1
|
Perkins AE, Dart E, Kaiser D. Prenatal Alcohol Exposure Disrupts Performance in a Differential Reinforcement of Low Rates Task Specifically in Adolescent Male Rats. Dev Psychobiol 2024; 66:e22555. [PMID: 39467264 DOI: 10.1002/dev.22555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024]
Abstract
Prenatal alcohol exposure (PAE) can lead to a wide range of adverse effects in humans, including impaired self-control and increased impulsive behavior. Deficits in self-control can interfere with academic performance and have lasting impacts. In the present study, a rodent model of PAE was used to assess impulsivity through operant conditioning. Pregnant rats were assigned to one of three groups: ad-lib control (CON), pair-fed (PF), and alcohol-exposed (ALC). ALC rats were given a liquid diet containing 6% alcohol, PF rats were yoked to an ALC rat and given a CON liquid diet, and CON rats received ad libitum food. Operant conditioning was used to evaluate extinction in adolescents (Experiment 1) and differential reinforcement of low rates (DRL) in adolescents and adults (Experiment 2). PAE resulted in an increase in responses and resets during DRL testing, indicative of impaired self-control, an effect that was only observed in adolescent males. Females, regardless of age, did not show increased impulsivity following PAE. This indicates that children with PAE may exhibit attentional deficits similar to those with attention deficit hyperactivity disorder, with males at a higher risk.
Collapse
Affiliation(s)
- Amy E Perkins
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Ellie Dart
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Daren Kaiser
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| |
Collapse
|
2
|
Carbonell-Roig J, Aaltonen A, Wilson K, Molinari M, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. Cell Rep 2024; 43:114997. [PMID: 39607825 DOI: 10.1016/j.celrep.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) consists of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine (DA) neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine DA neurotransmission in a mouse model of ASD characterized by elevated expression of eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal DA release. The loss of normal DA neurotransmission is due to a defect in nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions by revealing the intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility.
Collapse
Affiliation(s)
| | - Alina Aaltonen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Wilson
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Veronica Cartocci
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Avery McGuirt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Eugene Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jan Kehr
- Pronexus Analytical AB, 16733 Stockholm-Bromma, Sweden
| | - Ori J Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
3
|
Tao Q, Dang J, Guo H, Zhang M, Niu X, Kang Y, Sun J, Ma L, Wei Y, Wang W, Wen B, Cheng J, Han S, Zhang Y. Abnormalities in static and dynamic intrinsic neural activity and neurotransmitters in first-episode OCD. J Affect Disord 2024; 363:609-618. [PMID: 39029696 DOI: 10.1016/j.jad.2024.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a disabling disorder in which the temporal variability of regional brain connectivity is not well understood. The aim of this study was to investigate alterations in static and dynamic intrinsic neural activity (INA) in first-episode OCD and whether these changes have the potential to reflect neurotransmitters. METHODS A total of 95 first-episode OCD patients and 106 matched healthy controls (HCs) were included in this study. Based on resting-state functional magnetic resonance imaging (rs-fMRI), the static and dynamic local connectivity coherence (calculated by static and dynamic regional homogeneity, sReHo and dReHo) were compared between the two groups. Furthermore, correlations between abnormal INA and PET- and SPECT-derived maps were performed to examine specific neurotransmitter system changes underlying INA abnormalities in OCD. RESULTS Compared with HCs, OCD showed decreased sReHo and dReHo values in left superior, middle temporal gyrus (STG/MTG), left Heschl gyrus (HES), left putamen, left insula, bilateral paracentral lobular (PCL), right postcentral gyrus (PoCG), right precentral gyrus (PreCG), left precuneus and right supplementary motor area (SMA). Decreased dReHo values were also found in left PoCG, left PreCG, left SMA and left middle cingulate cortex (MCC). Meanwhile, alterations in INA present in brain regions were correlated with dopamine system (D2, FDOPA), norepinephrine transporter (NAT) and the vesicular acetylcholine transporter (VAChT) maps. CONCLUSION Static and dynamic INA abnormalities exist in first-episode OCD, having the potential to reveal the molecular characteristics. The results help to further understand the pathophysiological mechanism and provide alternative therapeutic targets of OCD.
Collapse
Affiliation(s)
- Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Huirong Guo
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Longyao Ma
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, China; Henan Engineering Technology Research Center for detection and application of brain function, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, China; Henan key laboratory of imaging intelligence research, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
4
|
Silva-Batista C, Liu W, Vitorio R, Stuart S, Quinn JF, Mancini M. The Time Course of Changes in Prefrontal Cortex Activity During Walking in People With Parkinson's Disease. Neurorehabil Neural Repair 2024; 38:635-645. [PMID: 39075890 DOI: 10.1177/15459683241265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Walking abnormalities in people with Parkinson's disease (PD) are characterized by a shift in locomotor control from healthy automaticity to compensatory, executive control, mainly located in the prefrontal cortex (PFC). Although PFC activity during walking increases in people with PD, the time course of PFC activity during walking and its relationship to clinical or gait characteristics is unknown. OBJECTIVE To identify the time course of PFC activity during walking in people with PD. To investigate whether clinical or gait variables would explain the PFC activity changes. METHODS Thirty-eight people with PD tested OFF medication wore a portable, functional near-infrared spectroscopy (fNIRS) system to record relative PFC activity while walking. Wearable inertial sensors recorded spatiotemporal gait characteristics. Based on the PFC activity (fNIRS) in the late phase of the walking task (final 40 seconds), compared to the early phase (initial 40 seconds), participants were separated into 2 groups: reduced or sustained PFC activity. RESULTS People with PD who reduced PFC activity during walking had less impaired gait (eg, faster gait speed) than those who had a sustained increase in PFC activity (P < .05). Cognitive set-shifting ability explained 18% of the PFC activation in the group with a sustained increase in PFC activity (P = .033). CONCLUSIONS The time course of reduction in PFC activity corresponds to less impaired gait performance in people with PD, while a sustained increase in PFC activity is related to worse cognitive flexibility. Reduction in PFC activity while walking may indicate a less impaired, automatic control of walking.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - William Liu
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Portland Health Care System (VAPORHCS), Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Merlo EM, Sicari F, Myles LAM, Settineri S. Euthymia, Psychological Well-Being, and Professional Quality of Life in Health Care Workers. CLINICAL NEUROPSYCHIATRY 2024; 21:266-275. [PMID: 39309027 PMCID: PMC11411509 DOI: 10.36131/cnfioritieditore20240403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Euthymia is a transdiagnostic construct characterized by the presence of positive mood states, psychological flexibility and resilience. These components contribute to psychological wellbeing and support mental functioning. Exposure to suffering and high levels of stress can lead to the onset of burnout and secondary traumatic stress, but also lack of compassion satisfaction. The study aimed to test the existing relationships between euthymia, psychological well-being, and factors associated with quality of life of healthy participants involved in medical settings. Method The sample was composed of 177 healthy participants involved in medical settings, 118 women (66.7%) and 59 men (33.3%) aged between 19 and 69 years old (mean = 27.16; SD = 8.47). Standardized psychodiagnostics instruments were used to assess euthymia (Euthymia Scale-ES), psychological well-being (The Well-Being Index scale-WHO-5) and the quality of life of the involved participants (Professional Quality of Life Measure-ProQOL-5). Results The results showed that gender, well-being and psychological well-being were predictors of compassion satisfaction and secondary traumatic stress. Specifically, female gender predicted higher levels of compassion satisfaction. Well-being and psychological flexibility predicted higher levels of compassion satisfaction and lower secondary traumatic stress. Psychological well-being predicted higher levels of compassion satisfaction. Conclusions Promoting euthymia and well-being helps individuals to preserve psychological well-being and increase tolerance to stressful life situations. Results highlighted the need for promoting health care professionals' euthymia and well-being. In line with evidence, encouraging interventions based on evidence appears relevant.
Collapse
Affiliation(s)
- Emanuele Maria Merlo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Federica Sicari
- Department of Cognitive Sciences, Education and Cultural Studies, University of Messina, Messina, Italy
| | | | - Salvatore Settineri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
7
|
Kaewda C, Sriwichai S. Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites. BIOSENSORS 2024; 14:349. [PMID: 39056625 PMCID: PMC11275224 DOI: 10.3390/bios14070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm-2·µM-1 and 7.27 µA·cm-2·µM-1 in the linear range of 50-500 nM (R2 = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine.
Collapse
Affiliation(s)
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
8
|
Bornhoft KN, Prohofsky J, O'Neal TJ, Wolff AR, Saunders BT. Valence ambiguity dynamically shapes striatal dopamine heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594692. [PMID: 38798567 PMCID: PMC11118546 DOI: 10.1101/2024.05.17.594692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adaptive decision making relies on dynamic updating of learned associations where environmental cues come to predict positive and negatively valenced stimuli, such as food or threat. Flexible cue-guided behaviors depend on a network of brain systems, including dopamine signaling in the striatum, which is critical for learning and maintenance of conditioned behaviors. Critically, it remains unclear how dopamine signaling encodes multi-valent, dynamic learning contexts, where positive and negative associations must be rapidly disambiguated. To understand this, we employed a Pavlovian discrimination paradigm, where cues predicting positive and negative outcomes were intermingled during conditioning sessions, and their meaning was serially reversed across training. We found that rats readily distinguished these cues, and updated their behavior rapidly upon valence reversal. Using fiber photometry, we recorded dopamine signaling in three major striatal subregions -,the dorsolateral striatum (DLS), the nucleus accumbens core, and the nucleus accumbens medial shell - and found heterogeneous responses to positive and negative conditioned cues and their predicted outcomes. Valence ambiguity introduced by cue reversal reshaped striatal dopamine on different timelines: nucleus accumbens core and shell signals updated more readily than those in the DLS. Together, these results suggest that striatal dopamine flexibly encodes multi-valent learning contexts, and these signals are dynamically modulated by changing contingencies to resolve ambiguity about the meaning of environmental cues.
Collapse
|
9
|
Kopelman JM, Chohan MO, Hsu AI, Yttri EA, Veenstra-VanderWeele J, Ahmari SE. Forebrain EAAT3 Overexpression Increases Susceptibility to Amphetamine-Induced Repetitive Behaviors. eNeuro 2024; 11:ENEURO.0090-24.2024. [PMID: 38514191 PMCID: PMC11012153 DOI: 10.1523/eneuro.0090-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder characterized by intrusive obsessive thoughts and compulsive behaviors. Multiple studies have shown the association of polymorphisms in the SLC1A1 gene with OCD. The most common of these OCD-associated polymorphisms increases the expression of the encoded protein, excitatory amino acid transporter 3 (EAAT3), a neuronal glutamate transporter. Previous work has shown that increased EAAT3 expression results in OCD-relevant behavioral phenotypes in rodent models. In this study, we created a novel mouse model with targeted, reversible overexpression of Slc1a1 in forebrain neurons. The mice do not have a baseline difference in repetitive behavior but show increased hyperlocomotion following a low dose of amphetamine (3 mg/kg) and increased stereotypy following a high dose of amphetamine (8 mg/kg). We next characterized the effect of amphetamine on striatal cFos response and found that amphetamine increased cFos throughout the striatum in both control and Slc1a1-overexpressing (OE) mice, but Slc1a1-OE mice had increased cFos expression in the ventral striatum relative to controls. We used an unbiased machine classifier to robustly characterize the behavioral response to different doses of amphetamine and found a unique response to amphetamine in Slc1a1-OE mice, relative to controls. Lastly, we found that the differences in striatal cFos expression in Slc1a1-OE mice were driven by cFos expression specifically in D1 neurons, as Slc1a1-OE mice had increased cFos in D1 ventral medial striatal neurons, implicating this region in the exaggerated behavioral response to amphetamine in Slc1a1-OE mice.
Collapse
Affiliation(s)
- Jared M Kopelman
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| | - Muhammad O Chohan
- Department of Psychiatry, Columbia University, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - Alex I Hsu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
10
|
Müller M, Pillay N. Cognitive flexibility in urban yellow mongooses, Cynictis penicillata. Anim Cogn 2024; 27:14. [PMID: 38429567 PMCID: PMC10907452 DOI: 10.1007/s10071-024-01839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024]
Abstract
Cognitive flexibility enables animals to alter their behaviour and respond appropriately to environmental changes. Such flexibility is important in urban settings where environmental changes occur rapidly and continually. We studied whether free-living, urban-dwelling yellow mongooses, Cynictis penicillata, in South Africa, are cognitively flexible in reversal learning and attention task experiments (n = 10). Reversal learning was conducted using two puzzle boxes that were distinct visually and spatially, each containing a preferred or non-preferred food type. Once mongooses learned which box contained the preferred food type, the food types were reversed. The mongooses successfully unlearned their previously learned response in favour of learning a new response, possibly through a win-stay, lose-shift strategy. Attention task experiments were conducted using one puzzle box surrounded by zero, one, two or three objects, introducing various levels of distraction while solving the task. The mongooses were distracted by two and three distractions but were able to solve the task despite the distractions by splitting their attention between the puzzle box task and remaining vigilant. However, those exposed to human residents more often were more vigilant. We provide the first evidence of cognitive flexibility in urban yellow mongooses, which enables them to modify their behaviour to urban environments.
Collapse
Affiliation(s)
- Mijke Müller
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Carbonell-Roig J, Aaltonen A, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577831. [PMID: 38352367 PMCID: PMC10862723 DOI: 10.1101/2024.01.29.577831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.
Collapse
|
12
|
Kawashima C, Chen C, Hagiwara K, Mizumoto T, Watarai M, Koga T, Higuchi F, Fujii Y, Okabe E, Nakagawa S. Evaluating the impact of a short bout of stair-climbing on creative thinking in a between-subjects pretest posttest comparison study. Sci Rep 2024; 14:176. [PMID: 38167465 PMCID: PMC10762161 DOI: 10.1038/s41598-023-50282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Recent studies have indicated potential links between short bouts of physical activity like stair-climbing and enhanced creative thinking. However, previous research featured limitations, such as using an uncommon 3 flights round-trip design and lacking baseline creative thinking evaluations. To rectify these limitations and build a more comprehensive understanding, the present study adopts a between-subjects pretest posttest comparison design to scrutinize the effects of ascending stair-climbing on both divergent and convergent thinking. 52 subjects underwent a pretest, followed by random assignment to one of four interventions: ascending stair-climbing for 2, 5, or 8 flights, or taking an elevator for 8 flights, before progressing to a posttest. The results revealed a notable improvement in convergent thinking, measured by the increased number of solved matchstick arithmetic problems (d = 1.165), for participants who climbed 2 flights of stairs compared to those who took the elevator. However, climbing 5 or 8 flights showed no such impact on convergent thinking, and stair-climbing, regardless of the number of flights, did not influence divergent thinking. These findings underscore the utility of brief stair-climbing as an accessible means to enhance convergent thinking in everyday settings, providing a nuanced insight into the relationship between physical activity and creative thinking processes.
Collapse
Affiliation(s)
- Chihiro Kawashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kosuke Hagiwara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tomohiro Mizumoto
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mino Watarai
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takaya Koga
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuko Fujii
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Emi Okabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
13
|
Li B, Lin Y, Ren C, Cheng J, Zhang Y, Han S. Gray matter volume abnormalities in obsessive-compulsive disorder correlate with molecular and transcriptional profiles. J Affect Disord 2024; 344:182-190. [PMID: 37838261 DOI: 10.1016/j.jad.2023.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Neuroimaging studies have consistently established altered brain structure in obsessive-compulsive disorder (OCD). However, the molecular and genetic mechanisms underlying structural brain abnormalities remain unclear. In this study, we aimed to investigate altered gray matter volume and its underlying molecular and genetic mechanisms in patients with OCD. Gray matter morphological abnormalities measured with voxel based morphometry analysis were identified in patients with OCD in comparison to sex- and age-matched healthy controls (HCs). Spatial correlations between gray matter morphological abnormalities and neurotransmitter maps were calculated to identify neurotransmitters relating to structural abnormalities. Structural abnormalities related genes were identified by conducting transcriptome-neuroimaging spatial correlations. Compared with HCs, patients with OCD demonstrated significant morphological abnormalities in distributed brain areas, including gray matter atrophy in the anterior cingulate and increased gray matter volume in the thalamus, caudate and precentral and postcentral gyrus. The morphological abnormalities were significantly associated with dopamine synthesis capacity and expression profiles of 1110 genes enriched for trans-synaptic signaling, regulation of membrane potential, modulation of chemical synaptic transmission, brain development, synapse organization and regulation of neurotransmitter levels. These results elucidate the molecular and transcriptional basis of altered gray matter morphology and build linking between molecular, transcriptional and neuroimaging information facilitating an integrative understanding of OCD.
Collapse
Affiliation(s)
- Beibei Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Yanan Lin
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Cuiping Ren
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
14
|
Pereira AR, Alemi M, Cerqueira-Nunes M, Monteiro C, Galhardo V, Cardoso-Cruz H. Dynamics of Lateral Habenula-Ventral Tegmental Area Microcircuit on Pain-Related Cognitive Dysfunctions. Neurol Int 2023; 15:1303-1319. [PMID: 37987455 PMCID: PMC10660716 DOI: 10.3390/neurolint15040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic pain is a health problem that affects the ability to work and perform other activities, and it generally worsens over time. Understanding the complex pain interaction with brain circuits could help predict which patients are at risk of developing central dysfunctions. Increasing evidence from preclinical and clinical studies suggests that aberrant activity of the lateral habenula (LHb) is associated with depressive symptoms characterized by excessive negative focus, leading to high-level cognitive dysfunctions. The primary output region of the LHb is the ventral tegmental area (VTA), through a bidirectional connection. Recently, there has been growing interest in the complex interactions between the LHb and VTA, particularly regarding their crucial roles in behavior regulation and their potential involvement in the pathological impact of chronic pain on cognitive functions. In this review, we briefly discuss the structural and functional roles of the LHb-VTA microcircuit and their impact on cognition and mood disorders in order to support future studies addressing brain plasticity during chronic pain conditions.
Collapse
Affiliation(s)
- Ana Raquel Pereira
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mobina Alemi
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Cerqueira-Nunes
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
15
|
van der Westhuizen C, Botha TL, Finger-Baier K, Brouwer GD, Wolmarans DW. Contingency learning in zebrafish exposed to apomorphine- and levetiracetam. Behav Pharmacol 2023; 34:424-436. [PMID: 37578419 DOI: 10.1097/fbp.0000000000000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cognitive rigidity (CR) refers to inadequate executive adaptation in the face of changing circumstances. Increased CR is associated with a number of psychiatric disorders, for example, obsessive-compulsive disorder, and improving cognitive functioning by targeting CR in these conditions, may be fruitful. Levetiracetam (LEV), clinically used to treat epilepsy, may have pro-cognitive effects by restoring balance to neuronal signalling. To explore this possibility, we applied apomorphine (APO) exposure in an attempt to induce rigid cue-directed responses following a cue (visual pattern)-reward (social conspecifics) contingency learning phase and to assess the effects of LEV on such behaviours. Briefly, zebrafish were divided into four different 39-day-long exposure groups ( n = 9-10) as follows: control (CTRL), APO (100 µg/L), LEV (750 µg/L) and APO + LEV (100 µg/L + 750 µg/L). The main findings of this experiment were that 1) all four exposure groups performed similarly with respect to reward- and cue-directed learning over the first two study phases, 2) compared to the CTRL group, all drug interventions, but notably the APO + LEV combination, lowered the degree of reward-directed behaviour during a dissociated presentation of the cue and reward, and 3) temporal and spatial factors influenced the manner in which zebrafish responded to the presentation of the reward. Future studies are needed to explore the relevance of these findings for our understanding of the potential cognitive effects of LEV.
Collapse
Affiliation(s)
| | - Tarryn L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Karin Finger-Baier
- Max Planck Institute of Neurobiology, now: Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Geoffrey de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health, North-West University
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health, North-West University
| |
Collapse
|
16
|
Savidge LE, Bales KL. Possible effects of pair bonds on general cognition: Evidence from shared roles of dopamine. Neurosci Biobehav Rev 2023; 152:105317. [PMID: 37442497 DOI: 10.1016/j.neubiorev.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Pair bonding builds on preexisting dopamine connectivity to help form and maintain the bond. The involvement of dopaminergic pathways in pair bonding has stimulated research linking pair bonds to other dopamine-dependent processes, like addiction and social cognition (Burkett & Young, 2012; Yetnikoff, Lavezzi, Reichard, & Zahm, 2014). Less studied is the relationship of pair bonding to non-social cognitive processes. The first half of this review will provide an overview of pair bonding and the role of dopamine within social processes. With a thorough review of the literature, the current study will identify the ways the dopaminergic pathways critical for pair bonding also overlap with cognitive processes. Highlighting dopamine as a key player in pair bonds and non-social cognition will provide evidence that pair bonding can alter general cognitive processes like attention, working memory, cognitive flexibility, and impulse control.
Collapse
Affiliation(s)
- Logan E Savidge
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States.
| | - Karen L Bales
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| |
Collapse
|
17
|
Vellucci L, Ciccarelli M, Buonaguro EF, Fornaro M, D’Urso G, De Simone G, Iasevoli F, Barone A, de Bartolomeis A. The Neurobiological Underpinnings of Obsessive-Compulsive Symptoms in Psychosis, Translational Issues for Treatment-Resistant Schizophrenia. Biomolecules 2023; 13:1220. [PMID: 37627285 PMCID: PMC10452784 DOI: 10.3390/biom13081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Almost 25% of schizophrenia patients suffer from obsessive-compulsive symptoms (OCS) considered a transdiagnostic clinical continuum. The presence of symptoms pertaining to both schizophrenia and obsessive-compulsive disorder (OCD) may complicate pharmacological treatment and could contribute to lack or poor response to the therapy. Despite the clinical relevance, no reviews have been recently published on the possible neurobiological underpinnings of this comorbidity, which is still unclear. An integrative view exploring this topic should take into account the following aspects: (i) the implication for glutamate, dopamine, and serotonin neurotransmission as demonstrated by genetic findings; (ii) the growing neuroimaging evidence of the common brain regions and dysfunctional circuits involved in both diseases; (iii) the pharmacological modulation of dopaminergic, serotoninergic, and glutamatergic systems as current therapeutic strategies in schizophrenia OCS; (iv) the recent discovery of midbrain dopamine neurons and dopamine D1- and D2-like receptors as orchestrating hubs in repetitive and psychotic behaviors; (v) the contribution of N-methyl-D-aspartate receptor subunits to both psychosis and OCD neurobiology. Finally, we discuss the potential role of the postsynaptic density as a structural and functional hub for multiple molecular signaling both in schizophrenia and OCD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
18
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
19
|
Kohe SE, Gowing EK, Seo S, Oorschot DE. A Novel Rat Model of ADHD-like Hyperactivity/Impulsivity after Delayed Reward Has Selective Loss of Dopaminergic Neurons in the Right Ventral Tegmental Area. Int J Mol Sci 2023; 24:11252. [PMID: 37511013 PMCID: PMC10379272 DOI: 10.3390/ijms241411252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In attention deficit hyperactivity disorder (ADHD), hyperactivity and impulsivity occur in response to delayed reward. Herein we report a novel animal model in which male Sprague-Dawley rats exposed to repeated hypoxic brain injury during the equivalent of extreme prematurity were ADHD-like hyperactive/impulsive in response to delayed reward and attentive at 3 months of age. Thus, a unique animal model of one of the presentations/subtypes of ADHD was discovered. An additional finding is that the repeated hypoxia rats were not hyperactive in the widely used open field test, which is not ADHD specific. Hence, it is recommended that ADHD-like hyperactivity and ADHD-like impulsivity, specifically in response to delayed reward, be a primary component in the design of future experiments that characterize potential animal models of ADHD, replacing open field testing of hyperactivity. Unknown is whether death and/or activity of midbrain dopaminergic neurons contributed to the ADHD-like hyperactivity/impulsivity detected after delayed reward. Hence, we stereologically measured the absolute number of dopaminergic neurons in four midbrain subregions and the average somal/nuclear volume of those neurons. Repeated hypoxia rats had a significant specific loss of dopaminergic neurons in the right ventral tegmental area (VTA) at 2 weeks of age and 18 months of age, providing new evidence of a site of pathology. No dopaminergic neuronal loss occurred in three other midbrain regions. Fewer VTA dopaminergic neurons correlated with increased ADHD-like hyperactivity and impulsivity. Novel early intervention therapies to rescue VTA dopaminergic neurons and potentially prevent ADHD-like hyperactivity/impulsivity can now be investigated.
Collapse
Affiliation(s)
- Sarah E Kohe
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Emma K Gowing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Steve Seo
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
20
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
21
|
Liu D, Xing Z, Huang J, Schwieter JW, Liu H. Genetic bases of language control in bilinguals: Evidence from an EEG study. Hum Brain Mapp 2023; 44:3624-3643. [PMID: 37051723 PMCID: PMC10203802 DOI: 10.1002/hbm.26301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have debated whether the ability for bilinguals to mentally control their languages is a consequence of their experiences switching between languages or whether it is a specific, yet highly-adaptive, cognitive ability. The current study investigates how variations in the language-related gene FOXP2 and executive function-related genes COMT, BDNF, and Kibra/WWC1 affect bilingual language control during two phases of speech production, namely the language schema phase (i.e., the selection of one language or another) and lexical response phase (i.e., utterance of the target). Chinese-English bilinguals (N = 119) participated in a picture-naming task involving cued language switches. Statistical analyses showed that both genes significantly influenced language control on neural coding and behavioral performance. Specifically, FOXP2 rs1456031 showed a wide-ranging effect on language control, including RTs, F(2, 113) = 4.00, FDR p = .036, and neural coding across three-time phases (N2a: F(2, 113) = 4.96, FDR p = .014; N2b: F(2, 113) = 4.30, FDR p = .028, LPC: F(2, 113) = 2.82, FDR p = .060), while the COMT rs4818 (ts >2.69, FDR ps < .05), BDNF rs6265 (Fs >5.31, FDR ps < .05), and Kibra/WWC1 rs17070145 (ts > -3.29, FDR ps < .05) polymorphisms influenced two-time phases (N2a and N2b). Time-resolved correlation analyses revealed that the relationship between neural coding and cognitive performance is modulated by genetic variations in all four genes. In all, these findings suggest that bilingual language control is shaped by an individual's experience switching between languages and their inherent genome.
Collapse
Affiliation(s)
- Dongxue Liu
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Zehui Xing
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| | - Junjun Huang
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| | - John W. Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ LaurierWilfrid Laurier UniversityWaterlooCanada
- Department of Linguistics and LanguagesMcMaster UniversityHamiltonCanada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| |
Collapse
|
22
|
Gorgol J, Waleriańczyk W, Randler C. Exploring the associations between the Morningness-Eveningness-Stability-Scale improved (MESSi) and the higher-order personality factors. Chronobiol Int 2023; 40:812-823. [PMID: 37183995 DOI: 10.1080/07420528.2023.2212043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Morningness-eveningness refers to individual differences in the sleep-wake cycle. Research indicates that morningness-eveningness is associated with the Big Five (neuroticism, extraversion, openness to experience, agreeableness, conscientiousness) and the Big Two (alpha-stability, beta-plasticity) personality factors. However, the latter has not yet been tested within the multidimensional approach to morningness-eveningness. In the present study, we have adapted the Morningness-Eveningness-Stability-Scale improved (MESSi) to Polish (https://osf.io/rcxb5) to explore the associations between its subscales (morning affect, eveningness, distinctness) and the Big Two personality traits in a sample of 1106 participants (559 women and 547 men) aged 18 to 55 (M = 36.26, SD = 9.90). In bivariate correlations, morning affect was positively related to alpha-stability and beta-plasticity, distinctness was correlated negatively with alpha-stability and beta-plasticity, while eveningness was positively correlated only with beta-plasticity. Furthermore, the confirmatory factor analysis supported the original three-factor structure of the Polish version of MESSi, while the associations with affect and the symptoms of depression and anxiety attested to its validity. Overall, the present study provides the first evidence for the associations between MESSi subscales and the Big Two personality traits, as well as shows a good fit of the three-factor structure of MESSi in the Polish population.
Collapse
Affiliation(s)
- Joanna Gorgol
- Faculty of Psychology, University of Warsaw, Warszawa, Poland
| | | | | |
Collapse
|
23
|
Functional connectivity based brain signatures of behavioral regulation in children with ADHD, DCD, and ADHD-DCD. Dev Psychopathol 2023; 35:85-94. [PMID: 34937602 DOI: 10.1017/s0954579421001449] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Behavioral regulation problems have been associated with daily-life and mental health challenges in children with neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD) and developmental coordination disorder (DCD). Here, we investigated transdiagnostic brain signatures associated with behavioral regulation. Resting-state fMRI data were collected from 115 children (31 typically developing (TD), 35 ADHD, 21 DCD, 28 ADHD-DCD) aged 7-17 years. Behavioral regulation was measured using the Behavior Rating Inventory of Executive Function and was found to differ between children with ADHD (i.e., children with ADHD and ADHD-DCD) and without ADHD (i.e., TD children and children with DCD). Functional connectivity (FC) maps were computed for 10 regions of interest and FC maps were tested for correlations with behavioral regulation scores. Across the entire sample, greater behavioral regulation problems were associated with stronger negative FC within prefrontal pathways and visual reward pathways, as well as with weaker positive FC in frontostriatal reward pathways. These findings significantly increase our knowledge on FC in children with and without ADHD and highlight the potential of FC as brain-based signatures of behavioral regulation across children with differing neurodevelopmental conditions.
Collapse
|
24
|
Male DAT Val559 Mice Exhibit Compulsive Behavior under Devalued Reward Conditions Accompanied by Cellular and Pharmacological Changes. Cells 2022; 11:cells11244059. [PMID: 36552823 PMCID: PMC9777203 DOI: 10.3390/cells11244059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Identified across multiple psychiatric disorders, the dopamine (DA) transporter (DAT) Ala559Val substitution triggers non-vesicular, anomalous DA efflux (ADE), perturbing DA neurotransmission and behavior. We have shown that DAT Val559 mice display a waiting impulsivity and changes in cognitive performance associated with enhanced reward motivation. Here, utilizing a within-subject, lever-pressing paradigm designed to bias the formation of goal-directed or habitual behavior, we demonstrate that DAT Val559 mice modulate their nose poke behavior appropriately to match context, but demonstrate a perseverative checking behavior. Although DAT Val559 mice display no issues with the cognitive flexibility required to acquire and re-learn a visual pairwise discrimination task, devaluation of reward evoked habitual reward seeking in DAT Val559 mutants in operant tasks regardless of reinforcement schedule. The direct DA agonist apomorphine also elicits locomotor stereotypies in DAT Val559, but not WT mice. Our observation that dendritic spine density is increased in the dorsal medial striatum (DMS) of DAT Val559 mice speaks to an imbalance in striatal circuitry that might underlie the propensity of DAT Val559 mutants to exhibit compulsive behaviors when reward is devalued. Thus, DAT Val559 mice represent a model for dissection of how altered DA signaling perturbs circuits that normally balance habitual and goal-directed behaviors.
Collapse
|
25
|
Whole body vibration, an alternative for exercise to improve recovery from surgery? Brain Behav Immun Health 2022; 26:100521. [PMID: 36203743 PMCID: PMC9531049 DOI: 10.1016/j.bbih.2022.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
Although exercise is usually associated with beneficial effects on physical and mental health, patients recovering from surgery may be hampered to perform active exercise. Whole body vibration (WBV) is suggested a passive alternative for physical training. Aim of the present study was to explore the therapeutic potential of WBV compared to physical exercise during early post-surgery recovery. Male three months old Wistar rats underwent major abdominal surgery. Starting the day after surgery, rats were subjected to either daily WBV or exercise (treadmill running) for 15 consecutive days. Control rats underwent pseudo treatment. During the first week after surgery, effects of interventions were obtained from continuous recording of hemodynamic parameters, body temperature and activity (via an implanted transducer). Behavioral tests were performed during the second post-surgical week to evaluate anxiety-like behavior, short and long-term memory functions, cognitive flexibility and motor performance. Animals were sacrificed 15 days after surgery and brain tissue was collected for analysis of hippocampal neuroinflammation and neurogenesis. Surgery significantly impacted all parameters measured during the first post-surgery week, irrespective of the type of surgery. Effect on cognitive performance was limited to cognitive flexibility; both WBV and exercise prevented the surgery-induced decline. Exercise, but not WBV increased anxiety-like behavior and grip strength. WBV as well as exercise prevented the surgery-induced declined neurogenesis, but surgery-associated hippocampal neuroinflammation was not affected. Our results indicated that active exercise and WBV share similar therapeutic potentials in the prevention of surgery induced decline in cognitive flexibility and hippocampal neurogenesis. In contrast to exercise, WBV did not increase anxiety-like behavior. Since neither intervention affected hippocampal neuroinflammation, other mechanisms and/or brain areas may be involved in the behavioral effects. Taken together, we conclude that WBV may provide a relevant alternative to active exercise during the early stage of post-operative recovery. Both whole body vibration (WBV) and running exercise restored the reduced cognitive flexibility caused by surgery. WBV as well as active exercise prevented surgery-induced declined neurogenesis. Active exercise, but not WBV, induced anxiety-like behavior after surgery. Neither WBV nor active exercise affected surgery-induced neuroinflammation. Neither WBV nor active exercise influenced hemodynamic recovery from surgery.
Collapse
|
26
|
Sun J, Jia K, Sun M, Zhang X, Chen J, Zhu G, Li C, Lian B, Du Z, Sun H, Sun L. The GluA1-Related BDNF Pathway Is Involved in PTSD-Induced Cognitive Flexibility Deficit in Attentional Set-Shifting Tasks of Rats. J Clin Med 2022; 11:jcm11226824. [PMID: 36431303 PMCID: PMC9694369 DOI: 10.3390/jcm11226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Post-Traumatic Stress Disorder (PTSD) is a severe psychological disorder characterized by intrusive thoughts, heightened arousal, avoidance, and flashbacks. Cognitive flexibility dysfunction has been linked with the emergence of PTSD, including response inhibition deficits and impaired attentional switching, which results in difficulties for PTSD patients when disengaging attention from trauma-related stimuli. However, the molecular mechanisms of cognitive flexibility deficits remain unclear. Methods: The animals were exposed to a single prolonged stress and electric foot shock (SPS&S) procedure to induce PTSD-like features. Once the model was established, the changes in cognitive flexibility were assessed using an attentional set-shifting task (ASST) in order to investigate the effects of traumatic stress on cognitive flexibility. Additionally, the molecular alterations of certain proteins (AMPA Receptor 1 (GluA1), brain-derived neurotrophic factor (BDNF), and Postsynaptic density protein 95 (PSD95) in the medial prefrontal cortex (mPFC) were measured using Western blot and immunofluorescence. Results: The SPS&S model exhibited PTSD-like behaviors and induced reversal learning and set-shifting ability deficit in the ASST. These behavioral changes are accompanied by decreased GluA1, BDNF, and PSD95 protein expression in the mPFC. Further analysis showed a correlative relationship between the behavioral and molecular alterations. Conclusions: The SPS&S model induced cognitive flexibility deficits, and the potential underlying mechanism could be mediated by GluA1-related BDNF signaling in the mPFC.
Collapse
Affiliation(s)
- Jiaming Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Keli Jia
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Mingtao Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Xianqiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Guohui Zhu
- Mental Health Centre of Weifang City, Weifang 261071, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Zhongde Du
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang 261205, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| |
Collapse
|
27
|
Strobel BK, Schmidt MA, Harvey DO, Davis CJ. Image discrimination reversal learning is impaired by sleep deprivation in rats: Cognitive rigidity or fatigue? Front Syst Neurosci 2022; 16:1052441. [PMID: 36467979 PMCID: PMC9713940 DOI: 10.3389/fnsys.2022.1052441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Insufficient sleep is pervasive worldwide, and its toll on health and safety is recapitulated in many settings. It is thus important to understand how poor sleep affects the brain and decision making. A robust literature documents the adverse effects of sleep deprivation on cognitive processes including cognitive flexibility, which is the capacity to appraise new feedback and make behavioral adjustments to respond appropriately. Animal models are often used to unravel the molecules, genes and neural circuits that are altered by sleep loss. Herein we take a translational approach to model the effects of sleep deprivation on cognitive rigidity, i.e., impaired cognitive flexibility in rats. Methods There are several approaches to assess cognitive rigidity; in the present study, we employ a pairwise discrimination reversal task. To our knowledge this is the first time this paradigm has been used to investigate sleep deprivation. In this touchscreen operant platform, we trained rats to select one of two images to claim a sucrose pellet reward. If the non-rewarded image was selected the rats proceeded to a correction trial where both images were presented in the same position as before. This image presentation continued until the rat selected the correct image. Once rats reached performance criteria, the reward contingencies were reversed. In one group of rats the initial reversal session was preceded by 10 h of sleep deprivation. We compared those rats to controls with undisturbed sleep on the number of sessions to reach performance criteria, number of trials per session, response latencies, correct responses, errors, perseverative errors and perseveration bouts in the initial training and reversal phases. Results We report that on reversal session one, sleep deprived rats completed a fraction of the trials completed by controls. On subsequent reversal sessions, the sleep deprived rats struggled to adapt to the reversed contingencies despite completing a similar number of trials, suggesting an effect of cognitive rigidity separate from fatigue. Discussion We discuss the delayed performance dynamics incurred by sleep loss in the context of fatigue and the implications of using pairwise discrimination reversal as a model to further examine the effects of sleep loss on adaptive decision making.
Collapse
|
28
|
Bolat H, Ünsel-Bolat G, Özgül S, Parıltay E, Tahıllıoğlu A, Rohde LA, Akın H, Ercan ES. Investigation of possible associations of the BDNF, SNAP-25 and SYN III genes with the neurocognitive measures: BDNF and SNAP-25 genes might be involved in attention domain, SYN III gene in executive function. Nord J Psychiatry 2022; 76:610-615. [PMID: 35077325 DOI: 10.1080/08039488.2022.2027518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder and Sluggish Cognitive Tempo (SCT) might be a second inattention disorder that might be even affected by different attention pathways. SCT is characterized by daydreaming, mental confusion, staring blankly and hypoactivity. In the present study, we evaluated 5 common variants (rs6265, rs3746544, rs1051312, rs133946 and rs133945) located in 3 candidate genes (BDNF, SNAP25 and SYN III) that are known to take part in synaptic plasticity and neurotransmitter transmission. METHODS We tested the effects of these variants on neuropsychological findings assessed by a computer-based neuropsychological test battery in children with inattention symptoms (SCT and/or ADHD). RESULTS BDNF (rs6265), SNAP25 (rs3746544 and rs1051312) and SYN III (rs133946 and rs133945) polymorphisms were associated with variable cognitive measures. BDNF gene (rs6265) polymorphism Met allele carriers and SNAP25 gene (rs3746544) T allele carriers had an association with the attention domain. SNAP25 gene (rs1051312) C allele carriers were only associated with reaction time scores. Cognitive flexibility, which is one of the key components of executive function evaluation and shifting attention test scores were associated with BDNF (rs6265) Met allele and SYN III (rs133946) gene G allele. SYN III (rs133945) gene C allele carriers had an association with verbal memory correct hit scores. CONCLUSIONS As a conclusion, BDNF, SNAP25 and SYN III genes were associated with specific neurocognitive outcomes in children with inattention symptoms. It is important to note that exploring genotyping effects on neurocognitive functions instead of a heterogeneous psychiatric diagnosis can improve our understanding of psychopathologies.
Collapse
Affiliation(s)
- Hilmi Bolat
- Department of Medical Genetics, Balıkesir University, Balıkesir, Turkey.,Department of Medical Bioinformatics, Ege University, İzmir, Turkey
| | - Gül Ünsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University, Balıkesir, Turkey.,Department of Neuroscience, Ege University, İzmir, Turkey
| | - Semiha Özgül
- Department of Bioistatistics and Medical Informatics, Ege University, Izmir, Turkey
| | - Erhan Parıltay
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Akın Tahıllıoğlu
- Department of Child and Adolescent Psychiatry, Çiğli Research and Training Hospital, Izmir, Turkey
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Haluk Akın
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Eyüp Sabri Ercan
- Department of Child and Adolescent Psychiatry, Çiğli Research and Training Hospital, Izmir, Turkey.,Department of Child and Adolescent Psychiatry, Ege University, Izmir, Turkey
| |
Collapse
|
29
|
Latuske P, von Heimendahl M, Deiana S, Wotjak CT, du Hoffmann J. Sustained MK-801 induced deficit in a novel probabilistic reversal learning task. Front Pharmacol 2022; 13:898548. [PMID: 36313373 PMCID: PMC9614101 DOI: 10.3389/fphar.2022.898548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Cognitive flexibility, the ability to adapt to unexpected changes, is critical for healthy environmental and social interactions, and thus to everyday functioning. In neuropsychiatric diseases, cognitive flexibility is often impaired and treatment options are lacking. Probabilistic reversal learning (PRL) is commonly used to measure cognitive flexibility in rodents and humans. In PRL tasks, subjects must sample choice options and, from probabilistic feedback, find the current best choice which then changes without warning. However, in rodents, pharmacological models of human cognitive impairment tend to disrupt only the first (or few) of several contingency reversals, making quantitative assessment of behavioral effects difficult. To address this limitation, we developed a novel rat PRL where reversals occur at relatively long intervals in time that demonstrates increased sensitivity to the non-competitive NMDA receptor antagonist MK-801. Here, we quantitively compare behavior in time-based PRL with a widely used task where reversals occur based on choice behavior. In time-based PRL, MK-801 induced sustained reversal learning deficits both in time and across reversal blocks but, at the same dose, only transient weak effects in performance-based PRL. Moreover, time-based PRL yielded better estimates of behavior and reinforcement learning model parameters, which opens meaningful pharmacological windows to efficiently test and develop novel drugs preclinically with the goal of improving cognitive impairment in human patients.
Collapse
|
30
|
Cook PF, Berns G. Volumetric and connectivity assessment of the caudate nucleus in California sea lions and coyotes. Anim Cogn 2022; 25:1231-1240. [PMID: 36114948 DOI: 10.1007/s10071-022-01685-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
In addition to a large (chimpanzee-sized) and heavily convoluted brain, one of the most striking neurobiological features in pinnipeds is the large size of the head of the caudate nucleus, which dwarfs the rest of the striatum. Although previous research has suggested carnivore striatum is small in comparison to that of primates, there are limited volumetric data on separate striatal structures in carnivores. Therefore, the apparent functional implication of a potentially hypertrophic caudate to carnivores has not been discussed. Here, for the first time, we obtained separate volumetric measurements of caudate and putamen in California sea lions and coyotes. Exemplars of both species had very large caudate nuclei, approximately 1/75th of total brain volume. In both the sea lion and coyote, the caudate dwarfed the putamen at a ratio of 13 to 1 or greater, a finding in strong contrast to measurements showing larger putamen than caudate in primates. In addition, using post-mortem diffusion tensor brain imaging, we mapped and compared white matter connections between the dorsal caudate and the motor, premotor and frontopolar, and orbitofrontal cortices in healthy adult sea lions and healthy adult coyotes. The sea lions showed some evidence of greater premotor and frontopolar connectivity. These findings bear on previously underexplored striatal characteristics of large carnivores, and we discuss potential interpretations related to cognitive flexibility and sensorimotor transformation.
Collapse
|
31
|
Spee BTM, Sladky R, Fingerhut J, Laciny A, Kraus C, Carls-Diamante S, Brücke C, Pelowski M, Treven M. Repeating patterns: Predictive processing suggests an aesthetic learning role of the basal ganglia in repetitive stereotyped behaviors. Front Psychol 2022; 13:930293. [PMID: 36160532 PMCID: PMC9497189 DOI: 10.3389/fpsyg.2022.930293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent, unvarying, and seemingly purposeless patterns of action and cognition are part of normal development, but also feature prominently in several neuropsychiatric conditions. Repetitive stereotyped behaviors (RSBs) can be viewed as exaggerated forms of learned habits and frequently correlate with alterations in motor, limbic, and associative basal ganglia circuits. However, it is still unclear how altered basal ganglia feedback signals actually relate to the phenomenological variability of RSBs. Why do behaviorally overlapping phenomena sometimes require different treatment approaches-for example, sensory shielding strategies versus exposure therapy for autism and obsessive-compulsive disorder, respectively? Certain clues may be found in recent models of basal ganglia function that extend well beyond action selection and motivational control, and have implications for sensorimotor integration, prediction, learning under uncertainty, as well as aesthetic learning. In this paper, we systematically compare three exemplary conditions with basal ganglia involvement, obsessive-compulsive disorder, Parkinson's disease, and autism spectrum conditions, to gain a new understanding of RSBs. We integrate clinical observations and neuroanatomical and neurophysiological alterations with accounts employing the predictive processing framework. Based on this review, we suggest that basal ganglia feedback plays a central role in preconditioning cortical networks to anticipate self-generated, movement-related perception. In this way, basal ganglia feedback appears ideally situated to adjust the salience of sensory signals through precision weighting of (external) new sensory information, relative to the precision of (internal) predictions based on prior generated models. Accordingly, behavioral policies may preferentially rely on new data versus existing knowledge, in a spectrum spanning between novelty and stability. RSBs may then represent compensatory or reactive responses, respectively, at the opposite ends of this spectrum. This view places an important role of aesthetic learning on basal ganglia feedback, may account for observed changes in creativity and aesthetic experience in basal ganglia disorders, is empirically testable, and may inform creative art therapies in conditions characterized by stereotyped behaviors.
Collapse
Affiliation(s)
- Blanca T. M. Spee
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Joerg Fingerhut
- Berlin School of Mind and Brain, Department of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Philosophy, Philosophy of Science and Religious Studies, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alice Laciny
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | | | - Christof Brücke
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Matthew Pelowski
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Marco Treven
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Gargiulo AT, Hu J, Ravaglia IC, Hawks A, Li X, Sweasy K, Grafe L. Sex differences in cognitive flexibility are driven by the estrous cycle and stress-dependent. Front Behav Neurosci 2022; 16:958301. [PMID: 35990724 PMCID: PMC9386277 DOI: 10.3389/fnbeh.2022.958301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Stress is associated with psychiatric disorders such as post-traumatic stress disorder, major depressive disorder, anxiety disorders, and panic disorders. Women are more likely to be diagnosed with these stress-related psychiatric disorders than men. A key phenotype in stress-related psychiatric disorders is impairment in cognitive flexibility, which is the ability to develop new strategies to respond to different patterns in the environment. Because gonadal hormones can contribute to sex differences in response to stress, it is important to consider where females are in their cycle when exposed to stress and cognitive flexibility testing. Moreover, identifying neural correlates involved in cognitive flexibility could not only build our understanding of the biological mechanisms behind this crucial skill but also leads to more targeted treatments for psychiatric disorders. Although previous studies have separately examined sex differences in cognitive flexibility, stress effects on cognitive flexibility, and the effect of gonadal hormones on cognitive flexibility, many of the findings were inconsistent, and the role of the estrous cycle in stress-induced impacts on cognitive flexibility is still unknown. This study explored potential sex differences in cognitive flexibility using an operant strategy shifting-paradigm after either control conditions or restraint stress in freely cycling female and male rats (with estrous cycle tracking in the female rats). In addition, we examined potential neural correlates for any sex differences observed. In short, we found that stress impaired certain aspects of cognitive flexibility and that there were sex differences in cognitive flexibility that were driven by the estrous cycle. Specifically, stress increased latency to first press and trials to criterion in particular tasks. The female rats demonstrated more omissions and perseverative errors than the male rats; the sex differences were mostly driven by proestrus female rats. Interestingly, the number of orexinergic neurons was higher in proestrus female rats than in the male rats under control conditions. Moreover, orexin neural count was positively correlated with number of perseverative errors made in cognitive flexibility testing. In sum, there are sex differences in cognitive flexibility that are driven by the estrous cycle and are stress-dependent, and orexin neurons may underlie some of the sex differences observed.
Collapse
|
33
|
García-Hernández JP, Iribe-Burgos FA, Cortes PM, Sotelo-Tapia C, Guevara MA, Hernández-González M. Cortical functionality during reversal learning on a decision-making task in young men. Brain Res 2022; 1791:147998. [PMID: 35780864 DOI: 10.1016/j.brainres.2022.147998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022]
Abstract
The evaluation of external and internal stimuli permits the ongoing actualization of choice-related information and, thus, the association between stimuli and outcomes. This process is essential to decision-making as it allows constant adaptation to environmental changes in order to maximize gains and minimize losses. Reversal learning paradigms are used to study this process, which has been associated with prefrontal cortex activity (frontopolar, dorsolateral) in conjunction with posterior areas (parietal, temporal), due to their participation in integrating and processing the stimuli-reward relation. The aim of this study was to assess the cortical functionality associated with reversal learning during the decision-making process. The EEG activity of 22 young men was recorded while performing a decision-making task in a reversal learning condition compared to an initial learning condition. EEG data were analyzed during evaluation of the stimuli, before motor execution (formation of preferences), and during task feedback (outcome evaluation). The formation of preferences stage was characterized by a higher correlation of the alpha2 band between the parietal cortices. In the feedback stage of the reversal learning condition, a higher absolute power of the theta band in the left dorsolateral (F3), and a lower correlation of the alpha1 band between the right frontopolar and dorsolateral (Fp2-F4), as well as between the right frontopolar and temporal (Fp2-T4), were observed. The data obtained show that the EEG activity of the areas recorded changed in the evaluation of the stimuli information in the reversal learning condition during a decision-making task.
Collapse
Affiliation(s)
| | | | - Pedro Manuel Cortes
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Carolina Sotelo-Tapia
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
34
|
Macpherson T, Kim JY, Hikida T. Nucleus Accumbens Core Dopamine D2 Receptor-Expressing Neurons Control Reversal Learning but Not Set-Shifting in Behavioral Flexibility in Male Mice. Front Neurosci 2022; 16:885380. [PMID: 35837123 PMCID: PMC9275008 DOI: 10.3389/fnins.2022.885380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to use environmental cues to flexibly guide responses is crucial for adaptive behavior and is thought to be controlled within a series of cortico-basal ganglia-thalamo-cortical loops. Previous evidence has indicated that different prefrontal cortical regions control dissociable aspects of behavioral flexibility, with the medial prefrontal cortex (mPFC) necessary for the ability to shift attention to a novel strategy (set-shifting) and the orbitofrontal cortex (OFC) necessary for shifting attention between learned stimulus-outcome associations (reversal learning). The nucleus accumbens (NAc) is a major downstream target of both the mPFC and the OFC; however, its role in controlling reversal learning and set-shifting abilities is still unclear. Here we investigated the contribution of the two major NAc neuronal populations, medium spiny neurons expressing either dopamine D1 or D2 receptors (D1-/D2-MSNs), in guiding reversal learning and set-shifting in an attentional set-shifting task (ASST). Persistent inhibition of neurotransmitter release from NAc D2-MSNs, but not D1-MSNs, resulted in an impaired ability for reversal learning, but not set-shifting in male mice. These findings suggest that NAc D2-MSNs play a critical role in suppressing responding toward specific learned cues that are now associated with unfavorable outcomes (i.e., in reversal stages), but not in the suppression of more general learned strategies (i.e., in set-shifting). This study provides further evidence for the anatomical separation of reversal learning and set-shifting abilities within cortico-basal ganglia-thalamo-cortical loops.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Tom Macpherson,
| | - Ji Yoon Kim
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Takatoshi Hikida,
| |
Collapse
|
35
|
Yan S, Liu H, Yu Y, Han N, Du W. Changes of Serum Homocysteine and Vitamin B12, but Not Folate Are Correlated With Obsessive-Compulsive Disorder: A Systematic Review and Meta-Analysis of Case-Control Studies. Front Psychiatry 2022; 13:754165. [PMID: 35615448 PMCID: PMC9124900 DOI: 10.3389/fpsyt.2022.754165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) a complex neuropsychiatric disorder, is characterized by irresistible obsessive thinking and compulsive behavior. Folate is a member of water-soluble vitamins in the human body and sustains many normal daily activities (e.g., exercise, sleep, and memory). Homocysteine, a sulfur-containing non-essential amino acid, has been investigated in numerous psychiatric disorders (e.g., OCD). Vitamin B12 is a type of complex organic compound with cobalt contained. Moreover, vitamin B12 and folate deficiency and high levels of homocysteine were found to have an effect on brain functions and also lead to non-specific psychiatric symptoms. Objectives This study aimed to confirm the epidemiological evidence of OCD and investigate whether vitamin B12, folate, and homocysteine have an effect on the etiology of OCD. Methods A systematic search was conducted on eight databases (i.e., PubMed, Embase, Web of Science, the Cochrane Library, China Biology Medicine disc, China National Knowledge Infrastructure, Wanfang Database, China Science and Technology Journal Database), and the retrieval time was up to March 2021. The available articles involving patients with OCD with/without abnormal serum levels of vitamin B12, folate, and homocysteine were comprehensively reviewed and analyzed. Results A total of 5 studies involving 309 patients were included in this meta-analysis, including 172 cases in the experimental group and 137 in the control group. The content of folate in the OCD group was not significantly different from that in the control group (SMD = -0.089, 95%CI -0.755 to 0.577, p = 0.794). And serum homocysteine was significantly higher in the patients with OCD (SMD = 1.132, 95%CI 0.486 to 1.778, p = 0.001). Vitamin B12 was significantly lower in patients with OCD (SMD = -0.583, 95%CI -0.938 to -0.229, p = 0.001). Conclusions This meta-analysis shows serum high levels of homocysteine, low levels of vitamin B12, and normal folate level are closely correlated with OCD. However, high-quality case-control studies should be further conducted to explore the correlation between serum levels of vitamin B12, folate, homocysteine, and OCD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021262161; PROSPERO (Number CRD#42021262161).
Collapse
Affiliation(s)
| | | | | | | | - Wenzhi Du
- Department of Psychiatry, Mental Health Institute of Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
36
|
Wang AL, Chao OY, Nikolaus S, Lamounier-Zepter V, Hollenberg CP, Lubec G, Trossbach SV, Korth C, Huston JP. Disrupted-in-schizophrenia 1 Protein Misassembly Impairs Cognitive Flexibility and Social Behaviors in a Transgenic Rat Model. Neuroscience 2022; 493:41-51. [PMID: 35461978 DOI: 10.1016/j.neuroscience.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Alterations in cognitive functions, social behaviors and stress reactions are commonly diagnosed in chronic mental illnesses (CMI). Animal models expressing mutant genes associated to CMI represent either rare mutations or those contributing only minimally to genetic risk. Non-genetic causes of CMI can be modeled by disturbing downstream signaling pathways, for example through inducing protein misassembly or aggregation. The Disrupted-in-Schizophrenia 1 (DISC1) gene was identified to be disrupted and thereby haploinsufficient in a large pedigree where it associated to CMI. The DISC1 protein misassembles to an insoluble protein in a subset of CMI patients and this has been modeled in a rat (tgDISC1 rat) where the full-length, non mutant human transgene was overexpressed and cognitive impairments were observed. Here, we investigated the scope of effects of DISC1 protein misassembly by investigating spatial memory, social behavior and stress resilience. In water maze tasks, the tgDISC1 rats showed intact spatial learning and memory, but were deficient in flexible adaptation to spatial reversal learning compared to littermate controls. They also displayed less social interaction. Additionally, there was a trend towards increased corticosterone levels after restraint stress in the tgDISC1 rats. Our findings suggest that DISC1 protein misassembly leads to disturbances of cognitive flexibility and social behaviors, and might also be involved in stress sensitization. Since the observed behavioral features resemble symptoms of CMI, the tgDISC1 rat may be a valuable model for the investigation of cognitive, social and - possibly - also stress-related symptoms of major mental illnesses.
Collapse
Affiliation(s)
- An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA.
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
| | | | - Cornelis P Hollenberg
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria.
| | - Svenja V Trossbach
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Carsten Korth
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
37
|
Lee J, Kim C, Lee KC. An Empirical Approach to Analyzing the Effects of Stress on Individual Creativity in Business Problem-Solving: Emphasis on the Electrocardiogram, Electroencephalogram Methodology. Front Psychol 2022; 13:705442. [PMID: 35391973 PMCID: PMC8983065 DOI: 10.3389/fpsyg.2022.705442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, experiments were conducted on 30 subjects by means of electrocardiogram (ECG) and electroencephalogram (EEG) methodologies as well as a money game to examine the effects of stress on creativity in business problem-solving. The study explained the relationship between creativity and human physiological response using the biopsychosocial model of challenge and threat. The subjects were asked to perform a cognitive mapping task. Based on the brain wave theory, we identified the types of brain waves and locations of brain activities that occurred during the creative problem-solving process in a business environment and studied the effects of stress on creativity. The results of the experiments showed significant differences in creativity in business problem-solving depending on whether or not stress was triggered. Differences were found in the time domain (SDNN, RMSSD) and frequency domain (HF, LF/HF ratio) of heart rates, a physiological stress indicator, between the stress group and the no-stress group. A brain wave analysis confirmed that alpha waves increased in the frontal lobe of the brain during creative business problem-solving but decreased when the subjects were under stress, during which beta waves in the brain increased. This study seeks to examine creativity in business problem-solving by studying the effects of stress on human physiological response and cognitive functions in the hope of providing a new and objective interpretation of existing research results.
Collapse
Affiliation(s)
- Jungwoo Lee
- SKK Business School, Sungkyunkwan University, Seoul, South Korea
| | - Cheong Kim
- SKK Business School, Sungkyunkwan University, Seoul, South Korea
- Economics Department, Airports Council International (ACI) World, Montreal, QC, Canada
| | - Kun Chang Lee
- SKK Business School, Sungkyunkwan University, Seoul, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
38
|
Du M, Peng Y, Li Y, Zhu Y, Yang S, Li J, Zou F, Wang Y, Wu X, Zhang Y, Zhang M. Effect of trait anxiety on cognitive flexibility: Evidence from event-related potentials and resting-state EEG. Biol Psychol 2022; 170:108319. [PMID: 35331781 DOI: 10.1016/j.biopsycho.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
Abstract
Individuals with anxiety often exhibit cognitive flexibility impairment; however, the neural underpinnings of this cognitive impairment remain unclear. In this study, 45 participants were instructed to complete a task-switching assessment of shifting function by EEG technology, and 200 participants were included in microstate analysis to study why cognitive flexibility is impaired and the neuromechanism. Behaviorally, a positive correlation between trait anxiety scores and set shifting cost was found. At the EEG level, there was a positive correlation between trait anxiety scores and frontal P2 peaks under the shifting condition, which was related to the activation of the stimulus-response associations by attention. Furthermore, microstate analysis was used to analyze EEG functional networks, and TA scores had significant positive correlations with the Occurrence of class D and the Contribution of class D, which was related to the dorsal attention network. These results provided direct neuroelectrophysiological evidence that trait anxiety impairs cognitive flexibility when shifting is required.
Collapse
Affiliation(s)
- Mei Du
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yunwen Peng
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yuwen Li
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yingying Zhu
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Shiyan Yang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Faculty of Psychology, Southwest University, Chongqing 400715, China.
| | - Jiefan Li
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Feng Zou
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yufeng Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yujiao Zhang
- Traditional Chinese Medicine Innovation Research Institute, Shandong University Of Traditional Chinese Medicine, Shandong 250355, China
| | - Meng Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China.
| |
Collapse
|
39
|
Martin SL, Jones AKP, Brown CA, Kobylecki C, Whitaker GA, El-Deredy W, Silverdale MA. Altered Pain Processing Associated with Administration of Dopamine Agonist and Antagonist in Healthy Volunteers. Brain Sci 2022; 12:brainsci12030351. [PMID: 35326306 PMCID: PMC8946836 DOI: 10.3390/brainsci12030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Striatal dopamine dysfunction is associated with the altered top-down modulation of pain processing. The dopamine D2-like receptor family is a potential substrate for such effects due to its primary expression in the striatum, but evidence for this is currently lacking. Here, we investigated the effect of pharmacologically manipulating striatal dopamine D2 receptor activity on the anticipation and perception of acute pain stimuli in humans. Participants received visual cues that induced either certain or uncertain anticipation of two pain intensity levels delivered via a CO2 laser. Rating of the pain intensity and unpleasantness was recorded. Brain activity was recorded with EEG and analysed via source localisation to investigate neural activity during the anticipation and receipt of pain. Participants completed the experiment under three conditions, control (Sodium Chloride), D2 receptor agonist (Cabergoline), and D2 receptor antagonist (Amisulpride), in a repeated-measures, triple-crossover, double-blind study. The antagonist reduced an individuals’ ability to distinguish between low and high pain following uncertain anticipation. The EEG source localisation showed that the agonist and antagonist reduced neural activations in specific brain regions associated with the sensory integration of salient stimuli during the anticipation and receipt of pain. During anticipation, the agonist reduced activity in the right mid-temporal region and the right angular gyrus, whilst the antagonist reduced activity within the right postcentral, right mid-temporal, and right inferior parietal regions. In comparison to control, the antagonist reduced activity within the insula during the receipt of pain, a key structure involved in the integration of the sensory and affective aspects of pain. Pain sensitivity and unpleasantness were not changed by D2R modulation. Our results support the notion that D2 receptor neurotransmission has a role in the top-down modulation of pain.
Collapse
Affiliation(s)
- Sarah L. Martin
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6GX, UK
- The Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; (A.K.P.J.); (C.A.B.)
- Correspondence:
| | - Anthony K. P. Jones
- The Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; (A.K.P.J.); (C.A.B.)
| | - Christopher A. Brown
- The Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; (A.K.P.J.); (C.A.B.)
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Christopher Kobylecki
- Salford Royal NHS Foundation Trust, Department of Neurology, Manchester Academic Health Science Centre, Salford M6 8HD, UK; (C.K.); (M.A.S.)
| | - Grace A. Whitaker
- Advanced Center for Electrical and Electronics Engineering, Federico Santa María Technical University, Valparaíso 1680, Chile;
| | - Wael El-Deredy
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaiso 1680, Chile;
| | - Monty A. Silverdale
- Salford Royal NHS Foundation Trust, Department of Neurology, Manchester Academic Health Science Centre, Salford M6 8HD, UK; (C.K.); (M.A.S.)
| |
Collapse
|
40
|
McCarthy DM, Zhang L, Wilkes BJ, Vaillancourt DE, Biederman J, Bhide PG. Nicotine and the developing brain: Insights from preclinical models. Pharmacol Biochem Behav 2022; 214:173355. [PMID: 35176350 PMCID: PMC9063417 DOI: 10.1016/j.pbb.2022.173355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Use of tobacco products during pregnancy is associated with increased risk for neurodevelopmental disorders in the offspring. Preclinical models of developmental nicotine exposure have offered valuable insights into the neurobiology of nicotine's effects on the developing brain and demonstrated lasting effects of developmental nicotine exposure on brain structure, neurotransmitter signaling and behavior. These models have facilitated discovery of novel compounds as candidate treatments for attention deficit hyperactivity disorder, a neurodevelopmental disorder associated with prenatal nicotine exposure. Using these models the significance of heritability of behavioral phenotypes from the nicotine-exposed pregnant female or adult male to multiple generations of descendants has been demonstrated. Finally, research using the preclinical models has demonstrated synergistic interactions between developmental nicotine exposure and repetitive mild traumatic brain injury that contribute to "worse" outcomes from the injury in individuals with attention deficit hyperactivity disorder associated with developmental nicotine exposure.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Lin Zhang
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - Joseph Biederman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
41
|
Matsumoto K, Chen C, Hagiwara K, Shimizu N, Hirotsu M, Oda Y, Lei H, Takao A, Fujii Y, Higuchi F, Nakagawa S. The Effect of Brief Stair-Climbing on Divergent and Convergent Thinking. Front Behav Neurosci 2022; 15:834097. [PMID: 35153696 PMCID: PMC8831728 DOI: 10.3389/fnbeh.2021.834097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023] Open
Abstract
Recent studies show that even a brief bout of aerobic exercise may enhance creative thinking. However, few studies have investigated the effect of exercise conducted in natural settings. Here, in a crossover randomized controlled trial, we investigated the effect of a common daily activity, stair-climbing, on creative thinking. As experimental intervention, subjects were asked to walk downstairs from the fourth to the first floor and back at their usual pace. As control intervention, they walked the same path but using the elevator instead. Compared to using the elevator, stair-climbing enhanced subsequent divergent but not convergent thinking in that it increased originality on the Alternate Use Test (d = 0.486). Subjects on average generated 61% more original uses after stair-climbing. This is the first study to investigate the effect of stair-climbing on creative thinking. Our findings suggest that stair-climbing may be a useful strategy for enhancing divergent thinking in everyday life.
Collapse
Affiliation(s)
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Flasbeck V, Enzi B, Andreou C, Juckel G, Mavrogiorgou P. P300 and delay-discounting in obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272:327-339. [PMID: 34258638 PMCID: PMC8866265 DOI: 10.1007/s00406-021-01302-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/04/2021] [Indexed: 12/04/2022]
Abstract
Previous research showed that dysfunctions of fronto-striatal neural networks are implicated in the pathophysiology of obsessive-compulsive disorder (OCD). Accordingly, patients with OCD showed altered performances during decision-making tasks. As P300, evoked by oddball paradigms, is suggested to be related to attentional and cognitive processes and generated in the medial temporal lobe and orbitofrontal and cingulate cortices, it is of special interest in OCD research. Therefore, this study aimed to investigate P300 in OCD and its associations with brain activity during decision-making: P300, evoked by an auditory oddball paradigm, was analysed in 19 OCD patients and 19 healthy controls regarding peak latency, amplitude and source density power in parietal cortex areas by sLORETA. Afterwards, using a fMRI paradigm, Blood-oxygen-level-dependent (BOLD) contrast imaging was conducted during a delay-discounting paradigm. We hypothesised differences between groups regarding P300 characteristics and associations with frontal activity during delay-discounting. The P300 did not differ between groups, however, the P300 latency over the P4 electrode correlated negatively with the NEO-FFI score openness to experience in patients with OCD. In healthy controls, P300 source density power correlated with activity in frontal regions when processing rewards, a finding which was absent in OCD patients. To conclude, associations of P300 with frontal brain activation during delay-discounting were found, suggesting a contribution of attentional or context updating processes. Since this association was absent in patients with OCD, the findings could be interpreted as being indeed related to dysfunctions of fronto-striatal neural networks in patients with OCD.
Collapse
Affiliation(s)
- Vera Flasbeck
- grid.5570.70000 0004 0490 981XDepartment of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791 Bochum, Germany
| | - Björn Enzi
- grid.5570.70000 0004 0490 981XDepartment of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791 Bochum, Germany
| | - Christina Andreou
- grid.412468.d0000 0004 0646 2097Department of Psychiatry and Psychotherapy, University Hospital Lübeck (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Georg Juckel
- Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany.
| | - Paraskevi Mavrogiorgou
- grid.5570.70000 0004 0490 981XDepartment of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791 Bochum, Germany
| |
Collapse
|
43
|
Wang W, Clough M, White O, Shuey N, Van Der Walt A, Fielding J. Detecting Cognitive Impairment in Idiopathic Intracranial Hypertension Using Ocular Motor and Neuropsychological Testing. Front Neurol 2021; 12:772513. [PMID: 34867761 PMCID: PMC8635089 DOI: 10.3389/fneur.2021.772513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Objective: To determine whether cognitive impairments in patients with Idiopathic Intracranial Hypertension (IIH) are correlated with changes in visual processing, weight, waist circumference, mood or headache, and whether they change over time. Methods: Twenty-two newly diagnosed IIH patients participated, with a subset assessed longitudinally at 3 and 6 months. Both conventional and novel ocular motor tests of cognition were included: Symbol Digit Modalities Test (SDMT), Stroop Colour and Word Test (SCWT), Digit Span, California Verbal Learning Test (CVLT), prosaccade (PS) task, antisaccade (AS) task, interleaved antisaccade-prosaccade (AS-PS) task. Patients also completed headache, mood, and visual functioning questionnaires. Results: IIH patients performed more poorly than controls on the SDMT (p< 0.001), SCWT (p = 0.021), Digit Span test (p< 0.001) and CVLT (p = 0.004) at baseline, and generated a higher proportion of AS errors in both the AS (p< 0.001) and AS-PS tasks (p = 0.007). Further, IIH patients exhibited prolonged latencies on the cognitively complex AS-PS task (p = 0.034). While weight, waist circumference, headache and mood did not predict performance on any experimental measure, increased retinal nerve fibre layer (RNFL) was associated with AS error rate on both the block [F(3, 19)=3.22, B = 0.30, p = 0.022] and AS-PS task [F(3, 20) = 2.65, B = 0.363, p = 0.013]. Unlike ocular motor changes, impairments revealed on conventional tests of cognition persisted up to 6 months. Conclusion: We found multi-domain cognitive impairments in IIH patients that were unrelated to clinical characteristics. Marked ocular motor inhibitory control deficits were predicted by RNFL thickness but remained distinct from other cognitive changes, underscoring the significance of visual processing changes in IIH.
Collapse
Affiliation(s)
- Wendy Wang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Neil Shuey
- Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
45
|
Reduction of DNMT3a and RORA in the nucleus accumbens plays a causal role in post-traumatic stress disorder-like behavior: reversal by combinatorial epigenetic therapy. Mol Psychiatry 2021; 26:7481-7497. [PMID: 34253866 DOI: 10.1038/s41380-021-01178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is an incapacitating trauma-related disorder, with no reliable therapy. Although PTSD has been associated with epigenetic alterations in peripheral white blood cells, it is unknown where such changes occur in the brain, and whether they play a causal role in PTSD. Using an animal PTSD model, we show distinct DNA methylation profiles of PTSD susceptibility in the nucleus accumbens (NAc). Data analysis revealed overall hypomethylation of different genomic CG sites in susceptible animals. This was correlated with the reduction in expression levels of the DNA methyltransferase, DNMT3a. Since epigenetic changes in diseases involve different gene pathways, rather than single candidate genes, we next searched for pathways that may be involved in PTSD. Analysis of differentially methylated sites identified enrichment in the RAR activation and LXR/RXR activation pathways that regulate Retinoic Acid Receptor (RAR) Related Orphan Receptor A (RORA) activation. Intra-NAc injection of a lentiviral vector expressing either RORA or DNMT3a reversed PTSD-like behaviors while knockdown of RORA and DNMT3a increased PTSD-like behaviors. To translate our results into a potential pharmacological therapeutic strategy, we tested the effect of systemic treatment with the global methyl donor S-adenosyl methionine (SAM), for supplementing DNA methylation, or retinoic acid, for activating RORA downstream pathways. We found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors. Thus, our data point to a novel approach to the treatment of PTSD, which is potentially translatable to humans.
Collapse
|
46
|
Rochais C, Hotte H, Pillay N. Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice. Sci Rep 2021; 11:20061. [PMID: 34625648 PMCID: PMC8501043 DOI: 10.1038/s41598-021-99619-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cognitive flexibility describes the ability of animals to alter cognitively mediated behaviour in response to changing situational demands, and can vary according to prevailing environemental conditions and individual caracteristics. In the present study, we investigated (1) how learning and reversal learning performance changes between seasons, and (2) how cognitive flexibility is related to sex in a free-living small mammal. We studied 107 African striped mice, Rhabdomys pumilio, in an arid semi-desert, 58 during the hot dry summer with low food availability, and 49 during the cold wet winter with higher food availability. We used an escape box task to test for learning and reversal learning performance. We found that learning and reversal learning efficiency varied seasonally by sex: females tested in summer were faster at solving both learning and reversal tasks than males tested in winter. Performance varied within sex: males tested in winter showed faster learning compared to males tested in summer. During reversal learning, females tested in summer were more efficient and solve the task faster compared to females tested in winter. We suggest that seasonal cognitive performance could be related to sex-specific behavioural characteristics of the species, resulting in adaptation for living in harsh environmental conditions.
Collapse
Affiliation(s)
- Céline Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Hoël Hotte
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,ANSES, Plant Health Laboratory - Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cédex, France
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Grieco F, Bernstein BJ, Biemans B, Bikovski L, Burnett CJ, Cushman JD, van Dam EA, Fry SA, Richmond-Hacham B, Homberg JR, Kas MJH, Kessels HW, Koopmans B, Krashes MJ, Krishnan V, Logan S, Loos M, McCann KE, Parduzi Q, Pick CG, Prevot TD, Riedel G, Robinson L, Sadighi M, Smit AB, Sonntag W, Roelofs RF, Tegelenbosch RAJ, Noldus LPJJ. Measuring Behavior in the Home Cage: Study Design, Applications, Challenges, and Perspectives. Front Behav Neurosci 2021; 15:735387. [PMID: 34630052 PMCID: PMC8498589 DOI: 10.3389/fnbeh.2021.735387] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.
Collapse
Affiliation(s)
| | - Briana J Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - C Joseph Burnett
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jesse D Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Sydney A Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Bar Richmond-Hacham
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Michael J Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vaishnav Krishnan
- Laboratory of Epilepsy and Emotional Behavior, Baylor Comprehensive Epilepsy Center, Departments of Neurology, Neuroscience, and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Sreemathi Logan
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, Netherlands
| | - Katharine E McCann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | | | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Thomas D Prevot
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lianne Robinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mina Sadighi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - William Sonntag
- Department of Biochemistry & Molecular Biology, Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Lucas P J J Noldus
- Noldus Information Technology BV, Wageningen, Netherlands
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
48
|
Syn3 Gene Knockout Negatively Impacts Aspects of Reversal Learning Performance. eNeuro 2021; 8:ENEURO.0251-21.2021. [PMID: 34413083 PMCID: PMC8431823 DOI: 10.1523/eneuro.0251-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Behavioral flexibility enables the ability to adaptively respond to changes in contingency requirements to maintain access to desired outcomes, and deficits in behavioral flexibility have been documented in many psychiatric disorders. Previous research has shown a correlation between behavioral flexibility measured in a reversal learning test and Syn3, the gene encoding synapsin III, which negatively regulates phasic dopamine release. Syn3 expression in the hippocampus, striatum, and neocortex is reported to be negatively correlated with reversal learning performance, so here, we used a global knock-out line to investigate reversal learning in mice homozygous wild type, heterozygous null, and homozygous null for the Syn3 gene. Compared with wild-type animals, we found a reversal-specific effect of genetic Syn3 deficiency that resulted in a greater proportional increase in trials required to reach a preset performance criterion during contingency reversal, despite no observed genotype effects on the ability to acquire the initial discrimination. Behavioral flexibility scores, which quantified the likelihood of switching subsequent choice behavior following positive or negative feedback, became significantly more negative in reversal only for Syn3 homozygous-null mice, suggesting a substantial increase in perseverative behavior in the reversal phase. Syn3 ablation reduced the number of anticipatory responses made per trial, often interpreted as a measure of waiting impulsivity. Overall, Syn3 expression negatively affected behavioral flexibility in a reversal-specific manner but may have reduced waiting impulsivity.
Collapse
|
49
|
Ginder DE, Wright HR, McLaughlin RJ. The stoned age: Sex differences in the effects of adolescent cannabinoid exposure on prefrontal cortex structure and function in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:121-145. [PMID: 34801167 PMCID: PMC11290470 DOI: 10.1016/bs.irn.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabis is the most used drug during adolescence, which is a period of enhanced cortical plasticity and synaptic remodeling that supports behavioral, cognitive, and emotional maturity. In this chapter, we review preclinical studies indicating that adolescent exposure to cannabinoids has lasting effects on the morphology and synaptic organization of the prefrontal cortex and associated circuitry, which may lead to cognitive dysfunction later in life. Additionally, we reviewed sex differences in the effects of adolescent cannabinoid exposure with a focus on brain systems that support cognitive functioning. The body of evidence indicates enduring sex-specific effects in behavior and organization of corticolimbic circuitry, which appears to be influenced by species, strain, drug, route of administration, and window/pattern of drug exposure. Caution should be exercised when extrapolating these results to humans. Adopting models that more closely resemble human cannabis use will provide more translationally relevant data concerning the long-term effects of cannabis use on the adolescent brain.
Collapse
Affiliation(s)
- D E Ginder
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - H R Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - R J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, United States; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States.
| |
Collapse
|
50
|
Richter A, de Boer L, Guitart-Masip M, Behnisch G, Seidenbecher CI, Schott BH. Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. J Neural Transm (Vienna) 2021; 128:1705-1720. [PMID: 34302222 PMCID: PMC8536632 DOI: 10.1007/s00702-021-02382-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. With our present study, we followed two aims: first, we aimed to replicate our finding on the DRD2/ANKK1 TaqIA polymorphism in a third independent cohort (N = 99) and to investigate the nature of the genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the combined dataset (N = 281). Second, we aimed to assess a potentially modulatory role of prefrontal dopamine availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. We first report a replication of the above mentioned finding. Interestingly, after combining all three cohorts, exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.
Collapse
Affiliation(s)
- Anni Richter
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Lieke de Boer
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - Marc Guitart-Masip
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Gusalija Behnisch
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|