1
|
Eulalio T, Sun MW, Gevaert O, Greicius MD, Montine TJ, Nachun D, Montgomery SB. regionalpcs improve discovery of DNA methylation associations with complex traits. Nat Commun 2025; 16:368. [PMID: 39753567 PMCID: PMC11698866 DOI: 10.1038/s41467-024-55698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrates a 54% improvement in sensitivity over averaging in simulations, providing a robust framework for identifying subtle epigenetic variations. Applying regionalpcs to Alzheimer's disease brain methylation data, combined with cell type deconvolution, we uncover 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci with genome-wide association studies identified 17 genes with potential causal roles in Alzheimer's disease risk, including MS4A4A and PICALM. Available in the Bioconductor package regionalpcs, our approach facilitates a deeper understanding of the epigenetic landscape in Alzheimer's disease and opens avenues for research into complex diseases.
Collapse
Affiliation(s)
- Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael D Greicius
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Ämmälä AJ, Hancox TPM, Qiuyu F, Lahtinen A, Sulkava S, Revell VL, Ackermann K, Kayser M, Skene DJ, Paunio T. Daily rhythm in DNA methylation and the effect of total sleep deprivation. J Sleep Res 2024:e14438. [PMID: 39675927 DOI: 10.1111/jsr.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Numerous hormones and genes exhibit diurnal 24-hr rhythms that can also be affected by sleep deprivation. Here we studied diurnal rhythms in DNA methylation under a 24-hr sleep/wake cycle and a subsequent 29 hr of continual wakefulness (1 night of sleep deprivation). Fifteen healthy men (19-35 years) spent 3 days/nights in a sleep laboratory: (1) adaptation; (2) baseline; (3) total sleep deprivation day/night. DNA methylation was analysed from peripheral blood leukocytes, collected every 3 hr for 45 hr (starting at 15:00 hours) during the baseline period and the total sleep deprivation period. Epigenome-wide DNA methylation variation was assessed with the Infinium MethylationEPIC v2.0 Beadchip kit. Rhythm analysis was performed separately for the baseline and the total sleep deprivation time-series data. Pairwise analysis between diurnal samples and sleep deprivation samples at the same timepoint was also carried out to detect differentially methylated positions related to sleep deprivation. Of all DNA methylation sites, 14% exhibited a diurnal rhythm in methylation on the baseline day/night that was altered by sleep deprivation. During sleep deprivation, the number of differentially methylated positions increased towards the end of the sleep deprivation period, with a dominating pattern of hypomethylation. Among differentially methylated positions, an enrichment of genes related to the FAS immune response pathway was detected. In conclusion, DNA methylation exhibits diurnal rhythmicity, and this time-of-day variation needs to be considered when studying DNA methylation as a biomarker in biomedical studies. In addition, the observed DNA methylation changes under wakefulness might serve as a mediator of sleep deprivation-related immune response alterations.
Collapse
Affiliation(s)
- Antti-Jussi Ämmälä
- Sleepwell Program and Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Population Health Unit, National Institute of Health and Welfare, Helsinki, Finland
- Terveystalo Plc, Medical Lead, Helsinki, Finland
| | | | - Fan Qiuyu
- Department of Public Health and Welfare, Population Health Unit, National Institute of Health and Welfare, Helsinki, Finland
| | - Alexandra Lahtinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sonja Sulkava
- Sleepwell Program and Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Population Health Unit, National Institute of Health and Welfare, Helsinki, Finland
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Victoria L Revell
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, St Andrews, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Debra J Skene
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Tiina Paunio
- Sleepwell Program and Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Population Health Unit, National Institute of Health and Welfare, Helsinki, Finland
| |
Collapse
|
3
|
M JN, Bharadwaj D. The complex web of obesity: from genetics to precision medicine. Expert Rev Endocrinol Metab 2024; 19:403-418. [PMID: 38869356 DOI: 10.1080/17446651.2024.2365785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.
Collapse
Affiliation(s)
- Janaki Nair M
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
5
|
Lee HS, Kim B, Park T. The association between sleep quality and accelerated epigenetic aging with metabolic syndrome in Korean adults. Clin Epigenetics 2024; 16:92. [PMID: 39014432 PMCID: PMC11253334 DOI: 10.1186/s13148-024-01706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Healthy sleep is vital for maintaining optimal mental and physical health. Accumulating evidence suggests that sleep loss and disturbances play a significant role in the biological aging process, early onset of disease, and reduced lifespan. While numerous studies have explored the association between biological aging and its drivers, only a few studies have examined its relationship with sleep quality. In this study, we investigated the associations between sleep quality and epigenetic age acceleration using whole blood samples from a cohort of 692 Korean adults. Sleep quality of each participant was assessed using the validated Pittsburgh Sleep Quality Index (PSQI), which encompassed seven domains: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbance, use of sleep medication, and daytime dysfunction. Four epigenetic age accelerations (HorvathAgeAccel, HannumAgeAccel, PhenoAgeAccel, and GrimAgeAccel) and the pace of aging, DunedinPACE, were investigated for epigenetic aging estimates. RESULTS Among the 692 participants (good sleepers [n = 441, 63.7%]; poor sleepers [n = 251, 36.3%]), DunedinPACE was positively correlated with PSQI scores in poor sleepers ( γ =0.18, p < 0.01). GrimAgeAccel ( β =0.18, p = 0.02) and DunedinPACE ( β =0.01, p < 0.01) showed a statistically significant association with PSQI scores only in poor sleepers by multiple linear regression. In addition, every one-point increase in PSQI was associated with a 15% increase in the risk of metabolic syndrome (MetS) among poor sleepers (OR = 1.15, 95% CI = 1.03-1.29, p = 0.011). In MetS components, a positive correlation was observed between PSQI score and fasting glucose ( γ = 0.19, p < 0.01). CONCLUSIONS This study suggests that worsening sleep quality, especially in poor sleepers, is associated with accelerated epigenetic aging for GrimAgeAccel and DundinePACE with risk of metabolic syndrome. This finding could potentially serve as a promising strategy for preventing age-related diseases in the future.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Forensic Toxicology Division, Daegu Institute, National Forensic Service, Andong-si, Gyeongsangbuk-do, 39872, Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea.
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
6
|
Richter E, Patel P, Babu JR, Wang X, Geetha T. The Importance of Sleep in Overcoming Childhood Obesity and Reshaping Epigenetics. Biomedicines 2024; 12:1334. [PMID: 38927541 PMCID: PMC11201669 DOI: 10.3390/biomedicines12061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The development of childhood obesity is a complex process influenced by a combination of genetic predisposition and environmental factors, such as sleep, diet, physical activity, and socioeconomic status. Long-term solutions for decreasing the risk of childhood obesity remain elusive, despite significant advancements in promoting health and well-being in school and at home. Challenges persist in areas such as adherence to interventions, addressing underlying social determinants, and individual differences in response to treatment. Over the last decade, there has been significant progress in epigenetics, along with increased curiosity in gaining insights into how sleep and lifestyle decisions impact an individual's health. Epigenetic modifications affect the expression of genes without causing changes to the fundamental DNA sequence. In recent years, numerous research studies have explored the correlation between sleep and the epigenome, giving a better understanding of DNA methylation, histone modification, and non-coding RNAs. Although significant findings have been made about the influence of sleep on epigenetics, a notable gap exists in the literature concerning sleep-related genes specifically associated with childhood obesity. Consequently, it is crucial to delve deeper into this area to enhance our understanding. Therefore, this review primarily focuses on the connection between sleep patterns and epigenetic modifications in genes related to childhood obesity. Exploring the interplay between sleep, epigenetics, and childhood obesity can potentially contribute to improved overall health outcomes. This comprehensive review encompasses studies focusing on sleep-related genes linked to obesity.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Ozcivit Erkan IB, Seyisoglu HH, Benbir Senel G, Karadeniz D, Ozdemir F, Kalayci A, Seven M, Gokmen Inan N. An Evaluation of DNA Methylation Levels and Sleep in Relation to Hot Flashes: A Cross-Sectional Study. J Clin Med 2024; 13:3502. [PMID: 38930031 PMCID: PMC11204679 DOI: 10.3390/jcm13123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Objectives: We aimed to evaluate the DNA methylation levels in perimenopausal and postmenopausal women, measured through Long Interspersed Element-1 (LINE-1) and Alu, and the sleep parameters in relation to the presence of hot flashes (HFs). Methods: This cross-sectional study included 30 peri- or postmenopausal women aged between 45 and 55. The menopausal status was determined according to STRAW + 10 criteria and all participants had a low cardiovascular disease (CVD) risk profile determined by Framingham risk score. The sample was divided into two groups based on the presence or absence of HFs documented in their medical history during their initial visit: Group 1 (n = 15) with HFs present and Group 2 (n = 15) with HFs absent. The patients had polysomnography test and HFs were recorded both by sternal skin conductance and self-report overnight. Genomic DNA was extracted from the women's blood and methylation status was analyzed by fluorescence-based real-time quantitative PCR. The quantified value of DNA methylation of a target gene was normalized by β-actin. The primary outcome was the variation in methylation levels of LINE-1 and Alu and sleep parameters according to the presence of HFs. Results: LINE-1 and Alu methylation levels were higher in Group 1 (HFs present), although statistically non-significant. LINE-1 methylation levels were negatively correlated with age. Sleep efficiency was statistically significantly lower for women in Group 1 (HFs present) (74.66% ± 11.16% vs. 82.63% ± 7.31%; p = 0.03). The ratio of duration of awakening to total sleep time was statistically significantly higher in Group 1 (HFs present) (22.38% ± 9.99% vs. 15.07% ± 6.93, p = 0.03). Objectively recorded hot flashes were significantly higher in Group 1 (4.00 ± 3.21 vs. 1.47 ± 1.46, p = 0.03). None of the cases in Group 2 self-reported HF despite objectively recorded HFs during the polysomnography. The rate of hot flash associated with awakening was 41.4% in the whole sample. Conclusions: Women with a history of hot flashes exhibited lower sleep efficiency and higher awakening rates. Although a history of experiencing hot flashes was associated with higher LINE-1 and Alu methylation levels, no statistical significance was found. Further studies are needed to clarify this association. This study was funded by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa. Project number: TTU-2021-35629.
Collapse
Affiliation(s)
- Ipek Betul Ozcivit Erkan
- Department of Obstetrics and Gynaecology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpaşa Mah. Kocamustafapaşa Cad. No:34/E Fatih/İSTANBUL, Istanbul 34098, Turkey;
| | - Hasan Hakan Seyisoglu
- Department of Obstetrics and Gynaecology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpaşa Mah. Kocamustafapaşa Cad. No:34/E Fatih/İSTANBUL, Istanbul 34098, Turkey;
| | - Gulcin Benbir Senel
- Sleep Disorders Units, Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.B.S.); (D.K.)
| | - Derya Karadeniz
- Sleep Disorders Units, Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.B.S.); (D.K.)
| | - Filiz Ozdemir
- Department of Medical Genetics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (F.O.); (A.K.); (M.S.)
| | - Aysel Kalayci
- Department of Medical Genetics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (F.O.); (A.K.); (M.S.)
| | - Mehmet Seven
- Department of Medical Genetics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (F.O.); (A.K.); (M.S.)
| | - Neslihan Gokmen Inan
- Department of Computer Engineering, College of Engineering, Koc University, Istanbul 34450, Turkey;
| |
Collapse
|
8
|
Luo M, Dong Y, Fan B, Zhang X, Liu H, Liang C, Rong H, Fei Y. Sleep Duration and Functional Disability Among Chinese Older Adults: Cross-Sectional Study. JMIR Aging 2024; 7:e53548. [PMID: 38771907 PMCID: PMC11196917 DOI: 10.2196/53548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/24/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The duration of sleep plays a crucial role in the development of physiological functions that impact health. However, little is known about the associations between sleep duration and functional disability among older adults in China. OBJECTIVE This study aimed to explore the associations between sleep duration and functional disabilities in the older population (aged≥65 years) in China. METHODS The data for this cross-sectional study were gathered from respondents 65 years and older who participated in the 2018 survey of the China Health and Retirement Longitudinal Study, an ongoing nationwide longitudinal investigation of Chinese adults. The duration of sleep per night was obtained through face-to-face interviews. Functional disability was assessed according to activities of daily living (ADL) and instrumental activities of daily living (IADL) scales. The association between sleep duration and functional disability was assessed by multivariable generalized linear models. A restricted cubic-spline model was used to explore the dose-response relationship between sleep duration and functional disability. RESULTS In total, 5519 participants (n=2471, 44.77% men) were included in this study with a mean age of 73.67 years, including 2800 (50.73%) respondents with a functional disability, 1978 (35.83%) with ADL disability, and 2299 (41.66%) with IADL disability. After adjusting for potential confounders, the older adults reporting shorter (≤4, 5, or 6 hours) or longer (8, 9, or ≥10 hours) sleep durations per night exhibited a notably increased risk of functional disability compared to that of respondents who reported having 7 hours of sleep per night (all P<.05), which revealed a U-shaped association between sleep duration and dysfunction. When the sleep duration fell below 7 hours, increased sleep duration was associated with a significantly lower risk of functional disability (odds ratio [OR] 0.85, 95% CI 0.79-0.91; P<.001). When the sleep duration exceeded 7 hours, the risk of functional disability associated with a prolonged sleep duration increased (OR 1.16, 95% CI 1.05-1.29; P<.001). CONCLUSIONS Sleep durations shorter and longer than 7 hours were associated with a higher risk of functional disability among Chinese adults 65 years and older. Future studies are needed to explore intervention strategies for improving sleep duration with a particular focus on functional disability.
Collapse
Affiliation(s)
- Minjing Luo
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing GRADE Centre, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Bingbing Fan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Liu
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing GRADE Centre, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao Liang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing GRADE Centre, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongguo Rong
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing GRADE Centre, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Fei
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing GRADE Centre, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute for Excellence in Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Eulalio T, Sun MW, Gevaert O, Greicius MD, Montine TJ, Nachun D, Montgomery SB. regionalpcs: improved discovery of DNA methylation associations with complex traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.590171. [PMID: 38746367 PMCID: PMC11092597 DOI: 10.1101/2024.05.01.590171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have developed the regional principal components (rPCs) method, a novel approach for summarizing gene-level methylation. rPCs address the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease (AD). In contrast to traditional averaging, rPCs leverage principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrated a 54% improvement in sensitivity over averaging in simulations, offering a robust framework for identifying subtle epigenetic variations. Applying rPCs to the AD brain methylation data in ROSMAP, combined with cell type deconvolution, we uncovered 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci (meQTL) with genome-wide association studies (GWAS) identified 17 genes with potential causal roles in AD, including MS4A4A and PICALM. Our approach is available in the Bioconductor package regionalpcs, opening avenues for research and facilitating a deeper understanding of the epigenetic landscape in complex diseases.
Collapse
Affiliation(s)
- Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Michael D Greicius
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
10
|
Lutfy RH, Essawy AE, Mohammed HS, Shakweer MM, Salam SA. Transcranial Irradiation Mitigates Paradoxical Sleep Deprivation Effect in an Age-Dependent Manner: Role of BDNF and GLP-1. Neurochem Res 2024; 49:919-934. [PMID: 38114728 PMCID: PMC10902205 DOI: 10.1007/s11064-023-04071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
11
|
Strath LJ, Peterson JA, Meng L, Rani A, Huo Z, Foster TC, Fillingim RB, Cruz-Almeida Y. Socioeconomic Status, Knee Pain, and Epigenetic Aging in Community-Dwelling Middle-to-Older Age Adults. THE JOURNAL OF PAIN 2024; 25:293-301. [PMID: 37315728 PMCID: PMC10713866 DOI: 10.1016/j.jpain.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Chronic musculoskeletal pain is often associated with lower socioeconomic status (SES). SES correlates with psychological and environmental conditions that could contribute to the disproportionate burden of chronic stress. Chronic stress can induce changes in global DNA methylation and gene expression, which increases risk of chronic pain. We aimed to explore the association of epigenetic aging and SES in middle-to-older age individuals with varying degrees of knee pain. Participants completed self-reported pain, a blood draw, and answered demographic questions pertaining to SES. We used an epigenetic clock previously associated with knee pain (DNAmGrimAge) and the subsequent difference of predicted epigenetic age (DNAmGrimAge-Diff). Overall, the mean DNAmGrimAge was 60.3 (±7.6), and the average DNAmGrimAge-diff was 2.4 years (±5.6 years). Those experiencing high-impact pain earned less income and had lower education levels compared to both low-impact and no pain groups. Differences in DNAmGrimAge-diff across pain groups were found, whereby individuals with high-impact pain had accelerated epigenetic aging (∼5 years) compared to low-impact pain and no pain control groups (both ∼1 year). Our main finding was that epigenetic aging mediated the associations of income and education with pain impact, as such the relationship between SES and pain outcomes may occur through potential interactions with the epigenome reflective of accelerated cellular aging. PERSPECTIVE: Socioeconomic status (SES) has previously been implicated in the pain experience. The present manuscript aims to present a potential social-biological link between SES and pain via accelerated epigenetic aging.
Collapse
Affiliation(s)
- Larissa J. Strath
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL
| | - Jessica A. Peterson
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL
| | - Lingsong Meng
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Thomas C. Foster
- Genetics and Genomics Program, University of Florida, Gainesville Florida
| | - Roger B. Fillingim
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
13
|
Mogavero MP, Lanza G, DelRosso LM, Ferri R. Psychophysiology of Sleep. NEUROMETHODS 2024:263-286. [DOI: 10.1007/978-1-0716-3545-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Palagini L, Geoffroy PA, Gehrman PR, Miniati M, Gemignani A, Riemann D. Potential genetic and epigenetic mechanisms in insomnia: A systematic review. J Sleep Res 2023; 32:e13868. [PMID: 36918298 DOI: 10.1111/jsr.13868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Insomnia is a stress-related sleep disorder conceptualised within a diathesis-stress framework, which it is thought to result from predisposing factors interacting with precipitating stressful events that trigger the development of insomnia. Among predisposing factors genetics and epigenetics may play a role. A systematic review of the current evidence for the genetic and epigenetic basis of insomnia was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) system. A total of 24 studies were collected for twins and family heritability, 55 for genome-wide association studies, 26 about candidate genes for insomnia, and eight for epigenetics. Data showed that insomnia is a complex polygenic stress-related disorder, and it is likely to be caused by a synergy of genetic and environmental factors, with stress-related sleep reactivity being the important trait. Even if few studies have been conducted to date on insomnia, epigenetics may be the framework to understand long-lasting consequences of the interaction between genetic and environmental factors and effects of stress on the brain in insomnia. Interestingly, polygenic risk for insomnia has been causally linked to different mental and medical disorders. Probably, by treating insomnia it would be possible to intervene on the effect of stress on the brain and prevent some medical and mental conditions.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France
- GHU Paris - Psychiatry and Neurosciences, Paris, France
- Université de Paris, NeuroDiderot, INSERM, Paris, France
| | - Philip R Gehrman
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Tapp ZM, Ren C, Palmer K, Kumar J, Atluri RR, Fitzgerald J, Velasquez J, Godbout J, Sheridan J, Kokiko-Cochran ON. Divergent Spatial Learning, Enhanced Neuronal Transcription, and Blood-Brain Barrier Disruption Develop During Recovery from Post-Injury Sleep Fragmentation. Neurotrauma Rep 2023; 4:613-626. [PMID: 37752925 PMCID: PMC10518692 DOI: 10.1089/neur.2023.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery. To test this, male and female mice received a moderate lateral fluid percussion TBI or sham surgery. Half the mice were left undisturbed, and half were exposed to daily SF for 30 days. All mice were then undisturbed between 30 and 60 days post-injury (DPI), allowing mice to recover from SF (SF-R). SF-R did not impair global Barnes maze performance. Nonetheless, TBI SF-R mice displayed retrogression in latency to reach the goal box within testing days. These nuanced behavioral changes in TBI SF-R mice were associated with enhanced expression of neuronal processing/signaling genes and indicators of blood-brain barrier (BBB) dysfunction. Aquaporin-4 (AQP4) expression, a marker of BBB integrity, was differentially altered by TBI and TBI SF-R. For example, TBI enhanced cortical AQP4 whereas TBI SF-R mice had the lowest cortical expression of perivascular AQP4, dysregulated AQP4 polarization, and the highest number of CD45+ cells in the ipsilateral cortex. Altogether, post-TBI SF caused lasting, divergent behavioral responses associated with enhanced expression of neuronal transcription and BBB disruption even after a period of recovery from SF. Understanding lasting impacts from post-TBI stressors can better inform both acute and chronic post-injury care to improve long-term outcome post-TBI.
Collapse
Affiliation(s)
- Zoe M. Tapp
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Cindy Ren
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Kelsey Palmer
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julia Kumar
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Ravitej R. Atluri
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Velasquez
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan Godbout
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Sheridan
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Tang Y, Gan H, Wang B, Wang X, Li M, Yang Q, Geng M, Zhu P, Shao S, Tao F. Mediating effects of DNA methylation in the association between sleep quality and infertility among women of childbearing age. BMC Public Health 2023; 23:1802. [PMID: 37715240 PMCID: PMC10503064 DOI: 10.1186/s12889-023-16681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND This study aims to investigate the association between sleep quality and infertility among women and to explore the mediating effects of DNA methylation in this association. METHODS This study is a population-based case-control study. The relationship between sleep quality and infertility was investigated in women with anovulatory infertility (n = 43) and healthy controls (n = 43). Genome-wide DNA methylation was profiled from peripheral blood samples using the Illumina Infinium Human Methylation 850k BeadChip. Differentially methylated CpGs between cases and controls were identified using the ChAMP R package. The mediating effect of DNA methylation between sleep quality and infertility among women was investigated using the Bayesian estimation method provided by the R package "mediation". RESULTS The survey included 86 women of reproductive age, with 43 participants each in the case and control groups. The average age of the women was 27.6 ± 2.8 years (case group: 27.8 ± 3.0 years, control group: 27.4 ± 2.7 years). A total of 262 differentially methylated CpGs corresponding to 185 genes were identified. Difficulty falling asleep was a risk factor for infertility in women (OR = 3.69, 95%CI = 1.14, 11.99), and a causal mediation effect of DNA methylation CpGs was found. The mediating effect coefficient for cg08298632 was 0.10 (95%CI = 0.01-0.22), and the proportion of the total effect mediated by this methylation site increased to 64.3%. CONCLUSION These results suggest that DNA methylation CpGs (cg08298632) play a significant role in the relationship between difficulty falling asleep and infertility in females. These findings contribute to our understanding of the underlying mechanisms that connect difficulty falling asleep and infertility in women. Further studies are necessary to fully understand the biological significance and potential therapeutic applications of these findings. The identified DNA methylation sites provide new and valuable insights and potential targets for future studies aiming to prevent and treat female infertility.
Collapse
Affiliation(s)
- Ying Tang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Baolin Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengdie Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qianhui Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Menglong Geng
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shanshan Shao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
17
|
Larsen M, He F, Kawasawa YI, Berg A, Vgontzas AN, Liao D, Bixler EO, Fernandez-Mendoza J. Objective and subjective measures of sleep initiation are differentially associated with DNA methylation in adolescents. Clin Epigenetics 2023; 15:136. [PMID: 37634000 PMCID: PMC10464279 DOI: 10.1186/s13148-023-01553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION The onset of puberty is associated with a shift in the circadian timing of sleep, leading to delayed sleep initiation [i.e., later sleep onset time (SOT)] due to later bedtimes and/or longer sleep onset latency (SOL). Several genome-wide association studies (GWAS) have identified genes that may be involved in the etiology of sleep phenotypes. However, circadian rhythms are also epigenetically regulated; therefore, epigenetic biomarkers may provide insight into the physiology of the pubertal sleep onset shift and the pathophysiology of prolonged or delayed sleep initiation. RESULTS The gene-wide analysis indicated differential methylation within or around 1818 unique genes across the sleep initiation measurements using self-report, actigraphy (ACT), and polysomnography (PSG), while GWAS-informed analysis yielded 67 genes. Gene hits were identified for bedtime (PSG), SOL (subjective, ACT and PSG) and SOT (subjective and PSG). DNA methylation within 12 genes was associated with both subjective and PSG-measured SOL, 31 with both ACT- and PSG-measured SOL, 19 with both subjective and ACT-measured SOL, and one gene (SMG1P2) had methylation sites associated with subjective, ACT- and PSG-measured SOL. CONCLUSIONS Objective and subjective sleep initiation in adolescents is associated with altered DNA methylation in genes previously identified in adult GWAS of sleep and circadian phenotypes. Additionally, our data provide evidence for a potential epigenetic link between habitual (subjective and ACT) SOL and in-lab SOT and DNA methylation in and around genes involved in circadian regulation (i.e., RASD1, RAI1), cardiometabolic disorders (i.e., FADS1, WNK1, SLC5A6), and neuropsychiatric disorders (i.e., PRR7, SDK1, FAM172A). If validated, these sites may provide valuable targets for early detection and prevention of disorders involving prolonged or delayed SOT, such as insomnia, delayed sleep phase, and their comorbidity.
Collapse
Affiliation(s)
- Michael Larsen
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Fan He
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yuka Imamura Kawasawa
- Departments of Biochemistry and Molecular Biology and Pharmacology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arthur Berg
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Duanping Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
18
|
Lyons LC, Vanrobaeys Y, Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J Neurochem 2023; 166:24-46. [PMID: 36802068 PMCID: PMC10919414 DOI: 10.1111/jnc.15787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.
Collapse
Affiliation(s)
- Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, Mansouri E, Sarkaki A, Farbood Y. Exogenous growth hormone administration during total sleep deprivation changed the microRNA-9 and dopamine D2 receptor expressions followed by improvement in the hippocampal synaptic potential, spatial cognition, and inflammation in rats. Psychopharmacology (Berl) 2023; 240:1299-1312. [PMID: 37115226 DOI: 10.1007/s00213-023-06369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
RATIONALE Disorders caused by total sleep deprivation can be modulated by the administration of growth hormone, which could affect the expression of microRNA-9 and dopamine D2 receptor expressions followed by improvement in the hippocampal synaptic potential, spatial cognition, and inflammation in rats. OBJECTIVES The present study aimed to elucidate the putative effects of exogenous growth hormone (GH) against total sleep deprivation (TSD)-induced learning and memory dysfunctions and possible involved mechanisms. METHODS To induce TSD, rats were housed in homemade special cages equipped with stainless steel wire conductors to induce general and inconsistent TSD. They received a mild repetitive electric shock to their paws every 10 min for 21 days. GH (1 mg/kg, sc) was administered to adult young male rats once daily for 21-day-duration induction of TSD. Spatial learning and memory performance, inflammatory status, microRNA-9 (miR-9) expression, dopamine D2 receptor (DRD2) protein level, and hippocampal histological changes were assayed at scheduled times after TSD. RESULTS The results indicated that TSD impaired spatial cognition, increased TNF-α, decreased level of miR-9, and increased DRD2 levels. Treatment with exogenous GH improved spatial cognition, decreased TNF-α, increased level of miR-9, and decreased DRD2 levels after TSD. CONCLUSIONS Our findings suggest that GH may play a key role in the modulation of learning and memory disorders as well as the ameliorating abnormal DRD2-related functional disorders associated with miR-9 in TSD.
Collapse
Affiliation(s)
- Parisa Arvin
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
21
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
22
|
Mikulska P, Malinowska M, Ignacyk M, Szustowski P, Nowak J, Pesta K, Szeląg M, Szklanny D, Judasz E, Kaczmarek G, Ejiohuo OP, Paczkowska-Walendowska M, Gościniak A, Cielecka-Piontek J. Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics 2023; 15:pharmaceutics15041057. [PMID: 37111543 PMCID: PMC10147008 DOI: 10.3390/pharmaceutics15041057] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
In recent years, there has been a significant surge in reports on the health-promoting benefits of winter cherry (Withania somnifera), also known as Ashwagandha. Its current research covers many aspects of human health, including neuroprotective, sedative and adaptogenic effects and effects on sleep. There are also reports of anti-inflammatory, antimicrobial, cardioprotective and anti-diabetic properties. Furthermore, there are reports of reproductive outcomes and tarcicidal hormone action. This growing body of research on Ashwagandha highlights its potential as a valuable natural remedy for many health concerns. This narrative review delves into the most recent findings and provides a comprehensive overview of the current understanding of ashwagandha’s potential uses and any known safety concerns and contraindications.
Collapse
|
23
|
Chen J, Xiao L, Chen Y, Li W, Liu Y, Zhou Y, Tan H. YT521-B homology domain containing 1 ameliorates mitochondrial damage and ferroptosis in sleep deprivation by activating the sirtuin 1/nuclear factor erythroid-derived 2-like 2/heme oxygenase 1 pathway. Brain Res Bull 2023; 197:1-12. [PMID: 36935054 DOI: 10.1016/j.brainresbull.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
In sleep deprivation (SD) models, ferroptosis is increased. SIRT1 alleviates cognitive impairment in SD, and SIRT1/NRF2/HO1 pathway depresses ferroptosis in different diseases. Moreover, YTHDC1 can regulate SIRT1 mRNA stability. Therefore, our study explored effects of the YTHDC1/SIRT1/NRF2/HO1 axis on neuronal damage and ferroptosis in SD. The SD mouse model was established through a modified multi-platform water environment method and a cell model of ferroptosis was constructed with Erastin, followed by gain- and loss-of-function assays. In mice, the cognitive impairment and CLOCK and BMAL1 levels in hippocampal tissues were assessed. In cells, viability was measured. In mice and cells, mitochondrial ultrastructure, the content of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and iron, and the expression of GPX4 and ACSL4 were detected. The potential relationships among YTHDC1, SIRT1, and NRF2 were analyzed. SD mice had downregulated YTHDC1, SIRT1, NRF2, and HO1 protein expression in hippocampal tissues and increased ferroptosis. Mechanically, SIRT1 activated the NRF2/HO1 pathway through deacetylation, and YTHDC1 increased SIRT1 mRNA stability. YTHDC1 overexpression diminished mitochondrial damage, the content of ROS, iron, and MDA, and the expression of ACSL4 while enhancing GSH contents and GPX4 expression in hippocampal tissues of SD mice and Erastin-induced HT22 cells. Additionally, YTHDC1 overexpression elevated viability in Erastin-induced HT22 cells. SIRT1 or NRF2 overexpression ameliorated Erastin-induced mitochondrial damage and ferroptosis in HT22 cells. Silencing SIRT1 abolished the impact of YTHDC1 overexpression on SD mice and Erastin-induced HT22 cells. Collectively, YTHDC1 ameliorates mitochondrial damage and ferroptosis after SD by activating the SIRT1/NRF2/HO1 pathway.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China.
| | - Lijun Xiao
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ying Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Wei Li
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yinan Liu
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ying Zhou
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Hong Tan
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
24
|
Madrid-Valero JJ, Gregory AM. Behaviour genetics and sleep: A narrative review of the last decade of quantitative and molecular genetic research in humans. Sleep Med Rev 2023; 69:101769. [PMID: 36933344 DOI: 10.1016/j.smrv.2023.101769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
During the last decade quantitative and molecular genetic research on sleep has increased considerably. New behavioural genetics techniques have marked a new era for sleep research. This paper provides a summary of the most important findings from the last ten years, on the genetic and environmental influences on sleep and sleep disorders and their associations with health-related variables (including anxiety and depression) in humans. In this review we present a brief summary of the main methods in behaviour genetic research (such as twin and genome-wide association studies). We then discuss key research findings on: genetic and environmental influences on normal sleep and sleep disorders, as well as on the association between sleep and health variables (highlighting a substantial role for genes in individual differences in sleep and their associations with other variables). We end by discussing future lines of enquiry and drawing conclusions, including those focused on problems and misconceptions associated with research of this type. In this last decade our knowledge about genetic and environmental influences on sleep and its disorders has expanded. Both, twin and genome-wide association studies show that sleep and sleep disorders are substantially influenced by genetic factors and for the very first time multiple specific genetic variants have been associated with sleep traits and disorders.
Collapse
Affiliation(s)
- Juan J Madrid-Valero
- Department of Health Psychology, Faculty of Health Sciences, University of Alicante, Spain.
| | - Alice M Gregory
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| |
Collapse
|
25
|
Wang Z, Ni X, Gao D, Fang S, Huang X, Jiang M, Zhou Q, Sun L, Zhu X, Su H, Li R, Huang B, Lv Y, Pang G, Hu C, Yang Z, Yuan H. The relationship between sleep duration and activities of daily living (ADL) disability in the Chinese oldest-old: A cross-sectional study. PeerJ 2023; 11:e14856. [PMID: 36815994 PMCID: PMC9936868 DOI: 10.7717/peerj.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Objective To investigate the relationship between sleep duration and activities of daily living (ADL) disability, and to explore the optimal sleep duration among oldest-old Chinese individuals. Methods In this cross-sectional study, 1,798 participants (73.2% female) were recruited from Dongxing and Shanglin in Guangxi Zhuang Autonomous Region, China in 2019. The restricted cubic spline function was used to assess the dose-response relationship between sleep duration and ADL disability, and the odds ratios (ORs) of the associations were estimated by logistic regression models. Results The overall prevalence of ADL disability was 63% (64% in females and 58% in males). The prevalence was 71% in the Han population (72% in females and 68% in males), 60% in the Zhuang population (62% in females and 54% in males) and 53% in other ethnic population (53% in females and 53% in males). A nonlinear relationship between sleep duration and ADL disability was observed. Sleep duration of 8-10 hours was associated with the lowest risk of ADL disability. Sleep duration (≥12 hours) was associated with the risk of ADL disability among the oldest-old individuals after adjusting for confounding factors (OR = 1.47, 95% CI [1.02, 2.10], p < 0.05). Conclusion Sleep duration more than 12 hours may be associated with an increased risk of ADL disability in the oldest-old individuals, and the optimal sleep duration among this population could be 8-10 h.
Collapse
Affiliation(s)
- Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China,Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China
| | - Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children’s Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huabin Su
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Rongqiao Li
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Bin Huang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yuan Lv
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guofang Pang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Caiyou Hu
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China,Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China
| |
Collapse
|
26
|
Wei W, Huang X, Zhu J. Effect of Acupoint Therapies on Postoperative Sleep Quality: A Narrative Review. Med Sci Monit 2023; 29:e938920. [PMID: 36760099 PMCID: PMC9926797 DOI: 10.12659/msm.938920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several studies have reported that sleep quality often decreases in patients after surgery, especially in elderly patients, which seriously affects postoperative prognosis and outcomes, inducing diseases such as postoperative delirium, long-term chronic pain, and potentially fatal cardiovascular events. With the popularization of comfortable medicine, medical workers pay more attention to the postoperative sleep quality of patients. The causes underlying the decrease in postoperative sleep quality may include postoperative pain, the severity of surgical trauma and stress, perioperative anxiety and depression, and postoperative complications. Patients with insomnia often use acupoint therapies as a safe and effective alternative to drugs. Acupoint therapies are among the oldest medical therapies of Traditional Chinese Medicine and are gradually gaining recognition among medical workers worldwide. Various types of acupoint stimulation methods such as transcutaneous electrical acupoint simulation (TEAS), acupressure, acupuncture, and electroacupuncture can change the brain's local electrical activity, inhibit the central nervous system, and achieve deep sedation through stimulating the related acupoints, which provides a novel idea and basis for improvement in factors affecting postoperative sleep quality. This review explores the mechanism of acupoint therapies from several aspects of affecting the sleep quality of patients after surgery and its clinical results. We found that acupoint therapies effectively improve sleep quality and alleviate the postoperative complications of patients, and we emphasize the importance of acupoint therapies to guide future research and clinical practice. Large-scale, multicenter studies are needed to determine the optimal duration, frequency, and timing of acupoint stimulation for improving postoperative sleep quality.
Collapse
Affiliation(s)
- Wenxin Wei
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xin Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
27
|
Li YJ, He XL, Zhang JY, Liu XJ, Liang JL, Zhou Q, Zhou GH. 8-O-acetyl shanzhiside methylester protects against sleep deprivation-induced cognitive deficits and anxiety-like behaviors by regulating NLRP3 and Nrf2 pathways in mice. Metab Brain Dis 2023; 38:641-655. [PMID: 36456714 DOI: 10.1007/s11011-022-01132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Sleep deprivation (SD) is prevalent throughout the world, which has negative effects on cognitive abilities, and causing mood alterations. 8-O-acetyl shanzhiside methylester (8-OaS), a chief component in Lamiophlomis rotata (L. rotata) Kudo, possesses potent neuroprotective properties and analgesic effects. Here, we evaluated the alleviative effects of 8-OaS on memory impairment and anxiety in mice subjected to SD (for 72-h). Our results demonstrated that 8-OaS (0.2, 2, 20 mg/kg) administration dose-dependently ameliorated behavioral abnormalities in SD mice, accompanied with restored synaptic plasticity and reduced shrinkage and loss of hippocampal neurons. 8-OaS reduced the inflammatory response and oxidative stress injury in hippocampus caused by SD, which may be related to inhibition of NLRP3 inflammasome-mediated inflammatory process and activation of the Nrf2/HO-1 pathway. SD also led to increases in the expressions of TLR-4/MyD88, active NF-κB, pro-IL-1β, TNFα and MDA, as well as a decrease in the level of SOD in mice hippocampus, which were reversed by 8-OaS administration. Moreover, our molecular docking analyses showed that 8-OaS also has good affinity for NLRP3 and Nrf2 signaling pathways. These results suggested that 8-OaS could be used as a novel herbal medicine for the treatment of sleep loss and for use as a structural base for developing new drugs.
Collapse
Affiliation(s)
- Yu-Jiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Xiao-Lu He
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Jie-Yu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Xue-Jiao Liu
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Jia-Long Liang
- No.946 Hospital of PLA land Force, Yining, 835000, Xinjiang Uygur Autonomous Regions, China.
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Qing Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China.
| | - Guo-Hua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| |
Collapse
|
28
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Ding JH, Chen MY, Xie NB, Xie C, Xiong N, He JG, Wang J, Guo C, Feng YQ, Yuan BF. Quantitative and site-specific detection of inosine modification in RNA by acrylonitrile labeling-mediated elongation stalling. Biosens Bioelectron 2023; 219:114821. [PMID: 36279821 DOI: 10.1016/j.bios.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Meng-Yuan Chen
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Neng-Bin Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Conghua Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Nanxiang Xiong
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Jin-Gang He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yu-Qi Feng
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Bi-Feng Yuan
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
30
|
Khavkin AI, Novikova VP, Trapeznikova AY. Intestinal Microbiota and Sleep Inversion. PEDIATRIC PHARMACOLOGY 2022. [DOI: 10.15690/pf.v19i4.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various human lifestyle and environmental factors are known to influence sleep. The number of adults and children suffering from chronic sleep disorders has grown over the past decade. Lack of sleep and impaired circadian rhythms have been proven to be associated with adverse metabolic health effects. Often, such disorders are associated with gastrointestinal tract diseases, and accompanied by dysbiosis. Significant number of studies have been conducted on animal models in recent years. They have shown the correlation between the gut microbiota and brain functions. According to these results scientists have clearly demonstrated the role of gut microbiota in regulating brain function, sleep, and behavior. The number of studies with volunteers is currently limited. The bacteria forming gut microbiota have significant impact on human health by synthesizing and secreting biologically active substances such as vitamins, essential amino acids, lipids, and others. Moreover, they have an indirect effect by modulating metabolic processes and the immune system. Changes in gut microbiota diversity occur due to the lack of sleep and shifting circadian rhythms, and it can lead to changes in the structure and function of microorganisms living in the gut. This can lead to changes in the composition and number of metabolites synthesized by these microorganisms (such as short-chain fatty acids and secondary bile acids) which contributes to the development of chronic inflammation, increased body weight and endocrine changes. This article provides the literature review on issues of interaction between gut microbiota and processes occurring during sleep.
Collapse
Affiliation(s)
- Anatoly I. Khavkin
- Research and Clinical Institute for Children; Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | | | | |
Collapse
|
31
|
Wei R, Duan X, Guo L. Effects of sleep deprivation on coronary heart disease. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:297-305. [PMID: 36039730 PMCID: PMC9437362 DOI: 10.4196/kjpp.2022.26.5.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The presence of artificial light enables humans to be active 24 h a day. Many people across the globe live in a social culture that encourages staying up late to meet the demands of various activities, such as work and school. Sleep deprivation (SD) is a severe health problem in modern society. Meanwhile, as with cardiometabolic disease, there was an obvious tendency that coronary heart disease (CHD) to become a global epidemic chronic disease. Specifically, SD can significantly increase the morbidity and mortality of CHD. However, the underlying mechanisms responsible for the effects of SD on CHD are multilayered and complex. Inflammatory response, lipid metabolism, oxidative stress, and endothelial function all contribute to cardiovascular lesions. In this review, the effects of SD on CHD development are summarized, and SD-related pathogenesis of coronary artery lesions is discussed. In general, early assessment of SD played a vital role in preventing the harmful consequences of CHD.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Xiaoye Duan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
32
|
Lazarus E, Bays HE. Cancer and Obesity: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 3:100026. [PMID: 37990728 PMCID: PMC10661911 DOI: 10.1016/j.obpill.2022.100026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) provides an overview of cancer and increased body fat. Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results Topics include the increased risk of cancers among patients with obesity, cancer risk factor population-attributable fractions, genetic and epigenetic links between obesity and cancer, adiposopathic and mechanistic processes accounting for increased cancer risk among patients with obesity, the role of oxidative stress, and obesity-related cancers based upon Mendelian randomization and observational studies. Other topics include nutritional and physical activity principles for patients with obesity who either have cancer or are at risk for cancer, and preventive care as it relates to cancer and obesity. Conclusions Obesity is the second most common preventable cause of cancer and may be the most common preventable cause of cancer among nonsmokers. This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on cancer is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of obesity. Patients with obesity are at greater risk of developing certain types of cancers, and treatment of obesity may influence the risk, onset, progression, and recurrence of cancer in patients with obesity.
Collapse
Affiliation(s)
- Ethan Lazarus
- Diplomate American Board of Obesity Medicine, Diplomate American Board of Family Medicine, President Obesity Medicine Association (2021- 2022); Delegate American Medical Association, Clinical Nutrition Center 5995 Greenwood Plaza Blvd, Ste 150, Greenwood Village, CO 80111
| | - Harold Edward Bays
- Diplomate of American Board of Obesity Medicine, Medical Director/President Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor/University of Louisville Medical School, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| |
Collapse
|
33
|
Woldeamanuel YW, Shrivastava S, Vila-Pueyo M. Editorial: Lifestyle modifications to manage migraine. Front Neurol 2022; 13:966424. [PMID: 36105771 PMCID: PMC9465452 DOI: 10.3389/fneur.2022.966424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yohannes W. Woldeamanuel
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Yohannes W. Woldeamanuel
| | | | - Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Department of Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Kaul U, Scher C, Henderson CR, Kim P, Dyhrberg M, Rudin V, Lytle M, Bundy N, Reid MC. A mobile health + health coaching application for the management of chronic non-cancer pain in older adults: Results from a pilot randomized controlled study. FRONTIERS IN PAIN RESEARCH 2022; 3:921428. [PMID: 35959237 PMCID: PMC9362151 DOI: 10.3389/fpain.2022.921428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The rapid growth of mobile health (mHealth) devices holds substantial potential for improving care and care outcomes in aging adults with chronic non-cancer pain (CNCP), however, research evaluating these devices in older adults remains limited. Objective To ascertain the feasibility and preliminary efficacy of an mHealth intervention (Mymee) that combines symptom, diet, and behavior tracking via a smartphone application with data analytics to detect associations between symptoms and lifestyle factors along with weekly health coaching sessions to mitigate CNCP in adults 55 years of age and older. Methods Participants (N = 31) in this pilot study were recruited from one primary care practice in New York City and randomized to an intervention [app + up to 12 health coaching sessions (scheduled approximately once weekly) + usual care] or a control (app + usual care) arm. Feasibility measures included recruitment (proportion of eligible persons who enrolled) and retention rates (proportion of subjects completing a follow-up assessment) as well as adherence with the weekly coaching sessions and logging daily data on the app. Efficacy outcomes (e.g., pain intensity, self-efficacy, disability, anxiety) were assessed at baseline and follow-up (~16 weeks after baseline). Descriptive statistics were obtained and general linear mixed models used for primary analyses. Results Participants had a mean (standard deviation) age of 67.32 (9.17) and were mostly female (61%). Feasibility outcomes were mixed as evidenced by recruitment and retention rates of 74% and 65%, respectively. The mean number of weekly coaching sessions attended by intervention participants was 6.05 (SD = 5.35), while the average number of days logging data on the app was 44.82 (34.02). We found a consistent trend in favor of the intervention, where pain intensity, affect, and quality of life measures improved considerably more among intervention (vs. control) participants. Finally, the proportion of participants with GAD-7 scores at follow up decreased by 0.35 to 0, whereas controls did not change, a significant effect in favor of the intervention (p = 0.02). Conclusions This study supports the need for future research that seeks to enhance feasibility outcomes and confirm the efficacy of the Mymee intervention among aging adults with CNCP.
Collapse
Affiliation(s)
- Usha Kaul
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medical Center, New York, NY, United States
| | - Clara Scher
- Rutgers School of Social Work, New Brunswick, NJ, United States
| | | | - Patricia Kim
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medical Center, New York, NY, United States
| | | | | | | | | | - M. Carrington Reid
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medical Center, New York, NY, United States
| |
Collapse
|
35
|
Margolis LM, Hatch-McChesney A, Allen JT, DiBella MN, Carrigan CT, Murphy NE, Karl JP, Gwin JA, Hennigar SR, McClung JP, Pasiakos SM. Circulating and skeletal muscle microRNA profiles are more sensitive to sustained aerobic exercise than energy balance in males. J Physiol 2022; 600:3951-3963. [PMID: 35822542 DOI: 10.1113/jp283209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Circulating and skeletal muscle miRNA profiles are more sensitive to high levels of aerobic exercise-induced energy expenditures compared to energy status Changes in circulating miRNA in response to high levels of daily sustained aerobic exercise are not reflective of changes in skeletal muscle miRNA. ABSTRACT MicroRNA (miRNA) regulate molecular processes governing muscle metabolism. Physical activity and energy balance influence both muscle anabolism and metabolism, but whether circulating and skeletal muscle miRNA mediate those effects remains unknown. This study assessed the impact of sustained physical activity with participants in energy balance (BAL) or deficit (DEF) on circulating and skeletal muscle miRNA. Using a randomized cross-over design, 10 recreational active healthy males (mean ± SD; 22±5 yrs, 87±11 kg) completed 72 hours of high aerobic exercise-induced energy expenditures in BAL (689±852 kcal/d) or DEF (-2047±920 kcal/d). Blood and muscle samples were collected under rested/fasted conditions before (PRE) and immediately after 120-min load carriage exercise bout at the end (POST) of the 72 hours. Trials were separated by 7 days. Circulating and skeletal muscle miRNA were measured using microarray RT-qPCR. Independent of energy status, 36 circulating miRNA decreased (P<0.05), while 10 miRNA increased and 3 miRNA decreased in skeletal muscle (P<0.05) at POST compared to PRE. Of these, miR-122-5p, miR-221-3p, miR-222-3p, and miR-24-3p decreased in circulation and increased in skeletal muscle. Two circulating (miR-145-5p and miR-193a-5p) and 4 skeletal muscle (miR-21-5p, miR-372-3p, miR-34a-5p, and miR-9-5p) miRNA had time-by-treatment effects (P<0.05). These data suggest that changes in miRNA profiles are more sensitive to increased physical activity compared to energy status, and that changes in circulating miRNA in response to high levels of daily aerobic exercise are not reflective of changes in skeletal muscle miRNA. Graphical abstract legend In response to 72 hours of high aerobic exercise, circulating miRNA decreased and miRNA in skeletal muscle primarily increased. The changes in miRNA occurred independent of energy status (i.e., exercise-induced energy defcit or exercise plus increased energy intake to achieve energy balance), and circulating miRNA did not refect changes in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | | | - Jillian T Allen
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA.,Oak Ridge Institute of Science and Technology, Belcamp, MD, USA
| | - Marissa N DiBella
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA.,Oak Ridge Institute of Science and Technology, Belcamp, MD, USA
| | - Christopher T Carrigan
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Nancy E Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Jess A Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Stephen R Hennigar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
36
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Violanti JM, Gu JK, Charles LE, Fekedulegn D, Andrew ME. Dying for the job: police mortality, 1950-2018. POLICING (BRADFORD, ENGLAND) 2021; 44:1168-1187. [PMID: 37200948 PMCID: PMC10191188 DOI: 10.1108/pijpsm-06-2021-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Purpose – This study is a mortality assessment on police officers (68-years, 1950-2018) and includes all causes of death. Design/methodology/approach – The authors investigated 1,853 police deaths (1950-2018) using sources of mortality that included the National Death Index, NY State, and available records from the Buffalo NY police department. Standardized Mortality Ratios were calculated. Death codes were obtained from 8th and 9th International Classification of Disease revisions in accordance with the year of death. Findings – Compared to the US general population, white male police officers from 1950-2018 had elevated mortality rates for some causes of death, including diseases of the circulatory system, malignant neoplasms, cirrhosis of the liver, and mental disorders. Black and female officers had lower mortality rates for all causes of death compared to the general population. Research limitations/implications – The findings of elevated risk for chronic disease among police need to be studied in relation to stress, lifestyle, and exposure to chemical and physical agents. There is a special need to further study officers from minority populations as larger samples become available. Practical implications – The results of this study will provide police and occupational health practitioners with objective evidence to determine the health impact of work on law enforcement officers. Originality/value – This study is longest running mortality assessment on police officers ever conducted (1950-2018) and includes white, black, and female officers.
Collapse
Affiliation(s)
- John M Violanti
- Epidemiology and Environmental Health, State University of NY at Buffalo, Buffalo, New York, USA
| | - Ja K Gu
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Luenda E Charles
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Health Effects Laboratory, Morgantown, West Virginia, USA and Bioanalytics Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory, Morgantown, West Virginia, USA
| | - Desta Fekedulegn
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael E Andrew
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
38
|
Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
The aim of this study was to discover significantly changed proteins in human blood serum after loss of 6 h sleep at night. Furthermore, to reveal affected biological process- and molecular function categories that might be clinically relevant, by exploring systems biological databases.
Methods
Eight females were recruited by volunteer request. Peripheral venous whole blood was sampled at 04:00 am, after 6 h of sleep and after 6 h of sleep deprivation. We used within-subjects design (all subjects were their own control). Blood serum from each subject was depleted before protein digestion by trypsin and iTRAQ labeling. Labled peptides were analyzed by mass spectrometry (LTQ OritrapVelos Elite) connected to a LC system (Dionex Ultimate NCR-3000RS).
Results
We identified 725 proteins in human blood serum. 34 proteins were significantly differentially expressed after 6 h of sleep deprivation at night. Out of 34 proteins, 14 proteins were up-regulated, and 20 proteins were down-regulated. We emphasized the functionality of the 16 proteins commonly differentiated in all 8 subjects and the relation to pathological conditions. In addition, we discussed Histone H4 (H4) and protein S100-A6/Calcyclin (S10A6) that were upregulated more than 1.5-fold. Finally, we discussed affected biological process- and molecular function categories.
Conclusions
Overall, our study suggest that acute sleep deprivation, at least in females, affects several known biological processes- and molecular function categories and associates to proteins that also are changed under pathological conditions like impaired coagulation, oxidative stress, immune suppression, neurodegenerative related disorder, and cancer. Data are available via ProteomeXchange with identifier PXD021004.
Collapse
|
39
|
Gaine ME, Bahl E, Chatterjee S, Michaelson JJ, Abel T, Lyons LC. Altered hippocampal transcriptome dynamics following sleep deprivation. Mol Brain 2021; 14:125. [PMID: 34384474 PMCID: PMC8361790 DOI: 10.1186/s13041-021-00835-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Widespread sleep deprivation is a continuing public health problem in the United States and worldwide affecting adolescents and adults. Acute sleep deprivation results in decrements in spatial memory and cognitive impairments. The hippocampus is vulnerable to acute sleep deprivation with changes in gene expression, cell signaling, and protein synthesis. Sleep deprivation also has long lasting effects on memory and performance that persist after recovery sleep, as seen in behavioral studies from invertebrates to humans. Although previous research has shown that acute sleep deprivation impacts gene expression, the extent to which sleep deprivation affects gene regulation remains unknown. Using an unbiased deep RNA sequencing approach, we investigated the effects of acute sleep deprivation on gene expression in the hippocampus. We identified 1,146 genes that were significantly dysregulated following sleep deprivation with 507 genes upregulated and 639 genes downregulated, including protein coding genes and long non-coding RNAs not previously identified as impacted by sleep deprivation. Notably, genes significantly upregulated after sleep deprivation were associated with RNA splicing and the nucleus. In contrast, downregulated genes were associated with cell adhesion, dendritic localization, the synapse, and postsynaptic membrane. Furthermore, we found through independent experiments analyzing a subset of genes that three hours of recovery sleep following acute sleep deprivation was sufficient to normalize mRNA abundance for most genes, although exceptions occurred for some genes that may affect RNA splicing or transcription. These results clearly demonstrate that sleep deprivation differentially regulates gene expression on multiple transcriptomic levels to impact hippocampal function.
Collapse
Affiliation(s)
- Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Ethan Bahl
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
- Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
40
|
Cortese R. Epigenetics of Sleep Disorders: An Emerging Field in Diagnosis and Therapeutics. Diagnostics (Basel) 2021; 11:diagnostics11050851. [PMID: 34068472 PMCID: PMC8150507 DOI: 10.3390/diagnostics11050851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rene Cortese
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
Bai S, Chang Q, Yao D, Zhang Y, Wu B, Zhao Y. Anxiety in Residents in China: Prevalence and Risk Factors in a Multicenter Study. ACADEMIC MEDICINE : JOURNAL OF THE ASSOCIATION OF AMERICAN MEDICAL COLLEGES 2021; 96:718-727. [PMID: 33464742 DOI: 10.1097/acm.0000000000003913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PURPOSE To explore the prevalence of major anxiety and its associated risk factors in residents in China. METHOD This multicenter, cross-sectional study was conducted from December 2019 to February 2020; 1,343 residents from 8 hospitals in Northeast China were included in the final analysis (effective response rate of 86.48%). Demographic characteristics, dietary habits, life-related factors, work-related factors, and psychological characteristics were collected from participants via a self-reported questionnaire. This questionnaire measured sleep quality, physical activity, anxiety, perceived organizational support, psychological capital, and burnout. Adjusted odds ratios (ORs) and 95% confidence intervals were determined using binary logistic regression. Cutoff values and the area under the curve were calculated for risk factors using receiver operating characteristic curve analysis. RESULTS Of participants, 441 (32.80%) reported anxiety symptoms and 133 (9.90%) reported major anxiety symptoms. Four independent risk factors for major anxiety were identified: poor sleep quality (OR = 1.282, P < .001) and 3 dimensions of burnout: higher emotional exhaustion (OR = 1.085, P < .001), higher depersonalization (OR = 1.064, P = .002), and reduced personal accomplishment (OR = 0.951, P < .001). The optimal cutoff values for these risk factors were 7, 10, 9, and 22 scores, respectively. CONCLUSIONS This study found a considerable prevalence of major anxiety symptoms in residents in China and identified poor sleep quality and higher levels of burnout as having a close association with major anxiety. These findings enrich the existing literature on anxiety and demonstrate a critical need for additional studies that investigate intervention strategies to improve sleep quality and combat burnout, which could improve the mental health of residents.
Collapse
Affiliation(s)
- Song Bai
- S. Bai is associate professor, Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Q. Chang is associate director, Department of Graduate Medical Education, Health Service Center of Liaoning Province, Shenyang, China
| | - Da Yao
- D. Yao is a student, Department of Graduate Medical Education, Health Service Center of Liaoning Province, Shenyang, China
| | - Yixiao Zhang
- Y. Zhang is a resident, Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- B. Wu is director, Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Y. Zhao is director, Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Qi L. MicroRNAs and other mechanisms underlying the relation between sleep patterns and cardiovascular disease. Eur Heart J 2021; 41:2502. [PMID: 32380520 DOI: 10.1093/eurheartj/ehaa349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
| |
Collapse
|
43
|
Delic V, Ratliff WA, Citron BA. Sleep Deprivation, a Link Between Post-Traumatic Stress Disorder and Alzheimer's Disease. J Alzheimers Dis 2021; 79:1443-1449. [PMID: 33459652 DOI: 10.3233/jad-201378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An estimated 5 million Americans are living with Alzheimer's disease (AD), and there is also a significant impact on caregivers, with an additional 16 million Americans providing unpaid care for individuals with AD and other dementias. These numbers are projected to increase in the coming years. While AD is still without a cure, continued research efforts have led to better understanding of pathology and potential risk factors that could be exploited to slow disease progression. A bidirectional relationship between sleep deprivation and AD has been suggested and is well supported by both human and animal studies. Even brief episodes of inadequate sleep have been shown to cause an increase in amyloidβ and tau proteins, both well-established contributors toAD pathology. Sleep deprivation is also the most common consequence of post-traumatic stress disorder (PTSD). Patients with PTSD frequently present with sleep disturbances and also develop dementia at twice the rate of the general population accounting for a disproportionate representation of AD among U.S. Veterans. The goal of this review is to highlight the relationship triad between sleep deprivation, AD, and PTSD as well as their impact on molecular mechanisms driving AD pathology.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development, East Orange, NJ, USA
| | - Whitney A Ratliff
- Laboratory of Molecular Biology, Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development, East Orange, NJ, USA.,Department of Pharmacology, Physiology, & Neuroscience ,Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
44
|
Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021; 15:644330. [PMID: 33642991 PMCID: PMC7907457 DOI: 10.3389/fnins.2021.644330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the hypothalamic preoptic area (POA) in arousal state regulation has been studied since Constantin von Economo first recognized its importance in the early twentieth century. Over the intervening decades, the POA has been shown to modulate arousal in both natural (sleep and wake) as well as drug-induced (anesthetic-induced unconsciousness) states. While the POA is well known for its role in sleep promotion, populations of wake-promoting neurons within the region have also been identified. However, the complexity and molecular heterogeneity of the POA has made distinguishing these two populations difficult. Though multiple lines of evidence demonstrate that general anesthetics modulate the activity of the POA, the region's heterogeneity has also made it challenging to determine whether the same neurons involved in sleep/wake regulation also modulate arousal in response to general anesthetics. While a number of studies show that sleep-promoting POA neurons are activated by various anesthetics, recent work suggests this is not universal to all arousal-regulating POA neurons. Technical innovations are making it increasingly possible to classify and distinguish the molecular identities of neurons involved in sleep/wake regulation as well as anesthetic-induced unconsciousness. Here, we review the current understanding of the POA's role in arousal state regulation of both natural and drug-induced forms of unconsciousness, including its molecular organization and connectivity to other known sleep and wake promoting regions. Further insights into the molecular identities and connectivity of arousal-regulating POA neurons will be critical in fully understanding how this complex region regulates arousal states.
Collapse
Affiliation(s)
- Sarah L. Reitz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
- Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
45
|
Grinkevich LN. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genet Selektsii 2020; 24:885-896. [PMID: 35088002 PMCID: PMC8763713 DOI: 10.18699/vj20.687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been
paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in
length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently
being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have
been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation.
Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA
biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile
dementia, which are often accompanied by deterioration in the learning ability and by memory impairment.
Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest
in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well
as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory
formation, depending on the activation or inhibition of their expression. The review presents summarized data
on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with
sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving
cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active
mental and physical exercises.
Collapse
Affiliation(s)
- L. N. Grinkevich
- Pavlov Institute of Physiology of the Russian Academy of Sciences
| |
Collapse
|
46
|
Lyons LC, Chatterjee S, Vanrobaeys Y, Gaine ME, Abel T. Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain 2020; 13:165. [PMID: 33272296 PMCID: PMC7713217 DOI: 10.1186/s13041-020-00702-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is a global health problem adversely affecting health as well as causing decrements in learning and performance. Sleep deprivation induces significant changes in gene transcription in many brain regions, with the hippocampus particularly susceptible to acute sleep deprivation. However, less is known about the impacts of sleep deprivation on post-transcriptional gene regulation. To identify the effects of sleep deprivation on the translatome, we took advantage of the RiboTag mouse line to express HA-labeled Rpl22 in CaMKIIα neurons to selectively isolate and sequence mRNA transcripts associated with ribosomes in excitatory neurons. We found 198 differentially expressed genes in the ribosome-associated mRNA subset after sleep deprivation. In comparison with previously published data on gene expression in the hippocampus after sleep deprivation, we found that the subset of genes affected by sleep deprivation was considerably different in the translatome compared with the transcriptome, with only 49 genes regulated similarly. Interestingly, we found 478 genes differentially regulated by sleep deprivation in the transcriptome that were not significantly regulated in the translatome of excitatory neurons. Conversely, there were 149 genes differentially regulated by sleep deprivation in the translatome but not in the whole transcriptome. Pathway analysis revealed differences in the biological functions of genes exclusively regulated in the transcriptome or translatome, with protein deacetylase activity and small GTPase binding regulated in the transcriptome and unfolded protein binding, kinase inhibitor activity, neurotransmitter receptors and circadian rhythms regulated in the translatome. These results indicate that sleep deprivation induces significant changes affecting the pool of actively translated mRNAs.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Khan F, Granville N, Malkani R, Chathampally Y. Health-Related Quality of Life Improvements in Systemic Lupus Erythematosus Derived from a Digital Therapeutic Plus Tele-Health Coaching Intervention: Randomized Controlled Pilot Trial. J Med Internet Res 2020; 22:e23868. [PMID: 33079070 PMCID: PMC7609202 DOI: 10.2196/23868] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE), a systemic autoimmune disease with no known cure, remains poorly understood and patients suffer from many gaps in care. Recent work has suggested that dietary and other lifestyle factors play an important role in triggering and propagating SLE in some susceptible individuals. However, the magnitude of influence of these triggers, how to identify pertinent triggers in individual patients, and whether removing these triggers confers clinical benefit is unknown. OBJECTIVE To demonstrate that a digital therapeutic intervention, utilizing a mobile app that allows self-tracking of dietary, environmental, and lifestyle triggers, paired with telehealth coaching, added to usual care, improves quality of life in patients with SLE compared with usual care alone. METHODS In this randomized controlled pilot study, adults with SLE were assigned to a 16-week digital therapeutic intervention plus usual care or usual care alone. Primary outcome measures were changes from baseline to 16 weeks on 3 validated health-related quality of life (HRQoL) tools: Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), Brief Pain Inventory-Short Form (BPI-SF), and Lupus Quality of Life (LupusQoL). RESULTS A total of 50 patients were randomized (23 control, 27 intervention). In per-protocol analysis, the intervention group achieved significantly greater improvement than the control group in 9 of 11 domains: FACIT-F (34% absolute improvement for the intervention group vs -1% for the control group, P<.001), BPI-SF-Pain Interference (25% vs 0%, P=.02), LupusQoL-Planning (17% vs 0%, P=.004), LupusQoL-Pain (13% vs 0%, P=.004), LupusQoL-Emotional Health (21% vs 4%, P=.02), and LupusQoL-Fatigue (38% vs 13%, P<.001) were significant when controlling for multiple comparisons; BPI-SF-Pain Severity (13% vs -6%, P=.049), LupusQoL-Physical Health (17% vs 3%, P=.049), and LupusQoL-Burden to Others (33% vs 4%, P=.04) were significant at an unadjusted 5% significance level. CONCLUSIONS A digital therapeutic intervention that pairs self-tracking with telehealth coaching to identify and remove dietary, environmental, and lifestyle symptom triggers resulted in statistically significant, clinically meaningful improvements in HRQoL when added to usual care in patients with SLE. TRIAL REGISTRATION ClinicalTrials.gov NCT03426384; https://clinicaltrials.gov/ct2/show/NCT03426384.
Collapse
Affiliation(s)
- Faiz Khan
- EVP, CityMD, Dix Hills, NY, United States
| | | | - Raja Malkani
- Independent Researcher, Austin, TX, United States
| | | |
Collapse
|
48
|
Koopman‐Verhoeff ME, Mulder RH, Saletin JM, Reiss I, van der Horst GT, Felix JF, Carskadon MA, Tiemeier H, Cecil CA. Genome-wide DNA methylation patterns associated with sleep and mental health in children: a population-based study. J Child Psychol Psychiatry 2020; 61:1061-1069. [PMID: 32361995 PMCID: PMC7586967 DOI: 10.1111/jcpp.13252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND DNA methylation (DNAm) has been implicated in the biology of sleep. Yet, how DNAm patterns across the genome relate to different sleep outcomes, and whether these associations overlap with mental health is currently unknown. Here, we investigated associations of DNAm with sleep and mental health in a pediatric population. METHODS This cross-sectional study included 465 10-year-old children (51.3% female) from the Generation R Study. Genome-wide DNAm levels were measured using the Illumina 450K array (peripheral blood). Sleep problems were assessed from self-report and mental health outcomes from maternal questionnaires. Wrist actigraphy was used in 188 11-year-old children to calculate sleep duration and midpoint sleep. Weighted gene co-expression network analysis was used to identify highly comethylated DNAm 'modules', which were tested for associations with sleep and mental health outcomes. RESULTS We identified 64 DNAm modules, one of which associated with sleep duration after covariate and multiple testing adjustment. This module included CpG sites spanning 9 genes on chromosome 17, including MAPT - a key regulator of Tau proteins in the brain involved in neuronal function - as well as genes previously implicated in sleep duration. Follow-up analyses suggested that DNAm variation in this region is under considerable genetic control and shows strong blood-brain concordance. DNAm modules associated with sleep did not overlap with those associated with mental health. CONCLUSIONS We identified one DNAm region associated with sleep duration, including genes previously reported by recent GWAS studies. Further research is warranted to examine the functional role of this region and its longitudinal association with sleep.
Collapse
Affiliation(s)
- Maria Elisabeth Koopman‐Verhoeff
- Department of Child and Adolescent PsychiatryErasmus University Medical CenterSophia Children’s HospitalRotterdamThe Netherlands,The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,EP Bradley Hospital Sleep LaboratoryAlpert Medical School of Brown UniversityProvidenceRIUSA
| | - Rosa H. Mulder
- Department of Child and Adolescent PsychiatryErasmus University Medical CenterSophia Children’s HospitalRotterdamThe Netherlands,The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Institute of Education and Child StudiesLeiden UniversityLeidenThe Netherlands
| | - Jared M. Saletin
- EP Bradley Hospital Sleep LaboratoryAlpert Medical School of Brown UniversityProvidenceRIUSA
| | - Irwin Reiss
- Department of PediatricsErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | - Janine F. Felix
- The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of PediatricsErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Mary A. Carskadon
- EP Bradley Hospital Sleep LaboratoryAlpert Medical School of Brown UniversityProvidenceRIUSA
| | - Henning Tiemeier
- Department of Child and Adolescent PsychiatryErasmus University Medical CenterSophia Children’s HospitalRotterdamThe Netherlands,Department of Social and Behavioral ScienceHarvard TH Chan School of Public HealthBostonMAUSA
| | - Charlotte A.M. Cecil
- Department of Child and Adolescent PsychiatryErasmus University Medical CenterSophia Children’s HospitalRotterdamThe Netherlands,The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of EpidemiologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
49
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Nadas GB, Tye SJ, Andersen ML, Quevedo J, Valvassori SS. Role of epigenetic regulatory enzymes in animal models of mania induced by amphetamine and paradoxical sleep deprivation. Eur J Neurosci 2020; 53:649-662. [PMID: 32735698 DOI: 10.1111/ejn.14922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
It is known that bipolar disorder has a multifactorial aetiology where the interaction between genetic and environmental factors is responsible for its development. Because of this, epigenetics has been largely studied in psychiatric disorders. The present study aims to evaluate the effects of histone deacetylase inhibitors on epigenetic enzyme alterations in rats or mice submitted to animal models of mania induced by dextro-amphetamine or sleep deprivation, respectively. Adult male Wistar rats were subjected to 14 days of dextro-amphetamine administration, and from the eighth to the fourteenth day, the animals were treated with valproate and sodium butyrate in addition to dextro-amphetamine injections. Adult C57BL/6 mice received 7 days of valproate or sodium butyrate administration, being sleep deprived at the last 36 hr of the protocol. Locomotor and exploratory activities of rats and mice were evaluated in the open-field test, and histone deacetylase, DNA methyltransferase, and histone acetyltransferase activities were assessed in the frontal cortex, hippocampus, and striatum. Dextro-amphetamine and sleep deprivation induced hyperactivity and increased histone deacetylase and DNA methyltransferase activities in the animal's brain. Valproate and sodium butyrate were able to reverse hyperlocomotion induced by both animal models, as well as the alterations on histone deacetylase and DNA methyltransferase activities. There was a positive correlation between enzyme activities and number of crossings for both models. Histone deacetylase and DNA methyltransferase activities also presented a positive correlation between theirselves. These results suggest that epigenetics can play an important role in BD pathophysiology as well as in its treatment.
Collapse
Affiliation(s)
- Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriella B Nadas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
50
|
Eze IC, Jeong A, Schaffner E, Rezwan FI, Ghantous A, Foraster M, Vienneau D, Kronenberg F, Herceg Z, Vineis P, Brink M, Wunderli JM, Schindler C, Cajochen C, Röösli M, Holloway JW, Imboden M, Probst-Hensch N. Genome-Wide DNA Methylation in Peripheral Blood and Long-Term Exposure to Source-Specific Transportation Noise and Air Pollution: The SAPALDIA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67003. [PMID: 32484729 PMCID: PMC7263738 DOI: 10.1289/ehp6174] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Few epigenome-wide association studies (EWAS) on air pollutants exist, and none have been done on transportation noise exposures, which also contribute to environmental burden of disease. OBJECTIVE We performed mutually independent EWAS on transportation noise and air pollution exposures. METHODS We used data from two time points of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) from 1,389 participants contributing 2,542 observations. We applied multiexposure linear mixed-effects regressions with participant-level random intercept to identify significant Cytosine-phosphate-Guanine (CpG) sites and differentially methylated regions (DMRs) in relation to 1-y average aircraft, railway, and road traffic day-evening-night noise (Lden); nitrogen dioxide (NO 2 ); and particulate matter (PM) with aerodynamic diameter < 2.5 μ m (PM 2.5 ). We performed candidate (CpG-based; cross-systemic phenotypes, combined into "allostatic load") and agnostic (DMR-based) pathway enrichment tests, and replicated previously reported air pollution EWAS signals. RESULTS We found no statistically significant CpGs at false discovery rate < 0.05 . However, 14, 48, 183, 8, and 71 DMRs independently associated with aircraft, railway, and road traffic Lden; NO 2 ; and PM 2.5 , respectively, with minimally overlapping signals. Transportation Lden and air pollutants tendentially associated with decreased and increased methylation, respectively. We observed significant enrichment of candidate DNA methylation related to C-reactive protein and body mass index (aircraft, road traffic Lden, and PM 2.5 ), renal function and "allostatic load" (all exposures). Agnostic functional networks related to cellular immunity, gene expression, cell growth/proliferation, cardiovascular, auditory, embryonic, and neurological systems development were enriched. We replicated increased methylation in cg08500171 (NO 2 ) and decreased methylation in cg17629796 (PM 2.5 ). CONCLUSIONS Mutually independent DNA methylation was associated with source-specific transportation noise and air pollution exposures, with distinct and shared enrichments for pathways related to inflammation, cellular development, and immune responses. These findings contribute in clarifying the pathways linking these exposures and age-related diseases but need further confirmation in the context of mediation analyses. https://doi.org/10.1289/EHP6174.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Maria Foraster
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
- Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Mark Brink
- Federal Office for the Environment, Bern, Switzerland
| | - Jean-Marc Wunderli
- Empa Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|