years is the light-dependent control of second messenger signaling. The optogenetic toolkit now allows to control cyclic nucleotide-dependent signaling by light in vitro and in vivo.
Collapse
Affiliation(s)
- Vera Jansen
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Jan F Jikeli
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany; Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Abstract
In the late 1930s, Karl von Frisch reported that semiochemicals released upon injury, act as alarm substances (Schreckstoff) in fish. In Ostariophysi species, club cells in the epidermis are believed to contain cues related to alarm substance; however, the function of club cells, primarily as reservoirs of alarm substance has been debated. Here, I describe an alarm response in the Japanese rice fish Oryzias latipes (medaka), a member of the order Beloniformes. The response to alarm substance (Schreckreaction) in medaka is characterized by bouts of immobility and an increase in cortisol levels within minutes of exposure to conspecific skin extract. Histological analysis, however, suggests that club cells are either rare or absent in the medaka epidermis. In addition to describing an uncharacterized behavior in a vertebrate popular for genetic and developmental studies, these results support the hypothesis that the primary function of epidermal club cells may be unrelated to a role as alarm substance cells. The existence of similar behavioral responses in two evolutionarily distant but well established laboratory models, the zebrafish and the medaka, offers the possibility of comparative analyses of neural circuits encoding innate fear.
Collapse
|
25
|
Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour. Nat Commun 2016; 7:12620. [PMID: 27646867 PMCID: PMC5034294 DOI: 10.1038/ncomms12620] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/18/2016] [Indexed: 01/29/2023] Open
Abstract
The anterior pituitary is the major link between nervous and hormonal systems, which allow the brain to generate adequate and flexible behaviour. Here, we address its role in mediating behavioural adjustments that aid in coping with acutely threatening environments. For this we combine optogenetic manipulation of pituitary corticotroph cells in larval zebrafish with newly developed assays for measuring goal-directed actions in very short timescales. Our results reveal modulatory actions of corticotroph cell activity on locomotion, avoidance behaviours and stimulus responsiveness directly after the onset of stress. Altogether, the findings uncover the significance of endocrine pituitary cells for rapidly optimizing behaviour in local antagonistic environments.
Collapse
|
26
|
Wilson KS, Tucker CS, Al-Dujaili EAS, Holmes MC, Hadoke PWF, Kenyon CJ, Denvir MA. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish. J Endocrinol 2016; 230:125-42. [PMID: 27390302 PMCID: PMC5064771 DOI: 10.1530/joe-15-0376] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head-trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared 'bolder' than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and development in the zebrafish and that, like other species, manipulating GC status pharmacologically, physiologically or genetically in early life leads to programmable metabolic and behavioural traits in adulthood.
Collapse
Affiliation(s)
- K S Wilson
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C S Tucker
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - E A S Al-Dujaili
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M C Holmes
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - P W F Hadoke
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M A Denvir
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
27
|
Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA, Chen S, Sapin V, Pham U, Engle J, Niles BJ, Montz CJ, Chakravarthy S, Zimmerman S, Salehi-Ashtiani K, Vidal M, Schier AF, Prober DA. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron 2016; 89:842-56. [PMID: 26889812 DOI: 10.1016/j.neuron.2016.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/16/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022]
Abstract
Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway.
Collapse
Affiliation(s)
- Cindy N Chiu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric A Mosser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shijia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brett J Niles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christin J Montz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sridhara Chakravarthy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven Zimmerman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kourosh Salehi-Ashtiani
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Division of Sleep Medicine, Harvard University, Cambridge, MA 02138, USA.
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
28
|
Spikol ED, Laverriere CE, Robnett M, Carter G, Wolfe E, Glasgow E. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics. Diseases 2016; 4. [PMID: 27857842 PMCID: PMC5110251 DOI: 10.3390/diseases4010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.
Collapse
|
29
|
Wilson KS, Baily J, Tucker CS, Matrone G, Vass S, Moran C, Chapman KE, Mullins JJ, Kenyon C, Hadoke PWF, Denvir MA. Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart. Mol Cell Endocrinol 2015; 414. [PMID: 26219824 PMCID: PMC4562295 DOI: 10.1016/j.mce.2015.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Transient early-life perturbations in glucocorticoids (GC) are linked with cardiovascular disease risk in later life. Here the impact of early life manipulations of GC on adult heart structure, function and gene expression were assessed. METHODS AND RESULTS Zebrafish embryos were incubated in dexamethasone (Dex) or injected with targeted glucocorticoid receptor (GR) morpholino knockdown (GR Mo) over the first 120 h post fertilisation (hpf); surviving embryos (>90%) were maintained until adulthood under normal conditions. Cardiac function, heart histology and cardiac genes were assessed in embryonic (120 hpf) and adult (120 days post fertilisation (dpf)) hearts. GR Mo embryos (120 hpf) had smaller hearts with fewer cardiomyocytes, less mature striation pattern, reduced cardiac function and reduced levels of vmhc and igf mRNA compared with controls. GR Mo adult hearts were smaller with diminished trabecular network pattern, reduced expression of vmhc and altered echocardiographic Doppler flow compared to controls. Dex embryos had larger hearts at 120 hpf (Dex 107.2 ± 3.1 vs. controls 90.2 ± 1.1 μm, p < 0.001) with a more mature trabecular network and larger cardiomyocytes (1.62 ± 0.13 cells/μm vs control 2.18 ± 0.13 cells/μm, p < 0.05) and enhanced cardiac performance compared to controls. Adult hearts were larger (1.02 ± 0.07 μg/mg vs controls 0.63 ± 0.06 μg/mg, p = 0.0007), had increased vmhc and gr mRNA levels. CONCLUSION Perturbations in GR activity during embryonic development results in short and long-term alterations in the heart.
Collapse
Affiliation(s)
- K S Wilson
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - J Baily
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - C S Tucker
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - G Matrone
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - S Vass
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - C Moran
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - K E Chapman
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - J J Mullins
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - C Kenyon
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - P W F Hadoke
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - M A Denvir
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
30
|
Richter F, Scheib US, Mehlhorn J, Schubert R, Wietek J, Gernetzki O, Hegemann P, Mathes T, Möglich A. Upgrading a microplate reader for photobiology and all-optical experiments. Photochem Photobiol Sci 2015; 14:270-9. [PMID: 25373866 DOI: 10.1039/c4pp00361f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Automation can vastly reduce the cost of experimental labor and thus facilitate high experimental throughput, but little off-the-shelf hardware for the automation of illumination experiments is commercially available. Here, we use inexpensive open-source electronics to add programmable illumination capabilities to a multimode microplate reader. We deploy this setup to characterize light-triggered phenomena in three different sensory photoreceptors. First, we study the photoactivation of Arabidopsis thaliana phytochrome B by light of different wavelengths. Second, we investigate the dark-state recovery kinetics of the Synechocystis sp. blue-light sensor Slr1694 at multiple temperatures and imidazole concentrations; while the kinetics of the W91F mutant of Slr1694 are strongly accelerated by imidazole, the wild-type protein is hardly affected. Third, we determine the light response of the Beggiatoa sp. photoactivatable adenylate cyclase bPAC in Chinese hamster ovary cells. bPAC is activated by blue light in dose-dependent manner with a half-maximal intensity of 0.58 mW cm(-2); intracellular cAMP spikes generated upon bPAC activation decay with a half time of about 5 minutes after light switch-off. Taken together, we present a setup which is easily assembled and which thus offers a facile approach to conducting illumination experiments at high throughput, reproducibility and fidelity.
Collapse
Affiliation(s)
- Florian Richter
- Humboldt-Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gutierrez-Triana JA, Herget U, Castillo-Ramirez LA, Lutz M, Yeh CM, De Marco RJ, Ryu S. Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool. Endocrinology 2015; 156:3394-401. [PMID: 26132917 DOI: 10.1210/en.2015-1021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies. Here, we report a robust approach to specifically manipulate endogenous concentrations of cortisol by targeting heterologous proteins to interrenal cells using a promoter element of the steroidogenic acute regulatory protein. To test this approach, we first used this regulatory region to generate a transgenic line expressing the bacterial nitroreductase protein, which allows conditional targeted ablation of interrenal cells. We demonstrate that this line can be used to specifically ablate interrenal cells, drastically reducing both basal and stress-induced cortisol concentrations. Next, we coupled this regulatory region to an optogenetic actuator, Beggiatoa photoactivated adenylyl cyclase, to increase endogenous cortisol concentrations in a blue light-dependent manner. Thus, our approach allows specific manipulations of steroidogenic interrenal cell activity for studying the effects of both hypo- and hypercortisolemia in zebrafish.
Collapse
Affiliation(s)
- Jose Arturo Gutierrez-Triana
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Luis A Castillo-Ramirez
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Markus Lutz
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Chen-Min Yeh
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Rodrigo J De Marco
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| |
Collapse
|
32
|
Zhou XX, Pan M, Lin MZ. Investigating neuronal function with optically controllable proteins. Front Mol Neurosci 2015; 8:37. [PMID: 26257603 PMCID: PMC4508517 DOI: 10.3389/fnmol.2015.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/09/2015] [Indexed: 11/13/2022] Open
Abstract
In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Bioengineering, Stanford University Stanford, CA, USA
| | - Michael Pan
- Department of Pediatrics, Stanford University Stanford, CA, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University Stanford, CA, USA ; Department of Pediatrics, Stanford University Stanford, CA, USA
| |
Collapse
|
33
|
O'Neill PR, Gautam N. Optimizing optogenetic constructs for control over signaling and cell behaviours. Photochem Photobiol Sci 2015; 14:1578-85. [PMID: 26135203 DOI: 10.1039/c5pp00171d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic tools have recently been developed that enable dynamic control over the activities of select signaling proteins. They provide the unique ability to rapidly turn signaling events on or off with subcellular control in living cells and organisms. This capability is leading to new insights into how the spatial and temporal coordination of signaling events governs dynamic cell behaviours such as migration and neurite outgrowth. These tools can also be used to dissect a protein's signaling functions at different organelles. Here we review the properties of photoreceptors from diverse organisms that have been leveraged to control signaling in mammalian cells. We emphasize recent engineering approaches that have been used to create optogenetic constructs with optimized spectral, kinetic, and signaling properties for controlling cell behaviours.
Collapse
Affiliation(s)
- P R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 2015; 8:14. [PMID: 26041987 PMCID: PMC4434958 DOI: 10.3389/fnmol.2015.00014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
Lentiviruses have been extensively used as gene delivery vectors since the mid-1990s. Usually derived from the human immunodeficiency virus genome, they mediate efficient gene transfer to non-dividing cells, including neurons and glia in the adult mammalian brain. In addition, integration of the recombinant lentiviral construct into the host genome provides permanent expression, including the progeny of dividing neural precursors. In this review, we describe targeted vectors with modified envelope glycoproteins and expression of transgenes under the regulation of cell-selective and inducible promoters. This technology has broad utility to address fundamental questions in neuroscience and we outline how this has been used in rodents and primates. Combining viral tract tracing with immunohistochemistry and confocal or electron microscopy, lentiviral vectors provide a tool to selectively label and trace specific neuronal populations at gross or ultrastructural levels. Additionally, new generation optogenetic technologies can be readily utilized to analyze neuronal circuit and gene functions in the mature mammalian brain. Examples of these applications, limitations of current systems and prospects for future developments to enhance neuroscience knowledge will be reviewed. Finally, we will discuss how these vectors may be translated from gene therapy trials into the clinical setting.
Collapse
Affiliation(s)
- Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | | | - Lucia Schoderboeck
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Rachel J. Sizemore
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Stephanie M. Hughes
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| |
Collapse
|
35
|
Groneberg AH, Herget U, Ryu S, De Marco RJ. Positive taxis and sustained responsiveness to water motions in larval zebrafish. Front Neural Circuits 2015; 9:9. [PMID: 25798089 PMCID: PMC4351627 DOI: 10.3389/fncir.2015.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/16/2015] [Indexed: 01/08/2023] Open
Abstract
Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions—also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties.
Collapse
Affiliation(s)
- Antonia H Groneberg
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Rodrigo J De Marco
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| |
Collapse
|
36
|
Hegemann P. Photoactivated cyclases: In memoriam Masakatsu Watanabe. Photochem Photobiol Sci 2015; 14:1781-6. [DOI: 10.1039/c5pp00233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In memoriamMasakatsu Watanabe.
Collapse
Affiliation(s)
- Peter Hegemann
- Institute of Biology
- Experimental Biophysics
- Humboldt-Universität zu Berlin
- 10115 Berlin
- Germany
| |
Collapse
|
37
|
Chen ZH, Raffelberg S, Losi A, Schaap P, Gärtner W. A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant. J Biotechnol 2014; 191:246-9. [PMID: 25128613 PMCID: PMC4409636 DOI: 10.1016/j.jbiotec.2014.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
A light-regulated adenylyl cyclase, mPAC, was previously identified from the cyanobacterium Microcoleus chthonoplastes PCC7420. MPAC consists of a flavin-based blue light-sensing LOV domain and a catalytic domain. In this work, we expressed mPAC in an adenylate cyclase A null mutant (aca-) of the eukaryote Dictyostelium discoideum and tested to what extent light activation of mPAC could restore the cAMP-dependent developmental programme of this organism. Amoebas of Dictyostelium, a well-established model organism, generate and respond to cAMP pulses, which cause them to aggregate and construct fruiting bodies. mPAC was expressed under control of a constitutive actin-15 promoter in D. discoideum and displayed low basal adenylyl cyclase activity in darkness that was about five-fold stimulated by blue light. mPAC expression in aca- cells marginally restored aggregation and fruiting body formation in darkness. However, more and larger fruiting bodies were formed when mPAC expressing cells were incubated in light. Extending former applications of light-regulated AC, these results demonstrate that mPAC can be used to manipulate multicellular development in eukaryotes in a light dependent manner.
Collapse
Affiliation(s)
- Zhi-Hui Chen
- College of Life Sciences, University of Dundee, Dundee, UK
| | | | - Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, UK.
| | | |
Collapse
|
38
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
39
|
Karunarathne WKA, O'Neill PR, Gautam N. Subcellular optogenetics - controlling signaling and single-cell behavior. J Cell Sci 2014; 128:15-25. [PMID: 25433038 DOI: 10.1242/jcs.154435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide.
Collapse
Affiliation(s)
- W K Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Narasimhan Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
40
|
De Marco RJ, Groneberg AH, Yeh CM, Treviño M, Ryu S. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Front Behav Neurosci 2014; 8:367. [PMID: 25368561 PMCID: PMC4202704 DOI: 10.3389/fnbeh.2014.00367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/05/2014] [Indexed: 01/09/2023] Open
Abstract
The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging.
Collapse
Affiliation(s)
- Rodrigo J De Marco
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Antonia H Groneberg
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Chen-Min Yeh
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, México
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| |
Collapse
|
41
|
Beyer HM, Naumann S, Weber W, Radziwill G. Optogenetic control of signaling in mammalian cells. Biotechnol J 2014; 10:273-83. [DOI: 10.1002/biot.201400077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 11/08/2022]
|
42
|
Stierl M, Penzkofer A, Kennis JTM, Hegemann P, Mathes T. Key Residues for the Light Regulation of the Blue Light-Activated Adenylyl Cyclase from Beggiatoa sp. Biochemistry 2014; 53:5121-30. [DOI: 10.1021/bi500479v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuela Stierl
- Institut
für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Alfons Penzkofer
- Fakultät
für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - John T. M. Kennis
- Department
of Exact Sciences/Biophysics, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
| | - Peter Hegemann
- Institut
für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tilo Mathes
- Institut
für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
- Department
of Exact Sciences/Biophysics, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
43
|
Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci U S A 2014; 111:8803-8. [PMID: 24889611 DOI: 10.1073/pnas.1321600111] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.
Collapse
|
44
|
Krug RG, Poshusta TL, Skuster KJ, Berg MR, Gardner SL, Clark KJ. A transgenic zebrafish model for monitoring glucocorticoid receptor activity. GENES BRAIN AND BEHAVIOR 2014; 13:478-87. [PMID: 24679220 DOI: 10.1111/gbb.12135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/22/2022]
Abstract
Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socioeconomically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single-cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder.
Collapse
Affiliation(s)
- R G Krug
- Department of Biochemistry and Molecular Biology.,Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - T L Poshusta
- Department of Biochemistry and Molecular Biology
| | - K J Skuster
- Department of Biochemistry and Molecular Biology
| | - M R Berg
- Department of Biochemistry and Molecular Biology
| | - S L Gardner
- Department of Biochemistry and Molecular Biology
| | - K J Clark
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
45
|
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37:264-78. [PMID: 24726051 DOI: 10.1016/j.tins.2014.02.011] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/23/2023]
Abstract
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Oliver Braubach
- Center for Functional Connectomics, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul, 136791, Republic of Korea
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Nash Hall 220 Corvallis, OR 97331, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, N Mississauga, Ontario L5L 1C6, Canada
| | - Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
46
|
Schirmer A, Jesuthasan S, Mathuru AS. Tactile stimulation reduces fear in fish. Front Behav Neurosci 2013; 7:167. [PMID: 24319415 PMCID: PMC3837339 DOI: 10.3389/fnbeh.2013.00167] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 01/08/2023] Open
Abstract
Being groomed or touched can counter stress and negative affect in mammals. In two experiments we explored whether a similar phenomenon exists in non-mammals like zebrafish. In Experiment 1, we exposed zebrafish to a natural stressor, a chemical alarm signal released by injured conspecifics. Before moving them into an observation tank, one group of fish was washed and then subjected to a water current that served as the tactile stimulus. The other group was simply washed. Fish with tactile treatment demonstrated fewer fear behaviors (e.g., bottom dwelling) and lower cortisol levels than fish without. In Experiment 2, we ascertained a role of somatosensation in these effects. Using a similar paradigm as in Experiment 1, we recorded fear behaviors of intact fish and fish with damaged lateral line hair cells. Relative to the former, the latter benefited less from the tactile stimulus during fear recovery. Together these findings show that tactile stimulation can calm fish and that tactile receptors, evolutionarily older than those present in mammals, contribute to this phenomenon.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of Psychology, National University of SingaporeSingapore, Singapore
- Duke/NUS Graduate Medical SchoolSingapore, Singapore
- LSI Neurobiology/Ageing Programme, National University of SingaporeSingapore, Singapore
| | - Suresh Jesuthasan
- Duke/NUS Graduate Medical SchoolSingapore, Singapore
- Institute of Molecular and Cell BiologySingapore, Singapore
- Department of Physiology, National University of SingaporeSingapore, Singapore
| | | |
Collapse
|