1
|
Morelli L, Serra L, Ricciardiello F, Gligora I, Donadio V, Caprini M, Liguori R, Giannoccaro MP. The role of antibodies in small fiber neuropathy: a review of currently available evidence. Rev Neurosci 2024; 35:877-893. [PMID: 38865989 DOI: 10.1515/revneuro-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Small fiber neuropathy (SFN) is a peripheral nerve condition affecting thin myelinated Aδ and unmyelinated C-fibers, characterized by severe neuropathic pain and other sensory and autonomic symptoms. A variety of medical disorders can cause SFN; however, more than 50% of cases are idiopathic (iSFN). Some investigations suggest an autoimmune etiology, backed by evidence of the efficacy of IVIG and plasma exchange. Several studies suggest that autoantibodies directed against nervous system antigens may play a role in the development of neuropathic pain. For instance, patients with CASPR2 and LGI1 antibodies often complain of pain, and in vitro and in vivo studies support their pathogenicity. Other antibodies have been associated with SFN, including those against TS-HDS, FGFR3, and Plexin-D1, and new potential targets have been proposed. Finally, a few studies reported the onset of SFN after COVID-19 infection and vaccination, investigating the presence of potential antibody targets. Despite these overall findings, the pathogenic role has been demonstrated only for some autoantibodies, and the association with specific clinical phenotypes or response to immunotherapy remains to be clarified. The purpose of this review is to summarise known autoantibody targets involved in neuropathic pain, putative attractive autoantibody targets in iSFN patients, their potential as biomarkers of response to immunotherapy and their role in the development of iSFN.
Collapse
Affiliation(s)
- Luana Morelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Lucrezia Serra
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Fortuna Ricciardiello
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Ilaria Gligora
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Via San Donato, 19/2 - 40126, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura, 3 - 40139, Bologna, Italy
| |
Collapse
|
2
|
Schirò G, Gastaldi M, Iacono S, Scaranzin S, Picciolo V, Arnao V, Ferrari A, Gagliardo C, D'Amelio M. Anti-Collapsin Response Mediator Protein 5(CV2/CRMP5) and Anti-Glutamic Acid Decarboxylase (GAD) Antibodies-Mediated Encephalopathy Mimicking Atypical Parkinsonism. Neurol Int 2024; 16:1849-1855. [PMID: 39728758 DOI: 10.3390/neurolint16060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Paraneoplastic neurological syndromes (PNSs) are rare conditions characterized by immune-mediated pathogenesis, frequently associated with the presence of a neoplasm. Although a single antineuronal antibody mediates a specific syndrome, atypical manifestations mediated by the same antibody have been described. Methods: The aim of this study was to report on an atypical case of PNS with dual positivity for anti-GAD65 and anti-CRMP5/CV2 antibodies, simultaneously characterized by cognitive decline associated with progressive ataxia and parkinsonism. We also reviewed the current literature for published cases of PNSs with parkinsonism associated with anti-GAD65 and anti- CRMP5/CV2 antibodies. Results: A 68-year-old man with an insidious onset of bradykinesia, cognitive decline, and gait instability that began the year before our evaluation had been diagnosed with parkinsonian syndrome. Analysis of the cerebrospinal fluid showed lymphocytic pleocytosis, and a panel for PNS tested positive for anti-GAD65 and anti- CRMP5/CV2 antibodies. After investigation, a microcitoma was found in the lung. Conclusions: In light of our findings, we suggest considering PNS as an alternative diagnosis to parkinsonism-plus syndromes, in particular if bradykinetic syndrome is accompanied by other clinical manifestations including cognitive decline or ataxia in rapidly deteriorating patients. Earlier detection of PNS would lead to timelier identification of any occult tumors, therein promising improvement in the patient's prognosis.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Salvatore Iacono
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Silvia Scaranzin
- Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Valentina Picciolo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Valentina Arnao
- UO Neurologia e Stroke Unit, Azienda di Rilievo Nazionale ad Alta Specializzazione, Ospedali Civico Di Cristina Benfratelli, 90134 Palermo, Italy
| | - Anita Ferrari
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Marco D'Amelio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
3
|
He Y, Li F, Yang A, Yu C, Wang Y, Zhao J, Zang W. Validation of the clinical assessment scale for autoimmune encephalitis in a severe autoimmune encephalitis cohort. Front Immunol 2024; 15:1490804. [PMID: 39687624 PMCID: PMC11646836 DOI: 10.3389/fimmu.2024.1490804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Objective The Clinical Assessment Scale for Autoimmune Encephalitis (CASE) is a novel tool tailored specifically for evaluating the severity of autoimmune encephalitis (AE). However, its application in severe AE patients is limited. This study aimed to evaluate the reliability and validity of the CASE and explore its clinical significance in a severe AE cohort. Methods The relevant clinical characteristics, laboratory data, and prognosis of patients diagnosed with severe AE between April 2017 and April 2023 were collected. The CASE and modified Rankin scale (mRS) were performed at admission, discharge, and 1-year follow-up, respectively. The reliability of CASE was validated by calculating the Cronbach's alpha value. The validity was evaluated by calculating the Spearman's rank correlation with the corresponding mRS. Univariate and multivariate logistic regression were utilized to identify risk factors for poor prognosis. Results A total of 140 patients were recruited for the study. The CASE scale presented great internal consistency, with Cronbach's α value of 0.768 for the total score. The Spearman's rank correlation analysis revealed strong criterion validity between CASE and mRS, with coefficients of 0.68, 0.92, and 0.95 at admission, discharge, and 1-year follow-up, respectively (all p < 0.001). ROC analysis identified CASE score at admission served as a promising predictive marker for clinical response to treatment, with an AUC of 0.67 (95% CI: 0.57-0.77, p = 0.003). The optimal cut-off point was 22.5. At 1-year follow-up, 72/140 (51.4%) patients achieved good functional status (mRS, 0-2). Multivariate logistic regression confirmed that higher CASE scores on admission and older age at onset were associated with poor short-term as well as 1-year prognosis, respectively. In addition, no clinical response to treatment (OR = 40.499; 95% CI: 7.077-231.746, p < 0.001) and longer duration of hospitalization (OR = 1.071; 95% CI: 1.017-1.128, p = 0.010) were associated with poor function states at 1-year follow-up. Conclusion The CASE has proven suitable for evaluating disease severity and prognosis in severe AE patients. Besides, CASE score, age at disease onset, hospital stays, and response to immunotherapy are identified as independent risk factors for unsatisfactory prognosis in severe AE patients.
Collapse
Affiliation(s)
- Yu He
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
| | - Fangfang Li
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ali Yang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Chen Yu
- Department of Medical Imaging, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yifan Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
| | - Weizhou Zang
- Department of Neurology, Henan University People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
4
|
de Freitas Dias B, Toso FF, Barreto MESF, Dellavance A, Thomaz RB, Kowacs PA, Teive H, Spitz M, Juliano AFB, Rocha LJDA, Granja VNT, Braga-Neto P, Nóbrega PR, Oliveira-Filho J, Dias RM, Amoras JAP, Pereira RBR, Júnior CDOG, Maia FM, Santos ML, de Melo ES, Júnior AWDN, Lin K, Paolilo RB, Krueger MB, Barsottini OGP, Endmayr V, Andrade LEC, Hoftberger R, Dutra LA. Frequency of anti-MOG antibodies in serum and CSF of patients with possible autoimmune encephalitis: Results from a Brazilian multicentric study. Mult Scler Relat Disord 2024; 92:106171. [PMID: 39579646 DOI: 10.1016/j.msard.2024.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/06/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION MOGAD encephalitis and ADEM share several clinical features with autoimmune encephalitis (AE) associated with antineuronal antibodies (ANeA); nonetheless, treatment and prognosis differ. Anti-MOG antibodies (abs) are not routinely tested in possible AE, and epidemiological studies on MOGAD encephalitis are scarce. OBJECTIVES To determine the frequency of anti-MOG abs in the serum and CSF in a cohort of possible AE and to compare the clinical characteristics of MOGAD patients and those with seropositive AE. METHODS 481 patients with possible AE from the Brazilian Autoimmune Encephalitis Network underwent tissue-based assay and cell-based assay (CBA) for ANeA. Anti-MOG abs were assessed in serum and CSF with in-house CBA. Clinical and laboratory characteristics of MOGAD and seropositive AE patients were compared. RESULTS Of the 481 patients, 87 (18 %) had ANeA, and 17 (3.5 %) had anti-MOG abs. Three AE patients with anti-MOG abs and ANeA were excluded from further analysis. Anti-MOG abs were detected in 4 (1.2 %) of the 328 adults and 10 (6.5 %) of the 153 children. Of the 14 patients with MOGAD, nine had ADEM (mostly children), and five had encephalitis (including three adults). Only one patient with ADEM had anti-MOG abs exclusively in CSF. All patients with MOGAD encephalitis were seropositive for anti-MOG abs, and three had normal brain MRI. Patients with MOGAD had fewer behavioral changes (MOGAD 21 % x AE 96 %, p ≤ 0.0001) and movement disorders (MOGAD 42 % x AE 81 %, p = 0.0017) and more demyelinating symptoms, such as myelitis and optic neuritis (MOGAD 14 % x AE 0 %, p = 0.013). CONCLUSION Approximately 3.5 % of patients with possible AE harbor anti-MOG abs, and 0.9 % of the adults had MOGAD encephalitis. Anti-MOG abs were more frequent than other ANeAs regularly tested in AE. We provide evidence that MOGAD is a differential diagnosis in possible AE, even in adult patients with normal brain MRI, and that serum anti-MOG should be considered as an add-on diagnostic tool in AE among adults and pediatric patients.
Collapse
Affiliation(s)
| | - Fabio Fieni Toso
- Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | | | | | - Hélio Teive
- Serviço de Neurologia, Departamento de Clínica Médica, Hospital das Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mariana Spitz
- Hospital Universitário Pedro Ernesto da Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Letícia Januzi de Almeida Rocha
- Hospital Universitário Professor Alberto Antunes da Faculdade de Medicina da Universidade Federal de Alagoas, EBSERH, Maceió, Brazil
| | | | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Paulo Ribeiro Nóbrega
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | | - Katia Lin
- Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | | | - Romana Hoftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Lívia Almeida Dutra
- Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| |
Collapse
|
5
|
Yamahara N, Takekoshi A, Kimura A, Shimohata T. Autoimmune Encephalitis and Paraneoplastic Neurological Syndromes with Progressive Supranuclear Palsy-like Manifestations. Brain Sci 2024; 14:1012. [PMID: 39452025 PMCID: PMC11506429 DOI: 10.3390/brainsci14101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Advances in diagnostic procedures have led to an increasing rate of diagnosis of autoimmune encephalitis or paraneoplastic neurological syndrome (AE/PNS) among patients with progressive supranuclear palsy (PSP)-like manifestations. METHODS In this narrative review, we first discuss the clinical characteristics of AE/PNS in comparison to those of PSP, followed by a discussion of diagnosis and treatment. RESULTS The antibodies involved in these conditions include anti-IgLON5, -Ma2, and -Ri antibodies, each of which has a characteristic clinical presentation. The steps in the diagnosis of AE/PNS in patients with PSP-like manifestations include (i) suspicion of AE/PNS based on clinical presentations atypical of PSP and (ii) antibody detection measures. Methods used to identify antibodies include a combination of tissue-based assays and confirmatory tests. The primary confirmatory tests include cell-based assays and immunoblotting. Treatments can be divided into immunotherapy and tumor therapies, the former of which includes acute and maintenance therapies. CONCLUSIONS One of the major challenges of diagnosis is that existing reports on PSP-like patients with AE/PNS include only case reports, with the majority discussing antibodies other than anti-IgLON5 antibody. As such, more patients need to be evaluated to establish the relationship between antibodies and PSP-like manifestations.
Collapse
Affiliation(s)
| | | | | | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan; (N.Y.); (A.T.); (A.K.)
| |
Collapse
|
6
|
Jiang F, Cai H, Li H, Yin W, Ouyang S, Hu J, Tu E, Fu K, Yin J, Zhao Z, Yang J, Zeng Q, Yang H. Clinical characteristics of double negative atypical inflammatory demyelinating disease: A prospective study. Ann Clin Transl Neurol 2024; 11:2769-2784. [PMID: 39222463 PMCID: PMC11514904 DOI: 10.1002/acn3.52191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the clinical characteristics and predictors of relapse in double negative atypical inflammatory demyelinating disease (IDD) and to explore potential antigenic targets by tissue-based assays (TBA) using rat brain indirect immunofluorescence. METHODS We compared the clinical, laboratory, and MRI data of double negative atypical IDD with other IDD patients. Serum samples were collected for TBA. The predictors of relapse were examined over a minimum of 24 months follow-up. RESULTS In our cohort of 98 patients with double negative atypical IDD, there was no significant female predominance (58.2%, 57/98). The lesions primarily affected the spinal cord and brain stem, with fewer cases of involvement in the area postrema (5.1%, 5/98) and longitudinally extensive transverse myelitis (43.9%, 43/98). A total of 62.5% (50/80) patients tested positive for anti-astrocyte antibodies based on rat brain TBA. Over a median duration of 39.5 months, 80 patients completed the entire follow-up, and 47.5% (38/80) patients exhibited monophasic course. A total of 36% (18/50) patients positively for anti-astrocyte antibodies had a monophasic course, which is significantly lower than patients negatively for anti-astrocyte antibodies (66.7%, 20/30) (p = 0.008). The presence of anti-astrocyte antibodies (hazard ratio (HR), 2.243; 95% CI, 1.087-4.627; p = 0.029) and ≥4 cerebrum lesions at first attack (HR, 2.494; 95% CI, 1.224-5.078; p = 0.012) were risk factors for disease relapse, while maintenance immunotherapy during remission (HR, 0.361; 95% CI, 0.150-0.869; p = 0.023) was protective factor. INTERPRETATION Double negative atypical IDD are unique demyelinating diseases with a high relapse rate. Maintenance immunotherapy is helpful to the prevention of relapse, particularly in patients with anti-astrocyte antibodies or ≥4 cerebrum lesions at first attack.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| | - Haobing Cai
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| | - Hongliang Li
- Department of Acupuncture and Tuina RehabilitationThe First Hospital of Hunan University of Chinese MedicineChangsha410000HunanP.R. China
| | - Weifan Yin
- Department of Neurology, The Second Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- The “Double‐First Class” Application Characteristic Discipline of Hunan Province (Clinical Medicine) Changsha Medical UniversityChangsha410000HunanP.R. China
| | - Song Ouyang
- The “Double‐First Class” Application Characteristic Discipline of Hunan Province (Clinical Medicine) Changsha Medical UniversityChangsha410000HunanP.R. China
- Department of Neurology, The affiliated Changsha Hospital of Xiangya School of MedicineCentral South UniversityChangsha410000HunanP.R. China
| | - Jue Hu
- Department of NeurologyChangsha Central HospitalChangsha410000HunanP.R. China
| | - Ewen Tu
- Department of NeurologyHunan Provincial Brain Hospital (Hunan Second People's Hospital)Changsha410000HunanP.R. China
| | - Ke Fu
- Department of NeurologyHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410000HunanP.R. China
| | - Junjie Yin
- Department of NeurologyHunan University of Medicine General HospitalHuaihua418000HunanP.R. China
| | - Zhen Zhao
- Department of Neurology, Zhuzhou Hospital Affiliated to Xiangya Medical CollegeCentral South UniversityZhuzhou412000HunanP.R. China
| | - Jieyu Yang
- Department of Social WorkChangsha Social Work CollegeChangsha410004HunanP.R. China
| | - Qiuming Zeng
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| | - Huan Yang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| |
Collapse
|
7
|
Mathias A, Perriot S, Jones S, Canales M, Bernard-Valnet R, Gimenez M, Torcida N, Oberholster L, Hottinger AF, Zekeridou A, Theaudin M, Pot C, Du Pasquier R. Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases. Front Immunol 2024; 15:1419712. [PMID: 39114659 PMCID: PMC11303155 DOI: 10.3389/fimmu.2024.1419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objectives Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Methods Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Results Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Conclusion Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Sylvain Perriot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Samuel Jones
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Mathieu Canales
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Nathan Torcida
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Larise Oberholster
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Andreas F. Hottinger
- Lundin Family Brain Tumor Research Centre, Department of Clinical Neurosciences and Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology and Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Marie Theaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Dutra LA, Silva PVDC, Ferreira JHF, Marques AC, Toso FF, Vasconcelos CCF, Brum DG, Pereira SLDA, Adoni T, Rocha LJDA, Sampaio LPDB, Sousa NADC, Paolilo RB, Pizzol AD, Costa BKD, Disserol CCD, Pupe C, Valle DAD, Diniz DS, Abrantes FFD, Schmidt FDR, Cendes F, Oliveira FTMD, Martins GJ, Silva GD, Lin K, Pinto LF, Santos MLSF, Gonçalves MVM, Krueger MB, Haziot MEJ, Barsottini OGP, Nascimento OJMD, Nóbrega PR, Proveti PM, Castilhos RMD, Daccach V, Glehn FV. Brazilian consensus recommendations on the diagnosis and treatment of autoimmune encephalitis in the adult and pediatric populations. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-15. [PMID: 39089672 DOI: 10.1055/s-0044-1788586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Autoimmune encephalitis (AIE) is a group of inflammatory diseases characterized by the presence of antibodies against neuronal and glial antigens, leading to subacute psychiatric symptoms, memory complaints, and movement disorders. The patients are predominantly young, and delays in treatment are associated with worse prognosis. OBJECTIVE With the support of the Brazilian Academy of Neurology (Academia Brasileira de Neurologia, ABN) and the Brazilian Society of Child Neurology (Sociedade Brasileira de Neurologia Infantil, SBNI), a consensus on the diagnosis and treatment of AIE in Brazil was developed using the Delphi method. METHODS A total of 25 panelists, including adult and child neurologists, participated in the study. RESULTS The panelists agreed that patients fulfilling criteria for possible AIE should be screened for antineuronal antibodies in the serum and cerebrospinal fluid (CSF) using the tissue-based assay (TBA) and cell-based assay (CBA) techniques. Children should also be screened for anti-myelin oligodendrocyte glucoprotein antibodies (anti-MOG). Treatment should be started within the first 4 weeks of symptoms. The first-line option is methylprednisolone plus intravenous immunoglobulin (IVIG) or plasmapheresis, the second-line includes rituximab and/or cyclophosphamide, while third-line treatment options are bortezomib and tocilizumab. Most seizures in AIE are symptomatic, and antiseizure medications may be weaned after the acute stage. In anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, the panelists have agreed that oral immunosuppressant agents should not be used. Patients should be evaluated at the acute and postacute stages using functional and cognitive scales, such as the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Modified Rankin Scale (mRS), and the Clinical Assessment Scale in Autoimmune Encephalitis (CASE). CONCLUSION The present study provides tangible evidence for the effective management of AIE patients within the Brazilian healthcare system.
Collapse
Affiliation(s)
- Lívia Almeida Dutra
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, São Paulo SP, Brazil
| | | | | | | | - Fabio Fieni Toso
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, São Paulo SP, Brazil
| | | | - Doralina Guimarães Brum
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Neurologia, Psicologia e Psiquiatria, Botucatu SP, Brazil
| | - Samira Luisa Dos Apóstolos Pereira
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Tarso Adoni
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | | | | | | | - Renata Barbosa Paolilo
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto da Criança, São Paulo SP, Brazil
| | - Angélica Dal Pizzol
- Hospital Moinhos de Vento, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Bruna Klein da Costa
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brazil
- Santa Casa de Misericórdia de Porto Alegre, Porto Alegre RS, Brazil
| | - Caio César Diniz Disserol
- Universidade Federal do Paraná, Hospital das Clínicas, Curitiba PR, Brazil
- Instituto de Neurologia de Curitiba, Curitiba PR, Brazil
| | - Camila Pupe
- Universidade Federal Fluminense, Niterói RJ, Brazil
| | | | | | | | | | | | | | | | - Guilherme Diogo Silva
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Katia Lin
- Universidade Federal de Santa Catarina, Florianópolis SC, Brazil
| | - Lécio Figueira Pinto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | | | | - Vanessa Daccach
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto SP, Brazil
| | | |
Collapse
|
9
|
Zhong X, Yuan Y, Zhan Q, Yin T, Ku C, Liu Y, Wang F, Ding Y, Deng L, Wu W, Xie L. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med 2024; 20:941-946. [PMID: 38318919 PMCID: PMC11145039 DOI: 10.5664/jcsm.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
STUDY OBJECTIVES Narcolepsy type 1 is attributed to a deficiency in cerebrospinal fluid orexin and is considered linked to autoimmunity. The levels of anti-Tribbles homolog 2 (TRIB2) autoantibodies are elevated in the sera of some patients with narcolepsy with cataplexy. Additionally, injecting mice with serum immunoglobulin from patients with narcolepsy with positive anti-TRIB2 antibodies can induce hypothalamic neuron loss and alterations in sleep patterns. Consequently, we hypothesized the existence of a potential association between anti-TRIB2 antibodies and narcolepsy. To test this possibility, we used cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs) to detect the presence of anti-TRIB2 antibodies in Chinese patients with narcolepsy. METHODS We included 68 patients with narcolepsy type 1, 39 patients with other central disorders of hypersomnolence, and 43 healthy controls. A CBA and a conventional ELISA were used to detect anti-TRIB2 antibody levels in patients' sera. RESULTS CBA was used to detect serum anti-TRIB2 antibodies in Chinese patients with narcolepsy, and the results were negative. However, when the ELISA was used, only 2 patients with narcolepsy type 1 had TRIB2 antibody titers higher than the mean titer plus 2 standard deviations of the healthy controls. CONCLUSIONS In our study, ELISA identified TRIB2 autoantibodies in sera of patients with narcolepsy where CBA failed to demonstrate them. Contrary to our hypothesis, this intriguing finding deserves further research to elucidate the potential association between TRIB2 and narcolepsy type 1. Exploring the implications of TRIB2 autoantibodies in narcolepsy and disparate outcomes between ELISA and CBA could provide crucial insights. CITATION Zhong X, Yuan Y, Zhan Q, et al. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med. 2024;20(6):941-946.
Collapse
Affiliation(s)
- Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yuqing Yuan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Tiantian Yin
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Chengxin Ku
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yuxin Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Fen Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Yongmin Ding
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Liying Deng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
10
|
Mo Y, Ye Y, Peng L, Sun X, Zhong X, Wu R. The central helicase domain holds the major conformational epitopes of melanoma differentiation-associated gene 5 autoantibodies. Rheumatology (Oxford) 2024; 63:1456-1465. [PMID: 37551942 PMCID: PMC11065446 DOI: 10.1093/rheumatology/kead397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
OBJECTIVE Autoantibodies against MDA5 (melanoma differentiation-associated protein 5) serve as a biomarker for DM (dermatomyositis) and indicate a risk factor for interstitial lung disease (ILD). MDA5 is a protein responsible for sensing RNA virus infection and activating signalling pathways against it. However, little is known about the antigen epitopes on MDA5 autoantibodies. We aimed to determine the interaction of the MDA5 autoantibody-antigen epitope. METHODS Cell-based assays (CBAs), immunoprecipitation-immunoblot assays, and various immunoblotting techniques were used in the study. RESULTS We demonstrated that DM patient autoantibodies recognize MDA5 epitopes in a native conformation-dependent manner. Furthermore, we identified the central helicase domain (3Hel) formed by Hel1, Hel2i, Hel2, and pincer as the major epitopes. As proof of principle, the purified 3Hel efficiently absorbed MDA5 autoantibodies from patient sera through immunoprecipitation-immunoblot assay. CONCLUSION Our study uncovered the nature of the antigen epitopes on MDA5 and can provide guidance for diagnosis and a targeted therapeutic approach development.
Collapse
Affiliation(s)
- Yongxin Mo
- Department of Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaofen Zhong
- Department of Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Wu
- Department of Rehabilitation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Gilligan M, McGuigan C, McKeon A. Autoimmune central nervous system disorders: Antibody testing and its clinical utility. Clin Biochem 2024; 126:110746. [PMID: 38462203 PMCID: PMC11016295 DOI: 10.1016/j.clinbiochem.2024.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A rapidly expanding repertoire of neural antibody biomarkers exists for autoimmune central nervous system (CNS) disorders. Following clinical recognition of an autoimmune CNS disorder, the detection of a neural antibody facilitates diagnosis and informs prognosis and management. This review considers the phenotypes, diagnostic assay methodologies, and clinical utility of neural antibodies in autoimmune CNS disorders. Autoimmune CNS disorders may present with a diverse range of clinical features. Clinical phenotype should inform the neural antibodies selected for testing via the use of phenotype-specific panels. Both serum and cerebrospinal fluid (CSF) are preferred in the vast majority of cases but for some analytes either CSF (e.g. N-methyl-D-aspartate receptor [NMDA-R] IgG) or serum (e.g. aquaporin-4 [AQP4] IgG) specimens may be preferred. Screening using 2 methods is recommended for most analytes, particularly paraneoplastic antibodies. We utilize murine tissue-based indirect immunofluorescence assay (TIFA) with subsequent confirmatory protein-specific testing. The cellular location of the target antigen informs choice of confirmatory diagnostic assay (e.g. blot for intracellular antigens such as Hu; cell-based assay for cell surface targets such as leucine-rich glioma inactivated 1 [LGI1]). Titers of positive results have limited diagnostic utility with the exception of glutamic acid decarboxylase (GAD) 65 IgG autoimmunity, which is associated with neurological disease at higher values. While novel antibodies are typically discovered using established techniques such as TIFA and immunoprecipitation-mass spectrometry, more recent high-throughput molecular technologies (such as protein microarray and phage-display immunoprecipitation sequencing) may expedite the process of antibody discovery. Individual neural antibodies inform the clinician regarding the clinical associations, oncological risk stratification and tumor histology, the likely prognosis, and immunotherapy choice. In the era of neural antibody biomarkers for autoimmune CNS disorders, access to appropriate laboratory assays for neural antibodies is of critical importance in the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Michael Gilligan
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | | | - Andrew McKeon
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Budhram A, Flanagan EP. Optimizing the diagnostic performance of neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:365-382. [PMID: 38494290 DOI: 10.1016/b978-0-12-823912-4.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The detection of neural antibodies in patients with paraneoplastic and autoimmune encephalitis has majorly advanced the diagnosis and management of neural antibody-associated diseases. Although testing for these antibodies has historically been restricted to specialized centers, assay commercialization has made this testing available to clinical chemistry laboratories worldwide. This improved test accessibility has led to reduced turnaround time and expedited diagnosis, which are beneficial to patient care. However, as the utilization of these assays has increased, so too has the need to evaluate how they perform in the clinical setting. In this chapter, we discuss assays for neural antibody detection that are in routine use, draw attention to their limitations and provide strategies to help clinicians and laboratorians overcome them, all with the aim of optimizing neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice.
Collapse
Affiliation(s)
- Adrian Budhram
- Department of Clinical Neurological Sciences, Western University, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London Health Sciences Centre, London, ON, Canada.
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Ryding M, Mikkelsen AW, Nissen MS, Nilsson AC, Blaabjerg M. Pathophysiological Effects of Autoantibodies in Autoimmune Encephalitides. Cells 2023; 13:15. [PMID: 38201219 PMCID: PMC10778077 DOI: 10.3390/cells13010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The heterogeneity of autoantibody targets in autoimmune encephalitides presents a challenge for understanding cellular and humoral pathophysiology, and the development of new treatment strategies. Thus, current treatment aims at autoantibody removal and immunosuppression, and is primarily based on data generated from other autoimmune neurological diseases and expert consensus. There are many subtypes of autoimmune encephalitides, which now entails both diseases with autoantibodies targeting extracellular antigens and classical paraneoplastic syndromes with autoantibodies targeting intracellular antigens. Here, we review the current knowledge of molecular and cellular effects of autoantibodies associated with autoimmune encephalitis, and evaluate the evidence behind the proposed pathophysiological mechanisms of autoantibodies in autoimmune encephalitis.
Collapse
Affiliation(s)
- Matias Ryding
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne With Mikkelsen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | | | - Anna Christine Nilsson
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | - Morten Blaabjerg
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark;
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), 5000 Odense, Denmark
| |
Collapse
|
15
|
Huang KY, Wu CL, Chang YS, Huang WY, Su FC, Lin SW, Chien YY, Weng WC, Wei YC. Elevated plasma neurofilament light chain in immune-mediated neurological disorders (IMND) detected by immunomagnetic reduction (IMR). Brain Res 2023; 1821:148587. [PMID: 37739331 DOI: 10.1016/j.brainres.2023.148587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND In cases of immune-mediated neurological disorders (IMND), different syndromes are associated with antibodies against neuronal surface antigens, intra-neuronal antigens, astrocytic aquaporin, and gangliosides. These autoantibodies can be pathogenic or connected to neuroinflammation and resulting neuronal injuries. This study aims to identify a blood biomarker that can detect neuronal damage in individuals with IMND. To this end, we use immunomagnetic reduction (IMR) nanobead technology to measure plasma neurofilament light chain (NfL). METHODS The patients with IMND were enrolled in the Chang Gung Memorial Hospital at Keelung from 2018 to 2023. Seronegative patients were excluded based on the results of antibody tests. The healthy controls (HC) were community-dwelling adults from the Northeastern Taiwan Community Medicine Research Cohort (NTCMRC) conducted by the Community Medicine Research Center of the Keelung CGMH from 2020 to 2022. IMR technique detects magnetic susceptibility via measuring magnetic signal reduction caused by antigen-antibody immunocomplex formation on magnetic nanobeads. The plasma level of NfL was determined by the magnetic susceptibility changes in IMR. RESULTS The study enrolled 57 IMND patients from the hospital and 73 HC participants from the communities. The plasma NfL was significantly higher in the IMND than in the HC (11.022 ± 2.637 vs. 9.664 ± 2.610 pg/mL, p = 0.004), regardless of age effects on plasma NfL in an analysis of covariance (ANCOVA) (F = 0.720, p = 0.950). In the receiver of operation curve analysis, the area under curve for plasma NfL to discriminate IMND and HC was 0.664 (95% CI = 0.549 to 0.739, p = 0.005). The subgroup analysis of plasma NfL in the IMND patients showed no difference between peripheral immune-mediated neuropathy (IMN) and central immune-mediated encephalomyelitis (IMEM) (11.331 ± 2.895 vs. 10.627 ± 2.260 pg/mL, p = 0.322), nor between tumor and non-tumor IMND (10.784 ± 3.446 vs. 11.093 ± 2.391 pg/mL, p = 0.714). Additionally, the antibody class of ganglioside antibodies in IMN did not have an impact on plasma NfL level (p = 0.857). CONCLUSION Plasma NfL measurement is a reliable indicator of axonal injuries in patients with IMND. It is equally effective in detecting nerve injuries in inflammatory peripheral neuropathies and central neuroinflammation. The IMR nanobead technology offers a feasible method of detecting plasma NfL, which helps identify axonal injuries in IMND.
Collapse
Affiliation(s)
- Kuan-Yu Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chia-Lun Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yueh-Shih Chang
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Feng-Chieh Su
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shun-Wen Lin
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yu-Yi Chien
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Chieh Weng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| |
Collapse
|
16
|
Wang Z, Zhang Q, Wang Y, Zhu M, Li Q. A framework for immunofluorescence image augmentation and classification based on unsupervised attention mechanism. JOURNAL OF BIOPHOTONICS 2023; 16:e202300209. [PMID: 37559356 DOI: 10.1002/jbio.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Autoimmune encephalitis (AE) is a common neurological disorder. As a standard method for neuroautoantibody detection, pathologists use tissue matrix assays (TBA) for initial disease screening. In this study, microscopic fluorescence imaging was combined with deep learning to improve AE diagnostic accuracy. Due to the inter-class imbalance of medical data, we propose an innovative generative adversarial network supplemented with attention mechanisms to highlight key regions in images to synthesize high-quality fluorescence images. However, securing annotated medical data is both time-consuming and costly. To circumvent this problem, we employ a self-supervised learning approach that utilizes unlabeled fluorescence data to support downstream classification tasks. To better understand the fluorescence properties in the data, we introduce a multichannel input convolutional neural network that adds additional channels of fluorescence intensity. This study builds an AE immunofluorescence dataset and obtains the classification accuracy of 88.5% using our method, thus confirming the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Ziyi Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
- Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, China
| | - Qing Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
- Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, China
| | - Yan Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
- Engineering Center of SHMEC for Space Information and GNSS, Shanghai, China
| | - Min Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingli Li
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
- Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, China
- Engineering Center of SHMEC for Space Information and GNSS, Shanghai, China
| |
Collapse
|
17
|
Eisele A, Schwager M, Bögli SY, Reichen I, Dargvainiene J, Wandinger KP, Imbach L, Haeberlin M, Keller E, Jelcic I, Galovic M, Brandi G. The role of neuronal antibodies in cryptogenic new onset refractory status epilepticus. Epilepsia 2023; 64:e229-e236. [PMID: 37607299 DOI: 10.1111/epi.17755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Most cases with new onset refractory status epilepticus (NORSE) remain cryptogenic despite extensive diagnostic workup. The aim of this study was to analyze the etiology and clinical features of NORSE and investigate known or potentially novel autoantibodies in cryptogenic NORSE (cNORSE). We retrospectively assessed the medical records of adults with status epilepticus at a Swiss tertiary referral center between 2010 and 2021. Demographic, diagnostic, therapeutic, and outcome parameters were characterized. We performed post hoc screening for known or potentially novel autoantibodies including immunohistochemistry (IHC) on rat brain with cerebrospinal fluid (CSF) and serum samples of cNORSE. Twenty patients with NORSE were identified. Etiologies included infections (n = 4), Creutzfeldt-Jakob disease (n = 1), CASPR2 autoimmune encephalitis (n = 1), and carotid artery stenosis with recurrent perfusion deficit (n = 1). Thirteen cases (65%) were cryptogenic despite detailed evaluation. A posteriori IHC for neuronal autoantibodies yielded negative results in all available serum (n = 11) and CSF (n = 9) samples of cNORSE. Our results suggest that neuronal antibodies are unlikely to play a major role in the pathogenesis of cNORSE. Future studies should rather focus on other-especially T-cell- and cytokine-mediated-mechanisms of autoinflammation in this devastating disease, which is far too poorly understood so far.
Collapse
Affiliation(s)
- Amanda Eisele
- Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Schwager
- Institute for Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Yu Bögli
- Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ina Reichen
- Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
| | - Marcellina Haeberlin
- Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Institute for Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ilijas Jelcic
- Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian Galovic
- Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Giovanna Brandi
- Institute for Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
de Freitas Dias B, Fieni Toso F, Slhessarenko Fraife Barreto ME, de Araújo Gleizer R, Dellavance A, Kowacs PA, Teive H, Spitz M, Freire Borges Juliano A, Januzi de Almeida Rocha L, Braga-Neto P, Ribeiro Nóbrega P, Oliveira-Filho J, Maciel Dias R, de Oliveira Godeiro Júnior C, Martins Maia F, Barbosa Thomaz R, Santos ML, Sousa de Melo E, da Nóbrega Júnior AW, Lin K, Graziani Povoas Barsottini O, Endmayr V, Coelho Andrade LE, Höftberger R, Almeida Dutra L. Brazilian autoimmune encephalitis network (BrAIN): antibody profile and clinical characteristics from a multicenter study. Front Immunol 2023; 14:1256480. [PMID: 37954587 PMCID: PMC10634608 DOI: 10.3389/fimmu.2023.1256480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 11/14/2023] Open
Abstract
Background The frequency of antibodies in autoimmune encephalitis (AIE) may vary in different populations, however, data from developing countries are lacking. To describe the clinical profile of AIE in Brazil, and to evaluate seasonality and predictors of AIE in adult and pediatric patients. Methods We evaluated patients with possible AIE from 17 centers of the Brazilian Autoimmune Encephalitis Network (BrAIN) between 2018 and 2022. CSF and serum were tested with TBAs and CBAs. Data on clinical presentation, complementary investigation, and treatment were compiled. Seasonality and predictors of AIE in adult and pediatric populations were analyzed. Results Of the 564 patients, 145 (25.7%) were confirmed as seropositive, 69 (12.23%) were seronegative according to Graus, and 58% received immunotherapy. The median delay to diagnosis confirmation was 5.97 ± 10.3 months. No seasonality variation was observed after 55 months of enrolment. The following antibodies were found: anti-NMDAR (n=79, 54%), anti-MOG (n=14, 9%), anti-LGI1(n=12, 8%), anti-GAD (n=11, 7%), anti-GlyR (n=7, 4%), anti-Caspr2 (n=6, 4%), anti-AMPAR (n=4, 2%), anti-GABA-BR (n=4, 2%), anti-GABA-AR (n=2, 1%), anti-IgLON5 (n=1, 1%), and others (n=5, 3%). Predictors of seropositive AIE in the pediatric population (n=42) were decreased level of consciousness (p=0.04), and chorea (p=0.002). Among adults (n=103), predictors of seropositive AIE were movement disorders (p=0.0001), seizures (p=0.0001), autonomic instability (p=0.026), and memory impairment (p=0.001). Conclusion Most common antibodies in Brazilian patients are anti-NMDAR, followed by anti-MOG and anti-LGI1. Only 26% of the possible AIE patients harbor antibodies, and 12% were seronegative AIE. Patients had a 6-month delay in diagnosis and no seasonality was found. Findings highlight the barriers to treating AIE in developing countries and indicate an opportunity for cost-effect analysis. In this scenario, some clinical manifestations help predict seropositive AIE such as decreased level of consciousness, chorea, and dystonia among children, and movement disorders and memory impairment among adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helio Teive
- Hospital Universitário da Universidade Federal do Paraná, Curitiba, Brazil
| | - Mariana Spitz
- Hospital Universitário Pedro Ernesto da Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Paulo Ribeiro Nóbrega
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | - Katia Lin
- Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
19
|
Villagrán-García M, Farina A, Muñiz-Castrillo S, Wucher V, Dhairi M, Timestit N, Ciano-Petersen NL, Vogrig A, Picard G, Benaiteau M, Psimaras D, Petrova AV, Alberto T, Aupy J, Giry M, Rogemond V, Desestret V, Joubert B, Honnorat J. Revisiting anti-Hu paraneoplastic autoimmunity: phenotypic characterization and cancer diagnosis. Brain Commun 2023; 5:fcad247. [PMID: 37794924 PMCID: PMC10546956 DOI: 10.1093/braincomms/fcad247] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Anti-Hu are the most frequent antibodies in paraneoplastic neurological syndromes, mainly associated with an often limited stage small cell lung cancer. The clinical presentation is pleomorphic, frequently multifocal. Although the predominant phenotypes are well characterized, how different neurological syndromes associate is unclear. Likewise, no specific study assessed the performance of new-generation CT and PET scanners for cancer screening in these patients. Herein, we aimed to describe the clinical pattern and cancer screening in a retrospective cohort of 466 patients with anti-Hu autoimmunity from the French Reference Centre on Paraneoplastic Neurological Syndromes registry. Clinical presentation, cancer screening and diagnosis were analysed. Among the 466 patients, 220 (54%) had multifocal neurological involvement. A hierarchical cluster analysis grouped the patients into (i) mainly limbic encephalitis, (ii) predominantly peripheral neuropathy and (iii) broad involvement of the nervous system (mixed group). Compared with limbic encephalitis and mixed groups, patients in the neuropathy group more frequently had a chronic onset of symptoms (29 versus 13 and 17%), elevated CSF proteins (83 versus 47 and 67%) and died from cancer progression (67 versus 15 and 28%; all P < 0.05). No significant difference in overall survival was observed between groups. Dysautonomia and brainstem signs were associated with a higher risk of death from the neurological cause; cancer diagnosis was the main predictor of all-cause death, especially when diagnosed within 2 years from clinical onset (all P < 0.05). Three hundred and forty-nine (75%) patients had cancer: in 295 (84%) neurological symptoms preceded tumour diagnosis, being lung cancer in 262 (89%), thereof small cell lung cancer in 227 (87%). First CT scan revealed lung cancer in 205/241 (85%), and PET scan shortened the interval to diagnosis when the initial CT scan was negative [7 months (1-66) in 27 patients versus 14 months (2-45) in 6; P < 0.001]. Although cancer diagnosis mostly occurred within 2 years from clinical onset, 13/295 (4%) patients exceeded that threshold. Conversely, 33 patients (7%) were 'cancer-free' after 2 years of follow-up. However, 13/33 (39%) had initial suspicious imaging findings that spontaneously regressed. In conclusion, although anti-Hu autoimmunity clinical presentation is mostly multifocal, we observed patients with a predominant limbic syndrome or isolated sensory neuropathy. Early implementation of PET scan shortens the interval to cancer diagnosis, which was the strongest predictor of death, especially if diagnosed ≤2 years from clinical onset. As cancer was diagnosed >2 years after clinical onset in few patients, screening should be extended up to 5 years. In addition, tumour regression was suspected in a substantial proportion of 'cancer-free' patients.
Collapse
Affiliation(s)
- Macarena Villagrán-García
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon 69008, France
| | - Antonio Farina
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon 69008, France
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence 50139, Italy
| | - Sergio Muñiz-Castrillo
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Valentin Wucher
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon 69008, France
| | - Maroua Dhairi
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
| | - Noémie Timestit
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- Department of Biostatistics, Hospices Civils de Lyon, Lyon 69424, France
| | - Nicolás Lundahl Ciano-Petersen
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- Biomedical Research Institute of Málaga (IBIMA) and Platform of Nanomedicine (BIONAND), Málaga 29590, Spain
| | - Alberto Vogrig
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine 33100, Italy
- Department of Medicine (DAME), University of Udine Medical School, Udine 33100, Italy
| | - Géraldine Picard
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
| | - Marie Benaiteau
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
| | - Dimitri Psimaras
- AP-HP, Hospital Group Pitié-Salpêtrière, Neurology 2 Department Mazarin, Paris 75013, France
- Inserm, CNRS, Paris Brain Institute, Institut du Cerveau et de la Moelle épinière (ICM), Paris 75013, France
| | | | - Tifanie Alberto
- Department of Neurology, CRC SEP, Centre Hospitalier of Lille, Lille 59000, France
| | - Jérôme Aupy
- Department of Clinical Neurosciences, Centre Hospitalier of Bordeaux, Bordeaux 33000, France
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux 33076, France
| | - Marine Giry
- AP-HP, Hospital Group Pitié-Salpêtrière, Neurology 2 Department Mazarin, Paris 75013, France
- Inserm, CNRS, Paris Brain Institute, Institut du Cerveau et de la Moelle épinière (ICM), Paris 75013, France
| | - Véronique Rogemond
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon 69008, France
| | - Virginie Desestret
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
| | - Bastien Joubert
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon 69008, France
| | - Jérôme Honnorat
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron 69677, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon 69008, France
| |
Collapse
|
20
|
McAlpine LS, Lifland B, Check JR, Angarita GA, Ngo TT, Chen P, Dandekar R, Alvarenga BD, Browne WD, Pleasure SJ, Wilson MR, Spudich SS, Farhadian SF, Bartley CM. Anti-SARS-CoV-2 and Autoantibody Profiling of a COVID-19 Patient With Subacute Psychosis Who Remitted After Treatment With Intravenous Immunoglobulin. Biol Psychiatry 2023; 93:e25-e29. [PMID: 36481066 PMCID: PMC9722219 DOI: 10.1016/j.biopsych.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lindsay S McAlpine
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Brooke Lifland
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph R Check
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas T Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California
| | - Peixi Chen
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Bonny D Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Weston D Browne
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Samuel J Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Serena S Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Shelli F Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Christopher M Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California.
| |
Collapse
|
21
|
Schwab JM, Haider C, Kopp MA, Zrzavy T, Endmayr V, Ricken G, Kubista H, Haider T, Liebscher T, Lübstorf T, Blex C, Serdani-Neuhaus L, Curt A, Cinelli P, Scivoletto G, Fehlings MG, May C, Guntermann A, Marcus K, Meisel C, Dirnagl U, Martus P, Prüss H, Popovich PG, Lassmann H, Höftberger R. Lesional Antibody Synthesis and Complement Deposition Associate With De Novo Antineuronal Antibody Synthesis After Spinal Cord Injury. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200099. [PMID: 37019668 PMCID: PMC10075523 DOI: 10.1212/nxi.0000000000200099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/06/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Spinal cord injury (SCI) disrupts the fine-balanced interaction between the CNS and immune system and can cause maladaptive aberrant immune responses. The study examines emerging autoantibody synthesis after SCI with binding to conformational spinal cord epitopes and surface peptides located on the intact neuronal membrane. METHODS This is a prospective longitudinal cohort study conducted in acute care and inpatient rehabilitation centers in conjunction with a neuropathologic case-control study in archival tissue samples ranging from acute injury (baseline) to several months thereafter (follow-up). In the cohort study, serum autoantibody binding was examined in a blinded manner using tissue-based assays (TBAs) and dorsal root ganglia (DRG) neuronal cultures. Groups with traumatic motor complete SCI vs motor incomplete SCI vs isolated vertebral fracture without SCI (controls) were compared. In the neuropathologic study, B cell infiltration and antibody synthesis at the spinal lesion site were examined by comparing SCI with neuropathologically unaltered cord tissue. In addition, the CSF in an individual patient was explored. RESULTS Emerging autoantibody binding in both TBA and DRG assessments was restricted to an SCI patient subpopulation only (16%, 9/55 sera) while being absent in vertebral fracture controls (0%, 0/19 sera). Autoantibody binding to the spinal cord characteristically detected the substantia gelatinosa, a less-myelinated region of high synaptic density involved in sensory-motor integration and pain processing. Autoantibody binding was most frequent after motor complete SCI (grade American Spinal Injury Association impairment scale A/B, 22%, 8/37 sera) and was associated with neuropathic pain medication. In conjunction, the neuropathologic study demonstrated lesional spinal infiltration of B cells (CD20, CD79a) in 27% (6/22) of patients with SCI, the presence of plasma cells (CD138) in 9% (2/22). IgG and IgM antibody syntheses colocalized to areas of activated complement (C9neo) deposition. Longitudinal CSF analysis of an additional single patient demonstrated de novo (IgM) intrathecal antibody synthesis emerging with late reopening of the blood-spinal cord barrier. DISCUSSION This study provides immunologic, neurobiological, and neuropathologic proof-of-principle for an antibody-mediated autoimmunity response emerging approximately 3 weeks after SCI in a patient subpopulation with a high demand of neuropathic pain medication. Emerging autoimmunity directed against specific spinal cord and neuronal epitopes suggests the existence of paratraumatic CNS autoimmune syndromes.
Collapse
Affiliation(s)
- Jan M Schwab
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria.
| | - Carmen Haider
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Marcel A Kopp
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Tobias Zrzavy
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Verena Endmayr
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Gerda Ricken
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Helmut Kubista
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Thomas Haider
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Thomas Liebscher
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Tom Lübstorf
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Christian Blex
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Leonarda Serdani-Neuhaus
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Armin Curt
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Paolo Cinelli
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Giorgio Scivoletto
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Michael G Fehlings
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Caroline May
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Annika Guntermann
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Katrin Marcus
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Christian Meisel
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Ulrich Dirnagl
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Peter Martus
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Harald Prüss
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Phillip G Popovich
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Hans Lassmann
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria
| | - Romana Höftberger
- From the The Belford Center for Spinal Cord Injury (J.M.S., P.G.P.), The Ohio State University, Wexner Medical Center, Columbus; Departments of Neurology (J.M.S.), Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus; Department of Neurology and Experimental Neurology (J.M.S., M.A.K., T. Liebscher, T. Lübstorf, C.B., L.S.-N., U.D., H.P.), Spinal Cord Injury Research (Neuroparaplegiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Neuropathology and Neurochemistry (C.H., V.E., G.R., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z.), Medical University of Vienna, Austria; Department of Neurophysiology and Neuropharmacology (Center for Physiology and Pharmacology) (H.K.), Medical University of Vienna, Austria; Department of Orthopaedics and Trauma Surgery (T.H.), Medical University of Vienna, Austria; Treatment Centre for Spinal Cord Injuries (Thomas Liebscher), BG Hospital Unfallkrankenhaus Berlin, Germany; Spinal Cord Injury Center (A.C.), Balgrist University Hospital, Zurich, Switzerland; Division of Trauma Surgery (P.C.), University Hospital Zürich, Switzerland; IRCCS Fondazione S. Lucia (G.S.), Spinal Cord Unit, Rome, Italy; Division of Neurosurgery and Spine Program (M.G.F.), University of Toronto, ON, Canada; Ruhr-University Bochum (C. May, A.G., K.M.), Center for Protein Diagnostics (PRODI), Medical Proteome Center, Universitätsstraße 150, Bochum, Germany; Institute of Medical Immunology (C. Meisel), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Immunology (C. Meisel), Labor Berlin-Charité Vivantes GmbH, Germany; Berlin Institute of Health (U.D.), QUEST-Center for Transforming Biomedical Research, Germany; Department of Clinical Epidemiology and Applied Biostatistics (P.M.), Eberhard Karls Universität Tübingen, Germany; Department of Neurosciences (P.G.P.), The Ohio State University, Columbus; and Center for Brain Research (H.L.), Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C.H., T.Z., V.E., G.R., R.H.), Medical University of Vienna, Austria.
| |
Collapse
|
22
|
Fernández-Fournier M, Lacruz L, Nozal P, Chico JL, Tallón Barranco A, Otero-Ortega L, Corral I, Carrasco A. The study of neural antibodies in neurology: A practical summary. Front Immunol 2022; 13:1043723. [PMID: 36569884 PMCID: PMC9768545 DOI: 10.3389/fimmu.2022.1043723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The field of Autoimmune Neurology is expanding rapidly, with new neural antibodies being identified each year. However, these disorders remain rare. Deciding when to test for these antibodies, when and what samples are to be obtained, how to handle and study them correctly, and how to interpret test results, is complex. In this article we review current diagnostic techniques and provide a comprehensive explanation on the study of these patients, in an effort to help with correct diagnosis minimizing false positive and false negative results. We also propose routine storage of samples and referral of certain cases to specialized research laboratories.
Collapse
Affiliation(s)
- Mireya Fernández-Fournier
- Neuroimmunology and MS Unit, Department of Neurology, La Paz University Hospital, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ, Universidad Autónoma de Madrid,Madrid, Spain
| | - Laura Lacruz
- Neuroimmunology and MS Unit, Department of Neurology, La Paz University Hospital, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ, Universidad Autónoma de Madrid,Madrid, Spain
| | - Pilar Nozal
- Department of Immunology, La Paz University Hospital, Complement Research Group, of Hospital La Paz Institute for Health Research – IdiPAZ, Center for Biomedical Network Research on Rare Diseases (Ciberer), Madrid, Spain
| | - Juan Luis Chico
- Department of Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | - Antonio Tallón Barranco
- Neuroimmunology and MS Unit, Department of Neurology, La Paz University Hospital, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ, Universidad Autónoma de Madrid,Madrid, Spain
| | - Laura Otero-Ortega
- Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Iñigo Corral
- Department of Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | - Angela Carrasco
- Department of Immunology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| |
Collapse
|
23
|
Höftberger R, Lassmann H, Berger T, Reindl M. Pathogenic autoantibodies in multiple sclerosis - from a simple idea to a complex concept. Nat Rev Neurol 2022; 18:681-688. [PMID: 35970870 DOI: 10.1038/s41582-022-00700-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
The role of autoantibodies in multiple sclerosis (MS) has been enigmatic since the first description, many decades ago, of intrathecal immunoglobulin production in people with this condition. Some studies have indicated that MS pathology is heterogeneous, with an antibody-associated subtype - characterized by B cells (in varying quantities), antibodies and complement - existing alongside other subtypes with different pathologies. However, subsequent evidence suggested that some cases originally diagnosed as MS with autoantibody-mediated demyelination were more likely to be neuromyelitis optica spectrum disorder or myelin oligodendrocyte glycoprotein antibody-associated disease. These findings raise the important question of whether an autoantibody-mediated MS subtype exists and whether pathogenic MS-associated autoantibodies remain to be identified. Potential roles of autoantibodies in MS could range from specific antibodies defining the disease to a non-disease-specific amplification of cellular immune responses and other pathophysiological processes. In this Perspective, we review studies that have attempted to identify MS-associated autoantibodies and provide our opinions on their possible roles in the pathophysiology of MS.
Collapse
Affiliation(s)
- Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
24
|
Zhang S, Mao C, Li X, Miao W, Teng J. Advances in Potential Cerebrospinal Fluid Biomarkers for Autoimmune Encephalitis: A Review. Front Neurol 2022; 13:746653. [PMID: 35937071 PMCID: PMC9355282 DOI: 10.3389/fneur.2022.746653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs), LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and treatment are thus improved dramatically. However, there are drawbacks of clinical diagnosis and treatment based solely on antibody levels, and thus the application of additional biomarkers is urgently needed. Considering the important role of immune mechanisms in AE development, we summarize the relevant research progress in identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines, demyelination, and nerve damage.
Collapse
|
25
|
Serum anti-NMDA-receptor antibodies and cognitive function after ischemic stroke (PROSCIS-B). J Neurol 2022; 269:5521-5530. [PMID: 35718820 PMCID: PMC9468072 DOI: 10.1007/s00415-022-11203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022]
Abstract
Objective We aimed to investigate whether serum anti-N-methyl-D-aspartate-receptor GluN1 (previously NR1) antibody (NMDAR1-abs) seropositivity impacts cognitive function (CF) in the long term following ischemic stroke. Methods Data were used from the PROSpective Cohort with Incident Stroke-Berlin. NMDAR1-abs (IgM/IgA/IgG) were measured with cell-based assays from serum obtained within 7 days after the first-ever stroke. Seropositivity was defined as titers ≥ 1:10, low titers as ≤ 1:100 and high titers as > 1:100. We assessed CF at 1, 2 and 3 years after stroke with the Telephone Interview for Cognitive Status-modified (TICS-m) and used crude and propensity score adjusted inverse probability weighted generalized linear models to estimate the impact of NMDAR1-abs serostatus on TICS-m. Results Data on NMDAR1-abs (median day of sampling = 4[IQR = 2–5]) were available in 583/621 PROSCIS-B patients (39% female; median NIHSS = 2[IQR = 1–4]; median MMSE = 28[IQR:26–30]), of whom 76(13%) were seropositive (IgM: n = 48/IgA: n = 43/IgG: n = 2). Any NMDAR1-abs seropositivity had no impact on TICS-m compared to seronegative patients (βcrude = 0.69[95%CI = – 0.84 to 2.23]; βadjusted = 0.65[95%CI = – 1.00 to 2.30]). Patients with low titers scored better on TICS-m compared to seronegative patients (βcrude = 2.33[95%CI = 0.76 to 3.91]; βadjusted = 2.47[95%CI = 0.75 to 4.19]); in contrast, patients with high titers scored lower on TICS-m (βcrude = –2.82[95%CI = – 4.90 to – 0.74], βadjusted = – 2.96[95%CI = – 5.13 to – 0.80]), compared to seronegative patients. Conclusion In our study, NMDAR1-abs seropositivity did not affect CF over 3 years after a first mild to moderate ischemic stroke. CF differed according to NMDAR1-abs serum titer, with patients with high NMDAR1-abs titers having a less favorable cognitive outcome compared to seronegative patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11203-x.
Collapse
|
26
|
Moon J. Rare genetic causes of meningitis and encephalitis. ENCEPHALITIS 2022; 2:29-35. [PMID: 37469651 PMCID: PMC10295911 DOI: 10.47936/encephalitis.2021.00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 07/21/2023] Open
Abstract
Differential diagnosis of meningitis and encephalitis is often very challenging because it cannot be determined based on symptoms, and the diseases have various causes. This article explains rare genetic causes of meningitis and encephalitis. Autoinflammatory disorders include cryopyrin-associated periodic syndromes, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome. Furthermore, other genetic disorders, such as complement factor I deficiency, phosphatidylinositol glycan anchor biosynthesis class T mutation, and neuronal intranuclear inclusion disease, can present as meningitis and encephalitis.
Collapse
Affiliation(s)
- Jangsup Moon
- Rare Disease Center, Departments of Genomic Medicine and Neurology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
27
|
Trentinaglia M, Lippi G, Salvagno GL, Rispoli MG, De Angelis MV, Castellani F, Alberti D, Maniscalco GT, Rossi F, Turri M, Rossi P, Del Zotto E, Fusina S, Cardellini D, Zivelonghi C, Volonghi I, Monaco S, Briani C, Ferrari S, Mariotto S. Peripheral neuropathies during the COVID-19 pandemic: is there a relation? Immunol Res 2022; 70:408-413. [PMID: 35237933 PMCID: PMC8890815 DOI: 10.1007/s12026-022-09272-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Milena Trentinaglia
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37134, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Gian Luca Salvagno
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.,Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| | | | | | | | - Daniela Alberti
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37134, Verona, Italy
| | - Giorgia T Maniscalco
- Department of Neurology and Stroke Unit, "A. Cardarelli Hospital", Naples, Italy
| | - Francesca Rossi
- Neurology Unit, Mater Salutis Hospital, Legnago, Verona, Italy
| | - Mara Turri
- Department of Neurology/Stroke Unit, San Maurizio Hospital, Bolzano, Italy
| | - Patrizia Rossi
- Neurology Unit, St Bassano Hospital, Bassano del Grappa, Vicenza, Italy
| | | | - Simone Fusina
- Neurology Unit, S. Bonifacio Hospital, Verona, Italy
| | | | - Cecilia Zivelonghi
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37134, Verona, Italy
| | - Irene Volonghi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Salvatore Monaco
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37134, Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37134, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
28
|
McLamore ES, Moreira G, Vanegas DC, Datta SPA. Context-Aware Diagnostic Specificity (CADS). BIOSENSORS 2022; 12:101. [PMID: 35200361 PMCID: PMC8869940 DOI: 10.3390/bios12020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023]
Abstract
Rapid detection of proteins is critical in a vast array of diagnostic or monitoring applications [...].
Collapse
Affiliation(s)
- Eric S. McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
| | - Geisianny Moreira
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA
| | - Diana C. Vanegas
- Global Alliance for Rapid Diagnostics, East Lansing, MI 48824, USA; (G.M.); (D.C.V.)
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA
| | - Shoumen Palit Austin Datta
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA;
- MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Suite 232, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Chen R, Luo I, Rae M, Huang S. A cost-effective sample pooling strategy for line blot assay in detecting onconeural antibodies. J Immunol Methods 2022; 503:113235. [DOI: 10.1016/j.jim.2022.113235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
30
|
Chia R, Saez-Atienzar S, Murphy N, Chiò A, Blauwendraat C, Roda RH, Tienari PJ, Kaminski HJ, Ricciardi R, Guida M, De Rosa A, Petrucci L, Evoli A, Provenzano C, Drachman DB, Traynor BJ. Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proc Natl Acad Sci U S A 2022; 119:e2108672119. [PMID: 35074870 PMCID: PMC8812681 DOI: 10.1073/pnas.2108672119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early- and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.
Collapse
Affiliation(s)
- Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892;
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892
| | - Natalie Murphy
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin 10126, Italy
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome 00185, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin 10126, Italy
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892
| | - Ricardo H Roda
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287
| | - Pentti J Tienari
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki FIN-02900, Finland
- Research Program of Translational Immunology, Faculty of Medicine, University of Helsinki, Helsinki FIN-02900, Finland
| | - Henry J Kaminski
- Department of Neurology and Rehabilitation Medicine, George Washington University, Washington, DC 20037
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Loredana Petrucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Amelia Evoli
- Institute of Neurology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome 00168, Italy
| | - Carlo Provenzano
- Dipartimento di Medicina e chirurgia traslazionale, Sezione di Patologia generale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome 00168, Italy
| | - Daniel B Drachman
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| |
Collapse
|
31
|
Hébert J, Muccilli A, Wennberg RA, Tang-Wai DF. Autoimmune Encephalitis and Autoantibodies: A Review of Clinical Implications. J Appl Lab Med 2022; 7:81-98. [PMID: 34996085 DOI: 10.1093/jalm/jfab102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Autoimmune encephalitis (AE) is a common cause of encephalitis. We review the most recent evidence on this neuroimmune condition and autoantibody testing currently available. CONTENT Clinical criteria, neuroimaging and electroencephalography can facilitate the diagnosis of AE prior to obtaining autoantibody testing results, and lead to a diagnosis of AE even in the absence of a recognized antibody. Early treatment of AE has been found to correlate with improved long-term functional and cognitive outcomes. We suggest a clinical approach to diagnosis based on the predominant area of nervous system involvement and the results of ancillary testing that are widely available. We also propose a 2-tiered approach to the acute management of probable or definite AE. We, finally, provide guidance on the long-term management of AE-a challenging and understudied area. SUMMARY Much work remains to be done to improve the care of patients with AE. As understanding of the pathophysiology and predisposing factors underlying this condition steadily increases, a more evidence-based, targeted approach to the treatment of AE is still desired. Nonetheless, looking at the progress made over the past 2 decades, since the discovery of the first autoantibodies associated with AE, one cannot help but feel optimistic about the road ahead.
Collapse
Affiliation(s)
- Julien Hébert
- Department of Medicine, Division of Neurology, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Alexandra Muccilli
- Department of Medicine, Division of Neurology, Division of Neurology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Neurology, Multiple Sclerosis Clinic, St. Michael's Hospital, Toronto, ON, Canada
| | - Richard A Wennberg
- Department of Medicine, Division of Neurology, Division of Neurology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Neurology, Epilepsy Clinic and Neurophysiology Lab, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - David F Tang-Wai
- Department of Medicine, Division of Neurology, Division of Neurology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Neurology, Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
32
|
Poore B, Hamilton R, Kelliher MT, Mahmood S, Mindiola-Romero AE, Richards R, Motanagh S, Cervinski MA, Nerenz RD. Retrospective Evaluation of the Antibody Prevalence in Epilepsy and Encephalopathy (APE2) Score. J Appl Lab Med 2022; 7:36-45. [PMID: 34996088 DOI: 10.1093/jalm/jfab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Autoimmune encephalitis (AE) is a rare collection of disorders that present with a diverse and often nebulous set of clinical symptoms. Indiscriminate use of multi-antibody panels decreases their overall utility and predictive value. Application of a standardized scoring system may help reduce the number of specimens that generate misleading or uninformative results. METHODS The results of autoimmune encephalopathy, epilepsy, or dementia autoantibody panels performed on serum (n = 251) or cerebrospinal fluid (CSF) (n = 235) specimens from October 9th, 2016 to October 11th, 2019 were collected. Retrospective chart review was performed to calculate the Antibody Prevalence in Epilepsy and Encephalopathy (APE2) score for patients with an antibody above the assay-specific reference interval and to classify results as true or false positive. RESULTS Of the 486 specimens, 60 (12.3%) generated positive results for any AE antibody (6 CSF and 54 serum). After removing 2 duplicate specimens collected from a single patient, 10 of the remaining 58 were determined to be true positives and 8 contained neural-specific antibodies. Application of the APE2 score revealed that 89% of all true positives and 86% of specimens with neural-specific antibodies had a score ≥4. In contrast, 76% of false positives, 74% of clinically nonspecific antibodies, and 85% of the negative specimens had an APE2 score <4. CONCLUSION The APE2 score can improve the diagnostic utility of autoimmune encephalopathy evaluation panels.
Collapse
Affiliation(s)
- Brad Poore
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert Hamilton
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Michael T Kelliher
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sundis Mahmood
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Andres E Mindiola-Romero
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ryland Richards
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Samaneh Motanagh
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Mark A Cervinski
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert D Nerenz
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
33
|
Basso M, Gastaldi M, Leonardi V, Izzo G, Olivotto S, Ferrario S, Veggiotti P, Franciotta D, Bova SM. Connections Between Febrile Infection-Related Epilepsy Syndrome and Autoimmune Encephalitis. A Case Report of a Child With New Anti-neuronal Antibodies. Front Pediatr 2022; 10:908518. [PMID: 36003492 PMCID: PMC9393788 DOI: 10.3389/fped.2022.908518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Acute encephalitis and febrile infection-related epilepsy syndrome (FIRES) are debilitating neurological disorders. It is increasingly accepted that FIRES should be considered an autoinflammation-mediated epileptic encephalopathy, but the debate about its etiopathogenesis is still very much open. Despite showing a considerable overlap with encephalitis, it continues to be regarded as a distinct entity. We describe the case of a previously healthy 5-year-old child who, following a fever, developed acute encephalopathy, status epilepticus, neurological, neuropsychological, and psychiatric manifestations, and claustrum involvement on MRI. At symptom onset, his clinical and instrumental data met the diagnostic criteria for both FIRES and acute encephalitis. He received benzodiazepines, levetiracetam, phenytoin, phenobarbital, thiopental, and first-line immunotherapy for acute inflammatory encephalopathy (intravenous methylprednisolone and immunoglobulins), without substantial improvement. Following the detection of anti-neuronal antibodies through immunohistochemistry performed on rat brain slices, he received therapeutic plasma exchange (TPE). His neurological and behavioral conditions improved drastically and his antibody titer fell sharply from the first to the last course of PE. Claustrum abnormalities on MRI disappeared. The patient's long-term outcome is favorable. At 13 months after discharge, he experienced a focal seizure and carbamazepine was started, achieving seizure control. At 10 years of age, he is still on carbamazepine, with well-controlled seizures, focal EEG abnormalities, and an otherwise normal neurological and cognitive profile and normal MRI. This case strengthens the view that FIRES might constitute the initial clinical presentation of a CNS inflammatory disease that could have, among multiple distinct etiologies, an autoimmune cause. Immunological and specific second- or third-level investigations including immunohistochemistry should be included in the diagnostic work up of patients with FIRES-like phenotypes. PE could be effective in this subset of patients, protecting them from long-term neurological sequelae.
Collapse
Affiliation(s)
- Martina Basso
- Department of Biomedical Sciences and Clinics Luigi Sacco, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Valeria Leonardi
- Department of Biomedical Sciences and Clinics Luigi Sacco, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Sara Olivotto
- Pediatric Neurology Unit, V. Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefania Ferrario
- Department of Pediatrics, Division of Anesthesia and Intensive Care, V. Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Pierangelo Veggiotti
- Department of Biomedical Sciences and Clinics Luigi Sacco, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Pediatric Neurology Unit, V. Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania M Bova
- Pediatric Neurology Unit, V. Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
34
|
Steriade C, Gillinder L, Rickett K, Hartel G, Higdon L, Britton J, French J. Discerning the Role of Autoimmunity and Autoantibodies in Epilepsy: A Review. JAMA Neurol 2021; 78:1383-1390. [PMID: 34515743 DOI: 10.1001/jamaneurol.2021.3113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance The literature on neural autoantibody positivity in epilepsy has expanded over the last decade, with an increased interest among clinicians in identifying potentially treatable causes of otherwise refractory seizures. Observations Prior studies have reported a wide range of neural autoantibody positivity rates among various epilepsy populations, with the highest frequency reported in individuals with focal epilepsy of unknown cause and new-onset seizures. The antibodies in some cases are of uncertain significance, and their presence can cause conundrums regarding therapy. Conclusions and Relevance There is likely some role for neural autoantibody assessment in patients with unexplained epilepsy who lack clear evidence of autoimmune encephalitis, but the clinical implications of such testing remain unclear owing to limitations in previous published studies. A framework for study design to bridge the current gaps in knowledge on autoimmune-associated epilepsy is proposed.
Collapse
Affiliation(s)
- Claude Steriade
- NYU Comprehensive Epilepsy Center, New York University, New York
| | - Lisa Gillinder
- Mater Advanced Epilepsy Unit, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | | | - Gunter Hartel
- Department of Statistics, QIMR Berghofer Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
35
|
Macher S, Milenkovic I, Zrzavy T, Höftberger R, Seidel S, Berger-Sieczkowski E, Berger T, Rommer PS, Wiest G. Ocular Motor Abnormalities in Anti-IgLON5 Disease. Front Immunol 2021; 12:753856. [PMID: 34659261 PMCID: PMC8514941 DOI: 10.3389/fimmu.2021.753856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 01/27/2023] Open
Abstract
Objective Anti-IgLON5 disease forms an interface between neuroinflammation and neurodegeneration and includes clinical phenotypes that are often similar to those of neurodegenerative diseases. An early diagnosis of patients with anti-IgLON5 disease and differentiation from neurodegenerative diseases is necessary and may have therapeutic implications. Methods In our small sample size study we investigated oculomotor function as a differentiating factor between anti-IgLON5 disease and neurodegenerative disorders. We examined ocular motor and vestibular function in four patients suffering from anti-IgLON5 disease using video-oculography (VOG) and a computer-controlled rotational chair system (sampling rate 60 Hz) and compared the data with those from ten age-matched patients suffering from progressive supranuclear palsy (PSP) and healthy controls (CON). Results Patients suffering from anti-IgLON5 disease differed from PSP most strikingly in terms of saccade velocity and accuracy, the presence of square wave jerks (SWJ) (anti-IgLON5 0/4 vs. PSP 9/10) and the clinical finding of supranuclear gaze palsy (anti-IgLON5 1/4). The presence of nystagmus, analysis of smooth pursuit eye movements, VOR and VOR suppression was reliable to differentiate between the two disease entities. Clear differences in all parameters, although not always significant, were found between all patients and CON. Discussion We conclude that the use of VOG as a tool for clinical neurophysiological assessment can be helpful in differentiating between patients with PSP and patients with anti-IgLON5 disease. VOG could have particular value in patients with suspected PSP and lack of typical Parkinson’s characteristics. future trials are indispensable to assess the potential of oculomotor function as a biomarker in anti-IgLON5 disease.
Collapse
Affiliation(s)
- Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ivan Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Seidel
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gerald Wiest
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Autoimmune cerebellar hypermetabolism: Report of three cases and literature overview. Rev Neurol (Paris) 2021; 178:337-346. [PMID: 34657731 DOI: 10.1016/j.neurol.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022]
Abstract
We report three cases of vermian cerebellar hypermetabolism in patients with autoimmune encephalitis. One of our patients was positive for anti-Ma2 antibodies and one for anti-Zic4 antibodies while the remaining patient did not present any known antibodies. The seronegative patient deteriorated after immune checkpoint inhibitor treatment for a pulmonary adenocarcinoma and improved with immunosuppressive drugs, which is in favour of an underlying autoimmune mechanism. They all presented with subacute neurological symptoms. Brain magnetic resonance imaging was normal except in one patient, where hyperintensities were present on FLAIR sequence around the third ventricle and the cerebral aqueduct. 18F-FDG brain positron emission tomography with computed tomography (18F-FDG PET-CT) demonstrated an unusual vermian cerebellar hypermetabolism in the three cases. While cerebellar hypermetabolism on 18F-FDG PET-CT has been described in various neurological diseases, such vermian - and more broadly cerebellar - hypermetabolism was seldom described in previous studies on autoimmune encephalitis. When differential diagnoses have been ruled out, this pattern may be of interest for the positive diagnosis of autoimmune encephalitis in difficult diagnostic cases.
Collapse
|
37
|
Miyachi Y, Fujii T, Yamasaki R, Tsuchimoto D, Iinuma K, Sakoda A, Fukumoto S, Matsushita T, Masaki K, Isobe N, Nakabeppu Y, Kira JI. Serum Anti-oligodendrocyte Autoantibodies in Patients With Multiple Sclerosis Detected by a Tissue-Based Immunofluorescence Assay. Front Neurol 2021; 12:681980. [PMID: 34421790 PMCID: PMC8374045 DOI: 10.3389/fneur.2021.681980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), the most prevalent inflammatory disease of the central nervous system (CNS), is characterized by damaged to myelin sheaths and oligodendrocytes. Because MS patients have variable clinical courses and disease severities, it is important to identify biomarkers that predict disease activity and severity. In this study, we assessed the frequencies of serum autoantibodies against mature oligodendrocytes in MS patients using a tissue-based immunofluorescence assay (IFA) to determine whether anti-oligodendrocyte antibodies are associated with the clinical features of MS patients and whether they might be a biomarker to assess CNS tissue damage in MS patients. We assessed the binding of serum autoantibodies to mouse oligodendrocytes expressing Nogo-A, a reliable mature oligodendrocyte marker, by IFA with mouse brain and sera from 147 MS patients, comprising 103 relapsing–remitting MS (RRMS), 22 secondary progressive MS (SPMS), and 22 primary progressive MS (PPMS) patients, 38 neuromyelitis optica spectrum disorder (NMOSD) patients, 23 other inflammatory neurological disorder (OIND) patients, and 39 healthy controls (HCs). Western blotting (WB) was performed using extracted mouse cerebellum proteins and IgG from anti-oligodendrocyte antibody-positive MS patients. Tissue-based IFA showed that anti-oligodendrocyte antibodies were positive in 3/22 (13.6%) PPMS and 1/22 (4.5%) SPMS patients but not in RRMS, NMOSD, and OIND patients or HCs. WB demonstrated the target CNS proteins recognized by serum anti-oligodendrocyte antibodies were approximately 110 kDa and/or 150 kDa. Compared with anti-oligodendrocyte antibody-negative MS patients, MS patients with anti-oligodendrocyte antibodies were significantly older at the time of serum sampling, scored significantly higher on the Expanded Disability Status Scale and the Multiple Sclerosis Severity Score, and had a higher frequency of mental disturbance. Although the clinical significance of anti-oligodendrocyte antibodies is still unclear because of their low frequency, anti-oligodendrocyte autoantibodies are potential biomarkers for monitoring the disease pathology and progression in MS.
Collapse
Affiliation(s)
- Yukino Miyachi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Tsuchimoto
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kyoko Iinuma
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Sakoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Translational Neuroscience Center, Graduate School of Medicine, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan.,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka, Japan
| | - Shoko Fukumoto
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Translational Neuroscience Center, Graduate School of Medicine, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan.,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
38
|
McAlpine LS, Lifland B, Check JR, Angarita GA, Ngo TT, Pleasure SJ, Wilson MR, Spudich SS, Farhadian SF, Bartley CM. RETRACTED: Remission of Subacute Psychosis in a COVID-19 Patient With an Antineuronal Autoantibody After Treatment With Intravenous Immunoglobulin. Biol Psychiatry 2021; 90:e23-e26. [PMID: 34001372 PMCID: PMC8041149 DOI: 10.1016/j.biopsych.2021.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Retraction notice to: “Remission of Subacute Psychosis in a COVID-19 Patient With an Antineuronal Autoantibody After Treatment With Intravenous Immunoglobulin” by Lindsay S. McAlpine, Brooke Lifland, Joseph R. Check, Gustavo A. Angarita, Thomas T. Ngo, Samuel J. Pleasure, Michael R. Wilson, Serena S. Spudich, Shelli F. Farhadian, and Christopher M. Bartley (Biol Psychiatry 2021; 90:e23-e26); https://doi.org/10.1016/j.biopsych.2021.03.033. This article has been retracted at the request of corresponding author Christopher Bartley, with agreement from all authors and with approval from Biological Psychiatry Editor John H. Krystal, M.D. See Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). After this article was published, the authors determined that two cerebrospinal fluid (CSF) samples were inadvertently confused, resulting in publication of the wrong COVID-19 patient’s immunostaining data. The authors determined that the two CSF samples came from COVID-19 patients with sequential case identifiers (i.e., one identifier ended in a “5” and the other in a “6”). To determine whether the published immunostaining results were produced by CSF from another COVID-19 patient, the authors reperformed the mouse brain immunostaining experiments using additional aliquots of stored CSF from the two research participants in question, as well as with the remaining CSF that had been used in the publication. After repeating the immunostaining with these CSF samples, two blinded raters were able to state unequivocally that the CSF samples from the two COVID-19 patients had been confused. Therefore, while the clinical features of the case report are accurate and unaffected, the research data belong to another COVID-19 research participant, not the one described in the published case report. The authors voluntarily informed the Journal of this honest error upon its discovery. All authors agree to retract this paper and sincerely apologize for having allowed the incorrect images to be published with this case report. To avoid misinterpretation of the research findings, both the editors and authors concur that the only proper course of action was to retract this version of the paper. However, this COVID-19 psychosis case remains of clinical interest because of the patient’s clear response to immunotherapy. Therefore, the authors are revising the paper, which the Journal will consider further for publication.
Collapse
Affiliation(s)
- Lindsay S McAlpine
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Brooke Lifland
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph R Check
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas T Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California
| | - Samuel J Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Serena S Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Shelli F Farhadian
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher M Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California; Hanna H. Gray Fellowship Program, Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
39
|
Autoimmune encephalitis: A retrospective monocentric experience. Mult Scler Relat Disord 2021; 55:103191. [PMID: 34388533 DOI: 10.1016/j.msard.2021.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022]
|
40
|
Sechi E, Flanagan EP. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol 2021; 12:673339. [PMID: 34305787 PMCID: PMC8292678 DOI: 10.3389/fneur.2021.673339] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated disorders of the central nervous system (CNS) are increasingly recognized as neurologic disorders that can be severe and even life-threatening but with the potential for reversibility with appropriate treatment. The expanding spectrum of newly identified autoantibodies targeting glial or neuronal (neural) antigens and associated clinical syndromes (ranging from autoimmune encephalitis to CNS demyelination) has increased diagnostic precision, and allowed critical reinterpretation of non-specific neurological syndromes historically associated with systemic disorders (e.g., Hashimoto encephalopathy). The intracellular vs. cell-surface or synaptic location of the different neural autoantibody targets often helps to predict the clinical characteristics, potential cancer association, and treatment response of the associated syndromes. In particular, autoantibodies targeting intracellular antigens (traditionally termed onconeural autoantibodies) are often associated with cancers, rarely respond well to immunosuppression and have a poor outcome, although exceptions exist. Detection of neural autoantibodies with accurate laboratory assays in patients with compatible clinical-MRI phenotypes allows a definite diagnosis of antibody-mediated CNS disorders, with important therapeutic and prognostic implications. Antibody-mediated CNS disorders are rare, and reliable autoantibody identification is highly dependent on the technique used for detection and pre-test probability. As a consequence, indiscriminate neural autoantibody testing among patients with more common neurologic disorders (e.g., epilepsy, dementia) will necessarily increase the risk of false positivity, so that recognition of high-risk clinical-MRI phenotypes is crucial. A number of emerging clinical settings have recently been recognized to favor development of CNS autoimmunity. These include antibody-mediated CNS disorders following herpes simplex virus encephalitis or occurring in a post-transplant setting, and neurological autoimmunity triggered by TNFα inhibitors or immune checkpoint inhibitors for cancer treatment. Awareness of the range of clinical and radiological manifestations associated with different neural autoantibodies, and the specific settings where autoimmune CNS disorders may occur is crucial to allow rapid diagnosis and early initiation of treatment.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
41
|
Ruiz-García R, Muñoz-Sánchez G, Naranjo L, Guasp M, Sabater L, Saiz A, Dalmau J, Graus F, Martinez-Hernandez E. Limitations of a Commercial Assay as Diagnostic Test of Autoimmune Encephalitis. Front Immunol 2021; 12:691536. [PMID: 34267758 PMCID: PMC8276168 DOI: 10.3389/fimmu.2021.691536] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of neuronal surface antibodies (NSAb) is important for the diagnosis of autoimmune encephalitis (AE). Although most clinical laboratories use a commercial diagnostic kit (Euroimmun, Lübeck, Germany) based on indirect immunofluorescence on transfected cells (IIFA), clinical experience suggests diagnostic limitations. Here, we assessed the performance of the commercial IIFA in serum and CSF samples of patients with suspected AE previously examined by rat brain immunohistochemistry (Cohort A). Of 6213 samples, 404 (6.5%) showed brain immunostaining suggestive of NSAb: 163 (40%) were positive by commercial IIFA and 241 (60%) were negative. When these 241 samples were re-assessed with in-house IIFA, 42 (18%) were positive: 21 (9%) had NSAb against antigens not included in the commercial IIFA and the other 21 (9%) had NSAb against antigens included in the commercial kit (false negative results). False negative results occurred more frequently with CSF (29% vs 10% in serum) and predominantly affected GABABR (39%), LGI1 (17%) and AMPAR (11%) antibodies. Results were reproduced in a separate cohort (B) of 54 AE patients with LGI1, GABABR or AMPAR antibodies in CSF which were missed in 30% by commercial IIFA. Patients with discordant GABABR antibody results (positive in-house but negative commercial IIFA) were less likely to develop full-blown clinical syndrome; no significant clinical differences were noted for the other antibodies. Overall, NSAb testing by commercial IIFA led to false negative results in a substantial number of patients, mainly those affected by anti-LG1, GABABR or AMPAR encephalitis. If these disorders are suspected and commercial IIFA is negative, more comprehensive antibody studies are recommended.
Collapse
Affiliation(s)
- Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Laura Naranjo
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Mar Guasp
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurology Department, Hospital Clinic, and University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
| | - Lidia Sabater
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Saiz
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurology Department, Hospital Clinic, and University of Barcelona, Barcelona, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurology Department, Hospital Clinic, and University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
- Neurology Department, University of Pennsylvania, Philadelphia, PA, United States
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Francesc Graus
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eugenia Martinez-Hernandez
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurology Department, Hospital Clinic, and University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Abstract
Introduction: Paraneoplastic neurological syndromes (PNS) are a rare heterogeneous group of neurological diseases associated with tumors. These syndromes are the result of a cross-reactive immune response against antigens shared by the tumor and the nervous system. The discovery of an increasing number of autoantigens and the identification of tumoral factors leading to a substantial antitumoral immune response makes this topic highly innovative.Areas covered: This review covers the clinical, oncological, pathophysiological aspects of both immunological PNS groups. One is associated with autoantibodies against intracellular onconeural antibodies, which are highly specific for an underlying tumor, although the disease is mainly T-cell mediated. In contrast, PNS associated with pathogenic surface-binding/receptor autoantibodies, which are often responsive to immunosuppressive treatment, may manifest as paraneoplastic and non-paraneoplastic diseases. The most frequent tumors associated with PNS are (small cell) lung cancer, gynecological tumors, thymoma, lymphoma, and, in children, neuroblastoma. A special interest is given to PNS, induced by immune checkpoint-inhibitors (ICIs).Expert opinion: Research in PNS, including the group of ICI-induced PNS provide new insights in both the pathophysiology of PNS and tumor immune interactions and offers new treatment options for this group of severe neurological diseases.
Collapse
Affiliation(s)
- Franz Blaes
- Department of Neurology, KKH Gummersbach, Gummersbach, Germany
| |
Collapse
|
43
|
Song E, Bartley CM, Chow RD, Ngo TT, Jiang R, Zamecnik CR, Dandekar R, Loudermilk RP, Dai Y, Liu F, Sunshine S, Liu J, Wu W, Hawes IA, Alvarenga BD, Huynh T, McAlpine L, Rahman NT, Geng B, Chiarella J, Goldman-Israelow B, Vogels CB, Grubaugh ND, Casanovas-Massana A, Phinney BS, Salemi M, Alexander JR, Gallego JA, Lencz T, Walsh H, Wapniarski AE, Mohanty S, Lucas C, Klein J, Mao T, Oh J, Ring A, Spudich S, Ko AI, Kleinstein SH, Pak J, DeRisi JL, Iwasaki A, Pleasure SJ, Wilson MR, Farhadian SF. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med 2021; 2:100288. [PMID: 33969321 PMCID: PMC8091032 DOI: 10.1016/j.xcrm.2021.100288] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.
Collapse
Affiliation(s)
- Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher M. Bartley
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan D. Chow
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Thomas T. Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Colin R. Zamecnik
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rita P. Loudermilk
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- University of California, Berkeley—University of California, San Francisco Gradate Program in Bioengineering, Berkeley, CA, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Trung Huynh
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay McAlpine
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Nur-Taz Rahman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Bertie Geng
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | - Benjamin Goldman-Israelow
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brett S. Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jessa R. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Juan A. Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Todd Lencz
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Hannah Walsh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Anne E. Wapniarski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Subhasis Mohanty
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jieun Oh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Albert I. Ko
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - John Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Samuel J. Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Shelli F. Farhadian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Masi G, Spagni G, Campetella L, Monte G, Sabatelli E, Evoli A, Papi C, Iorio R. Assessing the role of a tissue-based assay in the diagnostic algorithm of autoimmune encephalitis. J Neuroimmunol 2021; 356:577601. [PMID: 33975245 DOI: 10.1016/j.jneuroim.2021.577601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Tissue-based assay (TBA) is a widely-used method to detect neural autoantibodies, but the diagnostic accuracy for autoimmune encephalitis (AE) has not yet been adequately measured. We retrospectively evaluated the sensitivity and specificity of an indirect immunofluorescence TBA (IIF-TBA) in 159 patients with suspected AE. Serum and cerebrospinal fluid (CSF) specimens were collected and tested from December 2012 to September 2020. In the paired sample analysis, serum testing showed higher sensitivity than CSF, while the latter had higher specificity. Based on these results, we clarify the advantages of using a TBA as the principal screening method for patients with suspected AE.
Collapse
Affiliation(s)
- Gianvito Masi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gregorio Spagni
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Campetella
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Monte
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Sabatelli
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Amelia Evoli
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Claudia Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Iorio
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| |
Collapse
|
45
|
Zrzavy T, Höftberger R, Wimmer I, Berger T, Rommer P, Macher S. Longitudinal CSF Findings in Autoimmune Encephalitis-A Monocentric Cohort Study. Front Immunol 2021; 12:646940. [PMID: 33828556 PMCID: PMC8019787 DOI: 10.3389/fimmu.2021.646940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Autoimmune encephalitis (AIE) poses a diagnostic challenge due to its heterogeneous clinical presentation, which overlaps with various neurological and psychiatric diseases. During the diagnostic work-up, cerebrospinal fluid (CSF) is routinely obtained, allowing for differential diagnostics as well as for the determination of antibody subclasses and specificities. In this monocentric cohort study, we describe initial and serial CSF findings of 33 patients diagnosed with antibody-associated AIE (LGI1 (n=8), NMDA (n=7), CASPR2 (n=3), IgLON5 (n=3), AMPAR (n=1), GAD65/67 (n=4), Yo (n=3), Ma-1/2 (n=2), CV2 (n=2)). Routine CSF parameters of 12.1% of AIE patients were in normal ranges, while 60.6% showed elevated protein levels and 45.4% had intrathecal oligoclonal bands (OCBs). Repeated CSF analyses showed a trend towards normalization of initial pathological CSF findings, while relapses were more likely to be associated with increased cell counts and total protein levels. OCB status conversion in anti-NMDARE patients coincided with clinical improvement. In summary, we show that in routine CSF analysis at diagnosis, a considerable number of patients with AIE did not exhibit alteration in the CSF and therefore, diagnosis may be delayed if antibody testing is not performed. Moreover, OCB status in anti-NMDAR AIE patients could represent a potential prognostic biomarker, however further studies are necessary to validate these exploratory findings.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Cabezudo-García P, Mena-Vázquez N, Ciano-Petersen NL, García-Martín G, Estivill-Torrús G, Serrano-Castro PJ. Prevalence of Neural Autoantibodies in Epilepsy of Unknown Etiology: Systematic Review and Meta-Analysis. Brain Sci 2021; 11:392. [PMID: 33808902 PMCID: PMC8003737 DOI: 10.3390/brainsci11030392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prevalence of neural autoantibodies in epilepsy of unknown etiology varies among studies. We aimed to conduct a systematic review and meta-analysis to determine the pooled global prevalence and the prevalence for each antibody. METHODS A systematic search was conducted for studies that included prospectively patients ≥16 years old with epilepsy of unknown etiology and systematically determined neural autoantibodies. A meta-analysis was undertaken to estimate pooled prevalence in total patients with a positive result for at least one neural autoantibody in serum and/or cerebrospinal fluid (CSF) and for each autoantibody. RESULTS Ten of the eleven studies that met the inclusion criteria and a total of 1302 patients with epilepsy of unknown etiology were included in themeta-analysis. The global pooled prevalence (IC95%) was 7.6% (4.6-11.2) in a total of 82 patients with a positive result for any neural autoantibody. None of the controls available in the studies had a positive result. Individual pooled prevalence for each autoantibody was: glycine receptor (GlyR) (3.2%), glutamic acid decarboxylase (GAD) (1.9%), N-methyl-d-aspartate receptor (NMDAR) (1.8%), leucine-rich glioma inactivated-1 protein (LGI1) (1.1%), contactin-2-associated protein (CASPR2) (0.6%) and onconeuronal (0.2%). CONCLUSIONS The pooled prevalence of neural autoantibodies in patients with epilepsy of unknown etiology is small but not irrelevant. None of the controls had a positive result. There was high heterogeneity among studies. In the future, a homogeneous protocol for testing neural autoantibodies is recommended.
Collapse
Affiliation(s)
- Pablo Cabezudo-García
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (N.L.C.-P.); (G.G.-M.); (G.E.-T.); (P.J.S.-C.)
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (N.L.C.-P.); (G.G.-M.); (G.E.-T.); (P.J.S.-C.)
- Unidad de Gestión Clínica de Reumatología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nicolás L. Ciano-Petersen
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (N.L.C.-P.); (G.G.-M.); (G.E.-T.); (P.J.S.-C.)
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Guillermina García-Martín
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (N.L.C.-P.); (G.G.-M.); (G.E.-T.); (P.J.S.-C.)
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (N.L.C.-P.); (G.G.-M.); (G.E.-T.); (P.J.S.-C.)
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Pedro J. Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (N.L.C.-P.); (G.G.-M.); (G.E.-T.); (P.J.S.-C.)
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
47
|
Wu Q, Dai S, Zhu L, Zhao CW. Acute cerebral atrophy in autoimmune encephalitis complicated by haemophagocytic lymphohistiocytosis. BMJ Case Rep 2021; 14:14/3/e240659. [PMID: 33731389 PMCID: PMC7978098 DOI: 10.1136/bcr-2020-240659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Autoimmune encephalitis is a disease characterised by neural-specific antibodies. This case report presents a 20-year-old young man with a recent history of suspected viral encephalitis who presented with recurrent fevers and episodes of confusion. He was found to have anti-N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 1 receptor (AMPAR1) positive autoantibodies and was diagnosed with autoimmune encephalitis. He subsequently developed global cerebral atrophy and was found to meet diagnostic criteria for haemophagocytic lymphohistiocytosis (HLH). This patient's presentation was consistent with existing literature showing that autoimmune encephalitis may develop after an initial viral meningoencephalitis. However, concurrent anti-NMDAR and anti-AMPAR1 positive autoimmune encephalitis has not been reported in literature to date, and this case report represents one instance of its presentation. We speculate that multiple antibodies against neural surface antigens may increase the risk for systemic immune activation leading to HLH and acute cerebral atrophy.
Collapse
Affiliation(s)
- Qian Wu
- Neurology, Kunming Medical University, Kunming, Yunnan, China
| | - Shujuan Dai
- Neurology, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Zhu
- Neurology, Kunming Medical University, Kunming, Yunnan, China
| | - Charlie Weige Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Macher S, Zrzavy T, Höftberger R, Altmann P, Pataraia E, Zimprich F, Berger T, Rommer P. Longitudinal measurement of cerebrospinal fluid neurofilament light in anti-N-methyl-D-aspartate receptor encephalitis. Eur J Neurol 2020; 28:1401-1405. [PMID: 33145945 PMCID: PMC7984371 DOI: 10.1111/ene.14631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Biomarkers reflecting the course of patients suffering from anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) are urgently needed. Neurofilament light chains (NfL) have been studied as potential markers for neuroaxonal injury mainly in neuroinflammatory diseases, but so far there have been only in a few small reports on anti-NMDARE. We aimed to compare the longitudinal course of cerebrospinal fluid (CSF)-NfL levels and anti-N-methyl-D-aspartate receptor (anti-NMDAR) antibodies with clinical parameters in six patients with anti-NMDARE. METHODS Longitudinal measurement of CSF-NfL levels and CSF anti-NMDAR antibodies in six patients suffering from anti-NMDARE was performed. RESULTS The major finding of this study is that most of our patients showed highly elevated NfL, with peak levels considerably delayed to clinical nadir. High NfL levels were associated with hippocampal atrophy but not with tumors detected. Furthermore, we did not find a clear relationship between NfL levels, CSF antibody titer, and CSF inflammatory markers. CONCLUSIONS CSF-NfL levels do not predict short-term outcome but rather are associated with intensive care unit stay and extreme delta brushes. However, high CSF-NFL levels were associated with long-term outcome. Our data suggest early aggressive immunotherapy to avoid primary and secondary neuroaxonal damage.
Collapse
Affiliation(s)
- Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Bozzetti S, Rossini F, Ferrari S, Delogu R, Cantalupo G, Marchioretto F, Zanette G, Zanoni T, Turatti M, Vitale G, Cadaldini M, Rossi F, Di Tizio L, Zuco C, Maniscalco GT, Soldani F, Monaco S, Trinka E, Hoeftberger R, Mariotto S. Epileptic seizures of suspected autoimmune origin: a multicentre retrospective study. J Neurol Neurosurg Psychiatry 2020; 91:1145-1153. [PMID: 32859745 DOI: 10.1136/jnnp-2020-323841] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To analyse autoantibody status in a well-defined European multicentre cohort of patients with epilepsy of unknown aetiology and to validate the recently proposed Antibody Prevalence in Epilepsy (APE2) and Response to ImmunoTherapy in Epilepsy (RITE2) scores. METHODS We retrospectively collected clinical and paraclinical data of 92 patients referred to the Neurology Units of Verona and Salzburg between January 2014 and July 2019 with new-onset epilepsy, status epilepticus or chronic epilepsy of unknown aetiology. Fixed and live cell-based assays, tissue-based assays, immunoblot, and live rat hippocampal cell cultures were performed in paired serum/cerebrospinal fluid (CSF) to detect antineuronal and antiglial antibodies. The APE2 and RITE2 scores were then calculated and compared with clinical and laboratory data. RESULTS Autoantibodies were detected in 29/92 patients (31.5%), with multiple positivity observed in 6/29 cases. The APE2 score (median 5, range 1-15) significantly correlated with antibody positivity (p=0.014), especially for the presence of neuropsychiatric symptoms (p<0.01), movement disorders (p<0.01), dysautonomia (p=0.03), faciobrachial dyskinesias (p=0.03) and cancer history (p<0.01). Status epilepticus was significantly more frequent in antibody-negative patients (p<0.01). Among the items of the RITE2 score, early initiation of immunotherapy correlated with a good treatment response (p=0.001), whereas a cancer history was significantly more common among non-responders (p<0.01). Persistence of neuropsychiatric symptoms and seizures correlated with antiepileptic maintenance after at least 1 year. CONCLUSIONS This is the first study that independently validates the APE2 and RITE2 scores and includes the largest cohort of patients whose paired serum and CSF samples have been tested for autoantibodies possibly associated with autoimmune epilepsy.
Collapse
Affiliation(s)
- Silvia Bozzetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Neurology, University of Verona, Verona, Italy
| | - Fabio Rossini
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Sergio Ferrari
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Neurology, University of Verona, Verona, Italy
| | - Rachele Delogu
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Sassari, Sassari, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | | | - Giampietro Zanette
- Department of Neurology, Pederzoli Hospital Private Clinic SpA, Peschiera del Garda, Veneto, Italy
| | | | - Marco Turatti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Neurology, University of Verona, Verona, Italy
| | | | - Morena Cadaldini
- Neurology Unit, AULSS6 Euganea, Ospedali Riuniti Padova Sud, Padova, Italy
| | | | - Luca Di Tizio
- Intensive Care Unit, SS Annunziata Hospital, Chieti, Italy
| | - Carmela Zuco
- Neurology Unit, Ospedale C. Poma, Mantova, Italy
| | | | - Fabio Soldani
- Department of Diagnostics and Public Health, Infectious Disease Unit, University of Verona, Verona, Italy
| | - Salvatore Monaco
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Neurology, University of Verona, Verona, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Romana Hoeftberger
- Department of Neurology, Medical University of Vienna, Division of Neuropathology and Neurochemistry, Vienna, Austria
| | - Sara Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Neurology, University of Verona, Verona, Italy
| |
Collapse
|
50
|
Perlejewski K, Pawełczyk A, Bukowska-Ośko I, Rydzanicz M, Dzieciątkowski T, Paciorek M, Makowiecki M, Caraballo Cortés K, Grochowska M, Radkowski M, Laskus T. Search for Viral Infections in Cerebrospinal Fluid From Patients With Autoimmune Encephalitis. Open Forum Infect Dis 2020; 7:ofaa468. [PMID: 33209955 PMCID: PMC7643957 DOI: 10.1093/ofid/ofaa468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background It has been reported that virus-mediated brain tissue damage can lead to autoimmune encephalitis (AE) characterized by the presence of antibodies against neuronal surface antigens. In the study, we investigate the presence of viruses in cerebrospinal fluid (CSF) from patients with AE using reverse transcription polymerase chain reaction (RT-PCR)/PCR and shotgun metagenomics. Methods CSF samples collected from 200 patients with encephalitis were tested for the presence of antibodies against antiglutamate receptor (NMDAR), contactin-associated protein 2 (CASPR2), glutamate receptors (type AMPA1/2), leucine-rich glioma-inactivated protein 1 (LGI1), dipeptidyl aminopeptidase-like protein 6 (DPPX), and GABA B receptor, and those found positive were further analyzed with real-time RT-PCR/PCR for common viral neuroinfections and shotgun DNA- and RNA-based metagenomics. Results Autoantibodies against neuronal cells were detected in CSF from 8 individuals (4% of all encephalitis patients): 7 (3.5%) had anti-NMDAR and 1 (0.5%) had anti-GABA B. RT-PCR/PCR identified human herpes virus type 1 (HSV-1; 300 copies/mL) and the representative of Enterovirus genus (550 copies/mL) in 1 patient each. Torque teno virus (TTV) was found in another patient using metagenomic analysis, and its presence was confirmed by specific PCR. Conclusions We detected the presence of HSV, TTV, and Enterovirus genus in CSF samples from 3 out of 8 AE patients. These findings support the concept of viral involvement in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Marcin Paciorek
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Michał Makowiecki
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marta Grochowska
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|