1
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
3
|
Fan YY, Luo RY, Wang MT, Yuan CY, Sun YY, Jing JY. Mechanisms underlying delirium in patients with critical illness. Front Aging Neurosci 2024; 16:1446523. [PMID: 39391586 PMCID: PMC11464339 DOI: 10.3389/fnagi.2024.1446523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Delirium is an acute, global cognitive disorder syndrome, also known as acute brain syndrome, characterized by disturbance of attention and awareness and fluctuation of symptoms. Its incidence is high among critically ill patients. Once patients develop delirium, it increases the risk of unplanned extubation, prolongs hospital stay, increases the risk of nosocomial infection, post-intensive care syndrome-cognitive impairment, and even death. Therefore, it is of great importance to understand how delirium occurs and to reduce the incidence of delirium in critically ill patients. This paper reviews the potential pathophysiological mechanisms of delirium in critically ill patients, with the aim of better understanding its pathophysiological processes, guiding the formulation of effective prevention and treatment strategies, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Ying-Ying Fan
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruo-Yu Luo
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meng-Tian Wang
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao-Yun Yuan
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Yuan Sun
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ji-Yong Jing
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Rutkowska M, Witek M, Olszewska MA. A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Toxicology and Plant Sources of Juglanin: Current Landscape and Future Perspectives. Int J Mol Sci 2024; 25:10323. [PMID: 39408653 PMCID: PMC11476773 DOI: 10.3390/ijms251910323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Juglanin (kaempferol 3-O-α-L-arabinofuranoside) is a flavonol glycoside occurring in many plants, including its commercial sources Juglans regia, Polygonum aviculare and Selliguea hastata. Recent extensive studies have explored the potential of using juglanin in various pathological conditions, including cardiovascular disorders, central nervous and skeletal system disorders, metabolic syndrome, hepatic injury, and cancers. The results indicated a wide range of effects, like anti-inflammatory, anti-oxidant, anti-fibrotic, anti-thrombotic, anti-angiogenic, hepatoprotective, hypolipidemic, hypoglycemic, anti-apoptotic (normal cells), and pro-apoptotic (cancer cells). The health-promoting properties of juglanin can be attributed to its influence on many signaling pathways, associated with SIRT1, AMPK, Nrf2, STING, TLR4, MAPKs, NF-κB, AKT, JAK, and their downstream genes. This review primarily summarizes the current knowledge of molecular mechanisms, pharmacokinetics, biocompatibility, and human use safety of juglanin. In addition, the most promising new plant sources and other existing challenges and prospects have also been reviewed and discussed, aiming to provide direction and rationale for the further development and broader pharmaceutical application of juglanin.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland; (M.W.); (M.A.O.)
| | | | | |
Collapse
|
5
|
Carrico AW, Cherenack EM, Flentje A, Moskowitz JT, Asam K, Ghanooni D, Chavez JV, Neilands TB, Dilworth SE, Rubin LH, Gouse H, Fuchs D, Paul RH, Aouizerat BE. A positive affect intervention alters leukocyte DNA methylation in sexual minority men with HIV who use methamphetamine. Brain Behav Immun 2024; 120:151-158. [PMID: 38777283 PMCID: PMC11269022 DOI: 10.1016/j.bbi.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE This epigenomics sub-study embedded within a randomized controlled trial examined whether an evidenced-based behavioral intervention model that decreased stimulant use altered leukocyte DNA methylation (DNAm). METHODS Sexual minority men with HIV who use methamphetamine were randomized to a five-session positive affect intervention (n = 32) or an attention-control condition (n = 21), both delivered during three months of contingency management for stimulant abstinence. All participants exhibited sustained HIV virologic control - an HIV viral load less than 40 copies/mL at baseline and six months post-randomization. The Illumina EPIC BeadChip measured leukocyte methylation of cytosine-phosphate-guanosine (CpG) sites mapping onto five a priori candidate genes of interest (i.e., ADRB2, BDNF, FKBP5, NR3C1, OXTR). Functional DNAm pathways and soluble markers of immune dysfunction were secondary outcomes. RESULTS Compared to the attention-control condition, the positive affect intervention significantly decreased methylation of CpG sites on genes that regulate β2 adrenergic and oxytocin receptors. There was an inconsistent pattern for the direction of the intervention effects on methylation of CpG sites on genes for glucocorticoid receptors and brain-derived neurotrophic factor. Pathway analyses adjusting for the false discovery rate (padj < 0.05) revealed significant intervention-related alterations in DNAm of Reactome pathways corresponding to neural function as well as dopamine, glutamate, and serotonin release. Positive affect intervention effects on DNAm were accompanied by significant reductions in the self-reported frequency of stimulant use. CONCLUSIONS There is an epigenetic signature of an evidence-based behavioral intervention model that reduced stimulant use, which will guide the identification of biomarkers for treatment responses.
Collapse
Affiliation(s)
- Adam W Carrico
- Robert Stempel College of Public Health & Social Work, Florida International University, United States.
| | | | - Annesa Flentje
- University of California, San Francisco School of Nursing, United States; Alliance Health Project, University of California San Francisco School of Medicine, United States
| | | | - Kesava Asam
- Department of Oral Maxillofacial Surgery, New York University College of Dentistry, United States
| | - Delaram Ghanooni
- Robert Stempel College of Public Health & Social Work, Florida International University, United States
| | - Jennifer V Chavez
- Robert Stempel College of Public Health & Social Work, Florida International University, United States
| | - Torsten B Neilands
- University of California, San Francisco School of Medicine, United States
| | | | - Leah H Rubin
- Johns Hopkins University School of Medicine, United States
| | - Hetta Gouse
- University of Miami Miller School of Medicine, United States
| | | | - Robert H Paul
- Department of Psychological Sciences, University of Missouri Saint Louis, United States
| | - Bradley E Aouizerat
- Department of Oral Maxillofacial Surgery, New York University College of Dentistry, United States
| |
Collapse
|
6
|
Mehran HS, Nady S, Kassab RB, Ahmed-Farid OA, El-Hennamy RE. Recombinant Interleukin - 2 2 Immunotherapy Ameliorates Inflammation and Promotes the Release of Monoamine Neurotransmitters in the Gut-Brain Axis of Schistosoma mansoni-Infected Mice. J Neuroimmune Pharmacol 2024; 19:37. [PMID: 39052165 DOI: 10.1007/s11481-024-10133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Recombinant interleukin-22 (rIL-22) has been reported as a protective agent in murine models of diseases driven by epithelial injury. Parasites have a circadian rhythm and their sensitivity to a certain drug may vary during the day. Therefore, this work aimed to investigate the effect of rIL-22 administration at different times of the day on the inflammation, oxidative status, and neurotransmitter release in the gut-brain axis of the Schistosoma mansoni-infected mice. Sixty male BALB/c mice aged six weeks weighing 25-30 g were divided into a control group (injected intraperitoneally with PBS), mice infected with 80 ± 10 cercariae of S. mansoni (infected group) then injected intraperitoneally with PBS, and rIL-22 treated groups. rIL-22 was administrated intraperitoneally (400 ng/kg) either at the onset or offset of the light phase for 14 days. IL-22 administration reduced the levels of IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa beta (NF-κβ), and enhanced the production of IL-22 and IL-17. The treatment with IL-22 increased glutathione (GSH) and reduced malondialdehyde (MDA) and nitric oxide (NO) levels both in the ileum and brain. The B-cell lymphoma 2 (BCL2) protein level in the ileum was diminished after IL-22 administration. Brain-derived neurotrophic factor (BDNF) and neurotransmitter release (serotonin, 5HT, norepinephrine, NE, dopamine, DA, Glutamate, Glu, and -amino butyric acid, GABA) were improved by rIL-22. In conclusion, rIL-22 showed promising immunotherapy for inflammation, oxidative damage, and neuropathological signs associated with schistosomiasis. The efficacy of IL-22 increased significantly upon its administration at the time of light offset.
Collapse
Affiliation(s)
- Heba S Mehran
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soad Nady
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Rehab E El-Hennamy
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
7
|
Sreedharan S, Pande A, Pande A, Majeed M, Cisneros-Zevallos L. The Neuroprotective Effects of Oroxylum indicum Extract in SHSY-5Y Neuronal Cells by Upregulating BDNF Gene Expression under LPS Induced Inflammation. Nutrients 2024; 16:1887. [PMID: 38931243 PMCID: PMC11206423 DOI: 10.3390/nu16121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 μg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alpana Pande
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Anurag Pande
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Muhammed Majeed
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Food Science & Technology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Wakasugi D, Kondo S, Ferdousi F, Mizuno S, Yada A, Tominaga K, Takahashi S, Isoda H. A rare olive compound oleacein functions as a TrkB agonist and mitigates neuroinflammation both in vitro and in vivo. Cell Commun Signal 2024; 22:309. [PMID: 38835076 PMCID: PMC11151522 DOI: 10.1186/s12964-024-01691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1β, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.
Collapse
Affiliation(s)
- Daiki Wakasugi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shinji Kondo
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC) in Transborder Medical Research Center (TMRC), Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Yada
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Ibaraki, 305-8565, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center (LARC) in Transborder Medical Research Center (TMRC), Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan.
| |
Collapse
|
9
|
Lee HW, Chen SJ, Tsai KJ, Hsu KS, Chen YF, Chang CH, Lin HH, Hsueh WY, Hsieh HP, Lee YF, Chiang HC, Chang JY. Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function. J Biomed Sci 2024; 31:46. [PMID: 38725007 PMCID: PMC11084077 DOI: 10.1186/s12929-024-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.
Collapse
Affiliation(s)
- Hao-Wei Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
- Taipei Cancer Center, TMU Research Center of Cancer Translational Medicine, Taipei Medical University Hospital, College of Medicine, Taipei Medical University, No. 252, Wuxing St., Xinyi Dist., Taipei, 110301, Taiwan (R.O.C.)
| | - Szu-Jung Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fan Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Han Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yun Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yueh-Feng Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Huai-Chueh Chiang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
- Taipei Cancer Center, TMU Research Center of Cancer Translational Medicine, Taipei Medical University Hospital, College of Medicine, Taipei Medical University, No. 252, Wuxing St., Xinyi Dist., Taipei, 110301, Taiwan (R.O.C.).
| |
Collapse
|
10
|
Dahrendorff J, Currier G, Uddin M. Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review. Am J Med Genet B Neuropsychiatr Genet 2024:e32985. [PMID: 38650309 DOI: 10.1002/ajmg.b.32985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
Collapse
Affiliation(s)
- Jan Dahrendorff
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
11
|
Nabih MI, Khalil NM, Shaker O, Ghanema M, Hassan SA. Cognitive dysfunction, depression and serum level of brain-derived neurotrophic factor (BDNF) in Egyptian patients with rheumatoid arthritis. REUMATOLOGIA CLINICA 2024; 20:175-180. [PMID: 38644028 DOI: 10.1016/j.reumae.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 04/23/2024]
Abstract
AIM OF THE WORK To evaluate serum brain-derived neurotrophic factor (BDNF) in Egyptian patients with rheumatoid arthritis (RA) and its relation with cognitive dysfunction. PATIENTS AND METHODS The study was carried out on 60 RA patients; 30 were active (group A) and 30 were non active (group B); and 30 controls (group C). RA disease activity was assessed via DAS28 tool, cognitive function via The Montreal Cognitive Assessment and depression via the PHQ depression scale. Serum BDNF levels were measured. RESULTS The mean age in group A was 37.8 (±9.37) years with 83.3% females, in group B was 39.97 (±8.04) years with 86.7% females and in group C was 33.17 (±3.6) years with 93.3% females. Abnormal cognitive functions test was detected in 66.7% of group A, 66.7% of group B, and in 23.3% of group C. There was a statistically significant difference in BDNF serum level between both groups of patients (1.58±0.9ng/ml for group A, 1.81±1.17ng/ml for group B) compared with the control group (3.01±1.25ng/ml, p<0.001). There was no statistically significant difference between BDNF and both disease duration and cognitive function, also no statistically significant difference regarding cognitive function, depression, and BNDF levels in patients with and without fibromyalgia. At a cut-off value of <2ng/ml, BDNF detected RA patients with cognitive dysfunction with a sensitivity of 80%, specificity of 96.67%. CONCLUSION BDNF can be a potential biomarker of cognitive dysfunction in RA patients.
Collapse
Affiliation(s)
- Mona I Nabih
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Noha M Khalil
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Olfat Shaker
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Mahmoud Ghanema
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Sarah A Hassan
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Egypt.
| |
Collapse
|
12
|
Dell’Oste V, Palego L, Betti L, Fantasia S, Gravina D, Bordacchini A, Pedrinelli V, Giannaccini G, Carmassi C. Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls. Int J Mol Sci 2024; 25:3529. [PMID: 38542503 PMCID: PMC10970837 DOI: 10.3390/ijms25063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study aimed at preliminarily evaluating circulating brain-derived-neurotrophic factor (BDNF) levels in BD subjects with PTSD or experiencing a major depressive episode versus controls. Two bloodstream BDNF components were specifically investigated, the storage (intraplatelet) and the released (plasma) ones, both as adaptogenic/repair signals during neuroendocrine stress response dynamics. Bipolar patients with PTSD (n = 20) or in a major depressive episode (n = 20) were rigorously recruited together with unrelated healthy controls (n = 24) and subsequently examined by psychiatric questionnaires and blood samplings. Platelet-poor plasma (PPP) and intraplatelet (PLT) BDNF were measured by ELISA assays. The results showed markedly higher intraplatelet vs. plasma BDNF, confirming platelets' role in neurotrophin transport/storage. No between-group PPP-BDNF difference was reported, whereas PLT-BDNF was significantly reduced in depressed BD patients. PLT-BDNF negatively correlated with mood scores but not with PTSD items like PPP-BDNF, which instead displayed opposite correlation trends with depression and manic severity. Present findings highlight PLT-BDNF as more reliable at detecting depression than PTSD in BD, encouraging further study into BDNF variability contextually with immune-inflammatory parameters in wider cohorts of differentially symptomatic bipolar patients.
Collapse
Affiliation(s)
- Valerio Dell’Oste
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFCSMA Zona Valdinievole, Azienda USL Toscana Centro, 51016 Montecatini Terme, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Andrea Bordacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Virginia Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFSMA Zona Apuana, Azienda USL Toscana Nord Ovest, 54100 Massa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| |
Collapse
|
13
|
Kazmi I, Afzal M, Imam F, Alzarea SI, Patil S, Mhaiskar A, Shah U, Almalki WH. Barbaloin's Chemical Intervention in Aluminum Chloride Induced Cognitive Deficits and Changes in Rats through Modulation of Oxidative Stress, Cytokines, and BDNF Expression. ACS OMEGA 2024; 9:6976-6985. [PMID: 38371830 PMCID: PMC10870395 DOI: 10.1021/acsomega.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1β (IL-1β), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1β, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, P.O.
Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Amrapali Mhaiskar
- Department
of Pharmacology, R. C. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
| | - Ujashkumar Shah
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
14
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
15
|
Lin S, Chen Z, Wu Z, Fei F, Xu Z, Tong Y, Sun W, Wang P. Involvement of PI3K/AKT Pathway in the Rapid Antidepressant Effects of Crocetin in Mice with Depression-Like Phenotypes. Neurochem Res 2024; 49:477-491. [PMID: 37935859 DOI: 10.1007/s11064-023-04051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The current first-line antidepressants have the drawback of slow onset, which greatly affects the treatment of depression. Crocetin, one of the main active ingredients in saffron (Crocus sativus L.), has been demonstrated to have antidepressant activities, but whether it has a rapid antidepressant effect remains unclear. This study aimed to investigate the onset, duration, and mechanisms of the rapid antidepressant activity of crocetin (20, 40 and 80 mg/kg, intraperitoneal injection) in male mice subjected to chronic restraint stress (CRS). The results of behavioral tests showed that crocetin exerted rapid antidepressant-like effect in mice with depression-like phenotypes, including rapid normalization of depressive-like behaviors within 3 h, and the effects could be maintained for 2 days. Hematoxylin-eosin (HE) and Nissl staining showed that crocetin ameliorated hippocampal neuroinflammation and nerve injuries in mice with depression-like phenotypes. The levels of inflammatory factors, corticosterone and pro brain-derived neurotrophic factor in crocetin-administrated mice serum were significantly reduced compared with those in the CRS group, as well as the levels of inflammatory factors in hippocampus. What's more, Western blot analyses showed that, compared to CRS-induced mice, the relative levels of mitogen-activated kinase phosphatase 1 and toll-like receptor 4 were significantly reduced after the administration of crocetin, and the relative expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP-response element binding protein, phosphorylated phosphoinositide 3 kinase (p-PI3K)/PI3K, phosphorylated protein kinase B (p-AKT)/AKT, phosphorylated glycogen synthase kinase 3β (p-GSK3β)/GSK3β, phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR were markedly upregulated. In conclusion, crocetin exerted rapid antidepressant effects via suppressing the expression of inflammatory cytokines and the apoptosis of neuronal cells through PI3K/AKT signaling pathways. The rapid antidepressant effect of crocetin (40 mg/kg) could be maintained for at least 2 days after single treatment.
Collapse
Affiliation(s)
- Susu Lin
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhaoruncheng Wu
- School of Biomedical engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, Shangrao, 334000, Jiangxi, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Wenyu Sun
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
16
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
17
|
Jóźwiak-Bębenista M, Sokołowska P, Wiktorowska-Owczarek A, Kowalczyk E, Sienkiewicz M. Ketamine - A New Antidepressant Drug with Anti-Inflammatory Properties. J Pharmacol Exp Ther 2024; 388:134-144. [PMID: 37977808 DOI: 10.1124/jpet.123.001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Ketamine is a new, potent and rapid-acting antidepressant approved for therapy of treatment-resistant depression, which has a different mechanism of action than currently-available antidepressant therapies. It owes its uniquely potent antidepressant properties to a complex mechanism of action, which currently remains unclear. However, it is thought that it acts by modulating the functioning of the glutamatergic system, which plays an important role in the process of neuroplasticity associated with depression. However, preclinical and clinical studies have also found ketamine to reduce inflammation, either directly or indirectly (by activating neuroprotective branches of the kynurenine pathway), among patients exhibiting higher levels of inflammation. Inflammation and immune system activation are believed to play key roles in the development and course of depression. Therefore, the present work examines the role of the antidepressant effect of ketamine and its anti-inflammatory properties in the treatment of depression. SIGNIFICANCE STATEMENT: The present work examines the relationship between the antidepressant effect of ketamine and its anti-inflammatory properties, and the resulting benefits in treatment-resistant depression (TRD). The antidepressant mechanism of ketamine remains unclear, and there is an urgent need to develop new therapeutic strategies for treatment of depression, particularly TRD.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
19
|
Sancho-Alonso M, Arenas YM, Izquierdo-Altarejos P, Martinez-Garcia M, Llansola M, Felipo V. Enhanced Activation of the S1PR2-IL-1β-Src-BDNF-TrkB Pathway Mediates Neuroinflammation in the Hippocampus and Cognitive Impairment in Hyperammonemic Rats. Int J Mol Sci 2023; 24:17251. [PMID: 38139078 PMCID: PMC10744193 DOI: 10.3390/ijms242417251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperammonemia contributes to hepatic encephalopathy. In hyperammonemic rats, cognitive function is impaired by altered glutamatergic neurotransmission induced by neuroinflammation. The underlying mechanisms remain unclear. Enhanced sphingosine-1-phosphate receptor 2 (S1PR2) activation in the cerebellum of hyperammonemic rats contributes to neuroinflammation. in In hyperammonemic rats, we assessed if blocking S1PR2 reduced hippocampal neuroinflammation and reversed cognitive impairment and if the signaling pathways were involved. S1PR2 was blocked with intracerebral JTE-013, and cognitive function was evaluated. The signaling pathways inducing neuroinflammation and altered glutamate receptors were analyzed in hippocampal slices. JTE-013 improved cognitive function in the hyperammonemic rats, and hyperammonemia increased S1P. This increased IL-1β, which enhanced Src activity, increased CCL2, activated microglia and increased the membrane expression of the NMDA receptor subunit GLUN2B. This increased p38-MAPK activity, which altered the membrane expression of AMPA receptor subunits and increased BDNF, which activated the TrkB → PI3K → Akt → CREB pathway, inducing sustained neuroinflammation. This report unveils key pathways involved in the induction and maintenance of neuroinflammation in the hippocampus of hyperammonemic rats and supports S1PR2 as a therapeutic target for cognitive impairment.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Paula Izquierdo-Altarejos
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Mar Martinez-Garcia
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| |
Collapse
|
20
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Orisakwe OE. Nickel and aluminium mixture elicit memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus of male albino rats. Curr Res Toxicol 2023; 5:100129. [PMID: 37841055 PMCID: PMC10569962 DOI: 10.1016/j.crtox.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.
Collapse
Affiliation(s)
- Chidinma P. Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N. Orish
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| |
Collapse
|
21
|
Mallik SB, Mudgal J, Kinra M, Hall S, Grant GD, Anoopkumar-Dukie S, Nampoothiri M, Zhang Y, Arora D. Involvement of indoleamine 2, 3-dioxygenase (IDO) and brain-derived neurotrophic factor (BDNF) in the neuroprotective mechanisms of ferulic acid against depressive-like behaviour. Metab Brain Dis 2023; 38:2243-2254. [PMID: 37490224 PMCID: PMC10504153 DOI: 10.1007/s11011-023-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE Ferulic acid (FA) is a common food ingredient that is abundantly present in various routinely consumed food and beverages. Like many cinnamic acid derivatives, FA produces wide-ranging effects in a dose-dependent manner and various studies link FA consumption with reduced risk of depressive disorders. The aim of this study was to exploit the neuroprotective mechanisms of FA including indoleamine 2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF), and other pro-inflammatory cytokines by employing lipopolysaccharide (LPS)-induced depressive-like behaviour model. METHODS C57BL/6J male mice were divided into 4 groups consisting of saline (SAL), LPS, FA and Imipramine (IMI). Animals were pretreated orally with FA (10 mg/kg) and IMI (10 mg/kg) for 21 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 21. RESULTS LPS administration produced a biphasic change in the behaviour of the animals where the animals lost a significant weight and express high immobility time at 24 h. Proinflammatory cytokines including, TNF-α, IL-6, IL-1β, and IFN-γ were significantly increased along with increased lipid peroxidation and reduced BDNF. Furthermore, the increased kynurenine to tryptophan ratio was indicative of elevated IDO activity. CONCLUSION The results of this study emphasise that low dose of FA is effective in attenuating depressive-like behaviour by modulating IDO, BDNF and reducing neuroinflammation.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yuqing Zhang
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia.
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
22
|
Cao Y, Song Y, Ding Y, Ni J, Zhu B, Shen J, Miao L. The role of hormones in the pathogenesis and treatment mechanisms of delirium in ICU: The past, the present, and the future. J Steroid Biochem Mol Biol 2023; 233:106356. [PMID: 37385414 DOI: 10.1016/j.jsbmb.2023.106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Delirium is an acute brain dysfunction. As one of the common psychiatric disorders in ICU, it can seriously affect the prognosis of patients. Hormones are important messenger substances found in the human body that help to regulate and maintain the function and metabolism of various tissues and organs. They are also one of the most commonly used drugs in clinical practice. Recent evidences suggest that aberrant swings in cortisol and non-cortisol hormones might induce severe cognitive impairment, eventually leading to delirium. However, the role of hormones in the pathogenesis of delirium still remains controversial. This article reviews the recent research on risk factors of delirium and the association between several types of hormones and cognitive dysfunction. These mechanisms are expected to offer novel ideas and clinical relevance for the treatment and prevention of delirium.
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yuwei Song
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yuan Ding
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Jiayuan Ni
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Bin Zhu
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Jianqin Shen
- Department of Blood Purification Center, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| |
Collapse
|
23
|
Li S, Yang C, Wu Z, Chen Y, He X, Liu R, Ma W, Deng S, Li J, Liu Q, Wang Y, Zhang W. Suppressive effects of bilobalide on depression-like behaviors induced by chronic unpredictable mild stress in mice. Food Funct 2023; 14:8409-8419. [PMID: 37615035 DOI: 10.1039/d3fo02681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Background: Depression is a psychiatric disorder with depressed mood and even suicide attempts as the main clinical symptoms, and its pathogenesis has not yet been fully elucidated. Brain derived neurotrophic factor (BDNF) plays an important role in the pathogenesis of depression. Purpose: The main aim of the present study was to evaluate the effectiveness and reveal the potential mechanisms of bilobalide (BB) intervention in alleviating depression-like behaviors by using chronic unpredictable mild stress (CUMS) mice via mediating the BDNF pathway. Methods: Behavioral assessments were carried out by using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). CUMS mice were randomly divided into 5 groups: CUMS + solvent, CUMS + BB low, CUMS + BB medium, CUMS + BB high and CUMS + fluoxetine. Total serum levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were measured by ELISA. Expression of TNF-α, IL-6, AKT, GSK3β, β-catenin, Trk-B and BDNF in the mouse hippocampus was assessed by western blotting. Results: BB treatment reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and increased the protein expression of BDNF in the hippocampus region of the CUMS mice. Moreover, BB treatment enhanced the AKT/GSK3β/β-catenin signaling pathway which is downstream of the BDNF receptor Trk-B in the hippocampus of these mice. Conclusions: Overall, the experimental results indicated that BB reverses CUMS-induced depression-like behavior. BB exerts antidepressant-like effects by inhibiting neuroinflammation and enhancing the function of neurotrophic factors.
Collapse
Affiliation(s)
- Shengnan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wanru Ma
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Shaohuan Deng
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Jianwen Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Qingsong Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yunchun Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| |
Collapse
|
24
|
Mokhtari T, Lu M, El-Kenawy AEM. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors. Int Immunopharmacol 2023; 122:110520. [PMID: 37478667 DOI: 10.1016/j.intimp.2023.110520] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to examine the effects of luteolin (LUT) on chronic neuropathic pain (NP)-induced mood disorders (i.e., anxiety and depression) by regulating oxidative stress, neurotrophic factors (NFs), and neuroinflammation. Chronic constrictive injury (CCI) was used to induce NP in the animals. Animals in the treatment groups received LUT in three doses of 10, 25, and 50 mg/kg for 21 days. The severity of pain and mood disorders were examined. Finally, animals were sacrificed, and their brain tissue was used for molecular and histopathological studies. CCI led to cold allodynia and thermal hyperalgesia. Mood alterations were proven in the CCI group, according to the behavioral tests. Levels of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), B-cell lymphoma-2 (Bcl2), superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid-2-related factor 2 (Nrf2) were reduced in the hippocampus (HPC) and prefrontal cortex (PFC). Furthermore, the levels of MDA, Bcl-2-associated X protein (Bax), and inflammatory markers, including nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), interleukin-1β (IL-1β), IL-18, IL-6, and tumor necrosis factor-α (TNF-α) significantly increased in the HPC and PFC following CCI induction. LUT treatment reversed the behavioral alterations via regulation of oxidative stress, neurotrophines, and inflammatory mediators in the HPC and PFC. Findings confirmed the potency of LUT in the improvement of chronic pain-induced anxiety- and depressive-like symptoms, probably through antioxidant, anti-inflammatory, and neuroprotective properties in the HPC and PFC.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China.
| | - Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | | |
Collapse
|
25
|
Toloui A, Ramawad HA, Gharin P, Vaccaro AR, Zarei H, Hosseini M, Yousefifard M, Rahimi-Movaghar V. The Role of Exercise in the Alleviation of Neuropathic Pain Following Traumatic Spinal Cord Injuries: A Systematic Review and Meta-analysis. Neurospine 2023; 20:1073-1087. [PMID: 37798999 PMCID: PMC10562228 DOI: 10.14245/ns.2346588.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to assess the efficacy of exercise in neuropathic pain following traumatic spinal cord injuries. METHODS The search was conducted in MEDLINE, Embase, Scopus, and Web of Science by the end of 2022. Two independent researchers included the articles based on the inclusion and exclusion criteria. A standardized mean difference was calculated for each data and they were pooled to calculate an overall effect size. To assess the heterogeneity between studies, I2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression was performed to identify the potential source. RESULTS Fifteen preclinical studies were included. Meta-analysis demonstrated that exercise significantly improves mechanical allodynia (standardized mean difference [SMD], -1.59; 95% confidence interval [CI], -2.16 to -1.02; p < 0.001; I2 = 90.37%), thermal hyperalgesia (SMD, 1.95; 95% CI, 0.96-2.94; p < 0.001), and cold allodynia (SMD, -2.92; 95% CI, -4.4 to -1.43; p < 0.001). The improvement in mechanical allodynia is significantly more in animals with a compression model of SCI (meta-regression coefficient, -1.33; 95% CI, -1.84 to -0.57; p < 0.001) and in mild SCI (p < 0.001). Additionally, the improvement was more prominent if the training was started 7 to 8 days postinjury (coefficient, -2.54; 95% CI, -3.85 to -1.23; p < 0.001) and was continued every day (coefficient, -1.99; 95% CI, -3.07 to -0.9; p < 0.001). Likewise, voluntary exercise demonstrated a significantly more effect size (coefficient, -1.45; 95% CI, -2.67 to -0.23; p = 0.02). CONCLUSION Exercise is effective in the amelioration of neuropathic pain. This effect in mechanical allodynia is more prominent if voluntary, continuous training is initiated in the subacute phase of mild SCI.
Collapse
Affiliation(s)
- Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzah Adel Ramawad
- Department of Emergency Medicine, NYC Health + Hospitals, Coney Island, New York, NY, USA
| | - Pantea Gharin
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamed Zarei
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ornell F, Scherer JN, Schuch JB, Sordi AO, Halpern SC, Rebelatto FP, Bristot G, Kapczinski F, Roglio VS, Pechansky F, Kessler FHP, von Diemen L. Serum BDNF levels increase during early drug withdrawal in alcohol and crack cocaine addiction. Alcohol 2023; 111:1-7. [PMID: 37037287 DOI: 10.1016/j.alcohol.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in several drug-induced brain neuroadaptations. The impact of withdrawal from substances that have different neurological mechanisms on BDNF levels is unclear. Our goal was to compare serum BDNF levels in inpatients with alcohol or crack cocaine use disorders during the early withdrawal period, and to evaluate the association with substance-related outcomes. We performed a follow-up study with 101 men under detoxification treatment (drug preference: alcohol [n = 37] and crack cocaine [n = 64]). Blood samples were collected on the 1st and 15th days of hospitalization to measure serum BDNF levels. Serum BDNF levels increased during the early stage of withdrawal (28.2 ± 10.0 vs. 32.6 ± 13.3, p < 0.001), similarly in individuals with alcohol and crack cocaine use. In the alcohol group, BDNF levels on the 15th day of hospitalization were negatively correlated with age (r = -0.394, p = 0.023). Delta BDNF levels were also negatively correlated with BDNF on the 1st day of hospitalization (p = 0.011). No significant correlation was found regarding substance-related outcomes. This is the first study to compare BDNF levels in alcohol and crack cocaine users undergoing similar treatment conditions. These findings could be related to clinical improvement after abstinence or even to drug withdrawal itself, decreasing neuronal injury. Furthermore, age may be a crucial factor, hindering the recovery of neuroplasticity in alcohol users.
Collapse
Affiliation(s)
- Felipe Ornell
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana N Scherer
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Anne O Sordi
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia C Halpern
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando P Rebelatto
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giovana Bristot
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flavio Kapczinski
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Department of Psychiatry and Behavioural Neurosciences, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Vinicius S Roglio
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Subramanian S, Oughli HA, Gebara MA, Palanca BJA, Lenze EJ. Treatment-Resistant Late-Life Depression: A Review of Clinical Features, Neuropsychology, Neurobiology, and Treatment. Psychiatr Clin North Am 2023; 46:371-389. [PMID: 37149351 DOI: 10.1016/j.psc.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Major depression is common in older adults (≥ 60 years of age), termed late-life depression (LLD). Up to 30% of these patients will have treatment-resistant late-life depression (TRLLD), defined as depression that persists despite two adequate antidepressant trials. TRLLD is challenging for clinicians, given several etiological factors (eg, neurocognitive conditions, medical comorbidities, anxiety, and sleep disruption). Proper assessment and management is critical, as individuals with TRLLD often present in medical settings and suffer from cognitive decline and other marks of accelerated aging. This article serves as an evidence-based guide for medical practitioners who encounter TRLLD in their practice.
Collapse
Affiliation(s)
- Subha Subramanian
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Hanadi A Oughli
- Department of Psychiatry, Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Marie Anne Gebara
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ben Julian A Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA; Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, USA; Neuroimaging Labs Research Center, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
28
|
Sattarifard H, Safaei A, Khazeeva E, Rastegar M, Davie JR. Mitogen- and stress-activated protein kinase (MSK1/2) regulated gene expression in normal and disease states. Biochem Cell Biol 2023; 101:204-219. [PMID: 36812480 DOI: 10.1139/bcb-2022-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The mitogen- and stress-activated protein kinases (MSK) are epigenetic modifiers that regulate gene expression in normal and disease cell states. MSK1 and 2 are involved in a chain of signal transduction events bringing signals from the external environment of a cell to specific sites in the genome. MSK1/2 phosphorylate histone H3 at multiple sites, resulting in chromatin remodeling at regulatory elements of target genes and the induction of gene expression. Several transcription factors (RELA of NF-κB and CREB) are also phosphorylated by MSK1/2 and contribute to induction of gene expression. In response to signal transduction pathways, MSK1/2 can stimulate genes involved in cell proliferation, inflammation, innate immunity, neuronal function, and neoplastic transformation. Abrogation of the MSK-involved signaling pathway is among the mechanisms by which pathogenic bacteria subdue the host's innate immunity. Depending on the signal transduction pathways in play and the MSK-targeted genes, MSK may promote or hinder metastasis. Thus, depending on the type of cancer and genes involved, MSK overexpression may be a good or poor prognostic factor. In this review, we focus on mechanisms by which MSK1/2 regulate gene expression, and recent studies on their roles in normal and diseased cells.
Collapse
Affiliation(s)
- Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Akram Safaei
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Enzhe Khazeeva
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| |
Collapse
|
29
|
Dicarlo M, Pignataro P, Zerlotin R, Suriano C, Zecca C, Dell'Abate MT, Storlino G, Oranger A, Sanesi L, Mori G, Grano M, Colaianni G, Colucci S. Short-Term Irisin Treatment Enhanced Neurotrophin Expression Differently in the Hippocampus and the Prefrontal Cortex of Young Mice. Int J Mol Sci 2023; 24:ijms24119111. [PMID: 37298063 DOI: 10.3390/ijms24119111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
As a result of physical exercise, muscle releases multiple exerkines, such as "irisin", which is thought to induce pro-cognitive and antidepressant effects. We recently demonstrated in young healthy mice the mitigation of depressive behaviors induced by consecutive 5 day irisin administration. To understand which molecular mechanisms might be involved in such effect, we here studied, in a group of mice previously submitted to a behavioral test of depression, the gene expression of neurotrophins and cytokines in the hippocampus and prefrontal cortex (PFC), two brain areas frequently investigated in the depression pathogenesis. We found significantly increased mRNA levels of nerve growth factor (NGF) and fibroblast growth factor 2 (FGF-2) in the hippocampus and brain-derived growth factor (BDNF) in the PFC. We did not detect a difference in the mRNA levels of interleukin 6 (IL-6) and IL-1β in both brain regions. Except for BDNF in the PFC, two-way ANOVA analysis did not reveal sex differences in the expression of the tested genes. Overall, our data evidenced a site-specific cerebral modulation of neurotrophins induced by irisin treatment in the hippocampus and the PFC, contributing to the search for new antidepressant treatments targeted at single depressive events with short-term protocols.
Collapse
Affiliation(s)
- Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Clelia Suriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari at "Pia Fondazione Card G. Panico" Hospital, Via San Pio X, 4, 73039 Tricase, Italy
| | - Maria Teresa Dell'Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari at "Pia Fondazione Card G. Panico" Hospital, Via San Pio X, 4, 73039 Tricase, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| |
Collapse
|
30
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
31
|
Essam RM, Saadawy MA, Gamal M, Abdelsalam RM, El-Sahar AE. Lactoferrin averts neurological and behavioral impairments of thioacetamide-induced hepatic encephalopathy in rats via modulating HGMB1/TLR-4/MyD88/Nrf2 pathway. Neuropharmacology 2023; 236:109575. [PMID: 37201650 DOI: 10.1016/j.neuropharm.2023.109575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.
Collapse
Affiliation(s)
- Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam A Saadawy
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mahitab Gamal
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Chan KW, Hebert J, Radford-Smith D, Anthony DC, Burnet PW. Live or heat-killed probiotic administration reduces anxiety and central cytokine expression in BALB/c mice, but differentially alters brain neurotransmitter gene expression. Neuropharmacology 2023; 235:109565. [PMID: 37150398 DOI: 10.1016/j.neuropharm.2023.109565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
While the potential for probiotic supplements to act as adjunctive treatments for mood disorders has been widely demonstrated, the precise mode of action remains unclear. To investigate the psychotropic effects of a multi-species probiotic supplement on emotional behaviour in male BALB/c mice, we explored the potential mechanisms of action relating to the temporal changes in the mRNA expression of brain cytokines, growth factors, central 5HT receptor and serotonin transporter (SERT) and GABA receptor in the context of probiotic induced behavioural changes. The effects of a heat-killed probiotic, independent of microbial metabolic processes were also evaluated on the same outcomes to understand whether the host response to the bacteria is more or less important than the contribution of the metabolic activity of the bacteria themselves. Results showed that probiotic supplementation reduced anxiety-like behaviours, increased time spent in the light area of the light-dark box, and decreased the expression of pro-inflammatory cytokines in the brain. Furthermore, probiotic administration elevated hippocampal BDNF and decreased GABAB1β expression. Interestingly, the heat-killed probiotic and its membrane fraction had similar effects on emotional behaviours and gene expression in the brain. The ingestion of live and heat-killed probiotic preparations also reduced TLR2 expression in the gut. Thus, the present study reveals that the anxiolytic action of a multispecies probiotic in BALB/c mice is independent of bacterial viability. This suggests that it is the host response to probiotics, rather than microbial metabolism that facilitates the molecular changes in the brain and downstream behaviours.
Collapse
Affiliation(s)
- Ka Wai Chan
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Jennifer Hebert
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | | | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, OX1 3QT, United Kingdom
| | - Philip Wj Burnet
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom.
| |
Collapse
|
33
|
Vyas N, Wimberly CE, Beaman MM, Kaplan SJ, Rasmussen LJH, Wertz J, Gifford EJ, Walsh KM. Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology 2023; 151:106071. [PMID: 36857833 PMCID: PMC10073327 DOI: 10.1016/j.psyneuen.2023.106071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
There is continued interest in identifying dysregulated biomarkers that mediate associations between adverse childhood experiences (ACEs) and negative long-term health outcomes. However, little is known regarding how ACE exposure modulates neural biomarkers to influence poorer health outcomes in ACE-exposed children. To address this, we performed a systematic review and meta-analysis of the impact of ACE exposure on Brain Derived Neurotrophic Factor (BDNF) levels - a neural biomarker involved in childhood and adult neurogenesis and long-term memory formation. Twenty-two studies were selected for inclusion within the systematic review, ten of which were included in meta-analysis. Most included studies retrospectively assessed impacts of childhood maltreatment in clinical populations. Sample size, BDNF protein levels in ACE-exposed and unexposed subjects, and standard deviations were extracted from ten publications to estimate the BDNF ratio of means (ROM) across exposure categories. Overall, no significant difference was found in BDNF protein levels between ACE-exposed and unexposed groups (ROM: 1.08; 95 % CI: 0.93-1.26). Age at sampling, analyte type (e.g., sera, plasma, blood), and categories of ACE exposure contributed to high between-study heterogeneity, some of which was minimized in subset-based analyses. These results support continued investigation into the impact of ACE exposure on neural biomarkers and highlight the potential importance of analyte type and timing of sample collection on study results.
Collapse
Affiliation(s)
- Neha Vyas
- Duke University, Trinity College of Arts and Sciences, Durham, NC, USA
| | - Courtney E Wimberly
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA
| | - M Makenzie Beaman
- Duke University School of Medicine, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA
| | | | - Line J H Rasmussen
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Jasmin Wertz
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; University of Edinburgh, Department of Psychology, Edinburgh, UK
| | - Elizabeth J Gifford
- Duke Children's Health and Discovery Initiative, Durham, NC, USA; Duke University Sanford School of Public Policy, Center for Child and Family Policy, Durham, NC, USA
| | - Kyle M Walsh
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA.
| |
Collapse
|
34
|
Fagundes GBP, Tibães JRB, Silva ML, Braga MM, Silveira ALM, Teixeira AL, Ferreira AVM. Metabolic and behavioral effects of time-restricted eating in women with overweight or obesity: Preliminary findings from a randomized study. Nutrition 2023; 107:111909. [PMID: 36571891 DOI: 10.1016/j.nut.2022.111909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of 8 wk of time-restricted eating (TRE) along with a caloric restriction on metabolic profile, metabolic rate, symptoms of mood, and eating disorders and weight loss in women with overweight or obesity. METHODS Women age 18 to 59 y with a body mass index of ≥25 kg/m2 were enrolled in this parallel-arm, randomized, clinical trial. Participants were randomly allocated into two groups (8-h TRE or non-TRE group) using a 2:1 allocation strategy. Both groups received a diet plan with caloric restriction. Body weight, resting metabolic rate, metabolic profile, and symptoms of mood and eating disorders were evaluated at baseline and on follow up. RESULTS Thirty-six subjects were included in this study, with 24 in the TRE group and 12 in the non-TRE group. Subject in the TRE group showed more pronounced loss of weight, body fat mass, and fat-free mass than those in the non-TRE group. These losses were not associated with changes in resting metabolic rate, metabolic profile, and eating or mood disorder symptoms. CONCLUSIONS This study showed that 8 wk of TRE does not influence behavioral parameters in individuals with overweight or obesity, but could lead to weight loss.
Collapse
Affiliation(s)
| | | | - Mariele Lino Silva
- Department of Physiology and Pharmacology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Marcolino Braga
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Letícia Malheiros Silveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Physiology and Pharmacology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Lúcio Teixeira
- Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Adaliene Versiani Matos Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Physiology and Pharmacology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
35
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
36
|
Wang Y, Xu N, Fan J, Wei Z, Xin W, Xing S. Stable and efficient expression of human brain-derived neurotrophic factor in tobacco chloroplasts. Mol Biol Rep 2023; 50:409-416. [PMID: 36335524 DOI: 10.1007/s11033-022-08053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is an intensively studied neurotrophin that promotes various physiological processes, such as acceleration of cell proliferation and differentiation, and is, therefore widely used in clinical applications. METHODS AND RESULTS In this study, an expression vector with a codon-optimized hBDNF gene was constructed and transferred into chloroplasts of tobacco by gene-gun. After three or four rounds of selection with optimal spectinomycin concentration, hBDNF was integrated into the chloroplast genome of homoplastomic plants, as confirmed by PCR and Southern hybridization. ELISA indicated that hBDNF fused with GFP represented approximately 15.72% ± 0.33% of total soluble protein in the leaves of transplastomic plants. Moreover, the chloroplast-derived hBDNF displayed biological activity similar to the commercial product. CONCLUSIONS This is the first case report of hBDNF expression by chloroplast transformation in the plant model, providing an additional pathway for the production of chloroplast-expressed therapeutic proteins.
Collapse
Affiliation(s)
- Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Nuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jieying Fan
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd., Beijing, People's Republic of China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
37
|
İnal N, Cavusoglu B, Ermiş Ç, Turan S, Gormez V, Karabay N. Reduced Cortical Thicknesses of Adolescents with Bipolar Disorder and Relationship with Brain-derived Neurotrophic Factor. Scand J Child Adolesc Psychiatr Psychol 2023; 11:78-86. [PMID: 37377456 PMCID: PMC10291755 DOI: 10.2478/sjcapp-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Background Cortical thickness (CT) and brain-derived neurotrophic factor (BDNF) were widely investigated in bipolar disorder (BD). Previous studies focused on the association between the volume of subcortical regions and neurotrophic factor levels. Objective In this study, we aimed to evaluate the association of the CT in youth with early-onset BD with BDNF levels as a potential peripheral marker of neuronal integrity. Method Twenty-three euthymic patients having a clinical diagnosis of BD and 17 healthy subjects as an age-matched control group with neuroimaging and blood BDNF levels were found eligible for CT measurement. A structural magnetic resonance scan (MRI) and timely blood samples were drawn. Results Youth with BD exhibited lower cortical thickness in caudal part of left (L) middle frontal gyrus, right (R) paracentral gyrus, triangular part of R inferior frontal gyrus, R pericalcarine region, R precentral gyrus, L precentral gyrus, R superior frontal gyrus and L superior frontal gyrus when compared to healthy controls. The effect sizes of these differences were moderate to large (d=0.67-0.98) There was a significant correlation between BDNF levels with caudal part of the R anterior cingulate gyrus (CPRACG) in adolescents with BD (r=0.49, p=0.023). Conclusion As a special region for mood regulation, the CT of the caudal part of the R anterior cingulate gyrus had a positive correlation with BDNF. Regarding the key role of CPRACG for affective regulation skills, our results should be replicated in future follow-up studies, investigating a predictive neuroimaging biomarker for the early-onset BD.
Collapse
Affiliation(s)
- Neslihan İnal
- Department of Child and Adolescent Psychiatry, Dokuz Eylul University, Izmir, Turkey
| | | | - Çağatay Ermiş
- Department of Children and Adolescent Psyhciatry, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Serkan Turan
- Department of Child and Adolescent Psychiatry, Uludag University, Bursa, Turkey
| | - Vahdet Gormez
- Department of Child and Adolescent Psychiatry, Medeniyet University Göztepe Training and Research Hospital, Istanbul, Turkey
| | - Nuri Karabay
- Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
38
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Bhatt S, Kanoujia J, Mohana Lakshmi S, Patil CR, Gupta G, Chellappan DK, Dua K. Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:276-288. [PMID: 35352640 DOI: 10.2174/1871527321666220329140804] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
The human gut microbiota plays a significant role in the pathophysiology of central nervous system-related diseases. Recent studies suggest correlations between the altered gut microbiota and major depressive disorder (MDD). It is proposed that normalization of the gut microbiota alleviates MDD. The imbalance of brain-gut-microbiota axis also results in dysregulation of the hypothalamicpituitary- adrenal (HPA) axis. This imbalance has a crucial role in the pathogenesis of depression. Treatment strategies with certain antibiotics lead to the depletion of useful microbes and thereby induce depression like effects in subjects. Microbiota is also involved in the synthesis of various neurotransmitters (NTs) like 5-hydroxy tryptamine (5-HT; serotonin), norepinephrine (NE) and dopamine (DA). In addition to NTs, the gut microbiota also has an influence on brain derived neurotrophic factor (BDNF) levels. Recent research findings have exhibited that transfer of stress prone microbiota in mice is also responsible for depression and anxiety-like behaviour in animals. The use of probiotics, prebiotics, synbiotics and proper diet have shown beneficial effects in the regulation of depression pathogenesis. Moreover, transplantation of fecal microbiota from depressed individuals to normal subjects also induces depression-like symptoms. With the precedence of limited therapeutic benefits from monoamine targeting drugs, the regulation of brain-gut microbiota is emerging as a new treatment modality for MDDs. In this review, we elaborate on the significance of brain-gut-microbiota axis in the progression of MDD, particularly focusing on the modulation of the gut microbiota as a mode of treating MDD.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - C R Patil
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Maharashtra 425405, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
40
|
Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2022; 24:ijms24010223. [PMID: 36613667 PMCID: PMC9820677 DOI: 10.3390/ijms24010223] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood-brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer's, and Parkinson's diseases.
Collapse
|
41
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
42
|
Wu T, Liu R, Zhang L, Rifky M, Sui W, Zhu Q, Zhang J, Yin J, Zhang M. Dietary intervention in depression - a review. Food Funct 2022; 13:12475-12486. [PMID: 36408608 DOI: 10.1039/d2fo02795j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mental illness that affects the normal lives of over 300 million people. Unfortunately, about 30% to 40% of patients do not adequately respond to pharmacotherapy and other therapies. This review focuses on exploring the relationship between dietary nutrition and depression, aiming to find safer and efficient ingredients to alleviate depression. Diet can affect depression in numerous ways. These pathways include the regulation of tryptophan metabolism, inflammation, hypothalamic-pituitary-adrenal (HPA) axis, microbe-gut-brain axis, brain-derived neurotrophic factor (BDNF) and epigenetics. Furthermore, probiotics, micronutrients, and other active substances exhibit significant antidepressant effects by regulating the above pathways. These provide insights for developing antidepressant foods.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ling Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Mohamed Rifky
- Eastern University of Sri Lanka, Chenkalady 999011, Sri Lanka
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China. .,Tianjin Agricultural University, and China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
43
|
Arshad HM, Ahmad FUD, Lodhi AH. Methanolic Extract of Aerva javanica Leaves Prevents LPS-Induced Depressive Like Behavior in Experimental Mice. Drug Des Devel Ther 2022; 16:4179-4204. [PMID: 36514526 PMCID: PMC9741839 DOI: 10.2147/dddt.s383054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aim Depression is a chronic recurrent neuropsychiatric disorder associated with inflammation. This study explored the pharmacological activities of Aerva javanica leaves crude extract (Aj.Cr) on lipopolysaccharide (LPS)-induced depressive-like behavior in experimental mice. Methods Aj.Cr was evaluated for its phenolic and flavonoid contents, bioactive potential, amino acid profiling and enzyme inhibition assays using different analytical techniques followed by in-silico molecular docking was performed. In addition, three ligands identified in HPLC analysis and standard galantamine were docked to acetyl cholinesterase (AchE) enzyme to assess the ligand interaction along with their binding affinities. In in-vivo analysis, mice were given normal saline (10 mL/kg), imipramine (10 mg/kg) and Aj.Cr (100, 300, and 500 mg/kg) orally for 14-consecutive days. On the 14th day, respective treatment was given 30-minutes before intra-peritoneal administration of (0.83 mg/kg) LPS. Open field, forced swim and tail suspension tests were performed 24-hours after LPS injection, followed by a sucrose preference test 48-hours later. Serum corticosterone levels, as well as levels of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and catecholamines were determined in brain tissues. Results In-vitro results revealed that crude extract of Aj.Cr possesses anti-depressant agents with solid antioxidant potential. In-vivo analysis showed that LPS significantly increased depressive-like behavior followed by alteration in serum and tissue biomarkers as compared to normal control (p < 0.001). While imipramine and Aj.Cr (100, 300, and 500 mg/kg) treated groups significantly (p<0.05) improved the depressive-like behavior and biomarkers when compared to the LPS group. Conclusion The mitigation of LPS-induced depressive-like behavior by Aj.Cr may be linked to the modulation of oxidative stress, neuro-inflammation and catecholamines due to the presence of potent bioactive compounds exerting anti-depressant effects.
Collapse
Affiliation(s)
- Hafiza Maida Arshad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan,Correspondence: Fiaz-ud-Din Ahmad, Department of Pharmacology, the Islamia University of Bahawalpur, Pakistan Khawaja Fareed Campus, Railway Road, Bahawalpur, 63100, Pakistan, Tel +92-320-8402376, Email
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
44
|
Jin Y, Pang H, Zhao L, Zhao F, Cheng Z, Liu Q, Cui R, Yang W, Li B. Ginseng total saponins and Fuzi total alkaloids exert antidepressant-like effects in ovariectomized mice through BDNF-mTORC1, autophagy and peripheral metabolic pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154425. [PMID: 36137328 DOI: 10.1016/j.phymed.2022.154425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shenfu decoction (SFD) is a classic Chinese medicine prescription that has a strong cardiotonic effect. The combination of ginseng (the dried root of Panax ginseng C. A. Meyer) and Fuzi (processed product of sub-root of Aconitum carmichaeli Debx), the main constituents of SFD, has been reported to improve the pharmacological effect of each other. Moreover, research has shown that the main active components of SFD, ginseng total saponins (GTS) and Fuzi total alkaloids (FTA), have antidepressant activity. However, the effects of these ingredients on depressive-like behavior induced by ovariectomy, a model of menopausal depression, have not been studied. PURPOSE Our research aims to elucidate the antidepressant-like effects of GTS and FTA compatibility (GF) in ovariectomized mice and the potential mechanisms. METHODS To elucidate the antidepressant-like effects of GF in mice in ovariectomy condition, behavioral tests were performed after 7 days of intragastric administration of different doses of GF. Underlying molecular mechanisms of CREB-BDNF, BDNF-mTORC1 and autophagy signaling were detected by western blotting, serum metabolites were examined by UPLC-QE plus-MS and dendritic spine density was determined by Golgi-Cox staining. RESULTS GF remarkably decreased the immobility time in the forced swim test. GF also increased levels of pCREB/CREB, BDNF, Akt, mTORC1 and p62 in the prefrontal cortex and hippocampus, as well as decreased LC3-II/LC3-I in the prefrontal cortex and hippocampus of ovariectomized mice. Furthermore, 15 serum differential metabolites (9 of which are lipids and lipid molecules) were identified by metabonomics. Next, the antidepressant-like effects of GF was blocked by rapamycin, an inhibitor of mTORC1. The antidepressant actions of GF on levels of pCREB, mTORC1, LC3-Ⅱ/LC3-Ⅰ and p62 in the prefrontal cortex and the levels of BDNF, Akt, mTORC1 and p62 in the hippocampus were inhibited by rapamycin, and the dendritic spines density was also regulated. CONCLUSION GF has antidepressant effects in ovariectomized mice, and like other antidepressants, these effects involve activation of BDNF-mTORC1, autophagy regulation and consequent effects on hippocampal synaptic plasticity. Moreover, metabolomic results suggest that GF also has effects on peripheral lipid profiles that may provide potential biomarkers for these antidepressant-like effects. These results indicate that GF is worthy of further exploration as a promising pharmaceutical treatment for depression. This study provides a new direction for the development of new indications for traditional Chinese medicine compounds.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China; Department of Pharmacy, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Huanhuan Pang
- Cosmetics Laboratory, Jilin Institute for Drug Control, Changchun 130033, PR China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
45
|
Differential biochemical-inflammatory patterns in the astrocyte-neuron axis of the hippocampus and frontal cortex in Wistar rats with metabolic syndrome induced by high fat or carbohydrate diets. J Chem Neuroanat 2022; 126:102186. [DOI: 10.1016/j.jchemneu.2022.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
|
46
|
Griffith TA, Russell JS, Naghipour S, Helman TJ, Peart JN, Stapelberg NJ, Headrick JP, Du Toit EF. Behavioural disruption in diabetic mice: Neurobiological correlates and influences of dietary α-linolenic acid. Life Sci 2022; 311:121137. [DOI: 10.1016/j.lfs.2022.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
47
|
Filippova YY, Devyatova EV, Alekseeva AS, Burmistrova AL. Cytokines and neurotrophic factors in the severity assessment of children autism. Klin Lab Diagn 2022; 67:647-651. [PMID: 36398773 DOI: 10.51620/0869-2084-2022-67-11-647-651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the steady increase in the number of children with autism and the high heterogeneity of clinical groups, the diagnosis of these disorders and their severity is an urgent problem in modern medicine. In the course of the work, 126 children from 3 to 13 years old with typical neurodevelopment and with severe and mild autism spectrum disorders (ASD) were examined. Disease severity was determined according to the Childhood Autism Rating Scale (CARS). The levels of pro-/anti-inflammatory cytokines and neurotrophic factors (nerve growth factor beta and brain-derived neurotrophic factor) in blood plasma were assessed by enzyme immunoassay. Associations between indicators in each group of patients were assessed using the Spearman test and visualized as a heatmap of correlations. Statistical data processing was carried out in the R software. Significantly high levels of IL-4 in blood plasma and a decrease in the number of significant correlations within/between systems were revealed in children with mild autism compared with children with typical neurodevelopment. Such data can probably reflect the theory that some children with ASD are characterized by slow brain development, as a variant of the evolutionary norm. On the contrary, in children with severe ASD, high systemic levels of IL-6 and IFNg are shown against the background of low values of IL-10, IL-1β, TNFα and NGFβ, supported by the almost complete absence of intra/ and intersystem interactions. This may act as an indicator of maladaptation of the immune and nervous systems in severe autism, which contributes to the pathogenesis of the disease. Thus, a set of indicators: high levels of key pro-inflammatory cytokines - IL-6 and IFNg, low levels of IL-10, NGFβ and disintegration of the cytokine and nervous systems in the periphery can be proposed as an approach to indicate the severity of the condition in children with ASD.
Collapse
|
48
|
Lim G, Lee H, Lim Y. Potential Effects of Resistant Exercise on Cognitive and Muscle Functions Mediated by Myokines in Sarcopenic Obese Mice. Biomedicines 2022; 10:biomedicines10102529. [PMID: 36289794 PMCID: PMC9599854 DOI: 10.3390/biomedicines10102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, it has been demonstrated that in sarcopenic obesity (SO), physical activity could improve cognitive functions. Moreover, previous studies suggested that muscle contraction could influence cognitive function via myokines. This study investigated the potential effects of resistant exercise on cognitive and muscle functions in SO. SO was induced by a high-fat diet treatment for 8 weeks in 8-month-old male C57BL/6J mice. Then, resistant exercise (ladder climbing) for 8 weeks was performed. Muscle and cognitive function tests and morphological analysis were conducted. The protein levels of myokines were investigated in muscle, plasma, and the hippocampus in sarcopenic obese mice. Muscle and cognitive functions were significantly elevated in the obesity-exercise group (EX) compared to the obesity-control group (OB). Interestingly, muscle function was positively correlated with cognitive function. Abnormal morphological changes in the hippocampus were ameliorated in EX compared to OB, but not in the muscle. Protein levels of cognitive function-related myokines and energy metabolism-related markers in EX were significantly elevated in both muscle and hippocampus compared to those in OB. Interestingly, the protein level of brain-derived neurotrophic factor (BDNF) in EX was simultaneously increased in all tissues including muscle, plasma, and hippocampus compared to that in OB. In conclusion, modulation of muscle-derived cognitive function-related myokines in various pathological conditions via a resistant exercise could be a possible way of relieving muscle and cognitive dysfunction.
Collapse
|
49
|
Sharma K, Zhang Y, Paudel KR, Kachelmeier A, Hansbro PM, Shi X. The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health. Cells 2022; 11:cells11193108. [PMID: 36231071 PMCID: PMC9563036 DOI: 10.3390/cells11193108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.
Collapse
Affiliation(s)
- Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence: ; Tel.: +1-503-494-2997
| |
Collapse
|
50
|
Ferrer-Pérez C, Reguilón MD, Miñarro J, Rodríguez-Arias M. Effect of Voluntary Wheel-Running Exercise on the Endocrine and Inflammatory Response to Social Stress: Conditioned Rewarding Effects of Cocaine. Biomedicines 2022; 10:biomedicines10102373. [PMID: 36289635 PMCID: PMC9598819 DOI: 10.3390/biomedicines10102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The present paper evaluates the effect of physical activity on the increase of the conditioned rewarding effects of cocaine induced by intermittent social stress and on the neuroinflammatory response that contributes to the enhancement of drug response. For that purpose, three studies were designed in which social stress was induced in different samples of mice through a social-defeat protocol; the mice underwent an increase of physical activity by different modalities of voluntary wheel running (continuous and intermittent access). The results showed that continuous access to running wheels prior to stress enhanced the establishment of cocaine place preference, whereas an intermittent access exerted a protective effect. Wheel running contingent to cocaine administration prevented the development of conditioned preference, and if applied during the extinction of drug memories, it exerted a dual effect depending on the stress background of the animal. Our biological analysis revealed that increased sensitivity to cocaine may be related to the fact that wheel running promotes inflammation though the increase of IL-6 and BDNF levels. Together, these results highlight that physical exercise deeply impacts the organism’s response to stress and cocaine, and these effects should be taken into consideration in the design of a physical intervention.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychology and Sociology, Faculty of Humanities and Social Sciences, University of Zaragoza, 44003 Teruel, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|