1
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Franczak Ł, Podwalski P, Wysocki P, Dawidowski B, Jędrzejewski A, Jabłoński M, Samochowiec J. Impulsivity in ADHD and Borderline Personality Disorder: A Systematic Review of Gray and White Matter Variations. J Clin Med 2024; 13:6906. [PMID: 39598050 PMCID: PMC11594719 DOI: 10.3390/jcm13226906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction: Impulsivity is one of the overlapping symptoms common to borderline personality disorder (BPD) and attention deficit hyperactivity disorder (ADHD), but the neurobiological basis of these disorders remains uncertain. This systematic review aims to identify abnormalities in the gray and white matter associated with impulsivity in BPD and ADHD. Methods: We conducted a systematic search of the PubMed, Embase, and SCOPUS databases, adhering to PRISMA guidelines. Studies that investigated gray and white matter alterations in BPD or ADHD populations and their relationship with impulsivity were included. We reviewed information from 23 studies involving 992 participants, which included findings from structural MRI and DTI. Results: The review identified various nonhomogeneous changes associated with impulsivity in BPD and ADHD. BPD was mainly associated with abnormalities in the prefrontal cortex (PFC) and limbic areas, which correlated negatively with impulsivity. In contrast, impulsivity associated with ADHD was associated with structural changes in the caudate nucleus and frontal-striatal pathways. Despite the overlapping symptoms of impulsivity, the neurobiological mechanisms appeared to differ between the two disorders. Conclusions: These findings emphasize the distinct neurostructural correlates of impulsivity in BPD and ADHD. While both disorders show impulsivity as one of their main symptoms, the fundamental brain structures associated with this trait are different. BPD is primarily associated with abnormalities in the prefrontal cortex and limbic system, whereas the alterations seen in ADHD tend to focus on the caudate nucleus and frontostriatal pathways. Further research is needed to clarify these differences and their implications for treatment.
Collapse
Affiliation(s)
- Łukasz Franczak
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Patryk Wysocki
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Adam Jędrzejewski
- Independent Clinical Psychology Unit, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| |
Collapse
|
3
|
Fu Z, Zhu H, Zhao Y, Huan R, Zhang Y, Chen S, Pan Y. GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning. IEEE J Biomed Health Inform 2024; 28:6486-6497. [PMID: 39146173 DOI: 10.1109/jbhi.2024.3443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Annotated electroencephalogram (EEG) data is the prerequisite for artificial intelligence-driven EEG autoanalysis. However, the scarcity of annotated data due to its high-cost and the resulted insufficient training limits the development of EEG autoanalysis. Generative self-supervised learning, represented by masked autoencoder, offers potential but struggles with non-Euclidean structures. To alleviate these challenges, this work proposes a self-supervised graph masked autoencoder for EEG representation learning, named GMAEEG. Concretely, a pretrained model is enriched with temporal and spatial representations through a masked signal reconstruction pretext task. A learnable dynamic adjacency matrix, initialized with prior knowledge, adapts to brain characteristics. Downstream tasks are achieved by finetuning pretrained parameters, with the adjacency matrix transferred based on task functional similarity. Experimental results demonstrate that with emotion recognition as the pretext task, GMAEEG reaches superior performance on various downstream tasks, including emotion, major depressive disorder, Parkinson's disease, and pain recognition. This study is the first to tailor the masked autoencoder specifically for EEG representation learning considering its non-Euclidean characteristics. Further, graph connection analysis based on GMAEEG may provide insights for future clinical studies.
Collapse
|
4
|
Orso R, Creutzberg KC, Begni V, Petrillo G, Cattaneo A, Riva MA. Emotional dysregulation following prenatal stress is associated with altered prefrontal cortex responsiveness to an acute challenge in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111162. [PMID: 39383932 DOI: 10.1016/j.pnpbp.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exposure to prenatal stress (PNS) has the potential to elicit multiple neurobiological alterations and increase the susceptibility to psychiatric disorders. Moreover, gestational stress may sensitize the brain toward an altered response to subsequent challenges. Here, we investigated the effects of PNS in rats and assessed whether these animals exhibit an altered brain responsiveness to an acute stress (AS) during adolescence. From gestational day 14 until delivery, Sprague Dawley dams were exposed to PNS or left undisturbed. During adolescence (PND38 to PND41), offspring were tested in the social interaction and splash test. At PND44 half of the animals were exposed to 5 min of forced swim stress. Males and Females exposed to PNS showed reduced sociability and increased anhedonic-like behavior. At the molecular level, exposure of adolescent rats to AS produced increased activation of the amygdala and ventral and dorsal hippocampus. Regarding the prefrontal cortex (PFC), we observed a pronounced activation in PNS males exposed to AS. Cell-type specific transcriptional analyses revealed a significant imbalance in the activation of PFC excitatory and inhibitory neurons in PNS males and females exposed to AS. Furthermore, stressed males exhibited disrupted HPA-axis function, while females showed impairments in the modulation of antioxidant genes. Our study shows that PNS induces emotional dysregulation and alters the responsiveness of the PFC to an acute stressor. Moreover, the disruption of excitatory and inhibitory balance during adolescence could influence the ability to respond to challenging events that may contribute to precipitate a full-blown pathologic condition.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | | | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Giulia Petrillo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
5
|
Piskin D, Büchel D, Lehmann T, Baumeister J. Reliable electrocortical dynamics of target-directed pass-kicks. Cogn Neurodyn 2024; 18:2343-2357. [PMID: 39555268 PMCID: PMC11564708 DOI: 10.1007/s11571-024-10094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 11/19/2024] Open
Abstract
Football is one of the most played sports in the world and kicking with adequate accuracy increases the likelihood of winning a competition. Although studies with different target-directed movements underline the role of distinctive cortical activity on superior accuracy, little is known about cortical dynamics associated with kicking. Mobile electroencephalography is a popular tool to investigate cortical modulations during movement, however, inherent and artefact-related pitfalls may obscure the reliability of functional sources and their activity. The purpose of this study was therefore to describe consistent cortical dynamics underlying target-directed pass-kicks based on test-retest reliability estimates. Eleven participants performed a target-directed kicking task at two different sessions within one week. Electroencephalography was recorded using a 65-channel mobile system and behavioural data were collected including motion range, acceleration and accuracy performance. Functional sources were identified using independent component analysis and clustered in two steps with the components of first and subsequently both sessions. Reliability estimates of event-related spectral perturbations were computed pixel-wise for participants contributing with components of both sessions. The parieto-occipital and frontal clusters were reproducible for the same majority of the sample at both sessions. Their activity showed consistent alpha desyhronization and theta sychnronisation patterns with substantial reliability estimates revealing visual and attentional demands in different phases of kicking. The findings of our study reveal prominent cortical demands during the execution of a target-directed kick which may be considered in practical implementations and provide promising academic prospects in the comprehension and investigation of cortical activity associated with target-directed movements. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10094-0.
Collapse
Affiliation(s)
- Daghan Piskin
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| | - Daniel Büchel
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| | - Tim Lehmann
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| |
Collapse
|
6
|
Zheng T, Sugino M, Jimbo Y, Ermentrout GB, Kotani K. Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach. Front Comput Neurosci 2024; 18:1439632. [PMID: 39376575 PMCID: PMC11456483 DOI: 10.3389/fncom.2024.1439632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the visual cortex. In this study, we propose a layer-dependent network-of-networks approach to analyze such attention with gamma oscillations. The model is validated by reproducing empirical findings on orientation preference and the enhancement of neuronal response due to top-down attention. We perform parameter plane analysis to classify neuronal responses into several patterns and find that the neuronal response to sensory and attention signals was modulated by the heterogeneity of the neuronal population. Furthermore, we revealed a counter-intuitive scenario that the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses to the attentional input. By modification of the original model, we confirmed layer 6 plays an indispensable role in such cases. Our findings uncover the layer-dependent dynamics in the cortical processing of visual attention and open up new possibilities for further research on layer-dependent properties in the cerebral cortex.
Collapse
Affiliation(s)
- Tianyi Zheng
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Sugino
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - G. Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kiyoshi Kotani
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Chiba, Japan
| |
Collapse
|
7
|
Gómez-Lombardi A, Costa BG, Gutiérrez PP, Carvajal PM, Rivera LZ, El-Deredy W. The cognitive triad network - oscillation - behaviour links individual differences in EEG theta frequency with task performance and effective connectivity. Sci Rep 2024; 14:21482. [PMID: 39277643 PMCID: PMC11401920 DOI: 10.1038/s41598-024-72229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
We reconcile two significant lines of Cognitive Neuroscience research: the relationship between the structural and functional architecture of the brain and behaviour on the one hand and the functional significance of oscillatory brain processes to behavioural performance on the other. Network neuroscience proposes that the three elements, behavioural performance, EEG oscillation frequency, and network connectivity should be tightly connected at the individual level. Young and old healthy adults were recruited as a proxy for performance variation. An auditory inhibitory control task was used to demonstrate that task performance correlates with the individual EEG frontal theta frequency. Older adults had a significantly slower theta frequency, and both theta frequency and task performance correlated with the strengths of two network connections that involve the main areas of inhibitory control and speech processing. The results suggest that both the recruited functional network and the oscillation frequency induced by the task are specific to the task, are inseparable, and mark individual differences that directly link structure and function to behaviour in health and disease.
Collapse
Affiliation(s)
- Andre Gómez-Lombardi
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile.
- Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile.
| | - Begoña Góngora Costa
- Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile
| | - Pavel Prado Gutiérrez
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Pablo Muñoz Carvajal
- Centro para la Investigación Traslacional en Neurofarmacología, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Lucía Z Rivera
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Wael El-Deredy
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile
- Department of Electronic Engineering, School of Engineering, Universitat de València, Valencia, Spain
| |
Collapse
|
8
|
Huang YN, Liang WK, Juan CH. Spatial prediction modulates the rhythm of attentional sampling. Cereb Cortex 2024; 34:bhae392. [PMID: 39329361 DOI: 10.1093/cercor/bhae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies demonstrate that behavioral performance during visual spatial attention fluctuates at theta (4 to 8 Hz) and alpha (8 to 16 Hz) frequencies, linked to phase-amplitude coupling of neural oscillations within the visual and attentional system depending on task demands. To investigate the influence of prior spatial prediction, we employed an adaptive discrimination task with variable cue-target onset asynchronies (300 to 1,300 ms) and different cue validity (100% & 50%). We recorded electroencephalography concurrently and adopted adaptive electroencephalography data analytical methods, namely, Holo-Holo-Hilbert spectral analysis and Holo-Hilbert cross-frequency phase clustering. Our findings indicate that response precision for near-threshold Landolt rings fluctuates at the theta band (4 Hz) under certain predictions and at alpha & beta bands (15 & 19 Hz) with uncertain predictions. Furthermore, spatial prediction strengthens theta-alpha modulations at parietal-occipital areas, frontal theta/parietal-occipital alpha phase-amplitude coupling, and within frontal theta-alpha phase-amplitude coupling. Notably, during the pretarget period, beta-modulated gamma oscillations in parietal-occipital areas predict response precision under uncertain prediction, while frontal theta/parietal-occipital alpha phase-amplitude coupling predicts response precision in spatially certain conditions. In conclusion, our study highlights the critical role of spatial prediction in attentional sampling rhythms with both behavioral and electroencephalography evidence.
Collapse
Affiliation(s)
- Yih-Ning Huang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| |
Collapse
|
9
|
Kolodziej J, Pintea B, Boström JP, Pleger B. Pain Relief-Related Structural Brain Alterations in Trigeminal Neuralgia Induced by Noninvasive Stereotactic Radiosurgery: A Pilot Study. Int J Radiat Oncol Biol Phys 2024; 120:130-136. [PMID: 38522767 DOI: 10.1016/j.ijrobp.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Trigeminal neuralgia (TN) is a chronic pain disorder defined by unilateral shock-like pain in at least one division of the trigeminal nerve. Although several studies have investigated structural brain plasticity in patients with TN, treatment-induced alterations remain largely uninvestigated. METHODS AND MATERIALS Combining T1-weighted magnetic resonance imaging with voxel-based morphometry and multiple-regression analyses, we assessed gray matter maps of patients with TN to investigate changes in gray matter volume (GMV) before and 6 months after stereotactic radiosurgery (SRS). RESULTS Comparison of pre- and post-SRS GMV of 25 patients with TN (16 women; mean age 67 years) did not yield any significant clusters, suggesting that the effect of SRS intervention itself on gray matter structure may be negligible. Regarding SRS-induced pain relief, we found a significant GMV increase in the left superior frontal gyrus associated with greater degree of pain relief (P = .024) and a trend toward an increase in GMV in the left dorsolateral prefrontal cortex (P = .097). CONCLUSIONS In this pilot study, we observed significant increases in GMV in the left superior frontal gyrus with SRS-induced improvements in pain and a trend toward an increase in GMV in the dorsolateral prefrontal cortex. Future studies are indicated to validate these findings and determine whether SRS-induced decrease in distracting pain events and subsequent increases in GMV result in improved functionality, decreased dependence on "top-down" control, and improved cognitive/executive balance with amelioration of pain events.
Collapse
Affiliation(s)
- Jonas Kolodziej
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jan Patrick Boström
- Gamma Knife Zentrum Bochum, Department of Radiotherapy and Radio-Oncology, University Clinic Marien Hospital Herne, Bochum, Germany; Department of Radiosurgery and Stereotactic Radiotherapy, MediClinRobert Janker Clinic and MediClin MVZ Bonn, Bonn, Germany.
| | - Burkhard Pleger
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
10
|
Parto-Dezfouli M, Vanegas I, Zarei M, Nesse WH, Clark KL, Noudoost B. Prefrontal working memory signal primarily controls phase-coded information within extrastriate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610140. [PMID: 39257783 PMCID: PMC11383686 DOI: 10.1101/2024.08.28.610140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In order to understand how prefrontal cortex provides the benefits of working memory (WM) for visual processing we examined the influence of WM on the representation of visual signals in V4 neurons in two macaque monkeys. We found that WM induces strong β oscillations in V4 and that the timing of action potentials relative to this oscillation reflects sensory information- i.e., a phase coding of visual information. Pharmacologically inactivating the Frontal Eye Field part of prefrontal cortex, we confirmed the necessity of prefrontal signals for the WM-driven boost in phase coding of visual information. Indeed, changes in the average firing rate of V4 neurons could be accounted for by WM-induced oscillatory changes. We present a network model to describe how WM signals can recruit sensory areas primarily by inducing oscillations within these areas and discuss the implications of these findings for a sensory recruitment theory of WM through coherence.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Mohammad Zarei
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
- Lead
| |
Collapse
|
11
|
Khodami MA, Battaglini L, Jansarvatan M, Kireeva S, Bagheri S. Comparing Self-Report vs. Performance Measures of Attentional Control and Efficiency. NEUROSCI 2024; 5:114-127. [PMID: 39483490 PMCID: PMC11493209 DOI: 10.3390/neurosci5020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 11/03/2024] Open
Abstract
Background: The Attention Control Scale (ATTC) is a widely used self-report measure of attentional control capacities. However, research questions whether it accurately substitutes for objective attention control tasks. This study investigated ATTC's correlation with the Attention Network Test (ANT) across alerting, orienting, and executive control networks. We also used the Inverse Efficiency Score (IES) as an additional factor to check ATTC using ANT. Methods: We administered 143 participants who completed the ATTC questionnaire and ANT behavioral test assessing network efficiencies. Results: The results showed non-significant ATTC-ANT correlations across all networks. In an additional analysis, while the ATTC demonstrated factorial validity, subjective control was disconnected from actual attention regulation efficiency. A small male advantage emerged for executive control. Conclusions: Dissociations likely stem from attention complexity and method variances rather than overlap. The findings do not support the ATTC as a stand-alone proxy for performance-based measurement. Multifaceted assessments are essential for comprehensively capturing attentional control.
Collapse
Affiliation(s)
| | - Luca Battaglini
- Department of General Psychology, University of Padua, 35131 Padua, Italy
| | - Maryam Jansarvatan
- Department of General Psychology, University of Padua, 35131 Padua, Italy
| | - Sofia Kireeva
- Graduate School of Economics and Management, Ural Federal University, 62002 Ekaterinburg, Russia
| | - Seiran Bagheri
- Departmen of Psychology, Payame Noor University, Tehran 19395-4697, Iran
| |
Collapse
|
12
|
Yuki S, Nakatani H, Tachibana RO, Okanoya K. Effective modulation from the ventral medial to the dorsal medial portion of the prefrontal cortex in memory confidence-based behavioral control. Sci Rep 2024; 14:10141. [PMID: 38698131 PMCID: PMC11066022 DOI: 10.1038/s41598-024-60755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Metacognition includes the ability to refer to one's own cognitive states, such as confidence, and adaptively control behavior based on this information. This ability is thought to allow us to predictably control our behavior without external feedback, for example, even before we take action. Many studies have suggested that metacognition requires a brain-wide network of multiple brain regions. However, the modulation of effective connectivity within this network during metacognitive tasks remains unclear. This study focused on medial prefrontal regions, which have recently been suggested to be particularly involved in metacognition. We examined whether modulation of effective connectivity specific to metacognitive behavioral control is observed using model-based network analysis and dynamic causal modeling (DCM). The results showed that negative modulation from the ventral medial prefrontal cortex to the dorsal medial prefrontal cortex was observed in situations that required metacognitive behavioral control but not in situations that did not require such metacognitive control. Furthermore, this modulation was particularly pronounced in the group of participants who could better use metacognition for behavioral control. These results imply hierarchical properties of metacognition-related brain networks.
Collapse
Affiliation(s)
- Shoko Yuki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Hironori Nakatani
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Minato-ku, Takanawa, Tokyo, 108-8619, Japan
| | - Ryosuke O Tachibana
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| |
Collapse
|
13
|
Kausel L, Zamorano F, Billeke P, Sutherland ME, Alliende MI, Larrain‐Valenzuela J, Soto‐Icaza P, Aboitiz F. Theta and alpha oscillations may underlie improved attention and working memory in musically trained children. Brain Behav 2024; 14:e3517. [PMID: 38702896 PMCID: PMC11069029 DOI: 10.1002/brb3.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.
Collapse
Affiliation(s)
- Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de PsicologíaUniversidad Diego PortalesSantiagoChile
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - F. Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de ImágenesClínica Alemanade SantiagoSantiagoChile
- Facultad de Ciencias para el Cuidado de la SaludUniversidad San SebastiánSantiagoChile
- Laboratorio de Psiquiatría TraslacionalDepartamento de PsiquiatríaFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - P. Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - M. E. Sutherland
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - M. I. Alliende
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - J. Larrain‐Valenzuela
- Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - P. Soto‐Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - F. Aboitiz
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
14
|
Stolicyn A, Harris MA, de Nooij L, Shen X, Macfarlane JA, Campbell A, McNeil CJ, Sandu AL, Murray AD, Waiter GD, Lawrie SM, Steele JD, McIntosh AM, Romaniuk L, Whalley HC. Disrupted limbic-prefrontal effective connectivity in response to fearful faces in lifetime depression. J Affect Disord 2024; 351:983-993. [PMID: 38220104 DOI: 10.1016/j.jad.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Multiple brain imaging studies of negative emotional bias in major depressive disorder (MDD) have used images of fearful facial expressions and focused on the amygdala and the prefrontal cortex. The results have, however, been inconsistent, potentially due to small sample sizes (typically N<50). It remains unclear if any alterations are a characteristic of current depression or of past experience of depression, and whether there are MDD-related changes in effective connectivity between the two brain regions. METHODS Activations and effective connectivity between the amygdala and dorsolateral prefrontal cortex (DLPFC) in response to fearful face stimuli were studied in a large population-based sample from Generation Scotland. Participants either had no history of MDD (N=664 in activation analyses, N=474 in connectivity analyses) or had a diagnosis of MDD during their lifetime (LMDD, N=290 in activation analyses, N=214 in connectivity analyses). The within-scanner task involved implicit facial emotion processing of neutral and fearful faces. RESULTS Compared to controls, LMDD was associated with increased activations in left amygdala (PFWE=0.031,kE=4) and left DLPFC (PFWE=0.002,kE=33), increased mean bilateral amygdala activation (β=0.0715,P=0.0314), and increased inhibition from left amygdala to left DLPFC, all in response to fearful faces contrasted to baseline. Results did not appear to be attributable to depressive illness severity or antidepressant medication status at scan time. LIMITATIONS Most studied participants had past rather than current depression, average severity of ongoing depression symptoms was low, and a substantial proportion of participants were receiving medication. The study was not longitudinal and the participants were only assessed a single time. CONCLUSIONS LMDD is associated with hyperactivity of the amygdala and DLPFC, and with stronger amygdala to DLPFC inhibitory connectivity, all in response to fearful faces, unrelated to depression severity at scan time. These results help reduce inconsistency in past literature and suggest disruption of 'bottom-up' limbic-prefrontal effective connectivity in depression.
Collapse
Affiliation(s)
- Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - Mathew A Harris
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Laura de Nooij
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EN, Netherlands
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Jennifer A Macfarlane
- Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom; Department of Medical Physics, NHS Tayside, Dundee DD2 1UB, United Kingdom; SINAPSE Consortium(2), United Kingdom
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Christopher J McNeil
- SINAPSE Consortium(2), United Kingdom; Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZN, United Kingdom
| | - Anca-Larisa Sandu
- SINAPSE Consortium(2), United Kingdom; Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZN, United Kingdom
| | - Alison D Murray
- SINAPSE Consortium(2), United Kingdom; Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZN, United Kingdom
| | - Gordon D Waiter
- SINAPSE Consortium(2), United Kingdom; Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZN, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - J Douglas Steele
- Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom; SINAPSE Consortium(2), United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom; SINAPSE Consortium(2), United Kingdom; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Liana Romaniuk
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom; SINAPSE Consortium(2), United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom; SINAPSE Consortium(2), United Kingdom; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
15
|
Frank LR, Galinsky VL, Krigolson O, Tapert SF, Bickel S, Martinez A. Imaging of brain electric field networks. RESEARCH SQUARE 2024:rs.3.rs-2432269. [PMID: 38659785 PMCID: PMC11042417 DOI: 10.21203/rs.3.rs-2432269/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We present a method for direct imaging of the electric field networks in the human brain from electroencephalography (EEG) data with much higher temporal and spatial resolution than functional MRI (fMRI), without the concomitant distortions. The method is validated using simultaneous EEG/fMRI data in healthy subjects, intracranial EEG data in epilepsy patients, and in a direct comparison with standard EEG analysis in a well-established attention paradigm. The method is then demonstrated on a very large cohort of subjects performing a standard gambling task designed to activate the brain's 'reward circuit'. The technique uses the output from standard EEG systems and thus has potential for immediate benefit to a broad range of important basic scientific and clinical questions concerning brain electrical activity, but also provides an inexpensive and portable alternative to function MRI (fMRI).
Collapse
Affiliation(s)
- Lawrence R. Frank
- Center for Scientific Computation in Imaging, UC San Diego, La Jolla, CA, USA
- 7Center for Functional MRI, UC San Diego, La Jolla, CA, USA
| | - Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, UC San Diego, La Jolla, CA, USA
| | - Olave Krigolson
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | | | - Stephan Bickel
- Nathan Kline Institute, Orangeburg, NY, USA
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | |
Collapse
|
16
|
DeYoe EA, Huddleston W, Greenberg AS. Are neuronal mechanisms of attention universal across human sensory and motor brain maps? Psychon Bull Rev 2024:10.3758/s13423-024-02495-3. [PMID: 38587756 DOI: 10.3758/s13423-024-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
One's experience of shifting attention from the color to the smell to the act of picking a flower seems like a unitary process applied, at will, to one modality after another. Yet, the unique and separable experiences of sight versus smell versus movement might suggest that the neural mechanisms of attention have been separately optimized to employ each modality to its greatest advantage. Moreover, addressing the issue of universality can be particularly difficult due to a paucity of existing cross-modal comparisons and a dearth of neurophysiological methods that can be applied equally well across disparate modalities. Here we outline some of the conceptual and methodological issues related to this problem and present an instructive example of an experimental approach that can be applied widely throughout the human brain to permit detailed, quantitative comparison of attentional mechanisms across modalities. The ultimate goal is to spur efforts across disciplines to provide a large and varied database of empirical observations that will either support the notion of a universal neural substrate for attention or more clearly identify the degree to which attentional mechanisms are specialized for each modality.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- , Signal Mountain, USA.
| | - Wendy Huddleston
- School of Rehabilitation Sciences and Technology, College of Health Professions and Sciences, University of Wisconsin - Milwaukee, 3409 N. Downer Ave, Milwaukee, WI, 53211, USA
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, USA
| |
Collapse
|
17
|
Jiao F, Zhuang J, Nitsche MA, Lin Z, Ma Y, Liu Y. Application of transcranial alternating current stimulation to improve eSports-related cognitive performance. Front Neurosci 2024; 18:1308370. [PMID: 38476869 PMCID: PMC10927847 DOI: 10.3389/fnins.2024.1308370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Electronic Sports (eSports) is a popular and still emerging sport. Multiplayer Online Battle Arena (MOBA) and First/Third Person Shooting Games (FPS/TPS) require excellent visual attention abilities. Visual attention involves specific frontal and parietal areas, and is associated with alpha coherence. Transcranial alternating current stimulation (tACS) is a principally suitable tool to improve cognitive functions by modulation of regional oscillatory cortical networks that alters regional and larger network connectivity. Methods In this single-blinded crossover study, 27 healthy college students were recruited and exposed to 10 Hz tACS of the right frontoparietal network. Subjects conducted a Visual Spatial Attention Distraction task in three phases: T0 (pre-stimulation), T1 (during stimulation), T2 (after-stimulation), and an eSports performance task which contained three games ("Exact Aiming," "Flick Aiming," "Press Reaction") before and after stimulation. Results The results showed performance improvements in the "Exact Aiming" task and hint for a prevention of reaction time performance decline in the "Press Reaction" task in the real, as compared to the sham stimulation group. We also found a significant decrease of reaction time in the visual spatial attention distraction task at T1 compared to T0 in the real, but not sham intervention group. However, accuracy and inverse efficiency scores (IES) did not differ between intervention groups in this task. Discussion These results suggest that 10 Hz tACS over the right frontal and parietal cortex might improve eSports-related skill performance in specific tasks, and also improve visual attention in healthy students during stimulation. This tACS protocol is a potential tool to modulate neurocognitive performance involving tracking targets, and might be a foundation for the development of a new concept to enhance eSports performance. This will require however proof in real life scenarios, as well optimization.
Collapse
Affiliation(s)
- Fujia Jiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Michael A. Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Zhenggen Lin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yuanbo Ma
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
18
|
Navarrete M, Greco V, Rakowska M, Bellesi M, Lewis PA. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun Biol 2024; 7:193. [PMID: 38365955 PMCID: PMC10873307 DOI: 10.1038/s42003-024-05825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
- Psychology and Biobehavioral Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino (MC), Italy
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
19
|
Voges N, Lima V, Hausmann J, Brovelli A, Battaglia D. Decomposing Neural Circuit Function into Information Processing Primitives. J Neurosci 2024; 44:e0157232023. [PMID: 38050070 PMCID: PMC10866194 DOI: 10.1523/jneurosci.0157-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023] Open
Abstract
It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms-such as self-sustained or propagating activity and nonlinear summation of inputs-do not directly give rise to high-level functions. Nevertheless, they already implement simple the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working memory, or selective attention, stem from different combinations and types of low-level manipulations of information or information processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neural circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics, beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is, through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.
Collapse
Affiliation(s)
- Nicole Voges
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Vinicius Lima
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
| | - Johannes Hausmann
- R&D Department, Hyland Switzerland Sarl, Corcelles NE 2035, Switzerland
| | - Andrea Brovelli
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
| | - Demian Battaglia
- Institute for Language, Communication and the Brain (ILCB), Aix-Marseille Université, Marseille 13005, France
- Institut de Neurosciences des Systèmes (INS), UMR 1106, Aix-Marseille Université, Marseille 13005, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67000, France
| |
Collapse
|
20
|
Mittli D. Inflammatory processes in the prefrontal cortex induced by systemic immune challenge: Focusing on neurons. Brain Behav Immun Health 2023; 34:100703. [PMID: 38033612 PMCID: PMC10682838 DOI: 10.1016/j.bbih.2023.100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Peripheral immune challenge induces neurobiological alterations in the brain and related neuropsychiatric symptoms both in humans and other mammals. One of the best known physiological effects of systemic inflammation is sickness behavior. However, in addition to this depression-like state, there are other cognitive outcomes of peripherally induced neuroinflammation that can be linked to the dysfunction of higher-order cortical areas, such as the prefrontal cortex (PFC). As the physiological activity of the PFC is largely based on the balanced interplay of excitatory pyramidal cells and inhibitory interneurons, it may be hypothesized that neuroinflammatory processes result in a shift of excitatory/inhibitory balance, which is a common hallmark of several neuropsychiatric conditions. Indeed, many data suggest that peripherally induced neuroinflammation is strongly associated with molecular and functional changes in PFC neurons leading to disturbances in their synaptic networks. Different experimental approaches may cause some incongruence in the reviewed data. However, it is commonly agreed that acute systemic inflammation leads to changes in the excitatory/inhibitory balance in the PFC by proinflammatory signaling at the brain borders and in the brain parenchyma. These cellular changes result in altered local and brain-wide network activity inducing disturbances in the top-down control of goal-directed behavior and cognition regulated by the PFC. Lipopolysaccharide (LPS)-treated rodents are the most widely used experimental models of peripherally induced neuroinflammation, so the majority of the reviewed data come from studies utilizing the LPS model. This may limit their general interpretation regarding the neuronal effects of peripheral immune activation. In addition, several biological variables (e.g., sex, age) can influence the PFC effects of systemic immune challenge, not only the nature and severity of immune activation. Therefore, it would be desirable to investigate inflammation-related neuronal changes in the PFC using other models of systemic inflammation as well, and to focus on the targeted fine-tuning of the affected cell types via common molecular mechanisms of the immune and nervous systems.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| |
Collapse
|
21
|
Kafali HY, Dasgin H, Sahin Cevik D, Sozan SS, Oguz KK, Mutlu M, Parlakay AO, Toulopoulou T. The effect of SARS-CoV-2 virus on resting-state functional connectivity during adolescence: Investigating brain correlates of psychotic-like experiences and SARS-CoV-2 related inflammation response. Psychiatry Res Neuroimaging 2023; 336:111746. [PMID: 37979347 DOI: 10.1016/j.pscychresns.2023.111746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
We first aimed to investigate resting-state functional connectivity (rs-FC) differences between adolescents exposed to SARS-CoV-2 and healthy controls. Secondly, the moderator effect of PLEs on group differences in rs-FC was examined. Thirdly, brain correlates of inflammation response during acute SARS-CoV-2 infection were investigated. Eighty-two participants aged between 14 and 24 years (SARS-CoV-2 (n = 35), controls (n = 47)) were examined using rs-fMRI. Seed-based rs-FC analysis was performed. The positive subscale of Community Assessment of Psychotic Experiences-42 (CAPE-Pos) was used to measure PLEs. The SARS-CoV-2 group had a lesser rs-FC within sensorimotor network (SMN), central executive network (CEN) and language network (LN), but an increased rs-FC within visual network (VN) compared to controls. No significant differences were detected between the groups regarding CAPE-Pos-score. However, including CAPE-Pos as a covariate, we found increased rs-FC within CEN and SN in SARS-CoV-2 compared to controls. Among the SARS-CoV-2 group, neutrophil/lymphocyte and thrombocyte*neutrophil/lymphocyte ratio was correlated with decreased/increased FC within DMN and SN, and increased FC within CEN. Our results showed rs-FC alterations within the SMN, CEN, LN, and VN among adolescents exposed to SARS-CoV-2. Moreover, changes in rs-FC associated with PLEs existed in these adolescents despite the absence of clinical changes. Furthermore, inflammation response was correlated with alterations in FC within the triple network system.
Collapse
Affiliation(s)
- Helin Yilmaz Kafali
- Department of Psychology, Fevziye Schools Fundation, Işık University, Istanbul, Turkey
| | - Hacer Dasgin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Didenur Sahin Cevik
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Sara Sinem Sozan
- Department of Psychology, Ankara Social Sciences University, Ankara, Turkey
| | - Kader K Oguz
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; School of Medicine, Department of Radiology, University of California Davis, United States
| | - Müge Mutlu
- Department of Child Psychiatry, Ankara City Hospital, Ankara, Turkey
| | | | - Timothea Toulopoulou
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.
| |
Collapse
|
22
|
Barbosa J, Proville R, Rodgers CC, DeWeese MR, Ostojic S, Boubenec Y. Early selection of task-relevant features through population gating. Nat Commun 2023; 14:6837. [PMID: 37884507 PMCID: PMC10603060 DOI: 10.1038/s41467-023-42519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within primary auditory cortex (A1) but controlled by top-down inputs from prelimbic region of medial prefrontal cortex (mPFC), can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.
Collapse
Affiliation(s)
- Joao Barbosa
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France.
| | - Rémi Proville
- Tailored Data Solutions, 192 Cours Gambetta, 84300, Cavaillon, France
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University, Atlanta, GA, 30033, USA
| | - Michael R DeWeese
- Department of Physics, Helen Wills Neuroscience Institute, and Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure PSL Research University, CNRS, Paris, France
| |
Collapse
|
23
|
Hutcheon EA, Vakorin VA, Nunes AS, Ribary U, Ferguson S, Claydon VE, Doesburg SM. Comparing neuronal oscillations during visual spatial attention orienting between normobaric and hypobaric hypoxia. Sci Rep 2023; 13:18021. [PMID: 37865721 PMCID: PMC10590435 DOI: 10.1038/s41598-023-45308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Normobaric hypoxia (NH) and hypobaric hypoxia (HH) are both used to train aircraft pilots to recognize symptoms of hypoxia. NH (low oxygen concentration) training is often preferred because it is more cost effective, simpler, and safer than HH. It is unclear, however, whether NH is neurophysiologically equivalent to HH (high altitude). Previous studies have shown that neural oscillations, particularly those in the alpha band (8-12 Hz), are impacted by hypoxia. Attention tasks have been shown to reliably modulate alpha oscillations, although the neurophysiological impacts of hypoxia during cognitive processing remains poorly understood. To address this we investigated induced and evoked power alongside physiological data while participants performed an attention task during control (normobaric normoxia or NN), NH (fraction of inspired oxygen = 12.8%, partial pressure of inspired oxygen = 87.2 mmHg), and HH (3962 m, partial pressure of inspired oxygen = 87.2 mmHg) conditions inside a hypobaric chamber. No significant differences between NH and HH were found in oxygen saturation, end tidal gases, breathing rate, middle cerebral artery velocity and blood pressure. Induced alpha power was significantly decreased in NH and HH when compared to NN. Participants in the HH condition showed significantly increased induced lower-beta power and evoked higher-beta power, compared with the NH and NN conditions, indicating that NH and HH differ in their impact on neurophysiological activity supporting cognition. NH and HH were found not to be neurophysiologically equivalent as electroencephalography was able to differentiate NH from HH.
Collapse
Affiliation(s)
- Evan A Hutcheon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Adonay S Nunes
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Urs Ribary
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Sherri Ferguson
- Environmental Physiology and Medicine Unit, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
24
|
Dubey A, Markowitz DA, Pesaran B. Top-down control of exogenous attentional selection is mediated by beta coherence in prefrontal cortex. Neuron 2023; 111:3321-3334.e5. [PMID: 37499660 PMCID: PMC10935562 DOI: 10.1016/j.neuron.2023.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Salience-driven exogenous and goal-driven endogenous attentional selection are two distinct forms of attention that guide selection of task-irrelevant and task-relevant targets in primates. Top-down attentional control mechanisms enable selection of the task-relevant target by limiting the influence of sensory information. Although the lateral prefrontal cortex (LPFC) is known to mediate top-down control, the neuronal mechanisms of top-down control of attentional selection are poorly understood. Here, we trained two rhesus monkeys on a two-target, free-choice luminance-reward selection task. We demonstrate that visual-movement (VM) neurons and nonvisual neurons or movement neurons encode exogenous and endogenous selection. We then show that coherent beta activity selectively modulates mechanisms of exogenous selection specifically during conflict and consequently may support top-down control. These results reveal the VM-neuron-specific network mechanisms of attentional selection and suggest a functional role for beta-frequency coherent neural dynamics in the modulation of sensory communication channels for the top-down control of attentional selection.
Collapse
Affiliation(s)
- Agrita Dubey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - David A Markowitz
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003, USA; Departments of Neurosurgery, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Arif Y, Wiesman AI, Christopher-Hayes N, Okelberry HJ, Johnson HJ, Willett MP, Wilson TW. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants. Neuroimage 2023; 280:120351. [PMID: 37659656 PMCID: PMC10545948 DOI: 10.1016/j.neuroimage.2023.120351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
26
|
Krasovskaya S, Kristjánsson Á, MacInnes WJ. Microsaccade rate activity during the preparation of pro- and antisaccades. Atten Percept Psychophys 2023; 85:2257-2276. [PMID: 37258896 DOI: 10.3758/s13414-023-02731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Microsaccades belong to the category of fixational micromovements and may be crucial for image stability on the retina. Eye movement paradigms typically require fixational control, but this does not eliminate all oculomotor activity. The antisaccade task requires a planned eye movement in the direction opposite of an onset, allowing separation of planning and execution. We build on previous studies of microsaccades in the antisaccade task using a combination of fixed and mixed pro- and antisaccade blocks. We hypothesized that microsaccade rates may be reduced prior to the execution of antisaccades as compared with regular saccades (prosaccades). In two experiments, we measured microsaccades in four conditions across three trial blocks: one block each of fixed prosaccade and antisaccade trials, and a mixed block where both saccade types were randomized. We anticipated that microsaccade rates would be higher prior to antisaccades than prosaccades due to the need to preemptively suppress reflexive saccades during antisaccade generation. In Experiment 1, with monocular eye tracking, there was an interaction between the effects of saccade and block type on microsaccade rates, suggesting lower rates on antisaccade trials, but only within mixed blocks. In Experiment 2, eye tracking was binocular, revealing suppressed microsaccade rates on antisaccade trials. A cluster permutation analysis of the microsaccade rate over the course of a trial did not reveal any particular critical time for this difference in microsaccade rates. Our findings suggest that microsaccade rates reflect the degree of suppression of the oculomotor system during the antisaccade task.
Collapse
Affiliation(s)
- Sofia Krasovskaya
- Faculty of Psychology, University of Iceland, Reykjavik, Iceland.
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Nýi Garður, Sæmundargata 12, 102, Reykjavik, Iceland.
- Vision Modelling Lab, HSE University, Moscow, Russia.
| | - Árni Kristjánsson
- Faculty of Psychology, University of Iceland, Reykjavik, Iceland
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Nýi Garður, Sæmundargata 12, 102, Reykjavik, Iceland
| | - W Joseph MacInnes
- Vision Modelling Lab, HSE University, Moscow, Russia
- Department of Computer Science, Swansea University, Swansea, UK
| |
Collapse
|
27
|
Akella S, Bastos AM, Miller EK, Principe JC. Measurable fields-to-spike causality and its dependence on cortical layer and area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524451. [PMID: 37577637 PMCID: PMC10418085 DOI: 10.1101/2023.01.17.524451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Distinct dynamics in different cortical layers are apparent in neuronal and local field potential (LFP) patterns, yet their associations in the context of laminar processing have been sparingly analyzed. Here, we study the laminar organization of spike-field causal flow within and across visual (V4) and frontal areas (PFC) of monkeys performing a visual task. Using an event-based quantification of LFPs and a directed information estimator, we found area and frequency specificity in the laminar organization of spike-field causal connectivity. Gamma bursts (40-80 Hz) in the superficial layers of V4 largely drove intralaminar spiking. These gamma influences also fed forward up the cortical hierarchy to modulate laminar spiking in PFC. In PFC, the direction of intralaminar information flow was from spikes → fields where these influences dually controlled top-down and bottom-up processing. Our results, enabled by innovative methodologies, emphasize the complexities of spike-field causal interactions amongst multiple brain areas and behavior.
Collapse
Affiliation(s)
- Shailaja Akella
- Allen Institute, Seattle, WA, United States
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, United States
| | - André M. Bastos
- Department of Psychology and Vanderbilt Brain Institute,Vanderbilt University, Nashville, TN, United States
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Jose C. Principe
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, United States
| |
Collapse
|
28
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
29
|
Azizi Z, Ebrahimpour R. Explaining Integration of Evidence Separated by Temporal Gaps with Frontoparietal Circuit Models. Neuroscience 2023; 509:74-95. [PMID: 36457229 DOI: 10.1016/j.neuroscience.2022.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Perceptual decisions rely on accumulating sensory evidence over time. However, the accumulation process is complicated in real life when evidence resulted from separated cues over time. Previous studies demonstrate that participants are able to integrate information from two separated cues to improve their performance invariant to an interval between the cues. However, there is no neural model that can account for accuracy and confidence in decisions when there is a time interval in evidence. We used behavioral and EEG datasets from a visual choice task -Random dot motion- with separated evidence to investigate three candid distributed neural networks. We showed that decisions based on evidence accumulation by separated cues over time are best explained by the interplay of recurrent cortical dynamics of centro-parietal and frontal brain areas while an uncertainty-monitoring module included in the model.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Cognitive Modeling, Institute for Cognitive Science Studies, Tehran, Iran.
| | - Reza Ebrahimpour
- Institute for Convergence Science and Technology (ICST), Sharif University of Technology, Tehran, P.O.Box: 11155-8639, Iran; Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Postal Box: 16785-163, Tehran, Iran; School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Niavaran, Postal Box: 19395-5746, Tehran, Iran.
| |
Collapse
|
30
|
Jarrar R, Monahan C, Shattuck J, Teale P, Kronberg E, Kluger BM, Buard I. Spatiotemporal dynamics of selective attention and visual conflict monitoring using a Stroop task. Cogn Neurosci 2023; 14:127-136. [PMID: 37707299 PMCID: PMC10591874 DOI: 10.1080/17588928.2023.2259554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023]
Abstract
Selective attention and conflict monitoring are daily human phenomena, yet the spatial and temporal neurological underpinnings of these processes are not fully understood. Current literature suggests these executive functions occur via diverse and highly interconnected neural networks, including top-down, bottom-up, and conflict-control loops. To investigate the spatiotemporal activity of these processes, we collected neuromagnetic data using magnetoencephalography (MEG) in 28 healthy adults (age 19-36), while they performed a computerized Stroop task based on color naming. We focused on low-frequency oscillations in the context of top-down control and hypothesized that conflict monitoring-related activity would first be observed in the left anterior cingulate cortex, followed by the left dorsolateral prefrontal cortex, and subsequently in the parietal and temporal lobes. Significant activity between 600-1000 ms post-stimulus onset was found for incongruent vs. congruent/neutral contrasts. Interestingly, spatiotemporal analysis did not provide evidence for a top-down pattern of activation, instead revealing a simultaneous pattern of activation in the frontal and temporal lobes. Most notable is the involvement of the left posterior inferior temporal cortex (pITC) and the left temporoparietal junction (TPJ), which have not conventionally been considered active players in attentional control. These results may be largely driven by alpha and beta oscillations from our sample population. Our findings challenge early theoretical models of top-down processing in the context of cognitive control from an attention perspective and also suggest a need to investigate attentional centers in the temporal lobe. Furthermore, the study highlights the valuable temporal data provided by MEG, which has been missing from previous studies.
Collapse
Affiliation(s)
- Rawan Jarrar
- School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Colleen Monahan
- Department of Neurology, University of Colorado Denver, Aurora, CO, USA
| | - Johanna Shattuck
- Department of Neurology, University of Colorado Denver, Aurora, CO, USA
| | - Peter Teale
- Department of Neurology, University of Colorado Denver, Aurora, CO, USA
| | - Eugene Kronberg
- Department of Neurology, University of Colorado Denver, Aurora, CO, USA
| | - Benzi M Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center Rochester, NY, USA
| | - Isabelle Buard
- Department of Neurology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
31
|
Carter Leno V, Begum-Ali J, Goodwin A, Mason L, Pasco G, Pickles A, Garg S, Green J, Charman T, Johnson MH, Jones EJH. Infant excitation/inhibition balance interacts with executive attention to predict autistic traits in childhood. Mol Autism 2022; 13:46. [PMID: 36482366 PMCID: PMC9733024 DOI: 10.1186/s13229-022-00526-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autism is proposed to be characterised by an atypical balance of cortical excitation and inhibition (E/I). However, most studies have examined E/I alterations in older autistic individuals, meaning that findings could in part reflect homeostatic compensation. To assess the directionality of effects, it is necessary to examine alterations in E/I balance early in the lifespan before symptom emergence. Recent explanatory frameworks have argued that it is also necessary to consider how early risk features interact with later developing modifier factors to predict autism outcomes. METHOD We indexed E/I balance in early infancy by extracting the aperiodic exponent of the slope of the electroencephalogram (EEG) power spectrum ('1/f'). To validate our index of E/I balance, we tested for differences in the aperiodic exponent in 10-month-old infants with (n = 22) and without (n = 27) neurofibromatosis type 1 (NF1), a condition thought to be characterised by alterations to cortical inhibition. We then tested for E/I alterations in a larger heterogeneous longitudinal cohort of infants with and without a family history of neurodevelopmental conditions (n = 150) who had been followed to early childhood. We tested the relevance of alterations in E/I balance and our proposed modifier, executive attention, by assessing whether associations between 10-month aperiodic slope and 36-month neurodevelopmental traits were moderated by 24-month executive attention. Analyses adjusted for age at EEG assessment, sex and number of EEG trials. RESULTS Infants with NF1 were characterised by a higher aperiodic exponent, indicative of greater inhibition, supporting our infant measure of E/I. Longitudinal analyses showed a significant interaction between aperiodic slope and executive attention, such that higher aperiodic exponents predicted greater autistic traits in childhood, but only in infants who also had weaker executive functioning abilities. LIMITATIONS The current study relied on parent report of infant executive functioning-type abilities; future work is required to replicate effects with objective measures of cognition. CONCLUSIONS Results suggest alterations in E/I balance are on the developmental pathway to autism outcomes, and that higher executive functioning abilities may buffer the impact of early cortical atypicalities, consistent with proposals that stronger executive functioning abilities may modify the impact of a wide range of risk factors.
Collapse
Affiliation(s)
- Virginia Carter Leno
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jannath Begum-Ali
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Amy Goodwin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Greg Pasco
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrew Pickles
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shruti Garg
- Faculty of Biological Medical and Health Sciences, University of Manchester, Manchester, UK
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jonathan Green
- Faculty of Biological Medical and Health Sciences, University of Manchester, Manchester, UK
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Tony Charman
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
32
|
Monosov IE, Ogasawara T, Haber SN, Heimel JA, Ahmadlou M. The zona incerta in control of novelty seeking and investigation across species. Curr Opin Neurobiol 2022; 77:102650. [PMID: 36399897 DOI: 10.1016/j.conb.2022.102650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI's anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - J Alexander Heimel
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Mehran Ahmadlou
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland St., W1T4JG London, UK
| |
Collapse
|
33
|
Hazra D, Yoshinaga S, Yoshida K, Takata N, Tanaka KF, Kubo KI, Nakajima K. Rhythmic activation of excitatory neurons in the mouse frontal cortex improves the prefrontal cortex-mediated cognitive function. Cereb Cortex 2022; 32:5243-5258. [PMID: 35136976 DOI: 10.1093/cercor/bhac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
The prefrontal cortex (PFC) plays essential roles in cognitive processes. Previous studies have suggested the layer and the cell type-specific activation for cognitive enhancement. However, the mechanism by which a temporal pattern of activation affects cognitive function remains to be elucidated. Here, we investigated whether the specific activation of excitatory neurons in the superficial layers mainly in the PFC according to a rhythmic or nonrhythmic pattern could modulate the cognitive functions of normal mice. We used a C128S mutant of channelrhodopsin 2, a step function opsin, and administered two light illumination patterns: (i) alternating pulses of blue and yellow light for rhythmic activation or (ii) pulsed blue light only for nonrhythmic activation. Behavioral analyses were performed to compare the behavioral consequences of these two neural activation patterns. The alternating blue and yellow light pulses, but not the pulsed blue light only, significantly improved spatial working memory and social recognition without affecting motor activity or the anxiety level. These results suggest that the rhythmic, but not the nonrhythmic, activation could enhance cognitive functions. This study indicates that not only the population of neurons that are activated but also the pattern of activation plays a crucial role in the cognitive enhancement.
Collapse
Affiliation(s)
- Debabrata Hazra
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
34
|
Zhang M, Armendariz M, Xiao W, Rose O, Bendtz K, Livingstone M, Ponce C, Kreiman G. Look twice: A generalist computational model predicts return fixations across tasks and species. PLoS Comput Biol 2022; 18:e1010654. [PMID: 36413523 PMCID: PMC9681066 DOI: 10.1371/journal.pcbi.1010654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Primates constantly explore their surroundings via saccadic eye movements that bring different parts of an image into high resolution. In addition to exploring new regions in the visual field, primates also make frequent return fixations, revisiting previously foveated locations. We systematically studied a total of 44,328 return fixations out of 217,440 fixations. Return fixations were ubiquitous across different behavioral tasks, in monkeys and humans, both when subjects viewed static images and when subjects performed natural behaviors. Return fixations locations were consistent across subjects, tended to occur within short temporal offsets, and typically followed a 180-degree turn in saccadic direction. To understand the origin of return fixations, we propose a proof-of-principle, biologically-inspired and image-computable neural network model. The model combines five key modules: an image feature extractor, bottom-up saliency cues, task-relevant visual features, finite inhibition-of-return, and saccade size constraints. Even though there are no free parameters that are fine-tuned for each specific task, species, or condition, the model produces fixation sequences resembling the universal properties of return fixations. These results provide initial steps towards a mechanistic understanding of the trade-off between rapid foveal recognition and the need to scrutinize previous fixation locations.
Collapse
Affiliation(s)
- Mengmi Zhang
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Brains, Minds and Machines, Cambridge, Massachusetts, United States of America
- CFAR and I2R, Agency for Science, Technology and Research, Singapore
| | - Marcelo Armendariz
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Brains, Minds and Machines, Cambridge, Massachusetts, United States of America
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | - Will Xiao
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivia Rose
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katarina Bendtz
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Brains, Minds and Machines, Cambridge, Massachusetts, United States of America
| | - Margaret Livingstone
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos Ponce
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriel Kreiman
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Brains, Minds and Machines, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Angulo-Sherman IN, Saavedra-Hernández A, Urbina-Arias NE, Hernández-Granados Z, Sainz M. Preliminary Evidence of EEG Connectivity Changes during Self-Objectification of Workers. SENSORS (BASEL, SWITZERLAND) 2022; 22:7906. [PMID: 36298257 PMCID: PMC9606942 DOI: 10.3390/s22207906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Economic objectification is a form of dehumanization in which workers are treated as tools for enhancing productivity. It can lead to self-objectification in the workplace, which is when people perceive themselves as instruments for work. This can cause burnout, emotional drain, and a modification of self-perception that involves a loss of human attributes such as emotions and reasoning while focusing on others' perspectives for evaluating the self. Research on workers self-objectification has mainly analyzed the consequences of this process without exploring the brain activity that underlies the individual's experiences of self-objectification. Thus, this project explores the electroencephalographic (EEG) changes that occur in participants during an economic objectifying task that resembled a job in an online store. After the task, a self-objectification questionnaire was applied and its resulting index was used to label the participants as self-objectified or non-self-objectified. The changes over time in EEG event-related synchronization (ERS) and partial directed coherence (PDC) were calculated and compared between the self-objectification groups. The results show that the main differences between the groups in ERS and PDC occurred in the beta and gamma frequencies, but only the PDC results correlated with the self-objectification group. These results provide information for further understanding workers' self-objectification. These EEG changes could indicate that economic self-objectification is associated with changes in vigilance, boredom, and mind-wandering.
Collapse
Affiliation(s)
- Irma N. Angulo-Sherman
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Annel Saavedra-Hernández
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Natalia E. Urbina-Arias
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Zahamara Hernández-Granados
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Mario Sainz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Estudios a Distancia, C. de Bravo Murillo 38, 28015 Madrid, Spain
| |
Collapse
|
36
|
Dynamic and stable population coding of attentional instructions coexist in the prefrontal cortex. Proc Natl Acad Sci U S A 2022; 119:e2202564119. [PMID: 36161937 DOI: 10.1073/pnas.2202564119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of recent work suggests that neural representations in prefrontal cortex (PFC) are changing over time to adapt to task demands. However, it remains unclear whether and how such dynamic coding schemes depend on the encoded variable and are influenced by anatomical constraints. Using a cued attention task and multivariate classification methods, we show that neuronal ensembles in PFC encode and retain in working memory spatial and color attentional instructions in an anatomically specific manner. Spatial instructions could be decoded both from the frontal eye field (FEF) and the ventrolateral PFC (vlPFC) population, albeit more robustly from FEF, whereas color instructions were decoded more robustly from vlPFC. Decoding spatial and color information from vlPFC activity in the high-dimensional state space indicated stronger dynamics for color, across the cue presentation and memory periods. The change in the color code was largely due to rapid changes in the network state during the transition to the delay period. However, we found that dynamic vlPFC activity contained time-invariant color information within a low-dimensional subspace of neural activity that allowed for stable decoding of color across time. Furthermore, spatial attention influenced decoding of stimuli features profoundly in vlPFC, but less so in visual area V4. Overall, our results suggest that dynamic population coding of attentional instructions within PFC is shaped by anatomical constraints and can coexist with stable subspace coding that allows time-invariant decoding of information about the future target.
Collapse
|
37
|
Sych Y, Fomins A, Novelli L, Helmchen F. Dynamic reorganization of the cortico-basal ganglia-thalamo-cortical network during task learning. Cell Rep 2022; 40:111394. [PMID: 36130513 PMCID: PMC9513804 DOI: 10.1016/j.celrep.2022.111394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Adaptive behavior is coordinated by neuronal networks that are distributed across multiple brain regions such as in the cortico-basal ganglia-thalamo-cortical (CBGTC) network. Here, we ask how cross-regional interactions within such mesoscale circuits reorganize when an animal learns a new task. We apply multi-fiber photometry to chronically record simultaneous activity in 12 or 48 brain regions of mice trained in a tactile discrimination task. With improving task performance, most regions shift their peak activity from the time of reward-related action to the reward-predicting stimulus. By estimating cross-regional interactions using transfer entropy, we reveal that functional networks encompassing basal ganglia, thalamus, neocortex, and hippocampus grow and stabilize upon learning, especially at stimulus presentation time. The internal globus pallidus, ventromedial thalamus, and several regions in the frontal cortex emerge as salient hub regions. Our results highlight the learning-related dynamic reorganization that brain networks undergo when task-appropriate mesoscale network dynamics are established for goal-oriented behavior. Multi-fiber photometry reveals brain network adaptations during learning Activity in most regions temporally shifts from reward to predictive stimulus Cross-regional interactions in the CBGTC network increase and stabilize with learning Internal pallidum, VM thalamus, and prefrontal cortex regions emerge as hubs
Collapse
Affiliation(s)
- Yaroslav Sych
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.
| | - Aleksejs Fomins
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Leonardo Novelli
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
38
|
Shahdloo M, Çelik E, Urgen BA, Gallant JL, Çukur T. Task-Dependent Warping of Semantic Representations during Search for Visual Action Categories. J Neurosci 2022; 42:6782-6799. [PMID: 35863889 PMCID: PMC9436022 DOI: 10.1523/jneurosci.1372-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Object and action perception in cluttered dynamic natural scenes relies on efficient allocation of limited brain resources to prioritize the attended targets over distractors. It has been suggested that during visual search for objects, distributed semantic representation of hundreds of object categories is warped to expand the representation of targets. Yet, little is known about whether and where in the brain visual search for action categories modulates semantic representations. To address this fundamental question, we studied brain activity recorded from five subjects (one female) via functional magnetic resonance imaging while they viewed natural movies and searched for either communication or locomotion actions. We find that attention directed to action categories elicits tuning shifts that warp semantic representations broadly across neocortex and that these shifts interact with intrinsic selectivity of cortical voxels for target actions. These results suggest that attention serves to facilitate task performance during social interactions by dynamically shifting semantic selectivity toward target actions and that tuning shifts are a general feature of conceptual representations in the brain.SIGNIFICANCE STATEMENT The ability to swiftly perceive the actions and intentions of others is a crucial skill for humans that relies on efficient allocation of limited brain resources to prioritize the attended targets over distractors. However, little is known about the nature of high-level semantic representations during natural visual search for action categories. Here, we provide the first evidence showing that attention significantly warps semantic representations by inducing tuning shifts in single cortical voxels, broadly spread across occipitotemporal, parietal, prefrontal, and cingulate cortices. This dynamic attentional mechanism can facilitate action perception by efficiently allocating neural resources to accentuate the representation of task-relevant action categories.
Collapse
Affiliation(s)
- Mo Shahdloo
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX3 9DU, United Kingdom
- National Magnetic Resonance Research Centre, Bilkent University, 06800 Ankara, Turkey
- Departments of Electrical and Electronics Engineering and
| | - Emin Çelik
- National Magnetic Resonance Research Centre, Bilkent University, 06800 Ankara, Turkey
- Neuroscience Program, Aysel Sabuncu Brain Research Centre, Bilkent University, 06800 Ankara, Turkey
| | - Burcu A Urgen
- National Magnetic Resonance Research Centre, Bilkent University, 06800 Ankara, Turkey
- Psychology, Bilkent University, 06800 Ankara, Turkey
- Neuroscience Program, Aysel Sabuncu Brain Research Centre, Bilkent University, 06800 Ankara, Turkey
| | - Jack L Gallant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| | - Tolga Çukur
- National Magnetic Resonance Research Centre, Bilkent University, 06800 Ankara, Turkey
- Departments of Electrical and Electronics Engineering and
- Neuroscience Program, Aysel Sabuncu Brain Research Centre, Bilkent University, 06800 Ankara, Turkey
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
39
|
Zheng L, Miao M, Gan Y. A systematic and meta-analytic review on the neural correlates of viewing high- and low-calorie foods among normal-weight adults. Neurosci Biobehav Rev 2022; 138:104721. [PMID: 35667634 DOI: 10.1016/j.neubiorev.2022.104721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In the context of current-day online shopping, people select foods based on pictures and using their visual systems. Although there are some reviews of previous neuroimaging studies on appetitive behaviors, the findings on neural activation in response to pictures of high- and low-calorie foods seem inconsistent. This study aims to systematically review, integrate, and meta-analyze neuroimaging evidence of viewing high- and low-calorie foods. There were 25 samples from 24 studies, totalizing 489 normal-weight participants (311 female, 160 male, and 18 of unknown sex). We conducted a systematic review and Activation Likelihood Estimation (ALE) meta-analysis on viewing high-calorie foods (versus non-foods), low-calorie foods (versus non-foods), and high- versus low-calorie foods. In systematic review, several brain regions were shown to be activated when viewing high- or low-calorie foods (versus non-foods) and viewing high- versus low-calorie foods, including the prefrontal cortex, orbitofrontal cortex, amygdala, insula, ventral striatum, hippocampus, superior parietal lobe, and fusiform gyrus. However, the ALE meta-analysis showed that the left orbitofrontal cortex, left amygdala, insula, superior parietal lobe, and fusiform gyrus were activated when viewing high-calorie foods (versus non-foods); the left fusiform gyrus was activated when viewing low-calorie foods (versus non-foods); and no cluster was activated when viewing high- versus low-calorie foods. Our research suggests an appetitive brain network that includes visual perception and attentional processing, sensory input integration, subjective reward value encoding, decision-making, and top-down cognitive control. Future studies should control for the effects of methodological and physiological variables when examining the neural correlates of viewing high- and low-calorie foods.
Collapse
Affiliation(s)
- Lei Zheng
- School of Economics and Management, Fuzhou University, China; School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Miao Miao
- Department of Medical Psychology, School of Health Humanities, Peking University, China
| | - Yiqun Gan
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| |
Collapse
|
40
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
41
|
Peng P, Yang KF, Liang SQ, Li YJ. Contour-guided saliency detection with long-range interactions. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Dimension of visual information interacts with working memory in monkeys and humans. Sci Rep 2022; 12:5335. [PMID: 35351948 PMCID: PMC8964748 DOI: 10.1038/s41598-022-09367-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Humans demonstrate behavioural advantages (biases) towards particular dimensions (colour or shape of visual objects), but such biases are significantly altered in neuropsychological disorders. Recent studies have shown that lesions in the prefrontal cortex do not abolish dimensional biases, and therefore suggest that such biases might not depend on top-down prefrontal-mediated attention and instead emerge as bottom-up processing advantages. We hypothesised that if dimensional biases merely emerge from an enhancement of object features, the presence of visual objects would be necessary for the manifestation of dimensional biases. In a specifically-designed working memory task, in which macaque monkeys and humans performed matching based on the object memory rather than the actual object, we found significant dimensional biases in both species, which appeared as a shorter response time and higher accuracy in the preferred dimension (colour and shape dimension in humans and monkeys, respectively). Moreover, the mnemonic demands of the task influenced the magnitude of dimensional bias. Our findings in two primate species indicate that the dichotomy of top-down and bottom-up processing does not fully explain the emergence of dimensional biases. Instead, dimensional biases may emerge when processed information regarding visual object features interact with mnemonic and executive functions to guide goal-directed behaviour.
Collapse
|
43
|
Blakeman S, Mareschal D. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning. Neural Netw 2022; 150:408-421. [PMID: 35358888 PMCID: PMC9037388 DOI: 10.1016/j.neunet.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Deep Reinforcement Learning (RL) is often criticised for being data inefficient and inflexible to changes in task structure. Part of the reason for these issues is that Deep RL typically learns end-to-end using backpropagation, which results in task-specific representations. One approach for circumventing these problems is to apply Deep RL to existing representations that have been learned in a more task-agnostic fashion. However, this only partially solves the problem as the Deep RL algorithm learns a function of all pre-existing representations and is therefore still susceptible to data inefficiency and a lack of flexibility. Biological agents appear to solve this problem by forming internal representations over many tasks and only selecting a subset of these features for decision-making based on the task at hand; a process commonly referred to as selective attention. We take inspiration from selective attention in biological agents and propose a novel algorithm called Selective Particle Attention (SPA), which selects subsets of existing representations for Deep RL. Crucially, these subsets are not learned through backpropagation, which is slow and prone to overfitting, but instead via a particle filter that rapidly and flexibly identifies key subsets of features using only reward feedback. We evaluate SPA on two tasks that involve raw pixel input and dynamic changes to the task structure, and show that it greatly increases the efficiency and flexibility of downstream Deep RL algorithms.
Collapse
Affiliation(s)
- Sam Blakeman
- Sony AI, Wiesenstrasse 5, 8952, Schlieren, Switzerland; Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, Malet Street, WC1E 7HX, United Kingdom.
| | - Denis Mareschal
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, Malet Street, WC1E 7HX, United Kingdom.
| |
Collapse
|
44
|
A test of the unified model of vision and attention: Effects of parietal-occipital damage on visual orienting. Neuropsychologia 2022; 168:108185. [DOI: 10.1016/j.neuropsychologia.2022.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
45
|
Bendall RCA, Eachus P, Thompson C. The influence of stimuli valence, extraversion, and emotion regulation on visual search within real-world scenes. Sci Rep 2022; 12:948. [PMID: 35042925 PMCID: PMC8766590 DOI: 10.1038/s41598-022-04964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
Affective traits, including extraversion and emotion regulation, are important considerations in clinical psychology due to their associations with the occurrence of affective disorders. Previously, emotional real-world scenes have been shown to influence visual search. However, it is currently unknown whether extraversion and emotion regulation can influence visual search towards neutral targets embedded within real-world scenes, or whether these traits can impact the effect of emotional stimuli on visual search. An opportunity sample of healthy individuals had trait levels of extraversion and emotion regulation recorded before completing a visual search task. Participants more accurately identified search targets in neutral images compared to positive images, whilst response times were slower in negative images. Importantly, individuals with higher trait levels of expressive suppression displayed faster identification of search targets regardless of the emotional valence of the stimuli. Extraversion and cognitive reappraisal did not influence visual search. These findings add to our understanding regarding the influence of extraversion, cognitive reappraisal, and expressive suppression on our ability to allocate attention during visual search when viewing real-world scenes.
Collapse
Affiliation(s)
- Robert C A Bendall
- Directorate of Psychology and Sport, School of Health and Society, University of Salford, Allerton Building, Frederick Road, Salford, M5 4WT, UK.
| | - Peter Eachus
- Directorate of Psychology and Sport, School of Health and Society, University of Salford, Allerton Building, Frederick Road, Salford, M5 4WT, UK
| | - Catherine Thompson
- Directorate of Psychology and Sport, School of Health and Society, University of Salford, Allerton Building, Frederick Road, Salford, M5 4WT, UK
| |
Collapse
|
46
|
Mansouri FA, Buckley MJ, Tanaka K. The neural substrate and underlying mechanisms of executive control fluctuations in primates. Prog Neurobiol 2022; 209:102216. [PMID: 34995695 DOI: 10.1016/j.pneurobio.2022.102216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/23/2023]
Abstract
Trial-by-trial alterations in response time have been linked to fluctuations of executive control and transient lapses of attention. Here, we report remarkable homologies in performance-dependent fluctuations of response time between humans and monkeys. We examined the effects of selective bilateral lesions in four frontal regions on control fluctuations in the context of a rule-shifting task. Lesions within orbitofrontal cortex (OFC), but not within superior-lateral prefrontal cortex, significantly exaggerated the performance-dependent fluctuations of control and prevented its restoration following feedback. Lesions within dorsolateral prefrontal cortex (DLPFC) or within anterior-cingulate cortex (ACC) led to instability of control and disruption of its link with monkeys' upcoming decisions. Examining the activity of DLPFC and OFC cells shed more lights on the underlying neuronal mechanisms by showing that before the start of each trial, OFC cell activity conveyed detailed information regarding the current state of executive control and the likelihood of success or failure in the future decisions. This further emphasizes the crucial role of OFC in the trial-by-trial allocation (setting) of control to the ongoing task. These findings bring insights to the neural architecture of executive control in primates and suggest that DLPFC and ACC support sustained executive control, but OFC is more involved in setting and restoring the control.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Monash University, VIC, Australia.
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, OX1 3UD, UK
| | - Keiji Tanaka
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
47
|
Howard E, Ballinger S, Kinney NG, Balgenorth Y, Ehrhardt A, Phillips JS, Irwin DJ, Grossman M, Cousins KA. Frontal Atrophy and Executive Dysfunction Relate to Complex Numbers Impairment in Progressive Supranuclear Palsy. J Alzheimers Dis 2022; 88:1553-1566. [PMID: 35811515 PMCID: PMC9915885 DOI: 10.3233/jad-215327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research finds a range of numbers impairments in Parkinsonian syndromes (PS), but has largely focused on how visuospatial impairments impact deficits in basic numerical processes (e.g., magnitude judgments, chunking). Differentiation between these basic functions and more complex numerical processes often utilized in everyday tasks may help elucidate neurocognitive and neuroanatomic bases of numbers deficits in PS. OBJECTIVE To test neurocognitive and neuroanatomic correlates of complex numerical processing in PS, we assessed number abilities, neuropsychological performance, and cortical thickness in progressive supranuclear palsy (PSP) and Lewy body spectrum disorders (LBSD). METHODS Fifty-six patients (LBSD = 35; PSP = 21) completed a Numbers Battery, including basic and complex numerical tasks. The Mini-Mental State Exam (MMSE), letter fluency (LF), and Judgment of Line Orientation (JOLO) assessed global, executive, and visuospatial functioning respectively. Mann-Whitney U tests compared neuropsychological testing and rank-transformed analysis of covariance (ANCOVA) compared numbers performance between groups while adjusting for demographic variables. Spearman's and partial correlations related numbers performance to neuropsychological tasks. Neuroimaging assessed cortical thickness in disease groups and demographically-matched healthy controls. RESULTS PSP had worse complex numbers performance than LBSD (F = 6.06, p = 0.02) but similar basic numbers performance (F = 0.38, p > 0.1), covarying for MMSE and sex. Across syndromes, impaired complex numbers performance was linked to poor LF (rho = 0.34, p = 0.01) but not JOLO (rho = 0.23, p > 0.05). Imaging revealed significant frontal atrophy in PSP compared to controls, which was associated with worse LF and complex numbers performance. CONCLUSION PSP demonstrated selective impairments in complex numbers processing compared to LBSD. This complex numerical deficit may relate to executive dysfunction and frontal atrophy.
Collapse
Affiliation(s)
- Erica Howard
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Ballinger
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolas G. Kinney
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Balgenorth
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Annabess Ehrhardt
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S. Phillips
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A.Q. Cousins
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Correspondence to: Katheryn A.Q. Cousins, PhD, 3400 Spruce St, Department of Neurology, 3W Gates Building, Philadel phia, PA 19104, USA. Tel.: +1 215 349 5863; Fax: +1 215 349 8464;
| |
Collapse
|
48
|
Tu HF, Skalkidou A, Lindskog M, Gredebäck G. Maternal childhood trauma and perinatal distress are related to infants' focused attention from 6 to 18 months. Sci Rep 2021; 11:24190. [PMID: 34921204 PMCID: PMC8683435 DOI: 10.1038/s41598-021-03568-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Maternal distress is repeatedly reported to have negative impacts on the cognitive development in children and is linked to neurodevelopmental disorders (e.g. attention-deficit/hyperactivity disorder and autism spectrum disorder). However, studies examining the associations between maternal distress and the development of attention in infancy are few. This study investigated the longitudinal relationships between maternal distress (depressive symptoms, anxiety symptoms, and exposure to childhood trauma) and the development of focused attention in infancy in 118 mother-infant dyads. We found that maternal exposure to non-interpersonal traumatic events in childhood was associated with the less focused attention of the infants to audio-visual stimuli at 6, 10, and 18 months. In addition, exposure to interpersonal traumatic events in childhood was identified as a moderator of the negative effect of maternal anxiety during the 2nd trimester on the development of focused attention in infants. We discuss the possible mechanisms accounting for these cross-generational effects. Our findings underscore the importance of maternal mental health to the development of focused attention in infancy and address the need for early screening of maternal mental health during pregnancy.
Collapse
Affiliation(s)
- Hsing-Fen Tu
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- Department of Psychology, Uppsala University, 75237, Uppsala, Sweden.
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, 75237, Uppsala, Sweden
| | - Marcus Lindskog
- Department of Psychology, Uppsala University, 75237, Uppsala, Sweden
| | - Gustaf Gredebäck
- Department of Psychology, Uppsala University, 75237, Uppsala, Sweden
| |
Collapse
|
49
|
Gupta SK, Zhang M, Wu CC, Wolfe JM, Kreiman G. Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2021; 34:6946-6959. [PMID: 36062138 PMCID: PMC9436507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.
Collapse
Affiliation(s)
| | - Mengmi Zhang
- Children's Hospital, Harvard Medical School
- Center for Brains, Minds and Machines
| | - Chia-Chien Wu
- Brigham and Women's Hospital, Harvard Medical School
| | | | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School
- Center for Brains, Minds and Machines
| |
Collapse
|
50
|
Zhang Y, Liu B, Gao X. Investigation of the interaction between emotion and working memory load using spatiotemporal pattern similarity analysis. J Neural Eng 2021; 18. [PMID: 34700299 DOI: 10.1088/1741-2552/ac3347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
Objective.Accumulating evidence has revealed that emotions can be provided with the modulatory effect on working memory (WM) and WM load is an important factor for the interaction between emotion and WM. However, it remains controversial whether emotions inhibit or facilitate WM and the interaction between cognitive task, processing load and emotional processing remains unclear.Approach.In this study, we used a change detection paradigm wherein memory items have four different load sizes and emotion videos to induce three emotions (negative, neutral, and positive). We performed an event-related spectral perturbation (ERSP) analysis and a spatiotemporal pattern similarity (STPS) analysis on the electroencephalography data.Main results.The ERSP results indicated that alpha and beta oscillations can reflect the difference among WM load sizes and also can reflect the difference among emotions under middle high WM load over posterior brain region in the maintenance stage. Moreover, the STPS results demonstrated a significant interaction between emotion and WM load size in the posterior region and found significantly higher similarity indexes for the negative emotion to the neutral emotion under the middle high WM load during WM maintenance. In addition, The STPS results also revealed that both positive emotion and negative emotion could interfere with the distinction of load sizes.Significance.The consistence of the behavioral, ERSP and STPS results suggested that when the memory load approaches the limit of WM capacity, negative emotion could facilitate WM through the top-down attention modulation promoting the most relevant information storage during WM maintenance.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, People's Republic of China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|