1
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
2
|
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
3
|
Choi W, Park H, Oh S, Seok S, Yoon DS, Kim J. High-Porosity Sieve-Type Neural Electrodes for Motor Function Recovery and Nerve Signal Acquisition. MICROMACHINES 2024; 15:862. [PMID: 39064373 PMCID: PMC11279187 DOI: 10.3390/mi15070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
In this study, the effects of electrode porosity on nerve regeneration and functional recovery after sciatic nerve transection in rats was investigated. A sieve-type neural electrode with 70% porosity was designed and compared with an electrode with 30% porosity. Electrodes were fabricated from photosensitive polyimide and implanted into the transected sciatic nerves. Motor function recovery was evaluated using the Sciatic Function Index. The number of active channels and their signal quality were recorded and analyzed to assess the sensory neural signal acquisition. Electrical impedance spectroscopy was used to evaluate the electrode performance. The group implanted with the 70% porosity electrode demonstrated significantly enhanced nerve regeneration and motor function recovery, approaching control group levels by the fifth week. In contrast, the group with the 30% porosity electrode exhibited limited improvement. Immunohistochemical analysis confirmed extensive nerve fiber growth within the 70% porous structure. Moreover, the 70% porosity electrode consistently acquired neural signals from more channels compared to the 30% porosity electrode, demonstrating its superior performance in sensory signal detection. These findings emphasize the importance of optimizing electrode porosity in the development of advanced neural interfaces, with the potential to enhance clinical outcomes in peripheral nerve repair and neuroprosthetic applications.
Collapse
Affiliation(s)
- Wonsuk Choi
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - HyungDal Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
| | - Seonghwan Oh
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seonho Seok
- Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91400 Orsay, France;
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinseok Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.C.); (H.P.); (S.O.)
| |
Collapse
|
4
|
Han J, Choi J, Jeong H, Park D, Cheong E, Sung J, Choi HJ. Impact of Impedance Levels on Recording Quality in Flexible Neural Probes. SENSORS (BASEL, SWITZERLAND) 2024; 24:2300. [PMID: 38610511 PMCID: PMC11014004 DOI: 10.3390/s24072300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Flexible neural probes are attractive emerging technologies for brain recording because they can effectively record signals with minimal risk of brain damage. Reducing the electrode impedance of the probe before recording is a common practice of many researchers. However, studies investigating the impact of low impedance levels on high-quality recordings using flexible neural probes are lacking. In this study, we electrodeposited Pt onto a commercial flexible polyimide neural probe and investigated the relationship between the impedance level and the recording quality. The probe was inserted into the brains of anesthetized mice. The electrical signals of neurons in the brain, specifically the ventral posteromedial nucleus of the thalamus, were recorded at impedance levels of 50, 250, 500 and 1000 kΩ at 1 kHz. The study results demonstrated that as the impedance decreased, the quality of the signal recordings did not consistently improve. This suggests that extreme lowering of the impedance may not always be advantageous in the context of flexible neural probes.
Collapse
Affiliation(s)
- Juyeon Han
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (J.H.)
| | - Jungsik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (J.H.)
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea
| | - Hyeonyeong Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Daerl Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (J.H.)
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaesuk Sung
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (J.H.)
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses. PNAS NEXUS 2024; 3:pgae082. [PMID: 38725532 PMCID: PMC11079674 DOI: 10.1093/pnasnexus/pgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 05/12/2024]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Spatially specific, closed-loop infrared thalamocortical deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560859. [PMID: 37904955 PMCID: PMC10614743 DOI: 10.1101/2023.10.04.560859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically-mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
7
|
Yan T, Suzuki K, Kameda S, Maeda M, Mihara T, Hirata M. Chronic subdural electrocorticography in nonhuman primates by an implantable wireless device for brain-machine interfaces. Front Neurosci 2023; 17:1260675. [PMID: 37841689 PMCID: PMC10568031 DOI: 10.3389/fnins.2023.1260675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Subdural electrocorticography (ECoG) signals have been proposed as a stable, good-quality source for brain-machine interfaces (BMIs), with a higher spatial and temporal resolution than electroencephalography (EEG). However, long-term implantation may lead to chronic inflammatory reactions and connective tissue encapsulation, resulting in a decline in signal recording quality. However, no study has reported the effects of the surrounding tissue on signal recording and device functionality thus far. Methods In this study, we implanted a wireless recording device with a customized 32-electrode-ECoG array subdurally in two nonhuman primates for 15 months. We evaluated the neural activities recorded from and wirelessly transmitted to the devices and the chronic tissue reactions around the electrodes. In addition, we measured the gain factor of the newly formed ventral fibrous tissue in vivo. Results Time-frequency analyses of the acute and chronic phases showed similar signal features. The average root mean square voltage and power spectral density showed relatively stable signal quality after chronic implantation. Histological examination revealed thickening of the reactive tissue around the electrode array; however, no evident inflammation in the cortex. From gain factor analysis, we found that tissue proliferation under electrodes reduced the amplitude power of signals. Conclusion This study suggests that subdural ECoG may provide chronic signal recordings for future clinical applications and neuroscience research. This study also highlights the need to reduce proliferation of reactive tissue ventral to the electrodes to enhance long-term stability.
Collapse
Affiliation(s)
- Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Seiji Kameda
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masashi Maeda
- Candidate Discovery Science Labs, Astellas Pharma Inc., Tokyo, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Astellas Pharma Inc., Tokyo, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Dewberry LS, Porche K, Koenig T, Allen KD, Otto KJ. High frequency alternating current neurostimulation decreases nocifensive behavior in a disc herniation model of lumbar radiculopathy. Bioelectron Med 2023; 9:15. [PMID: 37434246 DOI: 10.1186/s42234-023-00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate if kilohertz frequency alternating current (KHFAC) stimulation of peripheral nerve could serve as a treatment for lumbar radiculopathy. Prior work shows that KHFAC stimulation can treat sciatica resulting from chronic sciatic nerve constriction. Here, we evaluate if KHFAC stimulation is also beneficial in a more physiologic model of low back pain which mimics nucleus pulposus (NP) impingement of a lumbar dorsal root ganglion (DRG). METHODS To mimic a lumbar radiculopathy, autologous tail NP was harvested and placed upon the right L5 nerve root and DRG. During the same surgery, a cuff electrode was implanted around the sciatic nerve with wires routed to a headcap for delivery of KHFAC stimulation. Male Lewis rats (3 mo., n = 18) were separated into 3 groups: NP injury + KHFAC stimulation (n = 7), NP injury + sham cuff (n = 6), and sham injury + sham cuff (n = 5). Prior to surgery and for 2 weeks following surgery, animal tactile sensitivity, gait, and static weight bearing were evaluated. RESULTS KHFAC stimulation of the sciatic nerve decreased behavioral evidence of pain and disability. Without KHFAC stimulation, injured animals had heightened tactile sensitivity compared to baseline (p < 0.05), with tactile allodynia reversed during KHFAC stimulation (p < 0.01). Midfoot flexion during locomotion was decreased after injury but improved with KHFAC stimulation (p < 0.05). Animals also placed more weight on their injured limb when KHFAC stimulation was applied (p < 0.05). Electrophysiology measurements at end point showed decreased, but not blocked, compound nerve action potentials with KHFAC stimulation (p < 0.05). CONCLUSIONS KHFAC stimulation decreases hypersensitivity but does not cause additional gait compensations. This supports the idea that KHFAC stimulation applied to a peripheral nerve may be able to treat chronic pain resulting from sciatic nerve root inflammation.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Ken Porche
- Lillian S Wells Department of Neurosurgery at the University of Florida, College of Medicine, 1505 SW Archer Road Gainesville, FL, 32608, Gainesville, USA
| | - Travis Koenig
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
- Pain Research & Intervention Center of Excellence, University of Florida, CTSI 2004 Mowry Road, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, 1149 Newell Dr. L1-100, P.O. Box 100244, Gainesville, FL, USA.
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr, Gainesville, FL, 32611, USA.
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, P.O. Box 116005, Gainesville, FL, 32611, USA.
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr, P.O. Box 116400, Gainesville, FL, 32611, USA.
- Department of Neurology, 1149 Newell Dr, P.O. Box 100236, Gainesville, FL, L3-10032610, USA.
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, 1041 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
10
|
Machado MMP, Voda A, Besançon G, Becq G, David O, Kahane P. Electrode–brain interface fractional order modelling for brain tissue classification in SEEG. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Go GT, Lee Y, Seo DG, Lee TW. Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201864. [PMID: 35925610 DOI: 10.1002/adma.202201864] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Requirements and recent advances in research on organic neuroelectronics are outlined herein. Neuroelectronics such as neural interfaces and neuroprosthetics provide a promising approach to diagnose and treat neurological diseases. However, the current neural interfaces are rigid and not biocompatible, so they induce an immune response and deterioration of neural signal transmission. Organic materials are promising candidates for neural interfaces, due to their mechanical softness, excellent electrochemical properties, and biocompatibility. Also, organic nervetronics, which mimics functional properties of the biological nerve system, is being developed to overcome the limitations of the complex and energy-consuming conventional neuroprosthetics that limit long-term implantation and daily-life usage. Examples of organic materials for neural interfaces and neural signal recordings are reviewed, recent advances of organic nervetronics that use organic artificial synapses are highlighted, and then further requirements for neuroprosthetics are discussed. Finally, the future challenges that must be overcome to achieve ideal organic neuroelectronics for next-generation neuroprosthetics are discussed.
Collapse
Affiliation(s)
- Gyeong-Tak Go
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongjun Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Chen Z, Zhang T, Chen CT, Yang S, Lv Z, Cao L, Ren J, Shao Z, Jiang LB, Ling S. Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. MATERIALS HORIZONS 2022; 9:1735-1749. [PMID: 35502878 DOI: 10.1039/d2mh00296e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Narrowing the mechanical and electrical mismatch between tissue and implantable microelectronics is essential for reducing immune responses and modulating physioelectrical signals. Nevertheless, the design of such implantable microelectronics remains a challenge due to the limited availability of suitable materials. Here, the fabrication of an electrically and mechanically biocompatible alginate hydrogel ionotronic fiber (AHIF) is reported, which is constructed by combing ionic chelation-assisted wet-spinning and mechanical training. The synergistic effects of these two processes allow the alginate to form a highly-oriented nanofibril and molecular network, with a hierarchical structure highly similar to that of natural fibers. These favourable structural features endow AHIF with tissue-mimicking mechanical characteristics, such as self-stiffening and soft tissue-like mechanical properties. In addition, tissue-like chemical components, i.e., biomacromolecules, Ca2+ ions, and water, endow AHIF with properties including biocompatibility and tissue-matching conductivity. These advantages bring light to the application of AHIFs in electrically-conductive implantable devices. As a prototype, an AHIF is designed to perform physioelectrical modulation through noncontact electromagnetic induction. Through experimental and machine learning optimizations, physioelectrical-like signals generated by the AHIF are used to identify the geometry and tension state of the implanted device in the body. Such an intelligent AHIF system has promising application prospects in bioelectronics, IntelliSense, and human-machine interactions.
Collapse
Affiliation(s)
- Zhihao Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Taiwei Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Chun-Teh Chen
- Department of Materials Science and Engineering, University of California, Berkeley, 94720 CA, USA
| | - Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Zhuochen Lv
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
13
|
Kunigk NG, Urdaneta ME, Malone IG, Delgado F, Otto KJ. Reducing Behavioral Detection Thresholds per Electrode via Synchronous, Spatially-Dependent Intracortical Microstimulation. Front Neurosci 2022; 16:876142. [PMID: 35784835 PMCID: PMC9247280 DOI: 10.3389/fnins.2022.876142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Intracortical microstimulation (ICMS) has shown promise in restoring quality of life to patients suffering from paralysis, specifically when used in the primary somatosensory cortex (S1). However, these benefits can be hampered by long-term degradation of electrode performance due to the brain's foreign body response. Advances in microfabrication techniques have allowed for the development of neuroprostheses with subcellular electrodes, which are characterized by greater versatility and a less detrimental immune response during chronic use. These probes are hypothesized to enable more selective, higher-resolution stimulation of cortical tissue with long-term implants. However, microstimulation using physiologically relevant charges with these smaller-scale devices can damage electrode sites and reduce the efficacy of the overall device. Studies have shown promise in bypassing this limitation by spreading the stimulation charge between multiple channels in an implanted electrode array, but to our knowledge the usefulness of this strategy in laminar arrays with electrode sites spanning each layer of the cortex remains unexplored. To investigate the efficacy of simultaneous multi-channel ICMS in electrode arrays with stimulation sites spanning cortical depth, we implanted laminar electrode arrays in the primary somatosensory cortex of rats trained in a behavioral avoidance paradigm. By measuring detection thresholds, we were able to quantify improvements in ICMS performance using a simultaneous multi-channel stimulation paradigm. The charge required per site to elicit detection thresholds was halved when stimulating from two adjacent electrode sites, although the overall charge used by the implant was increased. This reduction in threshold charge was more pronounced when stimulating with more than two channels and lessened with greater distance between stimulating channels. Our findings suggest that these improvements are based on the synchronicity and polarity of each stimulus, leading us to conclude that these improvements in stimulation efficiency per electrode are due to charge summation as opposed to a summation of neural responses to stimulation. Additionally, the per-site charge reductions are seen regardless of the cortical depth of each utilized channel. This evocation of physiological detection thresholds with lower stimulation currents per electrode site has implications for the feasibility of stimulation regimes in future advanced neuroprosthetic devices, which could benefit from reducing the charge output per site.
Collapse
Affiliation(s)
- Nicolas G. Kunigk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Morgan E. Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Ian G. Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Francisco Delgado
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Kevin J. Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: Kevin J. Otto,
| |
Collapse
|
14
|
Yin P, Liu Y, Xiao L, Zhang C. Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers (Basel) 2021; 13:2834. [PMID: 34451372 PMCID: PMC8401399 DOI: 10.3390/polym13162834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neural electrodes are essential for nerve signal recording, neurostimulation, neuroprosthetics and neuroregeneration, which are critical for the advancement of brain science and the establishment of the next-generation brain-electronic interface, central nerve system therapeutics and artificial intelligence. However, the existing neural electrodes suffer from drawbacks such as foreign body responses, low sensitivity and limited functionalities. In order to overcome the drawbacks, efforts have been made to create new constructions and configurations of neural electrodes from soft materials, but it is also more practical and economic to improve the functionalities of the existing neural electrodes via surface coatings. In this article, recently reported surface coatings for neural electrodes are carefully categorized and analyzed. The coatings are classified into different categories based on their chemical compositions, i.e., metals, metal oxides, carbons, conducting polymers and hydrogels. The characteristic microstructures, electrochemical properties and fabrication methods of the coatings are comprehensively presented, and their structure-property correlations are discussed. Special focus is given to the biocompatibilities of the coatings, including their foreign-body response, cell affinity, and long-term stability during implantation. This review article can provide useful and sophisticated insights into the functional design, material selection and structural configuration for the next-generation multifunctional coatings of neural electrodes.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (P.Y.); (L.X.)
| | | | - Chao Zhang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (P.Y.); (L.X.)
| |
Collapse
|
15
|
Sridharan A, Muthuswamy J. Soft, Conductive, Brain-Like, Coatings at Tips of Microelectrodes Improve Electrical Stability under Chronic, In Vivo Conditions. MICROMACHINES 2021; 12:761. [PMID: 34203234 PMCID: PMC8306035 DOI: 10.3390/mi12070761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023]
Abstract
Several recent studies have reported improved histological and electrophysiological outcomes with soft neural interfaces that have elastic moduli ranging from 10 s of kPa to hundreds of MPa. However, many of these soft interfaces use custom fabrication processes. We test the hypothesis that a readily adoptable fabrication process for only coating the tips of microelectrodes with soft brain-like (elastic modulus of ~5 kPa) material improves the long-term electrical performance of neural interfaces. Conventional tungsten microelectrodes (n = 9 with soft coatings and n = 6 uncoated controls) and Pt/Ir microelectrodes (n = 16 with soft coatings) were implanted in six animals for durations ranging from 5 weeks to over 1 year in a subset of rats. Electrochemical impedance spectroscopy was used to assess the quality of the brain tissue-electrode interface under chronic conditions. Neural recordings were assessed for unit activity and signal quality. Electrodes with soft, silicone coatings showed relatively stable electrical impedance characteristics over 6 weeks to >1 year compared to the uncoated control electrodes. Single unit activity recorded by coated electrodes showed larger peak-to-peak amplitudes and increased number of detectable neurons compared to uncoated controls over 6-7 weeks. We demonstrate the feasibility of using a readily translatable process to create brain-like soft interfaces that can potentially overcome variable performance associated with chronic rigid neural interfaces.
Collapse
Affiliation(s)
| | - Jit Muthuswamy
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA;
| |
Collapse
|
16
|
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Front Neurosci 2021; 15:658703. [PMID: 33912007 PMCID: PMC8072048 DOI: 10.3389/fnins.2021.658703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.
Collapse
Affiliation(s)
- Maryam Hejazi
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Sahasrabuddhe K, Khan AA, Singh AP, Stern TM, Ng Y, Tadić A, Orel P, LaReau C, Pouzzner D, Nishimura K, Boergens KM, Shivakumar S, Hopper MS, Kerr B, Hanna MES, Edgington RJ, McNamara I, Fell D, Gao P, Babaie-Fishani A, Veijalainen S, Klekachev AV, Stuckey AM, Luyssaert B, Kozai TDY, Xie C, Gilja V, Dierickx B, Kong Y, Straka M, Sohal HS, Angle MR. The Argo: a high channel count recording system for neural recording in vivo. J Neural Eng 2021; 18:015002. [PMID: 33624614 PMCID: PMC8607496 DOI: 10.1088/1741-2552/abd0ce] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Decoding neural activity has been limited by the lack of tools available to record from large numbers of neurons across multiple cortical regions simultaneously with high temporal fidelity. To this end, we developed the Argo system to record cortical neural activity at high data rates. APPROACH Here we demonstrate a massively parallel neural recording system based on platinum-iridium microwire electrode arrays bonded to a CMOS voltage amplifier array. The Argo system is the highest channel count in vivo neural recording system, supporting simultaneous recording from 65 536 channels, sampled at 32 kHz and 12-bit resolution. This system was designed for cortical recordings, compatible with both penetrating and surface microelectrodes. MAIN RESULTS We validated this system through initial bench testing to determine specific gain and noise characteristics of bonded microwires, followed by in-vivo experiments in both rat and sheep cortex. We recorded spiking activity from 791 neurons in rats and surface local field potential activity from over 30 000 channels in sheep. SIGNIFICANCE These are the largest channel count microwire-based recordings in both rat and sheep. While currently adapted for head-fixed recording, the microwire-CMOS architecture is well suited for clinical translation. Thus, this demonstration helps pave the way for a future high data rate intracortical implant.
Collapse
Affiliation(s)
| | - Aamir A Khan
- Paradromics, Inc, Austin, TX, United States of America
| | | | - Tyler M Stern
- Paradromics, Inc, Austin, TX, United States of America
| | - Yeena Ng
- Paradromics, Inc, Austin, TX, United States of America
| | | | - Peter Orel
- Paradromics, Inc, Austin, TX, United States of America
| | - Chris LaReau
- Paradromics, Inc, Austin, TX, United States of America
| | | | | | | | | | | | - Bryan Kerr
- Paradromics, Inc, Austin, TX, United States of America
| | | | | | | | - Devin Fell
- Paradromics, Inc, Austin, TX, United States of America
| | - Peng Gao
- Caeleste CVBA, Mechelen, Belgium
| | | | | | | | | | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- NeuroEngineering Initiative, Rice University, Houston, TX, United States of America
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States of America
| | | | - Yifan Kong
- Paradromics, Inc, Austin, TX, United States of America
| | | | | | | |
Collapse
|
18
|
Ding D, Lu Y, Zhao R, Liu X, De-Eknamkul C, Ren C, Mehrsa A, Komiyama T, Kuzum D. Evaluation of Durability of Transparent Graphene Electrodes Fabricated on Different Flexible Substrates for Chronic In Vivo Experiments. IEEE Trans Biomed Eng 2020; 67:3203-3210. [PMID: 32191878 PMCID: PMC8560430 DOI: 10.1109/tbme.2020.2979475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate chronic durability of transparent graphene electrodes fabricated on polyethylene terephthalate (PET) and SU-8 substrates for chronic in vivo studies. METHODS We perform systematic accelerated aging tests to understand the chronic reliability and failure modes of transparent graphene microelectrode arrays built on PET and SU-8 substrates. We employ graphene microelectrodes fabricated on PET substrate in chronic in vivo experiments with transgenic mice. RESULTS Our results show that graphene microelectrodes fabricated on PET substrate work reliably after 30 days accelerated aging test performed at 87 °C, equivalent to 960 days in vivo lifetime. We demonstrate stable chronic recordings of cortical potentials in multimodal imaging/recording experiments using transparent graphene microelectrodes fabricated on PET substrate. On the other hand, graphene microelectrode arrays built on SU-8 substrate exhibit extensive crack formation across microelectrode sites and wires after one to two weeks, resulting in total failure of recording capability for chronic studies. CONCLUSION PET shows superior reliability as a substrate for graphene microelectrode arrays for chronic in vivo experiments. SIGNIFICANCE Graphene is a unique neural interface material enabling cross-talk free integration of electrical and optical recording and stimulation techniques in the same experiment. To date, graphene-based microelectrode arrays have been demonstrated in various multi-modal acute experiments involving electrophysiological sensing or stimulation, optical imaging and optogenetics stimulation. Understanding chronic reliability of graphene-based transparent interfaces is very important to expand the use of this technology for long-term behavioral studies with animal models.
Collapse
|
19
|
Ehrensberger MT, Clark CM, Canty MK, McDermott EP. Electrochemical methods to enhance osseointegrated prostheses. Biomed Eng Lett 2020; 10:17-41. [PMID: 32175128 PMCID: PMC7046908 DOI: 10.1007/s13534-019-00134-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/11/2019] [Accepted: 10/20/2019] [Indexed: 12/19/2022] Open
Abstract
Osseointegrated (OI) prosthetic limbs have been shown to provide an advantageous treatment option for amputees. In order for the OI prosthesis to be successful, the titanium implant must rapidly achieve and maintain proper integration with the bone tissue and remain free of infection. Electrochemical methods can be utilized to control and/or monitor the interfacial microenvironment where the titanium implant interacts with the biological system (host bone tissue or bacteria). This review will summarize the current understanding of how electrochemical modalities can influence bone tissue and bacteria with specific emphasis on applications where the metallic prosthesis itself can be utilized directly as a stimulating electrode for enhanced osseointegration and infection control. In addition, a summary of electrochemical impedance sensing techniques that could be used to potentially assess osseointegration and infection status of the metallic prosthesis is presented.
Collapse
Affiliation(s)
- Mark T. Ehrensberger
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
- Department of Orthopaedics, University at Buffalo, Buffalo, NY USA
| | - Caelen M. Clark
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
| | - Mary K. Canty
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY USA
| | - Eric P. McDermott
- Department of Biomedical Engineering, University at Buffalo, 445 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
20
|
Nam J, Lim HK, Kim NH, Park JK, Kang ES, Kim YT, Heo C, Lee OS, Kim SG, Yun WS, Suh M, Kim YH. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a Three-Dimensional Electrical Network. ACS NANO 2020; 14:664-675. [PMID: 31895542 DOI: 10.1021/acsnano.9b07396] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recording neural activity from the living brain is of great interest in neuroscience for interpreting cognitive processing or neurological disorders. Despite recent advances in neural technologies, development of a soft neural interface that integrates with neural tissues, increases recording sensitivity, and prevents signal dissipation still remains a major challenge. Here, we introduce a biocompatible, conductive, and biostable neural interface, a supramolecular β-peptide-based hydrogel that allows signal amplification via tight neural/hydrogel contact without neuroinflammation. The non-biodegradable β-peptide forms a multihierarchical structure with conductive nanomaterial, creating a three-dimensional electrical network, which can augment brain signal efficiently. By achieving seamless integration in brain tissue with increased contact area and tight neural tissue coupling, the epidural and intracortical neural signals recorded with the hydrogel were augmented, especially in the high frequency range. Overall, our tissuelike chronic neural interface will facilitate a deeper understanding of brain oscillation in broad brain states and further lead to more efficient brain-computer interfaces.
Collapse
Affiliation(s)
- Jiyoung Nam
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- Department of Biological Sciences , Sungkyunkwan University , Suwon 16419 , Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Jong Kwan Park
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yong-Tae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Chaejeong Heo
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
| | - One-Sun Lee
- Qatar Environment and Energy Research Institute , Hamad Bin Khalifa University , Doha , Qatar
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- Department of Biomedical Engineering , Sungkyunkwan University , Suwon 16419 , Korea
| | - Wan Soo Yun
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- Department of Biomedical Engineering , Sungkyunkwan University , Suwon 16419 , Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yong Ho Kim
- Center for Neuroscience Imaging Research , Institute for Basic Science (IBS) , Suwon 16419 , Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon 16419 , Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University , Suwon 16419 , Korea
| |
Collapse
|
21
|
Torres-Martinez N, Cretallaz C, Ratel D, Mailley P, Gaude C, Costecalde T, Hebert C, Bergonzo P, Scorsone E, Mazellier JP, Divoux JL, Sauter-Starace F. Evaluation of chronically implanted subdural boron doped diamond/CNT recording electrodes in miniature swine brain. Bioelectrochemistry 2019; 129:79-89. [DOI: 10.1016/j.bioelechem.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
|
22
|
Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019; 48:1826-1852. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurological and psychiatric conditions pose an increasing socioeconomic burden on our aging society. Our ability to understand and treat these conditions relies on the development of reliable tools to study the dynamics of the underlying neural circuits. Despite significant progress in approaches and devices to sense and modulate neural activity, further refinement is required on the spatiotemporal resolution, cell-type selectivity, and long-term stability of neural interfaces. Guided by the principles of neural transduction and by the materials properties of the neural tissue, recent advances in neural interrogation approaches rely on flexible and multifunctional devices. Among these approaches, multimaterial fibers have emerged as integrated tools for sensing and delivering of multiple signals to and from the neural tissue. Fiber-based neural probes are produced by thermal drawing process, which is the manufacturing approach used in optical fiber fabrication. This technology allows straightforward incorporation of multiple functional components into microstructured fibers at the level of their macroscale models, preforms, with a wide range of geometries. Here we will introduce the multimaterial fiber technology, its applications in engineering fields, and its adoption for the design of multifunctional and flexible neural interfaces. We will discuss examples of fiber-based neural probes tailored to the electrophysiological recording, optical neuromodulation, and delivery of drugs and genes into the rodent brain and spinal cord, as well as their emerging use for studies of nerve growth and repair.
Collapse
Affiliation(s)
- Seongjun Park
- School of Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
23
|
Polo-Castillo LE, Villavicencio M, Ramírez-Lugo L, Illescas-Huerta E, Moreno MG, Ruiz-Huerta L, Gutierrez R, Sotres-Bayon F, Caballero-Ruiz A. Reimplantable Microdrive for Long-Term Chronic Extracellular Recordings in Freely Moving Rats. Front Neurosci 2019; 13:128. [PMID: 30846926 PMCID: PMC6393392 DOI: 10.3389/fnins.2019.00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular recordings of electrical activity in freely moving rats are fundamental to understand brain function in health and disease. Such recordings require a small-size, lightweight device that includes movable electrodes (microdrive) to record either a new set of neurons every day or the same set of neurons over time. Ideally, microdrives should be easy to implant, allowing precise and smooth displacement of electrodes. The main caveat of most commercially available microdrives is their relatively short half-life span, in average ranging from weeks to a month. For most experiments, recording days-weeks is sufficient, but when the experiment depends on training animals for several months, it is crucial to develop new approaches. Here, we present a low-cost, reusable, and reimplantable device design as a solution to extend chronic recordings to long-term. This device is composed of a baseplate that is permanently fixed to the rodent's skull, as well as a reusable and replaceable microdrive that can be attached and detached from the baseplate, allowing its implantation and reimplantation. Reimplanting this microdrive is particularly convenient when no clear neuronal signal is present, or when the signal gradually decays across days. Our microdrive incorporates a mechanism for moving a 16 tungsten-wire bundle within a small (∼15 mm3) lightweight device (∼4 g). We present details of the design, manufacturing, and assembly processes. As a proof of concept, we show that recordings of the nucleus accumbens core (NAcc) in a freely behaving rat are stable over a month. Additionally, during a lever-press task, we found, as expected, that NAc single-unit activity was associated with rewarded lever presses. Furthermore, we also show that NAc shell (NAcSh) responses evoked by freely licking for sucrose, consistent with our previously published results, were conserved from a first implant to a second microdrive reimplant in the same rat, notably showing reimplantation is possible without overtly affecting the functional responses of the area of interest. In sum, here we present a novel microdrive design (low-cost, small size, and light weight) that can be used for long-term chronic recordings and reimplanted in freely behaving rats.
Collapse
Affiliation(s)
- Leopoldo Emmanuel Polo-Castillo
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Laboratory for Additive and Digital Manufacturing, Mexico City, Mexico
| | - Miguel Villavicencio
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leticia Ramírez-Lugo
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Illescas-Huerta
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario Gil Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leopoldo Ruiz-Huerta
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Laboratory for Additive and Digital Manufacturing, Mexico City, Mexico
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Francisco Sotres-Bayon
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alberto Caballero-Ruiz
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Laboratory for Additive and Digital Manufacturing, Mexico City, Mexico
| |
Collapse
|
24
|
Sharma M, Gardner AT, Strathman HJ, Warren DJ, Silver J, Walker RM. Acquisition of Neural Action Potentials Using Rapid Multiplexing Directly at the Electrodes. MICROMACHINES 2018; 9:E477. [PMID: 30424410 PMCID: PMC6215140 DOI: 10.3390/mi9100477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 02/02/2023]
Abstract
Neural recording systems that interface with implanted microelectrodes are used extensively in experimental neuroscience and neural engineering research. Interface electronics that are needed to amplify, filter, and digitize signals from multichannel electrode arrays are a critical bottleneck to scaling such systems. This paper presents the design and testing of an electronic architecture for intracortical neural recording that drastically reduces the size per channel by rapidly multiplexing many electrodes to a single circuit. The architecture utilizes mixed-signal feedback to cancel electrode offsets, windowed integration sampling to reduce aliased high-frequency noise, and a successive approximation analog-to-digital converter with small capacitance and asynchronous control. Results are presented from a 180 nm CMOS integrated circuit prototype verified using in vivo experiments with a tungsten microwire array implanted in rodent cortex. The integrated circuit prototype achieves <0.004 mm² area per channel, 7 µW power dissipation per channel, 5.6 µVrms input referred noise, 50 dB common mode rejection ratio, and generates 9-bit samples at 30 kHz per channel by multiplexing at 600 kHz. General considerations are discussed for rapid time domain multiplexing of high-impedance microelectrodes. Overall, this work describes a promising path forward for scaling neural recording systems to numbers of electrodes that are orders of magnitude larger.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Avery Tye Gardner
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Hunter J Strathman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jason Silver
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Ross M Walker
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Electrophysiological Correlates of Blast-Wave Induced Cerebellar Injury. Sci Rep 2018; 8:13633. [PMID: 30206255 PMCID: PMC6134123 DOI: 10.1038/s41598-018-31728-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms underlying traumatic neural injury and the sequelae of events in the acute phase is important for deciding on the best window of therapeutic intervention. We hypothesized that evoked potentials (EP) recorded from the cerebellar cortex can detect mild levels of neural trauma and provide a qualitative assessment tool for progression of cerebellar injury in time. The cerebellar local field potentials evoked by a mechanical tap on the hand and collected with chronically implanted micro-ECoG arrays on the rat cerebellar cortex demonstrated substantial changes both in amplitude and timing as a result of blast-wave induced injury. The results revealed that the largest EP changes occurred within the first day of injury, and partial recoveries were observed from day-1 to day-3, followed by a period of gradual improvements (day-7 to day-14). The mossy fiber (MF) and climbing fiber (CF) mediated components of the EPs were affected differentially. The behavioral tests (ladder rung walking) and immunohistological analysis (calbindin and caspase-3) did not reveal any detectable changes at these blast pressures that are typically considered as mild (100-130 kPa). The results demonstrate the sensitivity of the electrophysiological method and its use as a tool to monitor the progression of cerebellar injuries in longitudinal animal studies.
Collapse
|
26
|
Debnath S, Prins NW, Pohlmeyer E, Mylavarapu R, Geng S, Sanchez JC, Prasad A. Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum. Biomed Phys Eng Express 2018; 4:055025. [PMID: 31011432 PMCID: PMC6474681 DOI: 10.1088/2057-1976/aada67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Current neuroprosthetics rely on stable, high quality recordings from chronically implanted microelectrode arrays (MEAs) in neural tissue. While chronic electrophysiological recordings and electrode failure modes have been reported from rodent and larger non-human primate (NHP) models, chronic recordings from the marmoset model have not been previously described. The common marmoset is a New World primate that is easier to breed and handle compared to larger NHPs and has a similarly organized brain, making it a potentially useful smaller NHP model for neuroscience studies. This study reports recording stability and signal quality of MEAs chronically implanted in behaving marmosets. Six adult male marmosets, trained for reaching tasks, were implanted with either a 16-channel tungsten microwire array (five animals) or a Pt-Ir floating MEA (one animal) in the hand-arm region of the primary motor cortex (M1) and another MEA in the striatum targeting the nucleus accumbens (NAcc). Signal stability and quality was quantified as a function of array yield (active electrodes that recorded action potentials), neuronal yield (isolated single units during a recording session), and signal-to-noise ratio (SNR). Out of 11 implanted MEAs, nine provided functional recordings for at least three months, with two arrays functional for 10 months. In general, implants had high yield, which remained stable for up to several months. However, mechanical failure attributed to MEA connector was the most common failure mode. In the longest implants, signal degradation occurred, which was characterized by gradual decline in array yield, reduced number of isolated single units, and changes in waveform shape of action potentials. This work demonstrates the feasibility of longterm recordings from MEAs implanted in cortical and deep brain structures in the marmoset model. The ability to chronically record cortical signals for neural prosthetics applications in the common marmoset extends the potential of this model in neural interface research.
Collapse
Affiliation(s)
- Shubham Debnath
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Noeline W Prins
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Eric Pohlmeyer
- John Hopkins University Applied Physics Laboratory, Laurel, MD 20723
| | | | - Shijia Geng
- The Center for Computational Science, University of Miami, Coral Gables, FL 33146
| | | | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| |
Collapse
|
27
|
Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes. MICROMACHINES 2018; 9:mi9090430. [PMID: 30424363 PMCID: PMC6187588 DOI: 10.3390/mi9090430] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
The brain-electrode interface is arguably one of the most important areas of study in neuroscience today. A stronger foundation in this topic will allow us to probe the architecture of the brain in unprecedented functional detail and augment our ability to intervene in disease states. Over many years, significant progress has been made in this field, but some obstacles have remained elusive—notably preventing glial encapsulation and electrode degradation. In this review, we discuss the tissue response to electrode implantation on acute and chronic timescales, the electrical changes that occur in electrode systems over time, and strategies that are being investigated in order to minimize the tissue response to implantation and maximize functional electrode longevity. We also highlight the current and future clinical applications and relevance of electrode technology.
Collapse
|
28
|
Wong YT, Ahnood A, Maturana MI, Kentler W, Ganesan K, Grayden DB, Meffin H, Prawer S, Ibbotson MR, Burkitt AN. Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for Electrophysiological Recording From Neural Tissue. Front Bioeng Biotechnol 2018; 6:85. [PMID: 29988378 PMCID: PMC6024013 DOI: 10.3389/fbioe.2018.00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
Neural prostheses that can monitor the physiological state of a subject are becoming clinically viable through improvements in the capacity to record from neural tissue. However, a significant limitation of current devices is that it is difficult to fabricate electrode arrays that have both high channel counts and the appropriate electrical properties required for neural recordings. In earlier work, we demonstrated nitrogen doped ultrananocrystalline diamond (N-UNCD) can provide efficacious electrical stimulation of neural tissue, with high charge injection capacity, surface stability and biocompatibility. In this work, we expand on this functionality to show that N-UNCD electrodes can also record from neural tissue owing to its low electrochemical impedance. We show that N-UNCD electrodes are highly flexible in their application, with successful recordings of action potentials from single neurons in an in vitro retina preparation, as well as local field potential responses from in vivo visual cortex tissue. Key properties of N-UNCD films, combined with scalability of electrode array fabrication with custom sizes for recording or stimulation along with integration through vertical interconnects to silicon based integrated circuits, may in future form the basis for the fabrication of versatile closed-loop neural prostheses that can both record and stimulate.
Collapse
Affiliation(s)
- Yan T. Wong
- Department of Physiology and Department of Electrical and Computer Systems Engineering, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Arman Ahnood
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Matias I. Maturana
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
| | - William Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | | | - David B. Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Science University of Melbourne, Melbourne, VIC, Australia
| | - Steven Prawer
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Science University of Melbourne, Melbourne, VIC, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
30
|
|
31
|
Szostak KM, Grand L, Constandinou TG. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics. Front Neurosci 2017; 11:665. [PMID: 29270103 PMCID: PMC5725438 DOI: 10.3389/fnins.2017.00665] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/15/2017] [Indexed: 01/30/2023] Open
Abstract
Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes-microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.
Collapse
Affiliation(s)
- Katarzyna M. Szostak
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| | - Laszlo Grand
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Timothy G. Constandinou
- Next Generation Neural Interfaces Lab, Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Ung H, Baldassano SN, Bink H, Krieger AM, Williams S, Vitale F, Wu C, Freestone D, Nurse E, Leyde K, Davis KA, Cook M, Litt B. Intracranial EEG fluctuates over months after implanting electrodes in human brain. J Neural Eng 2017; 14:056011. [PMID: 28862995 PMCID: PMC5860812 DOI: 10.1088/1741-2552/aa7f40] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings. APPROACH Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient's recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability. MAIN RESULTS A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant. SIGNIFICANCE These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring.
Collapse
Affiliation(s)
- Hoameng Ung
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
| | - Steven N. Baldassano
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
| | - Hank Bink
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
| | - Abba M Krieger
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shawniqua Williams
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, PA, USA
| | - Dean Freestone
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Ewan Nurse
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - Kent Leyde
- Cascade Medical Devices, Seattle, Washington
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Cook
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Abstract
Polyimide based shaft electrodes were coated with a bioresorbable layer to stiffen them for intracortical insertion and to reduce the mechanical mismatch between the target tissue and the implanted device after degradation of the coating. Molten saccharose was used as coating material. In a proof-of-concept study, the electrodes were implanted into the cortex of Wistar rats and the insertion forces during implantation were recorded. Electrochemical impedance spectroscopy was performed immediately after implantation and up to 13 weeks after implantation to monitor the tissue response to the implanted electrodes. The recorded spectra were modeled with an equivalent circuit to differentiate the influence of the single components. In one rat, a peak in the encapsulation resistance was observable after two weeks of implantation, indicating the peak of the acute inflammatory response. In another rat, the lowest resistances were observed after four weeks, indicating the termination of the acute inflammatory response. Multiunit activity was recorded with an adequate signal to noise ratio to allow spike sorting. Histology was performed after 7, 45 and 201 days of implantation. The results showed the highest tissue reaction after 45 days and confirmed impedance data that acute inflammatory reactions terminate over time.
Collapse
|
34
|
Guo Y, Jiang S, Grena BJB, Kimbrough IF, Thompson EG, Fink Y, Sontheimer H, Yoshinobu T, Jia X. Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces. ACS NANO 2017; 11:6574-6585. [PMID: 28570813 DOI: 10.1021/acsnano.6b07550] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microelectrodes provide a direct pathway to investigate brain activities electrically from the external world, which has advanced our fundamental understanding of brain functions and has been utilized for rehabilitative applications as brain-machine interfaces. However, minimizing the tissue response and prolonging the functional durations of these devices remain challenging. Therefore, the development of next-generation microelectrodes as neural interfaces is actively progressing from traditional inorganic materials toward biocompatible and functional organic materials with a miniature footprint, good flexibility, and reasonable robustness. In this study, we developed a miniaturized all polymer-based neural probe with carbon nanofiber (CNF) composites as recording electrodes via the scalable thermal drawing process. We demonstrated that in situ CNF unidirectional alignment can be achieved during the thermal drawing, which contributes to a drastic improvement of electrical conductivity by 2 orders of magnitude compared to a conventional polymer electrode, while still maintaining the mechanical compliance with brain tissues. The resulting neural probe has a miniature footprint, including a recording site with a reduced size comparable to a single neuron and maintained impedance that was able to capture neural activities. Its stable functionality as a chronic implant has been demonstrated with the long-term reliable electrophysiological recording with single-spike resolution and the minimal tissue response over the extended period of implantation in wild-type mice. Technology developed here can be applied to basic chronic electrophysiological studies as well as clinical implementation for neuro-rehabilitative applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Biomedical Engineering, Tohoku University , Sendai, Miyagi 9808579, Japan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Benjamin J B Grena
- Department of Material Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 24139, United States
| | - Ian F Kimbrough
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 14016, United States
| | - Emily G Thompson
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 14016, United States
| | - Yoel Fink
- Department of Material Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 24139, United States
| | - Harald Sontheimer
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 14016, United States
| | - Tatsuo Yoshinobu
- Department of Biomedical Engineering, Tohoku University , Sendai, Miyagi 9808579, Japan
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| |
Collapse
|
35
|
Moussa HI, Logan M, Siow GC, Phann DL, Rao Z, Aucoin MG, Tsui TY. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:839-856. [PMID: 29152017 PMCID: PMC5678500 DOI: 10.1080/14686996.2017.1388135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 05/04/2023]
Abstract
Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.
Collapse
Affiliation(s)
- Hassan I. Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Geoffrey C. Siow
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Darron L. Phann
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Zheng Rao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Marc G. Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Ting Y. Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
- Corresponding author.
| |
Collapse
|
36
|
Hébert C, Cottance M, Degardin J, Scorsone E, Rousseau L, Lissorgues G, Bergonzo P, Picaud S. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:77-84. [DOI: 10.1016/j.msec.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 01/17/2023]
|
37
|
Patel PR, Zhang H, Robbins MT, Nofar JB, Marshall SP, Kobylarek MJ, Kozai TDY, Kotov NA, Chestek CA. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng 2016; 13:066002. [PMID: 27705958 PMCID: PMC5118062 DOI: 10.1088/1741-2560/13/6/066002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. APPROACH Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. MAIN RESULTS Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. SIGNIFICANCE This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.
Collapse
Affiliation(s)
- Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Etemadi L, Mohammed M, Thorbergsson PT, Ekstrand J, Friberg A, Granmo M, Pettersson LME, Schouenborg J. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. PLoS One 2016; 11:e0155109. [PMID: 27159159 PMCID: PMC4861347 DOI: 10.1371/journal.pone.0155109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/25/2016] [Indexed: 01/03/2023] Open
Abstract
Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.
Collapse
Affiliation(s)
- Leila Etemadi
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mohsin Mohammed
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| | - Palmi Thor Thorbergsson
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joakim Ekstrand
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Annika Friberg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcus Granmo
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lina M. E. Pettersson
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| |
Collapse
|
39
|
Sergi PN, Jensen W, Yoshida K. Interactions among biotic and abiotic factors affect the reliability of tungsten microneedles puncturing in vitro and in vivo peripheral nerves: A hybrid computational approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1089-1099. [DOI: 10.1016/j.msec.2015.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/28/2015] [Accepted: 11/08/2015] [Indexed: 01/05/2023]
|
40
|
Kale RP, Kouzani AZ, Berk J, Walder K, Berk M, Tye SJ. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:1814-1817. [PMID: 28324953 DOI: 10.1109/embc.2016.7591071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200μA, 90μs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.
Collapse
|
41
|
Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. J Neurosci Methods 2015; 258:46-55. [PMID: 26526459 DOI: 10.1016/j.jneumeth.2015.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Two-photon microscopy has enabled the visualization of dynamic tissue changes to injury and disease in vivo. While this technique has provided powerful new information, in vivo two-photon chronic imaging around tethered cortical implants, such as microelectrodes or neural probes, present unique challenges. NEW METHOD A number of strategies are described to prepare a cranial window to longitudinally observe the impact of neural probes on brain tissue and vasculature for up to 3 months. RESULTS It was found that silastic sealants limit cell infiltration into the craniotomy, thereby limiting light scattering and preserving window clarity over time. In contrast, low concentration hydrogel sealants failed to prevent cell infiltration and their use at high concentration displaced brain tissue and disrupted probe performance. COMPARISON WITH EXISTING METHOD(S) The use of silastic sealants allows for a suitable imaging window for long term chronic experiments and revealed new insights regarding the dynamic leukocyte response around implants and the nature of chronic BBB leakage in the sub-dural space. CONCLUSION The presented method provides a valuable tool for evaluating the chronic inflammatory response and the performance of emerging implantable neural technologies.
Collapse
|
42
|
Potter-Baker KA, Stewart WG, Tomaszewski WH, Wong CT, Meador WD, Ziats NP, Capadona JR. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes. J Neural Eng 2015; 12:046002. [PMID: 26015427 PMCID: PMC4510031 DOI: 10.1088/1741-2560/12/4/046002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. APPROACH Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg(-1). The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. MAIN RESULTS Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. SIGNIFICANCE Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.
Collapse
Affiliation(s)
- Kelsey A. Potter-Baker
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| | - Wade G. Stewart
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - William H. Tomaszewski
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - Chun T. Wong
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - William D. Meador
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - Nicholas P. Ziats
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Bldg., Cleveland, OH 44106, USA
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA
| |
Collapse
|
43
|
Patel PR, Na K, Zhang H, Kozai TDY, Kotov NA, Yoon E, Chestek CA. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J Neural Eng 2015; 12:046009. [PMID: 26035638 PMCID: PMC4789140 DOI: 10.1088/1741-2560/12/4/046009] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Single carbon fiber electrodes (d = 8.4 μm) insulated with parylene-c and functionalized with PEDOT pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ∼150 μm pitch. APPROACH Two approaches were tested for the insertion of carbon fiber arrays. The first method used a poly(ethylene glycol) (PEG) coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm-1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. MAIN RESULTS Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in five rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in three acute rat surgeries. In one of those surgeries a stacked device with three layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. SIGNIFICANCE From these studies we have found that carbon fibers spaced at ∼150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response.
Collapse
Affiliation(s)
- Paras R Patel
- Department of Biomedical Engineering, College of Engineering, University of Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Duffy BA, Choy M, Chuapoco MR, Madsen M, Lee JH. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges. Neuroimage 2015. [PMID: 26208873 DOI: 10.1016/j.neuroimage.2015.07.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared to those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality LFP recordings. In order to validate this approach, we use these devices to study optogenetically-induced seizure-like afterdischarges in rats sedated with dexmedetomidine and compare these to sub (seizure) threshold stimulations in the same animals. The results indicate that seizure-like afterdischarges involve several extrahippocampal brain regions that are not recruited by subthreshold optogenetic stimulation of the hippocampus at 20 Hz. Subthreshold stimulation led to activation of the entire ipsilateral hippocampus and septum, whereas afterdischarges additionally produced activations in the contralateral hippocampal formation, neocortex, cerebellum, nucleus accumbens, and thalamus. Although we demonstrate just one application, given the ease of fabrication, we anticipate that carbon fiber optrodes could be utilised in a variety of studies that could benefit from longitudinal optogenetic functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Ben A Duffy
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305 Stanford, CA, USA
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305 Stanford, CA, USA
| | - Miguel R Chuapoco
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305 Stanford, CA, USA
| | - Michael Madsen
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305 Stanford, CA, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305 Stanford, CA, USA; Department of Bioengineering, Stanford University, CA 94305 Stanford, CA, USA; Department of Neurosurgery, Stanford University, CA 94305 Stanford, CA, USA; Department of Electrical Engineering, Stanford University, CA 94305 Stanford, CA, USA.
| |
Collapse
|
45
|
Kozai TDY, Catt K, Du Z, Na K, Srivannavit O, Haque RUM, Seymour J, Wise KD, Yoon E, Cui XT. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans Biomed Eng 2015; 63:111-9. [PMID: 26087481 DOI: 10.1109/tbme.2015.2445713] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Subcellular-sized chronically implanted recording electrodes have demonstrated significant improvement in single unit (SU) yield over larger recording probes. Additional work expands on this initial success by combining the subcellular fiber-like lattice structures with the design space versatility of silicon microfabrication to further improve the signal-to-noise ratio, density of electrodes, and stability of recorded units over months to years. However, ultrasmall microelectrodes present very high impedance, which must be lowered for SU recordings. While poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) coating have demonstrated great success in acute to early-chronic studies for lowering the electrode impedance, concern exists over long-term stability. Here, we demonstrate a new blend of PEDOT doped with carboxyl functionalized multiwalled carbon nanotubes (CNTs), which shows dramatic improvement over the traditional PEDOT/PSS formula. METHODS Lattice style subcellular electrode arrays were fabricated using previously established method. PEDOT was polymerized with carboxylic acid functionalized carbon nanotubes onto high-impedance (8.0 ± 0.1 MΩ: M ± S.E.) 250-μm(2) gold recording sites. RESULTS PEDOT/CNT-coated subcellular electrodes demonstrated significant improvement in chronic spike recording stability over four months compared to PEDOT/PSS recording sites. CONCLUSION These results demonstrate great promise for subcellular-sized recording and stimulation electrodes and long-term stability. SIGNIFICANCE This project uses leading-edge biomaterials to develop chronic neural probes that are small (subcellular) with excellent electrical properties for stable long-term recordings. High-density ultrasmall electrodes combined with advanced electrode surface modification are likely to make significant contributions to the development of long-term (permanent), high quality, and selective neural interfaces.
Collapse
|
46
|
Hofmann UG, Krüger J. The chronic challenge-new vistas on long-term multisite contacts to the central nervous system. FRONTIERS IN NEUROENGINEERING 2015; 8:3. [PMID: 25852537 PMCID: PMC4364247 DOI: 10.3389/fneng.2015.00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Ulrich G Hofmann
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Albert-Ludwigs-University Freiburg Freiburg, Germany ; Cluster of Excellence "BrainLinks-BrainTools" EXC 1086 Freiburg, Germany
| | - Jürgen Krüger
- AG Hirnforschung, Universität Freiburg Freiburg, Germany
| |
Collapse
|