1
|
Iriah SC, Rodriguez N, Febo M, Morrissette M, Strandwitz P, Kulkarni P, Ferris CF. The microbiome's influence on the neurobiology of opioid addiction and brain connectivity. Brain Res Bull 2025; 220:111159. [PMID: 39645048 DOI: 10.1016/j.brainresbull.2024.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Opioids are the most effective and potent analgesics available for acute pain management. With no viable alternative for treating chronic or post operative pain, it is not surprising that over 10 million people misuse opioids. This study explores the developmental influence of the microbiome on resistance to opioid addictive behavior and functional connectivity. METHODS Female germ free reared (GFR) mice were compared to wild-type (WT) mice, before and after conventionalization using conditioned place preference (CPP) with oxycodone (OXY) exposure. Functional connectivity data were collected providing site-specific analysis for over 140 different brain areas. RESULTS GFR mice showed significant reduction in CPP after OXY exposure. When GFR mice are conventionalized CPP reward behavior mirrors WT mice. Functional connectivity data shows significant differences across several brain regions e.g., thalamus, hippocampus, and sensory cortices between GFR and WT before and after conventionalization. Prior to conventionalization GFR mice showed hyperconnectivity that became less organized and more global after conventionalization. Sequencing of the fecal microbiome of the GFR mice before conventionalization showed an absence of normal murine gut microbiome members, but the presence of Corynebacterium, Staphylococcus, Paenibacillus, and Turicibacter. CONCLUSION The implications suggest the microbiome has a direct impact on the development of reward seeking behavior. With the widespread number of opioid receptors found in the gut, studying the interaction between the microbiota and substance use disorder may lead to a better understanding of the mechanisms that lead to the development of addiction as well as potential treatments.
Collapse
Affiliation(s)
- Sade C Iriah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States.
| | - Nicholas Rodriguez
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | | | | | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States; Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.
| |
Collapse
|
2
|
Balaji S, Woodward TJ, Richter E, Chang A, Otiz R, Kulkarni PP, Balaji K, Bradshaw HB, Ferris CF. Palmitoylethanolamide causes dose-dependent changes in brain function and the lipidome. Front Neurosci 2024; 18:1506352. [PMID: 39664446 PMCID: PMC11631868 DOI: 10.3389/fnins.2024.1506352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The present studies were undertaken to understand the effects of the commonly used nutraceutical PEA on brain function and lipid chemistry. These studies using MRI and broad-scale lipidomics are without precedent in animal or human research. During the MRI scanning session awake rats were given one of three doses of PEA (3, 10, or 30 mg/kg) or vehicle and imaged for changes in BOLD signal and functional connectivity. There was an inverse dose-response for negative BOLD suggesting a decrease in brain activity affecting the prefrontal ctx, sensorimotor cortices, basal ganglia and thalamus. However, there was a dose-dependent increase in functional connectivity in these same brain areas. Plasma and CNS levels of PEA and over 80 endogenous lipids (endolipids) were determined post treatment. While levels of PEA in the CNS were significantly higher after 30 mg/kg treatment, levels of the endocannabinoid, Anandamide, and at least 20 additional endolipids, were significantly lower across the CNS. Of the 78 endolipids that were detected in all CNS regions evaluated, 51 of them were modulated in at least one of the regions. Taken together, the functional connectivity and lipidomics changes provide evidence that PEA treatment drives substantial changes in CNS activity.
Collapse
Affiliation(s)
- Shreyas Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Emily Richter
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Otiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - Praveen P. Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Kaashyap Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University Boston, Boston, MA, United States
| |
Collapse
|
3
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570803. [PMID: 38106227 PMCID: PMC10723470 DOI: 10.1101/2023.12.08.570803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High-resolution awake mouse fMRI remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radiofrequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion induced artifacts. Using a 14T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100×100×200μm resolution with a 2s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust BOLD responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 seconds prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous training of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Department of Biomedical Engineering, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| |
Collapse
|
4
|
Ghaw A, Chunduri A, Chang A, Ortiz RJ, Kozlowska M, Kulkarni PP, Ferris CF. Dose-dependent LSD effects on cortical/thalamic and cerebellar activity: brain oxygen level-dependent fMRI study in awake rats. Brain Commun 2024; 6:fcae194. [PMID: 38863575 PMCID: PMC11166175 DOI: 10.1093/braincomms/fcae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Lysergic acid diethylamide is a hallucinogen with complex neurobiological and behavioural effects. This is the first study to use MRI to follow functional changes in brain activity in response to different doses of lysergic acid diethylamide in fully awake, drug-naive rats. We hypothesized that lysergic acid diethylamide would show a dose-dependent increase in activity in the prefrontal cortex and thalamus while decreasing hippocampal activity. Female and male rats were given intraperitoneal injections of vehicle or lysergic acid diethylamide in doses of 10 or 100 µg/kg while fully awake during the imaging session. Changes in blood oxygen level-dependent signal were recorded over a 30-min window. Approximately 45-min post-injection data for resting-state functional connectivity were collected. All data were registered to rat 3D MRI atlas with 173 brain regions providing site-specific increases and decreases in global brain activity and changes in functional connectivity. Treatment with lysergic acid diethylamide resulted in a significant dose-dependent increase in negative blood oxygen level-dependent signal. The areas most affected were the primary olfactory system, prefrontal cortex, thalamus and hippocampus. This was observed in both the number of voxels affected in these brains regions and the changes in blood oxygen level-dependent signal over time. However, there was a significant increase in functional connectivity between the thalamus and somatosensory cortex and the cerebellar nuclei and the surrounding brainstem areas. Contrary to our hypothesis, there was an acute dose-dependent increase in negative blood oxygen level-dependent signal that can be interpreted as a decrease in brain activity, a finding that agrees with much of the behavioural data from preclinical studies. The enhanced connectivity between thalamus and sensorimotor cortices is consistent with the human literature looking at lysergic acid diethylamide treatments in healthy human volunteers. The unexpected finding that lysergic acid diethylamide enhances connectivity to the cerebellar nuclei raises an interesting question concerning the role of this brain region in the psychotomimetic effects of hallucinogens.
Collapse
Affiliation(s)
- Ashley Ghaw
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Alisha Chunduri
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Richard J Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Milena Kozlowska
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Praveen P Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Craig F Ferris
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
6
|
Kamens HM, Cramer S, Hanley RN, Chase S, Wickenheisser A, Horton WJ, Zhang N. Neuroimaging of opioid exposure: a review of preclinical animal models to inform addiction research. Psychopharmacology (Berl) 2023; 240:2459-2482. [PMID: 37857897 DOI: 10.1007/s00213-023-06477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Opioid use results in thousands of overdose deaths each year. To address this crisis, we need a better understanding of the neurobiological mechanisms that drive opioid abuse. The noninvasive imaging tools positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and manganese-enhanced magnetic resonance imaging (MEMRI) can be used to identify how brain activity responds to acute opioid exposure and adapts to chronic drug treatment. These techniques can be performed in humans and animal models, and brain networks identified in animals closely map to the human brain. Animal models have the advantage of being able to systematically examine the independent effects of opioid exposure in a controlled environment accounting for the complex factors that drive opioid misuse in humans. This review synthesizes literature that utilized noninvasive neuroimaging tools (PET, fMRI, and MEMRI) measuring brain activity correlates in animals to understand the neurobiological consequences of exposure to abused opioids. A PubMed search in September 2023 identified 25 publications. These manuscripts were divided into 4 categories based on the route and duration of drug exposure (acute/chronic, active/passive administration). Within each category, the results were generally consistent across drug and imaging protocols. These papers cover a 20-year range and highlight the advancements in neuroimaging methodology during that time. These advances have enabled researchers to achieve greater resolution of brain regions altered by opioid exposure and to identify patterns of brain activation across regions (i.e., functional connectivity) and within subregions of structures. After describing the existing literature, we suggest areas where additional research is needed.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Samuel Cramer
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel N Hanley
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Spencer Chase
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anna Wickenheisser
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Katz BM, Walton LR, Houston KM, Cerri DH, Shih YYI. Putative neurochemical and cell type contributions to hemodynamic activity in the rodent caudate putamen. J Cereb Blood Flow Metab 2023; 43:481-498. [PMID: 36448509 PMCID: PMC10063835 DOI: 10.1177/0271678x221142533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is widely used by researchers to noninvasively monitor brain-wide activity. The traditional assumption of a uniform relationship between neuronal and hemodynamic activity throughout the brain has been increasingly challenged. This relationship is now believed to be impacted by heterogeneously distributed cell types and neurochemical signaling. To date, most cell-type- and neurotransmitter-specific influences on hemodynamics have been examined within the cortex and hippocampus of rodent models, where glutamatergic signaling is prominent. However, neurochemical influences on hemodynamics are relatively unknown in largely GABAergic brain regions such as the rodent caudate putamen (CPu). Given the extensive contribution of CPu function and dysfunction to behavior, and the increasing focus on this region in fMRI studies, improved understanding of CPu hemodynamics could have broad impacts. Here we discuss existing findings on neurochemical contributions to hemodynamics as they may relate to the CPu with special consideration for how these contributions could originate from various cell types and circuits. We hope this review can help inform the direction of future studies as well as interpretation of fMRI findings in the CPu.
Collapse
Affiliation(s)
- Brittany M Katz
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsay R Walton
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaiulani M Houston
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Domenic H Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Lindhardt TB, Gutiérrez-Jiménez E, Liang Z, Hansen B. Male and Female C57BL/6 Mice Respond Differently to Awake Magnetic Resonance Imaging Habituation. Front Neurosci 2022; 16:853527. [PMID: 35757553 PMCID: PMC9226328 DOI: 10.3389/fnins.2022.853527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/18/2022] [Indexed: 01/20/2023] Open
Abstract
Traditionally, preclinical magnetic resonance imaging (MRI) has been performed in anesthetized animals. However, anesthesia has been shown to perturb normal brain function and physiology. Such effects limit our ability to detect subtle physiological alterations in disease models and treatment studies, thus hampering discovery and compromising generality of findings. Therefore, methods for awake animal MRI are needed to study the rodent brain in its natural physiological state, free of anesthetics. Current setups for awake animal MRI rely on restraining systems to avoid animal movement during scanning. To reduce restraint stress, animals are habituated to the scanner environment prior to MRI data collection. To date, however, most awake MRI studies employ male rodents only. This is a fundamental limitation as results obtained may be pertinent only to half of the population. We characterized training and habituation responses of male and female mice to provide improved, sex-dependent training procedures for awake mouse MRI. We recorded heart rate, monitored behavioral responses (body weight and fecal boli weight) and fecal corticosterone levels (FCM) as indicators of wellbeing and stress during a 14-day progressive habituation protocol. In addition, we also assessed discomfort levels and anxiety using the mouse grimace scale (MGS) and light/dark test (LDT), respectively. All scores were compared between both groups. We found that heart rate was significantly decreased after 10 and 11 days of training for both males and females, respectively. However, the specific time course for this decrease was significantly different between males and females, and females exhibited higher anxiety levels during habituation and 14 days after habituation than males. Lastly, we also found that mean FCM levels for both groups were decreased after 11 days of MRI habituation. The present work shows that mice can be successfully trained for extended MRI sessions which is necessary for many (particularly non-fMRI) studies. Importantly, we find that males and females differ in their response to awake MRI habituation, which should be considered in future awake MRI studies that aim to include male and female mice.
Collapse
Affiliation(s)
- Thomas Beck Lindhardt
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Eugenio Gutiérrez-Jiménez
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Zhifeng Liang
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Ferris CF. Applications in Awake Animal Magnetic Resonance Imaging. Front Neurosci 2022; 16:854377. [PMID: 35450017 PMCID: PMC9017993 DOI: 10.3389/fnins.2022.854377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
There are numerous publications on methods and applications for awake functional MRI across different species, e.g., voles, rabbits, cats, dogs, and rhesus macaques. Each of these species, most obviously rhesus monkey, have general or unique attributes that provide a better understanding of the human condition. However, much of the work today is done on rodents. The growing number of small bore (≤30 cm) high field systems 7T- 11.7T favor the use of small animals. To that point, this review is primarily focused on rodents and their many applications in awake function MRI. Applications include, pharmacological MRI, drugs of abuse, sensory evoked stimuli, brain disorders, pain, social behavior, and fear.
Collapse
|
11
|
Kotlarz P, Nino JC, Febo M. Connectomic analysis of Alzheimer's disease using percolation theory. Netw Neurosci 2022; 6:213-233. [PMID: 36605889 PMCID: PMC9810282 DOI: 10.1162/netn_a_00221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder that affects a growing worldwide elderly population. Identification of brain functional biomarkers is expected to help determine preclinical stages for targeted mechanistic studies and development of therapeutic interventions to deter disease progression. Connectomic analysis, a graph theory-based methodology used in the analysis of brain-derived connectivity matrices was used in conjunction with percolation theory targeted attack model to investigate the network effects of AD-related amyloid deposition. We used matrices derived from resting-state functional magnetic resonance imaging collected on mice with extracellular amyloidosis (TgCRND8 mice, n = 17) and control littermates (n = 17). Global, nodal, spatial, and percolation-based analysis was performed comparing AD and control mice. These data indicate a short-term compensatory response to neurodegeneration in the AD brain via a strongly connected core network with highly vulnerable or disconnected hubs. Targeted attacks demonstrated a greater vulnerability of AD brains to all types of attacks and identified progression models to mimic AD brain functional connectivity through betweenness centrality and collective influence metrics. Furthermore, both spatial analysis and percolation theory identified a key disconnect between the anterior brain of the AD mice to the rest of the brain network.
Collapse
Affiliation(s)
- Parker Kotlarz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Juan C. Nino
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Iriah SC, Borges C, Shalev U, Cai X, Madularu D, Kulkarni PP, Ferris CF. The utility of maraviroc, an antiretroviral agent used to treat HIV, as treatment for opioid abuse? Data from MRI and behavioural testing in rats. J Psychiatry Neurosci 2021; 46:E548-E558. [PMID: 34625487 PMCID: PMC8526136 DOI: 10.1503/jpn.200191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/04/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Maraviroc is an antiretroviral agent and C-C chemokine coreceptor 5 (CCR5) antagonist that is currently used to treat human immunodeficiency virus. CCR5/μ-opioid receptor heterodimerization suggests that maraviroc could be a treatment for oxycodone abuse. We treated rats with maraviroc to explore its effect on oxycodone-seeking and its interference with the analgesic effects of oxycodone. We used resting-state blood-oxygen-level-dependent functional connectivity to assess the effect of maraviroc on oxycodone-enhanced coupling in the reward circuitry and performed behavioural tests to evaluate the effect of maraviroc on oxycodone rewarding properties and on oxycodone-seeking after prolonged abstinence. METHODS Two groups of rats were exposed to 8 consecutive days of oxycodone-conditioned place preference training and treatment with maraviroc or vehicle. Two additional groups were trained to self-administer oxycodone for 10 days and then tested for drug seeking after 14 days of abstinence with or without daily maraviroc treatment. We tested the effects of maraviroc on oxycodone analgesia using a tail-flick assay. We analyzed resting-state functional connectivity data using a rat 3-dimensional MRI atlas of 171 brain areas. RESULTS Maraviroc significantly decreased conditioned place preference and attenuated oxycodone-seeking behaviour after prolonged abstinence. The analgesic effect of oxycodone was maintained after maraviroc treatment. Oxycodone increased functional coupling with the accumbens, ventral pallidum and olfactory tubercles, but this was reduced with maraviroc treatment. LIMITATIONS All experiments were performed in male rats only. CONCLUSION Maraviroc treatment attenuated oxycodone-seeking in abstinent rats and reduced functional coupling in the reward circuitry. The analgesic effects of oxycodone were not affected by maraviroc.
Collapse
Affiliation(s)
- Sade C Iriah
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev).
| | - Catarina Borges
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev)
| | - Uri Shalev
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev)
| | - Xuezhu Cai
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev)
| | - Dan Madularu
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev)
| | - Praveen P Kulkarni
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev)
| | - Craig F Ferris
- From the Centre for Translational Neuroimaging, Northeastern University, Boson, Mass., USA (Iriah, Cai, Madularu, Kulkarni, Ferris); and Concordia University, Montreal, Que., Canada (Borges, Shalev)
| |
Collapse
|
13
|
Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM. Oxycodone in the Opioid Epidemic: High 'Liking', 'Wanting', and Abuse Liability. Cell Mol Neurobiol 2021; 41:899-926. [PMID: 33245509 PMCID: PMC8155122 DOI: 10.1007/s10571-020-01013-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Jacob A Alderete
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Steven H Liu
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Hazem S Nasef
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Sadaka AH, Ozuna AG, Ortiz RJ, Kulkarni P, Johnson CT, Bradshaw HB, Cushing BS, Li AL, Hohmann AG, Ferris CF. Cannabidiol has a unique effect on global brain activity: a pharmacological, functional MRI study in awake mice. J Transl Med 2021; 19:220. [PMID: 34030718 PMCID: PMC8142641 DOI: 10.1186/s12967-021-02891-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background The phytocannabinoid cannabidiol (CBD) exhibits anxiolytic activity and has been promoted as a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. Methods During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged 1 h later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements. Results CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. Conclusion The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02891-6.
Collapse
Affiliation(s)
- Aymen H Sadaka
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Ana G Ozuna
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard J Ortiz
- Department of Biological Sciences, University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Clare T Johnson
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Ai-Ling Li
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA. .,Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Psychology, Northeastern University, 125 NI Hall, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
15
|
Ehrlich AT, Darcq E. Recent advances in basic science methodology to evaluate opioid safety profiles and to understand opioid activities. Fac Rev 2021; 10:15. [PMID: 33718932 PMCID: PMC7946392 DOI: 10.12703/r/10-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Opioids are powerful drugs used by humans for centuries to relieve pain and are still frequently used as pain treatment in current clinical practice. Medicinal opioids primarily target the mu opioid receptor (MOR), and MOR activation produces unmatched pain-alleviating properties, as well as side effects such as strong rewarding effects, and thus abuse potential, and respiratory depression contributing to death during overdose. Therefore, the ultimate goal is to create opioid pain-relievers with reduced respiratory depression and thus fewer chances of lethality. Efforts are also underway to reduce the euphoric effects of opioids and avoid abuse liability. In this review, recent advances in basic science methodology used to understand MOR pharmacology and activities will be summarized. The focus of the review will be to describe current technological advances that enable the study of opioid analgesics from subcellular mechanisms to mesoscale network responses. These advances in understanding MOR physiological responses will help to improve knowledge and future design of opioid analgesics.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Emmanuel Darcq
- Department of Psychiatry, Douglas Research Center, McGill University, Montréal, Canada
- INSERM U1114, UNISTRA University of Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Galaj E, Xi ZX. Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 2021; 200:173072. [PMID: 33227308 PMCID: PMC7796909 DOI: 10.1016/j.pbb.2020.173072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Opioid abuse and related overdose deaths continue to rise in the United States, contributing to the national opioid crisis in the USA. The neural mechanisms underlying opioid abuse and addiction are still not fully understood. This review discusses recent progress in basic research dissecting receptor mechanisms and circuitries underlying opioid reward and addiction. We first review the canonical GABA-dopamine neuron hypothesis that was upheld for half a century, followed by major findings challenging this hypothesis. We then focus on recent progress in research evaluating the role of the mesolimbic and nigrostriatal dopamine circuitries in opioid reward and relapse. Based on recent findings that activation of dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is equally rewarding and that GABA neurons in the rostromedial tegmental nucleus (RMTg) and the substantia nigra pars reticula (SNr) are rich in mu opioid receptors and directly synapse onto midbrain DA neurons, we proposed that the RTMg→VTA → ventrostriatal and SNr → SNc → dorsostriatal pathways may act as the two major neural substrates underlying opioid reward and abuse. Lastly, we discuss possible integrations of these two pathways during initial opioid use, development of opioid abuse and maintenance of compulsive opioid seeking.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States of America
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States of America.
| |
Collapse
|
17
|
Uselman TW, Barto DR, Jacobs RE, Bearer EL. Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. Neuroimage 2020; 222:116975. [PMID: 32474079 PMCID: PMC7805483 DOI: 10.1016/j.neuroimage.2020.116975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Life threatening fear after a single exposure evolves in a subset of vulnerable individuals to anxiety, which may persist for their lifetime. Yet neither the whole brain's response to innate acute fear nor how brain activity evolves over time is known. Sustained neuronal activity may be a factor in the development of a persistent fear response. We couple two experimental protocols to provoke acute fear leading to prolonged fear: Predator stress (PS), a naturalistic approach to induce fear in rodents; and Serotonin transporter knockout mouse (SERT-KO) that responds to PS with sustained defensive behavior. Behavior was monitored before, during and at short and long times after PS in wild type (WT) and SERT-KO mice. Both genotypes responded to PS with defensive behavior. SERT-KO retained defensive behavior for 23 days, while WT mice returned to baseline exploratory behavior by 9 days. Thus, differences in neural activity between WT and SERT-KO 9 days after PS identifies neural correlates of persistent defensive behavior, in mice. We used longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to identify brain-wide neural activity associated with different behaviors. Mn2+ accumulation in active neurons occurs in awake, behaving mice and is retrospectively imaged. Following the same two cohorts of mice, WT and SERT-KO, longitudinally allowed unbiased quantitative comparisons of brain-wide activity by statistical parametric mapping (SPM). During natural behavior in WT, only low levels of activity-induced Mn2+-accumulation were detected, while much more accumulation appeared immediately after PS in both WT and SERT-KO, and evolved at 9 days to a new activity pattern (p < 0.0001, uncorr., T = 5.4). Patterns of accumulation differed between genotypes, with more regions of the brain and larger volumes within regions involved in SERT-KO than WT. A new computational segmentation analysis, using our InVivo Atlas based on a manganese-enhanced MR image of a living mouse, revealed dynamic changes in the volume of significantly enhanced voxels within each segment that differed between genotypes across 45 of 87 segmented regions. At Day 9 after PS, the striatum and ventral pallidum were active in both genotypes but more so in the SERT-KO. SERT-KO also displayed sustained or increased volume of Mn2+ accumulations between Post-Fear and Day 9 in eight segments where activity was decreased or silenced in WT. C-fos staining, an alternative neural activity marker, of brains from the same mice fixed at conclusion of imaging sessions confirmed that MEMRI detected active neurons. Intensity measurements in 12 regions of interest (ROIs) supported the SPM results. Between group comparisons by SPM and of ROI measurements identified specific regions differing between time points and genotypes. We report brain-wide activity in response to a single exposure of acute fear, and, for the first time, its evolution to new activity patterns over time in individuals vulnerable to persistent fear. Our results show multiple regions with dynamic changes in neural activity and that the balance of activity between segments is disordered in the SERT-KO. Thus, longitudinal MEMRI represents a powerful approach to discover how brain-wide activity evolves from the natural state either after an experience or during a disease process.
Collapse
Affiliation(s)
- Taylor W Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daniel R Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA, USA; California Institute of Technology, Pasadena, CA, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
18
|
Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, Castelo-Branco L, Challet-Bouju G, Clark VP, Claus E, Dannon PN, Del Felice A, den Uyl T, Diana M, di Giannantonio M, Fedota JR, Fitzgerald P, Gallimberti L, Grall-Bronnec M, Herremans SC, Herrmann MJ, Jamil A, Khedr E, Kouimtsidis C, Kozak K, Krupitsky E, Lamm C, Lechner WV, Madeo G, Malmir N, Martinotti G, McDonald WM, Montemitro C, Nakamura-Palacios EM, Nasehi M, Noël X, Nosratabadi M, Paulus M, Pettorruso M, Pradhan B, Praharaj SK, Rafferty H, Sahlem G, Salmeron BJ, Sauvaget A, Schluter RS, Sergiou C, Shahbabaie A, Sheffer C, Spagnolo PA, Steele VR, Yuan TF, van Dongen JDM, Van Waes V, Venkatasubramanian G, Verdejo-García A, Verveer I, Welsh JW, Wesley MJ, Witkiewitz K, Yavari F, Zarrindast MR, Zawertailo L, Zhang X, Cha YH, George TP, Frohlich F, Goudriaan AE, Fecteau S, Daughters SB, Stein EA, Fregni F, Nitsche MA, Zangen A, Bikson M, Hanlon CA. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev 2019; 104:118-140. [PMID: 31271802 PMCID: PMC7293143 DOI: 10.1016/j.neubiorev.2019.06.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
There is growing interest in non-invasive brain stimulation (NIBS) as a novel treatment option for substance-use disorders (SUDs). Recent momentum stems from a foundation of preclinical neuroscience demonstrating links between neural circuits and drug consuming behavior, as well as recent FDA-approval of NIBS treatments for mental health disorders that share overlapping pathology with SUDs. As with any emerging field, enthusiasm must be tempered by reason; lessons learned from the past should be prudently applied to future therapies. Here, an international ensemble of experts provides an overview of the state of transcranial-electrical (tES) and transcranial-magnetic (TMS) stimulation applied in SUDs. This consensus paper provides a systematic literature review on published data - emphasizing the heterogeneity of methods and outcome measures while suggesting strategies to help bridge knowledge gaps. The goal of this effort is to provide the community with guidelines for best practices in tES/TMS SUD research. We hope this will accelerate the speed at which the community translates basic neuroscience into advanced neuromodulation tools for clinical practice in addiction medicine.
Collapse
Affiliation(s)
| | - Hosna Tavakoli
- Institute for Cognitive Science Studies (ICSS), Iran; Iranian National Center for Addiction Studies (INCAS), Iran
| | - Giovanni Addolorato
- Alcohol Use Disorder Unit, Division of Internal Medicine, Gastroenterology and Hepatology Unit, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy; Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Vincent P Clark
- University of New Mexico, USA; The Mind Research Network, USA
| | | | | | - Alessandra Del Felice
- University of Padova, Department of Neuroscience, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | | - Marco Diana
- 'G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - John R Fedota
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Gallimberti
- Novella Fronda Foundation, Human Science and Brain Research, Padua, Italy
| | | | - Sarah C Herremans
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Karolina Kozak
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Evgeny Krupitsky
- V. M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St.-Petersburg, Russia; St.-Petersburg First Pavlov State Medical University, Russia
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria
| | | | - Graziella Madeo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | | | | | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chiara Montemitro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; University G.d'Annunzio of Chieti-Pescara, Italy
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xavier Noël
- Université Libre de Bruxelles (ULB), Belgium
| | | | | | | | | | - Samir K Praharaj
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Haley Rafferty
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | | | - Betty Jo Salmeron
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Anne Sauvaget
- Laboratory «Movement, Interactions, Performance» (E.A. 4334), University of Nantes, 25 Bis Boulevard Guy Mollet, BP 72206, 44322, Nantes Cedex 3, France; CHU de Nantes Addictology and Liaison Psychiatry Department, University Hospital Nantes, Nantes Cedex 3, France
| | - Renée S Schluter
- Laureate Institute for Brain Research, USA; Institute for Cognitive Science Studies (ICSS), Iran
| | | | - Alireza Shahbabaie
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Vaughn R Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, China
| | | | - Vincent Van Waes
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France
| | | | | | | | - Justine W Welsh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Fatemeh Yavari
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laurie Zawertailo
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Xiaochu Zhang
- University of Science and Technology of China, China
| | | | - Tony P George
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | | | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Arkin, Department of Research and Quality of Care, Amsterdam, The Netherlands
| | | | | | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | | | | | | |
Collapse
|
19
|
Colon-Perez LM, Ibanez KR, Suarez M, Torroella K, Acuna K, Ofori E, Levites Y, Vaillancourt DE, Golde TE, Chakrabarty P, Febo M. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. Neuroimage 2019; 202:116138. [PMID: 31472250 DOI: 10.1016/j.neuroimage.2019.116138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular β-amyloid (Aβ) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aβ and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aβ deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aβ production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristen R Ibanez
- Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States
| | - Mallory Suarez
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristin Torroella
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kelly Acuna
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Edward Ofori
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Yona Levites
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - David E Vaillancourt
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Todd E Golde
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - Paramita Chakrabarty
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| | - Marcelo Febo
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| |
Collapse
|
20
|
Abstract
Drug addiction is a worldwide societal problem and public health burden, and results from recreational drug use that develops into a complex brain disorder. The opioid system, one of the first discovered neuropeptide systems in the history of neuroscience, is central to addiction. Recently, opioid receptors have been propelled back on stage by the rising opioid epidemics, revolutions in G protein-coupled receptor research and fascinating developments in basic neuroscience. This Review discusses rapidly advancing research into the role of opioid receptors in addiction, and addresses the key questions of whether we can kill pain without addiction using mu-opioid-receptor-targeting opiates, how mu- and kappa-opioid receptors operate within the neurocircuitry of addiction and whether we can bridge human and animal opioid research in the field of drug abuse.
Collapse
Affiliation(s)
- Emmanuel Darcq
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Brigitte Lina Kieffer
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.
| |
Collapse
|
21
|
Nasseef MT, Singh JP, Ehrlich AT, McNicholas M, Park DW, Ma W, Kulkarni P, Kieffer BL, Darcq E. Oxycodone-Mediated Activation of the Mu Opioid Receptor Reduces Whole Brain Functional Connectivity in Mice. ACS Pharmacol Transl Sci 2019; 2:264-274. [PMID: 32259060 DOI: 10.1021/acsptsci.9b00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Oxycodone is a potent medicinal opioid analgesic to treat pain. It is also addictive and a main cause for the current opioid crisis. At present, the impact of oxycodone on coordinated brain network activities, and contribution of the mu opioid receptor (MOR) to these effects, is unknown. We used pharmacological magnetic resonance imaging in mice to characterize MOR-mediated oxycodone effects on whole-brain functional connectivity (FC). Control (CTL) and MOR knockout (KO) animals were imaged under dexmedetomidine in a 7Tesla scanner. Acquisition was performed continuously before and after 2 mg/kg oxycodone administration (analgesic in CTL mice). Independent component analysis (data-driven) produced a correlation matrix, showing widespread oxycodone-induced reduction of FC across 71 components. Isocortex, nucleus accumbens (NAc), pontine reticular nucleus, and periacqueducal gray (PAG) components showed the highest number of significant changes. Seed-to-voxel FC analysis (hypothesis-driven) was then focused on PAG and NAc considered key pain and reward centers. The two seeds showed reduced FC with 8 and 22 Allen Brain Atlas-based regions, respectively, in CTL but not KO mice. Further seed-to-seed quantification showed highest FC modifications of both PAG and NAc seeds with hypothalamic and amygdalar areas, as well as between them, revealing the strongest impact across reward and aversion/pain centers of the brain. In conclusion, we demonstrate that oxycodone reduces brain communication in a MOR-dependent manner, and establish a preliminary whole-brain FC signature of oxycodone. This proof-of-principle study provides a unique platform and reference data set to test other MOR opioid agonists and perhaps discover new mechanisms and FC biomarkers predicting safer analgesics.
Collapse
Affiliation(s)
- Md Taufiq Nasseef
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Jai Puneet Singh
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Aliza T Ehrlich
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Michael McNicholas
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Da Woon Park
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Weiya Ma
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Praveen Kulkarni
- Center for Translational Neuro-Imaging, Northeastern University, Boston, Massachusetts 02115, United States
| | - Brigitte L Kieffer
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, Quebec H4H 1R3, Canada
| |
Collapse
|
22
|
Cai X, Qiao J, Knox T, Iriah S, Kulkarni P, Madularu D, Morrison T, Waszczak B, Hartner JC, Ferris CF. In search of early neuroradiological biomarkers for Parkinson’s Disease: Alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 −/− rats. Brain Res 2019; 1706:58-67. [DOI: 10.1016/j.brainres.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
|
23
|
Han Z, Chen W, Chen X, Zhang K, Tong C, Zhang X, Li CT, Liang Z. Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 2019; 188:733-742. [PMID: 30611875 DOI: 10.1016/j.neuroimage.2019.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic imaging (fMRI) has been widely used to examine the functional neural networks in both the evoked and resting states. However, most fMRI studies in rodents are performed under anesthesia, which greatly limits the scope of their application, and behavioral relevance. Efforts have been made to image rodents in the awake condition, either in the resting state or in response to sensory or optogenetic stimulation. However, fMRI in awake behaving rodents has not yet been achieved. In the current study, a novel fMRI paradigm for awake and behaving mice was developed, allowing functional imaging of the mouse brain in an olfaction-based go/no-go task. High resolution functional imaging with limited motion and image distortion were achieved at 9.4T with a cryogenic coil in awake and behaving mice. Distributed whole-brain spatiotemporal patterns were revealed, with drastically different activity profiles for go versus no-go trials. Therefore, we have demonstrated the feasibility of functional imaging of an olfactory behavior in awake mice. This fMRI paradigm in awake behaving mice could lead to novel insights into neural mechanisms underlying behaviors at a whole-brain level.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xifan Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chuanjun Tong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xiaoxing Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
24
|
Iriah SC, Trivedi M, Kenkel W, Grant SE, Moore K, Yee JR, Madularu D, Kulkarni P, Ferris CF. Oxycodone Exposure: A Magnetic Resonance Imaging Study in Response to Acute and Chronic Oxycodone Treatment in Rats. Neuroscience 2018; 398:88-101. [PMID: 30550747 DOI: 10.1016/j.neuroscience.2018.11.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
Abstract
The present study was designed to use blood-oxygen-level dependent (BOLD) imaging to "fingerprint" the change in activity in response to oxycodone (OXY) in drug naïve rats before and after repeated exposure to OXY. It was hypothesized that repeated exposure to OXY would initiate adaptive changes in brain organization that would be reflected in an altered response to opioid exposure. Male rats exposed to OXY repeatedly showed conditioned place preference, evidence of drug-seeking behavior and putative neuroadaptation. As these studies were done on awake rats we discovered it was not possible to image rats continuously exposed to OXY due to motion artifact judged to be withdrawal while in the scanner. To circumvent this problem manganese-enhanced MRI (MEMRI) was used to map the distributed integrated activity pattern resulting from continuous OXY exposure. Rats were administered OXY (2.5 mg/kg, i.p.) during image acquisition and changes in BOLD signal intensity were recorded and the activation and deactivation of integrated neural circuits involved in olfaction and motivation were identified. Interestingly, the circuitry of the mesencephalic dopaminergic system showed little activity to the first exposure of OXY. In the MEMRI study, rats received OXY treatments (2.5 mg/kg, twice daily) for four consecutive days following intraventricular MnCl2. Under isoflurane anesthesia, T1-weighted images were acquired and subsequently analyzed showing activity in the forebrain limbic system, ventral striatum, accumbens, amygdala and hippocampus. These results show brain activity is markedly different when OXY is presented to drug naïve rats versus rats with prior, repeated exposure to drug.
Collapse
Affiliation(s)
- Sade C Iriah
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA
| | - Malav Trivedi
- NOVA Southeastern University, Ft. Lauderdale, FL, USA
| | - William Kenkel
- The Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Simone E Grant
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA
| | - Kelsey Moore
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA
| | - Jason R Yee
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA
| | - Dan Madularu
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA; Douglas Hospital, McGill University, Montreal, QC, Canada; Carleton University, Ottawa, ON, Canada
| | - Praveen Kulkarni
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA
| | - Craig F Ferris
- Northeastern Univ., Center for Translational NeuroImaging, Boston, MA, USA.
| |
Collapse
|
25
|
Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Mol Neurobiol 2018; 56:3603-3615. [PMID: 30155791 PMCID: PMC6477015 DOI: 10.1007/s12035-018-1318-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.
Collapse
|
26
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Madularu D, Mathieu AP, Kumaragamage C, Reynolds LM, Near J, Flores C, Rajah MN. A non-invasive restraining system for awake mouse imaging. J Neurosci Methods 2017. [PMID: 28634149 DOI: 10.1016/j.jneumeth.2017.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Preclinical neuroimaging allows for the assessment of brain anatomy, connectivity and function in laboratory animals, such as mice and rats. Most of these studies are performed under anesthesia to avoid movement during the scanning sessions. METHOD Due to the limitations associated with anesthetized imaging, recent efforts have been made to conduct rodent imaging studies in awake animals, habituated to the restraint systems used in these instances. As of now, only one such system is commercially available for mouse scanning (Animal Imaging Research, Boston, MA, USA) integrating the radiofrequency coil electronics with the restraining element, an approach which, although effective in reducing head motion during awake imaging, has some limitations. In the current report, we present a novel mouse restraining system that addresses some of these limitations. RESULTS/COMPARISON TO OTHER METHODS The effectiveness of the restraining system was evaluated in terms of three-dimensional linear head movement across two consecutive functional MRI scans (total 20min) in 33 awake mice. Head movement was minimal, recorded in roughly 12% of the time-series. Respiration rate during the acclimation procedure dropped while the bolus count remained unchanged. Body movement during functional acquisitions did not have a significant effect on magnetic field (B0) homogeneity. CONCLUSION/NOVELTY Compared to the commercially available system, the benefit of the current design is two-fold: 1) it is compatible with a range of commercially-available coils, and 2) it allows for the pairing of neuroimaging with other established techniques involving intracranial cannulation (i.e. microinfusion and optogenetics).
Collapse
Affiliation(s)
- Dan Madularu
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Axel P Mathieu
- Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Chathura Kumaragamage
- Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Lauren M Reynolds
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jamie Near
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cecilia Flores
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - M Natasha Rajah
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychology, Faculty of Arts, McGill University, Montreal, QC, Canada
| |
Collapse
|