1
|
Okoro FO, Markus V. Artificial sweeteners and Type 2 Diabetes Mellitus: A review of current developments and future research directions. J Diabetes Complications 2025; 39:108954. [PMID: 39854925 DOI: 10.1016/j.jdiacomp.2025.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While artificial sweeteners are Generally Regarded as Safe (GRAS), the scientific community remains divided on their safety status. The previous assumption that artificial sweeteners are inert within the body is no longer valid. Artificial sweeteners, known for their high intense sweetness and low or zero calories, are extensively used today in food and beverage products as sugar substitutes and are sometimes recommended for weight management and Type 2 Diabetes Mellitus (T2DM) patients. The general omission of information about the concentration of artificial sweeteners on market product labels makes it challenging to determine the amounts of artificial sweeteners consumed by people. Despite regulatory authorization for their usage, such as from the United States Food and Drug Administration (FDA), concerns remain about their potential association with metabolic diseases, such as T2DM, which the artificial sweeteners were supposed to reduce. This review discusses the relationship between artificial sweetener consumption and the risk of developing T2DM. With the increasing number of recent scientific studies adding to the debate on this subject matter, we assessed recent literature and up-to-date evidence. Importantly, we highlight future research directions toward furthering knowledge in this field of study.
Collapse
Affiliation(s)
- Francisca Obianuju Okoro
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey
| | - Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey.
| |
Collapse
|
2
|
Herzog H, Zhang L, Fontana L, Neely GG. Impact of non-sugar sweeteners on metabolism beyond sweet taste perception. Trends Endocrinol Metab 2024:S1043-2760(24)00276-5. [PMID: 39551640 DOI: 10.1016/j.tem.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.
Collapse
Affiliation(s)
- Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia.
| | - Lei Zhang
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Luigi Fontana
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Dr John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
Yoshida R, Ninomiya Y. Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs. Int J Mol Sci 2024; 25:7398. [PMID: 39000505 PMCID: PMC11242429 DOI: 10.3390/ijms25137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Zhu S, Li J, Li Z, Wang Z, Wei Q, Shi F. Effects of non-nutritive sweeteners on growth and intestinal health by regulating hypothalamic RNA profile and ileum microbiota in guinea pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4342-4353. [PMID: 38328855 DOI: 10.1002/jsfa.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are commonly used in sweetened foods and beverages; however their role in metabolic regulation is still not clear. In this experiment, we used guinea pigs as an animal model to study the effect of NNS on body growth and intestinal health by modifying gut microbiota and hypothalamus-related proteins. RESULTS For a 28-day feeding experiment a total of 40 guinea pigs were randomly divided into four groups, one control (CN) group and three treatments, in which three NNS were added to the diet: rebaudioside A (RA, 330 mg kg-1), sodium saccharin (SS, 800 mg kg-1), and sucralose (TGS, 167 mg kg-1), respectively. The TGS group exhibited significantly reduced food consumption in comparison with the CN group (P < 0.05) whereas the RA group showed increased food consumption in comparison with the CN group (P < 0.05). Notably, Taste receptor type 1 subunit 2 (T1R2) expression in the hypothalamus was significantly higher in the RA group than in the CN group (P < 0.05). The mRNA expressions of appetite-stimulated genes arouti-related neuropeptide (AGRP), neuropeptide Y (NPY), and thyroid stimulating hormone (TSHB) were significantly higher than those in the CN group (P < 0.05) but mRNA expressions of appetite-suppressed genes tryptophan hydroxylase 2(THP2) were significantly lower in the TGS group (P < 0.05). Furthermore, NNS in the guinea pig diets (RA, SS, TGS) significantly increased the relative abundance of Muribaculaceae but decreased the relative abundance of Clostridia_vadin BB60 in comparison with the CN group (P < 0.05). We also found that dietary supplementation with RA also significantly altered the relative abundance of Lactobacillus. CONCLUSION Our finding confirmed that dietary supplementation with RA and TGS affected body growth and intestinal health by modulating hypothalamic RNA profiles and ileum microbiota, suggesting that NNS should be included in guinea-pig feeding. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanli Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Junrong Li
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Ziqing Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Pietsch C, Konrad J, Wernicke von Siebenthal E, Pawlak P. Multiple faces of stress in the zebrafish ( Danio rerio) brain. Front Physiol 2024; 15:1373234. [PMID: 38711953 PMCID: PMC11070943 DOI: 10.3389/fphys.2024.1373234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
The changing expressions of certain genes as a consequence of exposure to stressors has not been studied in detail in the fish brain. Therefore, a stress trial with zebrafish was conducted, aiming at identifying relevant gene regulation pathways in different regions of the brain. As acute stressors within this trial, feed rewarding, feed restriction, and air exposure have been used. The gene expression data from the experimental fish brains have been analyzed by means of principal component analyses (PCAs), whereby the individual genes have been compiled according to the regulation pathways in the brain. The results did not indicate a mutual response across the treatment and gender groups. To evaluate whether a similar sample structure belonging to a large sample size would have allowed the classification of the gene expression patterns according to the treatments, the data have been bootstrapped and used for building random forest models. These revealed a high accuracy of the classifications, but different genes in the female and male zebrafish were found to have contributed to the classification algorithms the most. These analyses showed that less than eight genes are, in most cases, sufficient for an accurate classification. Moreover, mainly genes belonging to the stress axis, to the isotocin regulation pathways, or to the serotonergic pathways had the strongest influence on the outcome of the classification models.
Collapse
Affiliation(s)
- Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Jonathan Konrad
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Elena Wernicke von Siebenthal
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Paulina Pawlak
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Aguayo-Guerrero JA, Méndez-García LA, Solleiro-Villavicencio H, Viurcos-Sanabria R, Escobedo G. Sucralose: From Sweet Success to Metabolic Controversies-Unraveling the Global Health Implications of a Pervasive Non-Caloric Artificial Sweetener. Life (Basel) 2024; 14:323. [PMID: 38541649 PMCID: PMC10971371 DOI: 10.3390/life14030323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 01/04/2025] Open
Abstract
Sucralose is a food additive initially used to mitigate glycemic peaks and calorie intake in patients with diabetes and obesity. Although sucralose has been considered safe for human consumption, the World Health Organization (WHO) issued a global alert in 2023 concerning the potential health implications of this artificial sweetener. This review aims to comprehensively explore the effects of sucralose intake on human health by understanding sucralose absorption, metabolism, and excretion. We also outline the role of the sweet taste 1 receptor 3 (T1R3) in mediating sucralose-dependent signaling pathways that regulate satiety, incretin release, and insulin response. Finally, we discuss the impact of sucralose on microbiome dysbiosis, inflammatory response origin, liver damage, and toxicity. Gaining a deeper understanding of the manifold effects of sucralose on human physiology will help promote further studies to ensure its consumption is deemed safe for a broader population, including children, adolescents, and pregnant women.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| | | | - Rebeca Viurcos-Sanabria
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (J.A.A.-G.)
| |
Collapse
|
7
|
Maaroufi H. Novel gurmarin-like peptides from Gymnema sylvestre and their interactions with the sweet taste receptor T1R2/T1R3. Chem Senses 2024; 49:bjae018. [PMID: 38695158 PMCID: PMC11103048 DOI: 10.1093/chemse/bjae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024] Open
Abstract
Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.
Collapse
Affiliation(s)
- Halim Maaroufi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Chhabra KH, Bathina S, Faniyan TS, Samuel DJ, Raza MU, de Souza Cordeiro LM, Viana Di Prisco G, Atwood BK, Robles J, Bainbridge L, Davis A. ADGRL1 is a glucose receptor involved in mediating energy and glucose homeostasis. Diabetologia 2024; 67:170-189. [PMID: 37712955 PMCID: PMC10709246 DOI: 10.1007/s00125-023-06010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
AIMS/HYPOTHESIS The brain is a major consumer of glucose as an energy source and regulates systemic glucose as well as energy balance. Although glucose transporters such as GLUT2 and sodium-glucose cotransporter 2 (SGLT2) are known to regulate glucose homeostasis and metabolism, the identity of a receptor that binds glucose to activate glucose signalling pathways in the brain is unknown. In this study, we aimed to discover a glucose receptor in the mouse hypothalamus. METHODS Here we used a high molecular mass glucose-biotin polymer to enrich glucose-bound mouse hypothalamic neurons through cell-based affinity chromatography. We then subjected the enriched neurons to proteomic analyses and identified adhesion G-protein coupled receptor 1 (ADGRL1) as a top candidate for a glucose receptor. We validated glucose-ADGRL1 interactions using CHO cells stably expressing human ADGRL1 and ligand-receptor binding assays. We generated and determined the phenotype of global Adgrl1-knockout mice and hypothalamus-specific Adgrl1-deficient mice. We measured the variables related to glucose and energy homeostasis in these mice. We also generated an Adgrl1Cre mouse model to investigate the role of ADGRL1 in sensing glucose using electrophysiology. RESULTS Adgrl1 is highly expressed in the ventromedial nucleus of the hypothalamus (VMH) in mice. Lack of Adgrl1 in the VMH in mice caused fasting hyperinsulinaemia, enhanced glucose-stimulated insulin secretion and insulin resistance. In addition, the Adgrl1-deficient mice had impaired feeding responses to glucose and fasting coupled with abnormal glucose sensing and decreased physical activity before development of obesity and hyperglycaemia. In female mice, ovariectomy was necessary to reveal the contribution of ADGRL1 to energy and glucose homeostasis. CONCLUSIONS/INTERPRETATION Altogether, our findings demonstrate that ADGRL1 binds glucose and is involved in energy as well as glucose homeostasis in a sex-dependent manner. Targeting ADGRL1 may introduce a new class of drugs for the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Siresha Bathina
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tumininu S Faniyan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Dennis J Samuel
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Muhammad Ummear Raza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Gonzalo Viana Di Prisco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Robles
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lauren Bainbridge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Autumn Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
9
|
Posta E, Fekete I, Gyarmati E, Stündl L, Zold E, Barta Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life (Basel) 2023; 14:10. [PMID: 38276259 PMCID: PMC10817473 DOI: 10.3390/life14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The consumption of artificial and low-calorie sweeteners (ASs, LCSs) is an important component of the Western diet. ASs play a role in the pathogenesis of metabolic syndrome, dysbiosis, inflammatory bowel diseases (IBDs), and various inflammatory conditions. Intestinal nutrient-sensing receptors act as a crosstalk between dietary components, the gut microbiota, and the regulation of immune, endocrinological, and neurological responses. This narrative review aimed to summarize the possible effects of ASs and LCSs on intestinal nutrient-sensing receptors and their related functions. Based on the findings of various studies, long-term AS consumption has effects on the gut microbiota and intestinal nutrient-sensing receptors in modulating incretin hormones, antimicrobial peptides, and cytokine secretion. These effects contribute to the regulation of glucose metabolism, ion transport, gut permeability, and inflammation and modulate the gut-brain, and gut-kidney axes. Based on the conflicting findings of several in vitro, in vivo, and randomized and controlled studies, artificial sweeteners may have a role in the pathogenesis of IBDs, functional bowel diseases, metabolic syndrome, and cancers via the modulation of nutrient-sensing receptors. Further studies are needed to explore the exact mechanisms underlying their effects to decide the risk/benefit ratio of sugar intake reduction via AS and LCS consumption.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Gyarmati
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
- Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond Str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| |
Collapse
|
10
|
Zhang Y, Chen L, Gao J, Cheng Y, Luo F, Bai X, Ding H. Nutritive/non-nutritive sweeteners and high fat diet contribute to dysregulation of sweet taste receptors and metabolic derangements in oral, intestinal and central nervous tissues. Eur J Nutr 2023; 62:3149-3159. [PMID: 37537344 DOI: 10.1007/s00394-023-03187-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/31/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Overconsumption of non-nutritive sweeteners is associated with obesity, whereas the underlying mechanisms remain controversial. This study aimed to investigate the effects of long-term consumption of nutritive or non-nutritive sweeteners with or without high fat diet on sweet taste receptor expression in nutrient-sensing tissues and energy regulation dependent on sweet-sensing. METHODS 50 Male Sprague-Dawley rats (140-160 g) were assigned to 10 groups (n = 5/group). All received fructose at 2.5% or 10%, sucralose at 0.01% or 0.015% or water with a normal chow diet or high fat diet for 12 weeks. Food and drink intake were monitored daily. Oral glucose tolerance test and intraperitoneal glucose tolerance test were performed at week 10 and 11 respectively. Serum was obtained for measurement of biochemical parameters. Tongue, duodenum, jejunum, ileum, colon and hypothalamus were rapidly removed to assess gene expression. RESULTS Long-term consumption of sweeteners impaired glucose tolerance, increased calorie intake and body weight. A significant upregulation of sweet taste receptor expression was observed in all the four intestinal segments in groups fed 0.01% sucralose or 0.015% sucralose, most strikingly in the ileum, accompanied by elevated serum glucagon-like peptide-1 levels and up-regulated expression of sodium-dependent glucose cotransporter 1 and glucose transporter 2. A significant down-regulation in the tongue and hypothalamus was observed in groups fed 10% fructose or 0.015% sucralose, with alterations in hypothalamic appetite signals. The presence of high fat diet differentially modulates sweet taste perception in nutrient-sensing tissues. CONCLUSIONS Long-term consumption of whether nutritive sweeteners or non-nutritive sweeteners combined with high fat diet contribute to dysregulation of sweet taste receptor expression in oral, intestinal and central nervous tissues.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Jiefang Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Fei Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
11
|
Yunker AG, Chakravartti SP, Kullmann S, Veit R, Angelo B, Jann K, Monterosso JR, Page KA. Sweet taste preference is associated with greater hypothalamic response to glucose and longitudinal weight gain. Physiol Behav 2023; 270:114292. [PMID: 37442357 DOI: 10.1016/j.physbeh.2023.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The hypothalamus has an abundant expression of sweet taste receptors that play a role in glucose sensing and energy homeostasis. Evidence suggests that liking "sweets" can be associated with weight gain, but the relationship between sweet taste preference and hypothalamic regulation of appetite is unknown. This study tested the hypothesis that sweet taste preference is associated with increased hypothalamic activation in response to glucose (a purported neural marker for weight gain risk) and greater longitudinal increases in body mass index (BMI). Fifty-four adults aged 18-35 years with a mean (± SD) BMI of 27.99 ± 5.32 kg/m2 completed the study. Height and weight were measured at baseline and 6-12 months later in a subset of 36 participants. Sweet taste preference was assessed via the Monell 2-series, forced-choice tracking procedure. Arterial spin labeling magnetic resonance imaging was performed before and after oral glucose ingestion to determine hypothalamic blood flow response to glucose. Linear models were used to examine relationships between sweet taste preference and the hypothalamic response to glucose and longitudinal changes in BMI, adjusting for age, sex, and baseline BMI. Sweet taste preference was positively associated with glucose-linked hypothalamic blood flow (beta = 0.017, p = 0.043), adjusted for age, sex and BMI. We also observed a positive association between sweet taste preference and longitudinal change in BMI (beta = 0.088, p = 0.015), adjusted for age, sex and baseline BMI. These findings suggest that heightened sweet taste preference is associated with glucose-linked hypothalamic activation and may be linked to increased susceptibility for weight gain.
Collapse
Affiliation(s)
- Alexandra G Yunker
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sandhya P Chakravartti
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles CA 90033, USA; Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Brendan Angelo
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles CA 90033, USA; Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kay Jann
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - John R Monterosso
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kathleen A Page
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles CA 90033, USA; Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
12
|
Aguayo-Guerrero JA, León-Cabrera S, Escobedo G. Molecular mechanisms involved in fetal programming and disease origin in adulthood. J Pediatr Endocrinol Metab 2023; 0:jpem-2022-0491. [PMID: 37235772 DOI: 10.1515/jpem-2022-0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Fetal programming occurs during the gestational age when exposure to environmental stimuli can cause long-term changes in the fetus, predisposing it to develop chronic non-communicable diseases (CNCD) in adulthood. Herein, we summarized the role of low-calorie or high-fat diets during pregnancy as fetal programming agents that induce intrauterine growth restriction (IUGR), amplified de novo lipogenesis, and increased amino acid transport to the placenta, which favor the CNCD onset in the offspring. We also outlined how maternal obesity and gestational diabetes act as fetal programming stimuli by reducing iron absorption and oxygen transport to the fetus, stimulating inflammatory pathways that boost neurological disorders and CNCD in the progeny. Moreover, we reviewed the mechanisms through which fetal hypoxia elevates the offspring's risk of developing hypertension and chronic kidney disease in adult life by unbalancing the renin-angiotensin system and promoting kidney cell apoptosis. Finally, we examined how inadequate vitamin B12 and folic acid consumption during pregnancy programs the fetus to greater adiposity, insulin resistance, and glucose intolerance in adulthood. A better understanding of the fetal programming mechanisms may help us reduce the onset of insulin resistance, glucose intolerance, dyslipidemia, obesity, hypertension, diabetes mellitus, and other CNCD in the offspring during adulthood.
Collapse
Affiliation(s)
- José Alfredo Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Sonia León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
13
|
Chometton S, Tsan L, Hayes AMR, Kanoski SE, Schier LA. Early-life influences of low-calorie sweetener consumption on sugar taste. Physiol Behav 2023; 264:114133. [PMID: 36801464 PMCID: PMC11062773 DOI: 10.1016/j.physbeh.2023.114133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Children and adolescents are the highest consumers of added sugars, particularly from sugar-sweetened beverages (SSB). Regular consumption of SSB early in life induces a variety of negative consequences on health that can last into adulthood. Low-calorie sweeteners (LCS) are increasingly used as an alternative to added sugars because they provide a sweet sensation without adding calories to the diet. However, the long-term effects of early-life consumption of LCS are not well understood. Considering LCS engage at least one of the same taste receptors as sugars and potentially modulate cellular mechanisms of glucose transport and metabolism, it is especially important to understand how early-life LCS consumption impacts intake of and regulatory responses to caloric sugars. In our recent study, we found that habitual intake of LCS during the juvenile-adolescence period significantly changed how rats responded to sugar later in life. Here, we review evidence that LCS and sugars are sensed via common and distinct gustatory pathways, and then discuss the implications this has for shaping sugar-associated appetitive, consummatory, and physiological responses. Ultimately, the review highlights the diverse gaps in knowledge that will be necessary to fill to understand the consequences of regular LCS consumption during important phases of development.
Collapse
Affiliation(s)
- Sandrine Chometton
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Anna M R Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lindsey A Schier
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Orku SE, Suyen G, Bas M. The effect of regular consumption of four low- or no-calorie sweeteners on glycemic response in healthy women: A randomized controlled trial. Nutrition 2023; 106:111885. [PMID: 36470113 DOI: 10.1016/j.nut.2022.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to determine the effects of regular exposure to certain low- or no-calorie sweeteners (LNCS) on glucose tolerance and glucagon-like peptide 1 (GLP-1) release in healthy individuals. METHODS It was designed as a randomized, single-blinded, controlled study. Healthy and normoglycemic adults who did not have regular consumption of LNCS were recruited. Participants underwent a 75-g oral glucose tolerance test (OGTT) at baseline and were randomly assigned to consume 330 mL water sweetened with saccharine, sucralose, or aspartame + acesulfame-K (Asp+Ace-K), or plain water for the control group, daily for 4 wk. Fasting plasma glucose, insulin, GLP-1, and glycated hemoglobin A1c (HbA1c) levels and 1-h, 2-h, and 3-h plasma glucose and insulin levels during OGTT were obtained at baseline. The change in insulin sensitivity was assessed by both the Homeostatic Model Assessment Insulin Resistance (HOMA-IR) Index and the Matsuda Index. Anthropometric measurements and dietary intakes were determined at baseline. Baseline measurements were repeated at week 4. RESULTS Of the participants enrolled in the study, 42 (age, 21.24 ± 2.26 y; body mass index, 20.65 ± 2.88 kg/m2) completed the 4-wk intervention period. There were no differences for glucose, insulin, GLP-1, or HbA1c levels or HOMA-IR scores at baseline or at week 4 when compared with the control group. The area under the curve of mean glucose and insulin values during OGTT were also found to be similar between groups at baseline and week 4. There were also no effects of LNCS intake on body weight, body composition, and waist circumference. CONCLUSIONS These results suggest that regular consumption of LNCS-sweetened water similar to doses consumed in daily life over 4 wk had no significant effect on glycemic response, insulin sensitivity, GLP-1 release, and body weight in healthy individuals. This trial was registered at www. CLINICALTRIALS gov as NCT04904133.
Collapse
Affiliation(s)
- Saziye E Orku
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Murat Bas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
15
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
16
|
Ki SY, Jeong YT. Taste Receptors beyond Taste Buds. Int J Mol Sci 2022; 23:ijms23179677. [PMID: 36077074 PMCID: PMC9455917 DOI: 10.3390/ijms23179677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Taste receptors are responsible for detecting their ligands not only in taste receptor cells (TRCs) but also in non-gustatory organs. For several decades, many research groups have accumulated evidence for such “ectopic” expression of taste receptors. More recently, some of the physiologic functions (apart from taste) of these ectopic taste receptors have been identified. Here, we summarize our current understanding of these ectopic taste receptors across multiple organs. With a particular focus on the specialized epithelial cells called tuft cells, which are now considered siblings of type II TRCs, we divide the ectopic expression of taste receptors into two categories: taste receptors in TRC-like cells outside taste buds and taste receptors with surprising ectopic expression in completely different cell types.
Collapse
Affiliation(s)
- Su Young Ki
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1295
| |
Collapse
|
17
|
d-Allulose Inhibits Ghrelin-Responsive, Glucose-Sensitive and Neuropeptide Y Neurons in the Arcuate Nucleus and Central Injection Suppresses Appetite-Associated Food Intake in Mice. Nutrients 2022; 14:nu14153117. [PMID: 35956293 PMCID: PMC9370451 DOI: 10.3390/nu14153117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
d-allulose, a rare sugar, has sweetness with few calories. d-allulose regulates feeding and glycemia, and ameliorates hyperphagia, obesity and diabetes. All these functions involve the central nervous system. However, central mechanisms underlying these effects of d-allulose remain unknown. We recently reported that d-allulose activates the anorexigenic neurons in the hypothalamic arcuate nucleus (ARC), the neurons that respond to glucagon-like peptide-1 and that express proopiomelanocortin. However, its action on the orexigenic neurons remains unknown. This study investigated the effects of d-allulose on the ARC neurons implicated in hunger, by measuring cytosolic Ca2+ concentration ([Ca2+]i) in single neurons. d-allulose depressed the increases in [Ca2+]i induced by ghrelin and by low glucose in ARC neurons and inhibited spontaneous oscillatory [Ca2+]i increases in neuropeptide Y (NPY) neurons. d-allulose inhibited 10 of 35 (28%) ghrelin-responsive, 18 of 60 (30%) glucose-sensitive and 3 of 8 (37.5%) NPY neurons in ARC. Intracerebroventricular injection of d-allulose inhibited food intake at 20:00 and 22:00, the early dark phase when hunger is promoted. These results indicate that d-allulose suppresses hunger-associated feeding and inhibits hunger-promoting neurons in ARC. These central actions of d-allulose represent the potential of d-allulose to inhibit the hyperphagia with excessive appetite, thereby counteracting obesity and diabetes.
Collapse
|
18
|
Jang JH, Kim HK, Seo DW, Ki SY, Park S, Choi SH, Kim DH, Moon SJ, Jeong YT. Whole-Brain Mapping of the Expression Pattern of T1R2, a Subunit Specific to the Sweet Taste Receptor. Front Neuroanat 2021; 15:751839. [PMID: 34776881 PMCID: PMC8581048 DOI: 10.3389/fnana.2021.751839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Chemosensory receptors are expressed primarily in sensory organs, but their expression elsewhere can permit ligand detection in other contexts that contribute to survival. The ability of sweet taste receptors to detect natural sugars, sugar alcohols, and artificial sweeteners suggests sweet taste receptors are involved in metabolic regulation in both peripheral organs and in the central nervous system. Our limited knowledge of sweet taste receptor expression in the brain, however, has made it difficult to assess their contribution to metabolic regulation. We, therefore, decided to profile the expression pattern of T1R2, a subunit specific to the sweet taste receptor complex, at the whole-brain level. Using T1r2-Cre knock-in mice, we visualized the overall distribution of Cre-labeled cells in the brain. T1r2-Cre is expressed not only in various populations of neurons, but also in glial populations in the circumventricular organs and in vascular structures in the cortex, thalamus, and striatum. Using immunohistochemistry, we found that T1r2 is expressed in hypothalamic neurons expressing neuropeptide Y and proopiomelanocortin in arcuate nucleus. It is also co-expressed with a canonical taste signaling molecule in perivascular cells of the median eminence. Our findings indicate that sweet taste receptors have unidentified functions in the brain and suggest that they may be a novel therapeutic target in the central nervous system.
Collapse
Affiliation(s)
- Jea Hwa Jang
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Ha Kyeong Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Dong Woo Seo
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Su Young Ki
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Soonhong Park
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Dong-Hoon Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Wada E, Kobayashi M, Kohno D, Kikuchi O, Suga T, Matsui S, Yokota-Hashimoto H, Honzawa N, Ikeuchi Y, Tsuneoka H, Hirano T, Obinata H, Sasaki T, Kitamura T. Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice. J Nutr Biochem 2021; 97:108811. [PMID: 34197915 DOI: 10.1016/j.jnutbio.2021.108811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/01/2023]
Abstract
Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.
Collapse
Affiliation(s)
- Eri Wada
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Osamu Kikuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takayoshi Suga
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Sho Matsui
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan; Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromi Yokota-Hashimoto
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Norikiyo Honzawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yuichi Ikeuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Haruka Tsuneoka
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Touko Hirano
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Sasaki
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan; Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
20
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
21
|
Impacts of Acute Sucralose and Glucose on Brain Activity during Food Decisions in Humans. Nutrients 2020; 12:nu12113283. [PMID: 33120899 PMCID: PMC7692777 DOI: 10.3390/nu12113283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
It is not known how acute sucralose and glucose alter signaling within the brain when individuals make decisions about available food. Here we examine this using Food Bid Task in which participants bid on visually depicted food items, while simultaneously undergoing functional Magnetic Resonance Imaging. Twenty-eight participants completed three sessions after overnight fast, distinguished only by the consumption at the start of the session of 300 mL cherry flavored water with either 75 g glucose, 0.24 g sucralose, or no other ingredient. There was a marginally significant (p = 0.05) effect of condition on bids, with 13.0% lower bids after glucose and 16.6% lower bids after sucralose (both relative to water). Across conditions, greater activity within regions a priori linked to food cue reactivity predicted higher bids, as did greater activity within the medial orbitofrontal cortex and bilateral frontal pole. There was a significant attenuation within the a priori region of interest (ROI) after sucralose compared to water (p < 0.05). Activity after glucose did not differ significantly from either of the other conditions in the ROI, but an attenuation in signal was observed in the parietal cortex, relative to the water condition. Taken together, these data suggest attenuation of central nervous system (CNS) signaling associated with food valuation after glucose and sucralose.
Collapse
|
22
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
23
|
Goswami C, Dezaki K, Wang L, Inui A, Seino Y, Yada T. Ninjin'yoeito Targets Distinct Ca 2+ Channels to Activate Ghrelin-Responsive vs. Unresponsive NPY Neurons in the Arcuate Nucleus. Front Nutr 2020; 7:104. [PMID: 32766273 PMCID: PMC7379896 DOI: 10.3389/fnut.2020.00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Appetite loss or anorexia substantially deteriorates quality of life in various diseases, and stand upstream of frailty. Neuropeptide Y (NPY) in the hypothalamic arcuate nucleus (ARC) and ghrelin released from stomach are potent inducers of appetite. We previously reported that Ninjin'yoeito, a Japanese kampo medicine comprising twelve herbs, restores food intake, and body weight in cisplatin-treated anorectic mice. Furthermore, Ninjin'yoeito increased cytosolic Ca2+ concentration ([Ca2+]i) in not only ghrelin-responsive but ghrelin-unresponsive NPY neurons in ARC. The cellular lineage/differentiation of ghrelin-unresponsive neuron is less defined but might alter along with aging and diet. This study examined the occupancy of ghrelin-unresponsive neurons among ARC NPY neurons in adult mice fed normal chow, and explored the mechanisms underlying Ninjin'yoeito-induced [Ca2+]i increases in ghrelin-unresponsive vs. ghrelin-responsive NPY neurons. Single ARC neurons were subjected to [Ca2+]i measurement and subsequent immunostaining for NPY. Ghrelin failed to increase [Ca2+]i in 42% of ARC NPY neurons. Ninjin'yoeito (10 μg/ml)-induced increases in [Ca2+]i were abolished in Ca2+ free condition in ghrelin-responsive and ghrelin-unresponsive ARC NPY neurons. Ninjin'yoeito-induced [Ca2+]i increases were inhibited by N-type Ca2+ channel blocker ω-conotoxin in the majority (17 of 20), while by L-type Ca2+ channel blocker nitrendipine in the minority (2 of 23), of ghrelin-responsive neurons. In contrast, Ninjin'yoeito-induced [Ca2+]i increases were inhibited by nitrendipine in the majority (14 of 17), while by ω-conotoxin in the minority (8 of 24), of ghrelin-unresponsive neurons. These results indicate that ghrelin-unresponsive neurons occur substantially among NPY neurons of ARC in adult mice fed normal chow. Ninjin'yoeito preferentially target N-type and L-type Ca2+ channels in the majority of ghrelin-responsive and ghrelin-unresponsive neurons, respectively, to increase [Ca2+]i. We suggest ARC N- and L-type Ca2+ channels as potential targets for activating, respectively, ghrelin-responsive, and unresponsive NPY neurons to treat anorexia.
Collapse
Affiliation(s)
- Chayon Goswami
- Division of Integrative Physiology, Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan.,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan.,Faculty of Pharmacy, Iryo Sosei University, Iwaki, Japan
| | - Lei Wang
- Division of Integrative Physiology, Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical & Dental Sciences, Kagoshima, Japan
| | - Yutaka Seino
- Division of Integrative Physiology, Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Center for Diabetes Research, Division of Diabetes and Endocrinology, Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan.,Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical & Dental Sciences, Kagoshima, Japan
| |
Collapse
|
24
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
25
|
Sigoillot M, Brockhoff A, Neiers F, Poirier N, Belloir C, Legrand P, Charron C, Roblin P, Meyerhof W, Briand L. The Crystal Structure of Gurmarin, a Sweet Taste-Suppressing Protein: Identification of the Amino Acid Residues Essential for Inhibition. Chem Senses 2019; 43:635-643. [PMID: 30137256 DOI: 10.1093/chemse/bjy054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gurmarin is a highly specific sweet taste-suppressing protein in rodents that is isolated from the Indian plant Gymnema sylvestre. Gurmarin consists of 35 amino acid residues containing 3 intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.45 Å resolution and compare it with previously reported nuclear magnetic resonance solution structures. The atomic structure at this resolution allowed us to identify a very flexible region consisting of hydrophobic residues. Some of these amino acid residues had been identified as a putative binding site for the rat sweet taste receptor in a previous study. By combining alanine-scanning mutagenesis of the gurmarin molecule and a functional cell-based receptor assay, we confirmed that some single point mutations in these positions drastically affect sweet taste receptor inhibition by gurmarin.
Collapse
Affiliation(s)
- Maud Sigoillot
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Fabrice Neiers
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Nicolas Poirier
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Christine Belloir
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| | - Pierre Legrand
- SOLEIL Synchrotron, L'Orme de Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy Cedex, France
| | - Pierre Roblin
- SOLEIL Synchrotron, L'Orme de Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Loïc Briand
- INRA, CNRS, Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
26
|
Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019; 40:768-788. [PMID: 30689785 PMCID: PMC6505456 DOI: 10.1210/er.2018-00226] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Glucose homeostasis requires an organism to rapidly respond to changes in plasma glucose concentrations. Iatrogenic hypoglycemia as a result of treatment with insulin or sulfonylureas is the most common cause of hypoglycemia in humans and is generally only seen in patients with diabetes who take these medications. The first response to a fall in glucose is the detection of impending hypoglycemia by hypoglycemia-detecting sensors, including glucose-sensing neurons in the hypothalamus and other regions. This detection is then linked to a series of neural and hormonal responses that serve to prevent the fall in blood glucose and restore euglycemia. In this review, we discuss the current state of knowledge about central glucose sensing and how detection of a fall in glucose leads to the stimulation of counterregulatory hormone and behavior responses. We also review how diabetes and recurrent hypoglycemia impact glucose sensing and counterregulation, leading to development of impaired awareness of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Moheet
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth R Seaquist
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Rogers RC, Hermann GE. Hindbrain astrocytes and glucose counter-regulation. Physiol Behav 2019; 204:140-150. [PMID: 30797812 PMCID: PMC7145321 DOI: 10.1016/j.physbeh.2019.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Hindbrain astrocytes are emerging as critical components in the regulation of homeostatic functions by either modulating synaptic activity or serving as primary detectors of physiological parameters. Recent studies have suggested that the glucose counter-regulation response (CRR), a critical defense against hypoglycemic emergencies, is dependent on glucoprivation-sensitive astrocytes in the hindbrain. This subpopulation of astrocytes produces a robust calcium signal in response to glucopenic stimuli. Both ex vivo and in vivo evidence suggest that low-glucose sensitive astrocytes utilize purinergic gliotransmission to activate catecholamine neurons in the hindbrain that are critical to the generation of the integrated CRR. Lastly, reports in the clinical literature suggest that an uncontrolled activation of CRR may as part of the pathology of severe traumatic injury. Work in our laboratory also suggests that this pathological hyperglycemia resulting from traumatic injury may be caused by the action of thrombin (generated by tissue trauma or bleeding) on hindbrain astrocytes. Similar to their glucopenia-sensitive neighbors, these hindbrain astrocytes may trigger hyperglycemic responses by their interactions with catecholaminergic neurons.
Collapse
Affiliation(s)
- Richard C Rogers
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - Gerlinda E Hermann
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
28
|
Sweet taste receptors as a tool for an amplifying pathway of glucose-stimulated insulin secretion in pancreatic β cells. Pflugers Arch 2019; 471:655-657. [DOI: 10.1007/s00424-019-02271-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022]
|
29
|
Behrens M, Meyerhof W. A role for taste receptors in (neuro)endocrinology? J Neuroendocrinol 2019; 31:e12691. [PMID: 30712315 DOI: 10.1111/jne.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
The sense of taste is positioned at the forefront when it comes to the interaction of our body with foodborne chemicals. However, the role of our taste system, and in particular its associated taste receptors, is not limited to driving food preferences leading to ingestion or rejection before other organs take over responsibility for nutrient digestion, absorption and metabolic regulation. Taste sensory elements do much more. On the one hand, extra-oral taste receptors from the brain to the gut continue to sense nutrients and noxious substances after ingestion and, on the other hand, the nutritional state feeds back on the taste system. This intricate regulatory network is orchestrated by endocrine factors that are secreted in response to taste receptor signalling and, in turn regulate the taste receptor cells themselves. The present review summarises current knowledge on the endocrine regulation of the taste perceptual system and the release of hunger/satiety regulating factors by gastrointestinal taste receptors. Furthermore, the regulation of blood glucose levels via the activation of pancreatic sweet taste receptors and subsequent insulin secretion, as well as the influence of bitter compounds on thyroid hormone release, is addressed. Finally, the central effects of tastants are discussed briefly.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
30
|
Feng RL, Qian C, Liu LY, Liu QJ, Jin YQ, Li SX, Liu W, Rayner CK, Ma J. Secretion of Gut Hormones and Expression of Sweet Taste Receptors and Glucose Transporters in a Rat Model of Obesity. Obes Facts 2019; 12:190-198. [PMID: 30928977 PMCID: PMC6547286 DOI: 10.1159/000497122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This study was undertaken to compare gut hormone secretion between high-fat-fed and control rats, and to examine the corresponding changes in the expression of sweet taste receptors and glucose transporters in the small intestine and hypothalamus. METHODS Four-week-old male Sprague Dawley rats were fed a standard or high-fat diet for 8 weeks (10 in each group), followed by an oral glucose tolerance test (50% glucose solution, 2 g/kg). Blood was sampled for glucose, insulin, glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY) assays. One week later, small intestinal and hypothalamic tissue were analyzed for sweet taste receptor and glucose transporter expression by real-time PCR. RESULTS After oral glucose, plasma GLP-1 concentrations were higher in high-fat-fed than standard-fat-fed rats (group × time interaction, p < 0.01) with significant differences at t = 15 min (p < 0.01) and 30 min (p < 0.05). Plasma PYY concentrations were lower in high-fat-fed than control rats at t = 0, 15 min (p < 0.05, respectively) and 120 min (p < 0.01). There were no differences in the expression of sweet taste receptors or glucose transporters between high-fat-fed and control rats in the duodenum, ileum, or hypothalamus. CONCLUSIONS Changes in GLP-1 and PYY secretion after a high-fat diet appear unrelated to any changes in the expression of sweet taste receptors or glucose transporters. Impaired PYY secretion with high-fat feeding suggests that PYY analogues may provide a potential therapy in the treatment of obesity.
Collapse
Affiliation(s)
- Ri Lu Feng
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Cheng Qian
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lian Yong Liu
- Department of Endocrinology and Metabolism, Shanghai Punan Hospital, Shanghai, China
| | - Qian Jing Liu
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yun Qiu Jin
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Sheng Xian Li
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Chris K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Jing Ma
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China,
| |
Collapse
|
31
|
Matsui S, Sasaki T, Kohno D, Yaku K, Inutsuka A, Yokota-Hashimoto H, Kikuchi O, Suga T, Kobayashi M, Yamanaka A, Harada A, Nakagawa T, Onaka T, Kitamura T. Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nat Commun 2018; 9:4604. [PMID: 30389922 PMCID: PMC6214990 DOI: 10.1038/s41467-018-07033-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/12/2018] [Indexed: 12/02/2022] Open
Abstract
Diet affects health through ingested calories and macronutrients, and macronutrient balance affects health span. The mechanisms regulating macronutrient-based diet choices are poorly understood. Previous studies had shown that NAD-dependent deacetylase sirtuin-1 (SIRT1) in part influences the health-promoting effects of caloric restriction by boosting fat use in peripheral tissues. Here, we show that neuronal SIRT1 shifts diet choice from sucrose to fat in mice, matching the peripheral metabolic shift. SIRT1-mediated suppression of simple sugar preference requires oxytocin signalling, and SIRT1 in oxytocin neurons drives this effect. The hepatokine FGF21 acts as an endocrine signal to oxytocin neurons, promoting neuronal activation and Oxt transcription and suppressing the simple sugar preference. SIRT1 promotes FGF21 signalling in oxytocin neurons and stimulates Oxt transcription through NRF2. Thus, neuronal SIRT1 contributes to the homeostatic regulation of macronutrient-based diet selection in mice.
Collapse
Affiliation(s)
- Sho Matsui
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Tsutomu Sasaki
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
| | - Daisuke Kohno
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Keisuke Yaku
- Frontier Research Core for Life Science, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Ayumu Inutsuka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furocho, Nagoya, 464-8601, Japan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Osamu Kikuchi
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Takayoshi Suga
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Masaki Kobayashi
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furocho, Nagoya, 464-8601, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Nakagawa
- Frontier Research Core for Life Science, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
32
|
SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol Metab 2018; 19:1-12. [PMID: 30416006 PMCID: PMC6323192 DOI: 10.1016/j.molmet.2018.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives It is controversial whether sodium glucose transporter (SGLT) 2 inhibitors increase glucagon secretion via direct inhibition of SGLT2 in pancreatic α cells. The role of SGLT1 in α cells is also unclear. We aimed to elucidate these points that are important not only for basic research but also for clinical insight. Methods Plasma glucagon levels were assessed in the high-fat, high-sucrose diet (HFHSD) fed C57BL/6J mice treated with dapagliflozin or canagliflozin. RT-PCR, RNA sequence, and immunohistochemistry were conducted to test the expression of SGLT1 and SGLT2 in α cells. We also used αTC1 cells and mouse islets to investigate the molecular mechanism by which SGLT1 modulates glucagon secretion. Results Dapagliflozin, but not canagliflozin, increased plasma glucagon levels in HFHSD fed mice. SGLT1 and glucose transporter 1 (GLUT1), but not SGLT2, were expressed in αTC1 cells, mouse islets and human islets. A glucose clamp study revealed that the plasma glucagon increase associated with dapagliflozin could be explained as a response to acute declines in blood glucose. Canagliflozin suppressed glucagon secretion by inhibiting SGLT1 in α cells; consequently, plasma glucagon did not increase with canagliflozin, even though blood glucose declined. SGLT1 effect on glucagon secretion depended on glucose transport, but not glucose metabolism. Islets from HFHSD and db/db mice displayed higher SGLT1 mRNA levels and lower GLUT1 mRNA levels than the islets from control mice. These expression levels were associated with higher glucagon secretion. Furthermore, SGLT1 inhibitor and siRNA against SGLT1 suppressed glucagon secretion in isolated islets. Conclusions These data suggested that a novel mechanism regulated glucagon secretion through SGLT1 in α cells. This finding possibly explained the distinct effects of dapagliflozin and canagliflozin on plasma glucagon levels in mice. SGLT1, but not SGLT2, is expressed in αTC1 cells, mouse islets and human islets. SGLT2 inhibitor dapagliflozin increases plasma glucagon in diabetic mice. SGLT2/low potency SGLT1 inhibitor canagliflozin does not increase plasma glucagon. Canagliflozin suppresses glucagon secretion by inhibiting SGLT1 in α cells. Higher expression of SGLT1 in islets is associated with higher glucagon secretion.
Collapse
|
33
|
Zhao X, Yan J, Chen K, Song L, Sun B, Wei X. Effects of saccharin supplementation on body weight, sweet receptor mRNA expression and appetite signals regulation in post-weanling rats. Peptides 2018; 107:32-38. [PMID: 30055207 DOI: 10.1016/j.peptides.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/16/2023]
Abstract
Non-nutritive sweeteners have been considered to promote diet healthfulness by delivering a pleasant sweet taste without calories. We investigated the effects of long term supplementation with drinks containing saccharin on body weight and possible mechanisms of the effects in post-weanling rats. Our results showed that saccharin solution intake increased food intake and energy intake in male rats. In males, saccharin solution intake increased TIR3 mRNA expression in the taste buds and ghrelin receptor mRNA expression both in the taste buds and hypothalamus, whereas no effects were observed in females. These results suggest the effects of saccharin solution exposure on food intake and body weight gain may be different in developmental males and females. In males, peripheral sweet taste receptors and both peripheral and central ghrelin receptors may be involved in the effect of saccharin solution intake to promote food intake and weight gain.
Collapse
Affiliation(s)
- Xiaolin Zhao
- Department of Neonatology, Northwest Women's and Children's Hospital, 1616# Yanxiang Road, Xi'an 710061, PR China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# W. Yanta Road, Xi'an 710061, PR China
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# W. Yanta Road, Xi'an 710061, PR China.
| | - Ke Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# W. Yanta Road, Xi'an 710061, PR China
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# W. Yanta Road, Xi'an 710061, PR China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# W. Yanta Road, Xi'an 710061, PR China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# W. Yanta Road, Xi'an 710061, PR China
| |
Collapse
|
34
|
Alvarsson A, Stanley SA. Remote control of glucose-sensing neurons to analyze glucose metabolism. Am J Physiol Endocrinol Metab 2018; 315:E327-E339. [PMID: 29812985 PMCID: PMC6171010 DOI: 10.1152/ajpendo.00469.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
The central nervous system relies on a continual supply of glucose, and must be able to detect glucose levels and regulate peripheral organ functions to ensure that its energy requirements are met. Specialized glucose-sensing neurons, first described half a century ago, use glucose as a signal and modulate their firing rates as glucose levels change. Glucose-excited neurons are activated by increasing glucose concentrations, while glucose-inhibited neurons increase their firing rate as glucose concentrations fall and decrease their firing rate as glucose concentrations rise. Glucose-sensing neurons are present in multiple brain regions and are highly expressed in hypothalamic regions, where they are involved in functions related to glucose homeostasis. However, the roles of glucose-sensing neurons in healthy and disease states remain poorly understood. Technologies that can rapidly and reversibly activate or inhibit defined neural populations provide invaluable tools to investigate how specific neural populations regulate metabolism and other physiological roles. Optogenetics has high temporal and spatial resolutions, requires implants for neural stimulation, and is suitable for modulating local neural populations. Chemogenetics, which requires injection of a synthetic ligand, can target both local and widespread populations. Radio- and magnetogenetics offer rapid neural activation in localized or widespread neural populations without the need for implants or injections. These tools will allow us to better understand glucose-sensing neurons and their metabolism-regulating circuits.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
35
|
Rother KI, Conway EM, Sylvetsky AC. How Non-nutritive Sweeteners Influence Hormones and Health. Trends Endocrinol Metab 2018; 29:455-467. [PMID: 29859661 DOI: 10.1016/j.tem.2018.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/16/2023]
Abstract
Non-nutritive sweeteners (NNSs) elicit a multitude of endocrine effects in vitro, in animal models, and in humans. The best-characterized consequences of NNS exposure are metabolic changes, which may be mediated by activation of sweet taste receptors in oral and extraoral tissues (e.g., intestine, pancreatic β cells, and brain), and alterations of the gut microbiome. These mechanisms are likely synergistic and may differ across species and chemically distinct NNSs. However, the extent to which these hormonal effects are clinically relevant in the context of human consumption is unclear. Further investigation following prolonged exposure is required to better understand the role of NNSs in human health, with careful consideration of genetic, dietary, anthropometric, and other interindividual differences.
Collapse
Affiliation(s)
- Kristina I Rother
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA.
| | - Ellen M Conway
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Allison C Sylvetsky
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA; Department of Exercise and Nutrition Sciences, The George Washington University, 950 New Hampshire Avenue NW, 2nd floor, Washington DC 20052, USA; Sumner M. Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, 3rd floor, Washington DC 20052, USA
| |
Collapse
|
36
|
Szabó I, Hormay E, Csetényi B, Nagy B, Lénárd L, Karádi Z. Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. Neurosci Biobehav Rev 2018; 85:44-53. [DOI: 10.1016/j.neubiorev.2017.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
|
37
|
Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Front Neurosci 2017; 11:716. [PMID: 29311793 PMCID: PMC5742113 DOI: 10.3389/fnins.2017.00716] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/07/2017] [Indexed: 01/14/2023] Open
Abstract
Glucose-sensing neurons are neurons that alter their activity in response to changes in extracellular glucose. These neurons, which are an important mechanism the brain uses to monitor changes in glycaemia, are present in the hypothalamus, where they have been thoroughly investigated. Recently, glucose-sensing neurons have also been identified in brain nuclei which are part of the reward system. However, little is known about the molecular mechanisms by which they function, and their role in the reward system. We therefore aim to provide an overview of molecular mechanisms that have been studied in the hypothalamic glucose-sensing neurons, and investigate which of these transporters, enzymes and channels are present in the reward system. Furthermore, we speculate about the role of glucose-sensing neurons in the reward system.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Joram D Mul
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
38
|
Fioramonti X, Chrétien C, Leloup C, Pénicaud L. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection. Front Physiol 2017; 8:875. [PMID: 29184506 PMCID: PMC5694446 DOI: 10.3389/fphys.2017.00875] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (KATP) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.
Collapse
Affiliation(s)
- Xavier Fioramonti
- NutriNeuro, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France.,Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France.,Stromalab, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Toulouse, France
| |
Collapse
|
39
|
Kohno D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci 2017; 67:459-465. [PMID: 28378265 PMCID: PMC10717116 DOI: 10.1007/s12576-017-0535-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
The hypothalamic feeding center plays an important role in energy homeostasis. The feeding center senses the systemic energy status by detecting hormone and nutrient levels for homeostatic regulation, resulting in the control of food intake, heat production, and glucose production and uptake. The concentration of glucose is sensed by two types of glucose-sensing neurons in the feeding center: glucose-excited neurons and glucose-inhibited neurons. Previous studies have mainly focused on glucose metabolism as the mechanism underlying glucose sensing. Recent studies have indicated that receptor-mediated pathways also play a role in glucose sensing. This review describes sweet taste receptors in the hypothalamus and explores the role of sweet taste receptors in energy homeostasis.
Collapse
Affiliation(s)
- Daisuke Kohno
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan.
| |
Collapse
|
40
|
Lee AA, Owyang C. Sugars, Sweet Taste Receptors, and Brain Responses. Nutrients 2017; 9:nu9070653. [PMID: 28672790 PMCID: PMC5537773 DOI: 10.3390/nu9070653] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Allen A Lee
- 1500 East Medical Center Drive, Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109-5362, USA.
| | - Chung Owyang
- 3912 Taubman Center, SPC 5362, Ann Arbor, MI 48109-5362, USA.
| |
Collapse
|