1
|
Kwon DA, Lee S, Kim CY, Kang I, Park S, Jeong JW. Body-temperature softening electronic ink for additive manufacturing of transformative bioelectronics via direct writing. SCIENCE ADVANCES 2024; 10:eadn1186. [PMID: 38416839 PMCID: PMC10901467 DOI: 10.1126/sciadv.adn1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Mechanically transformative electronic systems (TESs) built using gallium have emerged as an innovative class of electronics due to their ability to switch between rigid and flexible states, thus expanding the versatility of electronics. However, the challenges posed by gallium's high surface tension and low viscosity have substantially hindered manufacturability, limiting high-resolution patterning of TESs. To address this challenge, we introduce a stiffness-tunable gallium-copper composite ink capable of direct ink write printing of intricate TES circuits, offering high-resolution (~50 micrometers) patterning, high conductivity, and bidirectional soft-rigid convertibility. These features enable transformative bioelectronics with design complexity akin to traditional printed circuit boards. These TESs maintain rigidity at room temperature for easy handling but soften and conform to curvilinear tissue surfaces at body temperature, adapting to dynamic tissue deformations. The proposed ink with direct ink write printing makes TES manufacturing simple and versatile, opening possibilities in wearables, implantables, consumer electronics, and robotics.
Collapse
Affiliation(s)
- Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Inho Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Customizable, wireless and implantable neural probe design and fabrication via 3D printing. Nat Protoc 2023; 18:3-21. [PMID: 36271159 PMCID: PMC10059091 DOI: 10.1038/s41596-022-00758-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2022] [Indexed: 01/14/2023]
Abstract
This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires ~2 d, while implantation should take 30-60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.
Collapse
|
3
|
Wang Y, Li Y, Yang X, Wu X, Wang Y, Pei W. Analysis of Electromagnetic Interference and Shielding in the μLED Optrode Based on Finite Element Method. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.758484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monolithic integrated μLED optrode has promising applications in optogenetics due to their ability to achieve more optical channels in a smaller footprint. The current used to drive the μLED will cause electromagnetic interference (EMI) noise to the recording electrodes at a very close distance. Utilizing a grounded metal shielding layer between the active device and the electrode can potentially reduce the interference. In this paper, multi-dimensional μLED optrode models are set up according to the real device. By numerically analyzing the electromagnetic interference between the μLED and recording electrodes, several optimized shielding schemes are evaluated by simulations and experiments. Some important process and layout parameters that may influence the shielding effect are studied through the finite element method (FEM). Different circuit models based on the corresponding test environment are built to analyze the simulation and experiment results. A new PCB with a shielding layer has been designed and initially verified. The proposed novel computational model can analyze EMI quantitatively, which could facilitate the design of low-noise μLED optrode with reasonable shielding and packaging.
Collapse
|
4
|
Qazi R, Parker KE, Kim CY, Rill R, Norris MR, Chung J, Bilbily J, Kim JR, Walicki MC, Gereau GB, Lim H, Xiong Y, Lee JR, Tapia MA, Kravitz AV, Will MJ, Ha S, McCall JG, Jeong JW. Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience. Nat Biomed Eng 2021; 6:771-786. [PMID: 34824397 PMCID: PMC10180496 DOI: 10.1038/s41551-021-00814-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
The use of rodents to acquire understanding of the function of neural circuits and of the physiological, genetic and developmental underpinnings of behaviour has been constrained by limitations in the scalability, automation and high-throughput operation of implanted wireless neural devices. Here we report scalable and modular hardware and software infrastructure for setting up and operating remotely programmable miniaturized wireless networks leveraging Bluetooth Low Energy for the study of the long-term behaviour of large groups of rodents. The integrated system allows for automated, scheduled and real-time experimentation via the simultaneous and independent use of multiple neural devices and equipment within and across laboratories. By measuring the locomotion, feeding, arousal and social behaviours of groups of mice or rats, we show that the system allows for bidirectional data transfer from readily available hardware, and that it can be used with programmable pharmacological or optogenetic stimulation. Scalable and modular wireless-network infrastructure should facilitate the remote operation of fully automated large-scale and long-term closed-loop experiments for the study of neural circuits and animal behaviour.
Collapse
Affiliation(s)
- Raza Qazi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Kyle E Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ruediger Rill
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
| | - Makenzie R Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jaeyoon Chung
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
| | - John Bilbily
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Marie C Walicki
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Graydon B Gereau
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Hyoyoung Lim
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jenna R Lee
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| | - Melissa A Tapia
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Sangtae Ha
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA.
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA. .,Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA. .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA. .,Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA. .,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
6
|
Kim CY, Ku MJ, Qazi R, Nam HJ, Park JW, Nam KS, Oh S, Kang I, Jang JH, Kim WY, Kim JH, Jeong JW. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nat Commun 2021; 12:535. [PMID: 33483493 PMCID: PMC7822865 DOI: 10.1038/s41467-020-20803-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
Optogenetics is a powerful technique that allows target-specific spatiotemporal manipulation of neuronal activity for dissection of neural circuits and therapeutic interventions. Recent advances in wireless optogenetics technologies have enabled investigation of brain circuits in more natural conditions by releasing animals from tethered optical fibers. However, current wireless implants, which are largely based on battery-powered or battery-free designs, still limit the full potential of in vivo optogenetics in freely moving animals by requiring intermittent battery replacement or a special, bulky wireless power transfer system for continuous device operation, respectively. To address these limitations, here we present a wirelessly rechargeable, fully implantable, soft optoelectronic system that can be remotely and selectively controlled using a smartphone. Combining advantageous features of both battery-powered and battery-free designs, this device system enables seamless full implantation into animals, reliable ubiquitous operation, and intervention-free wireless charging, all of which are desired for chronic in vivo optogenetics. Successful demonstration of the unique capabilities of this device in freely behaving rats forecasts its broad and practical utilities in various neuroscience research and clinical applications.
Collapse
Affiliation(s)
- Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Jeong Ku
- Department of Physiology, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Raza Qazi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Hong Jae Nam
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Woo Park
- Department of Physiology, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Shane Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Inho Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hoon Kim
- Department of Physiology, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
8
|
Lee J, Parker KE, Kawakami C, Kim JR, Qazi R, Yea J, Zhang S, Kim CY, Bilbily J, Xiao J, Jang KI, McCall JG, Jeong JW. Rapidly-customizable, scalable 3D-printed wireless optogenetic probes for versatile applications in neuroscience. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2004285. [PMID: 33708031 PMCID: PMC7942018 DOI: 10.1002/adfm.202004285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 05/21/2023]
Abstract
Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating in vivo optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly. Moreover, the inherent time-consuming nature of current fabrication procedures impede the rapid customization of neural probes in between in vivo studies. Here, we introduce a new technique stemming from 3D printing technology for the low-cost, mass production of rapidly customizable optogenetic neural probes. We detail the 3D printing production process, on-the-fly design versatility, and biocompatibility of 3D printed optogenetic probes as well as their functional capabilities for wireless in vivo optogenetics. Successful in vivo studies with 3D printed devices highlight the reliability of this easily accessible and flexible manufacturing approach that, with advances in printing technology, can foreshadow its widespread applications in low-cost bioelectronics in the future.
Collapse
Affiliation(s)
- Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyle E. Parker
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Chinatsu Kawakami
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Jenny R. Kim
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Raza Qazi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junwoo Yea
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Shun Zhang
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - John Bilbily
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kyung-In Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jordan G. McCall
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Anpilov S, Shemesh Y, Eren N, Harony-Nicolas H, Benjamin A, Dine J, Oliveira VEM, Forkosh O, Karamihalev S, Hüttl RE, Feldman N, Berger R, Dagan A, Chen G, Neumann ID, Wagner S, Yizhar O, Chen A. Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors. Neuron 2020; 107:644-655.e7. [PMID: 32544386 PMCID: PMC7447984 DOI: 10.1016/j.neuron.2020.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment. A small, wireless device is used for optogenetic activation in a complex environment PVN oxytocin neurons were activated repeatedly over 2 days in a group setting Repeated activation in a group setting elicited both pro-social and agonistic behavior Findings support the social salience hypothesis of oxytocin neuro-modulation
Collapse
Affiliation(s)
- Sergey Anpilov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Yair Shemesh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Noa Eren
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Hala Harony-Nicolas
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Asaf Benjamin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Julien Dine
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Vinícius E M Oliveira
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg 93053, Germany
| | - Oren Forkosh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Stoyo Karamihalev
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Rosa-Eva Hüttl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Noa Feldman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ryan Berger
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avi Dagan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg 93053, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
10
|
Recent Advances on Thermal Management of Flexible Inorganic Electronics. MICROMACHINES 2020; 11:mi11040390. [PMID: 32283609 PMCID: PMC7231351 DOI: 10.3390/mi11040390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
Abstract
Flexible inorganic electronic devices (FIEDs) consisting of functional inorganic components on a soft polymer substrate have enabled many novel applications such as epidermal electronics and wearable electronics, which cannot be realized through conventional rigid electronics. The low thermal dissipation capacity of the soft polymer substrate of FIEDs demands proper thermal management to reduce the undesired thermal influences. The biointegrated applications of FIEDs pose even more stringent requirements on thermal management due to the sensitive nature of biological tissues to temperature. In this review, we take microscale inorganic light-emitting diodes (μ-ILEDs) as an example of functional components to summarize the recent advances on thermal management of FIEDs including thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without biological tissues. These results are very helpful to understand the underlying heat transfer mechanism and provide design guidelines to optimize FIEDs in practical applications.
Collapse
|
11
|
Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903904. [PMID: 31608508 DOI: 10.1002/adma.201903904] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Indexed: 05/27/2023]
Abstract
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| |
Collapse
|
12
|
Das R, Moradi F, Heidari H. Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:343-358. [PMID: 31944987 DOI: 10.1109/tbcas.2020.2966920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
13
|
Matarèse BFE, Feyen PLC, de Mello JC, Benfenati F. Sub-millisecond Control of Neuronal Firing by Organic Light-Emitting Diodes. Front Bioeng Biotechnol 2019; 7:278. [PMID: 31750295 PMCID: PMC6817475 DOI: 10.3389/fbioe.2019.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Optogenetics combines optics and genetics to enable minimally invasive cell-type-specific stimulation in living tissue. For the purposes of bio-implantation, there is a need to develop soft, flexible, transparent and highly biocompatible light sources. Organic semiconducting materials have key advantages over their inorganic counterparts, including low Young's moduli, high strain resistances, and wide color tunability. However, until now it has been unclear whether organic light emitting diodes (OLEDs) are capable of providing sufficient optical power for successful neuronal stimulation, while still remaining within a biologically acceptable temperature range. Here we investigate the use of blue polyfluorene- and orange poly(p-phenylenevinylene)-based OLEDs as stimuli for blue-light-activated Sustained Step Function Opsin (SFFO) and red-light-activated ChrimsonR opsin, respectively. We show that, when biased using high frequency (multi-kHz) drive schemes, the OLEDs permit safe and controlled photostimulation of opsin-expressing neurons and were able to control neuronal firing with high temporal-resolution at operating temperatures lower than previously demonstrated.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Paul L. C. Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- Section of Physiology, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - John C. de Mello
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
- Centre for Organic Electronic Materials, Department of Chemistry, Trondheim, Norway
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
14
|
Optogenetic approaches to study the mammalian brain. Curr Opin Struct Biol 2019; 57:157-163. [PMID: 31082625 DOI: 10.1016/j.sbi.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Optogenetics has revolutionized neurobiological research by allowing to disentangle intricate neuronal circuits at a spatio-temporal precision unmatched by other techniques. Here, we review current advances of optogenetic applications in mammals, especially focusing on freely moving animals. State-of-the-art strategies allow the targeted expression of opsins in neuronal subpopulations, defined either by genetic cell type or neuronal projection pattern. Optogenetic manipulations of these subpopulations become particularly powerful when combined with behavioral paradigms and neurophysiological readout techniques. Thereby, specific roles can be assigned to identified cells. All-optical approaches with the opportunity to write complex three dimensional patterns into neuronal networks have recently emerged. While clinical implications of the new tool set seem tempting, we emphasize here the role of optogenetics for basic research.
Collapse
|
15
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|