1
|
van Staden C, Weinshenker D, Finger-Baier K, Botha TL, Brand L, Wolmarans DW. Posttraumatic anxiety-like behaviour in zebrafish is dose-dependently attenuated by the alpha-2A receptor agonist, guanfacine. Behav Pharmacol 2025; 36:47-59. [PMID: 39718044 DOI: 10.1097/fbp.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Traumatic stress exposure increases noradrenaline (NA) release, which contributes to anxiety and impaired risk-appraisal. Guanfacine, a selective alpha-2A adrenergic receptor agonist, has been used to treat stress-related disorders characterised by impaired prefrontal cortex function. By acting on both presynaptic inhibitory autoreceptors and postsynaptic heteroreceptors, guanfacine attenuates stress reactivity and enhances cognition. However, its effectiveness in treating trauma-related anxiety and risk-taking behaviour remains unclear. Leveraging the advantages of zebrafish (Danio rerio ) as a sensitive and efficient preclinical model which is ideal for stress research, we explored the impact of traumatic stress exposure combined with varying concentrations of guanfacine in adult zebrafish. Zebrafish were evaluated for trauma-related anxiety using both the novel tank test (NTT) and a novel version of the open-field test (nOFT), the latter which was also used to investigate risk-taking behaviour. We found that (1) traumatic stress exposure led to heightened risk-taking behaviour in the nOFT, and (2) low-to-moderate concentrations of guanfacine (3-20 µg/L) attenuated anxiety-like, but not risk-taking behaviour, with the highest concentration (40 µg/L), showing no effect. These results highlight the complex role of NA in modulating dysregulated behaviours during traumatic events and indicate the potential of guanfacine for improving trauma-related anxiety and risk-taking behaviour.
Collapse
Affiliation(s)
- Cailin van Staden
- Department of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Karin Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Linda Brand
- Department of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - De Wet Wolmarans
- Department of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Martins ML, Pinheiro EF, Saito GA, Lima CACD, Leão LKR, Batista EDJO, Passos ADCF, Gouveia A, Oliveira KRHM, Herculano AM. Distinct acute stressors produce different intensity of anxiety-like behavior and differential glutamate release in zebrafish brain. Front Behav Neurosci 2024; 18:1464992. [PMID: 39508031 PMCID: PMC11537853 DOI: 10.3389/fnbeh.2024.1464992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Anxiety disorder is one of the most well-characterized behavioral disorders in individuals subjected to acute or chronic stress. However, few studies have demonstrated how different types of stressors can modulate the neurochemical alterations involved in the generation of anxiety. In this study, we hypothesize that subjects exposed to different aversive stimuli (mechanical, chemical, and spatial restriction) present varied intensities of anxiety-like responses associated with distinct patterns of gamma-aminobutyric acid (GABA) and glutamate release in the brain. Adult zebrafish, Danio rerio (n = 60), were randomly divided into four experimental groups; control, acute restraint stress (ARS), conspecific alarm substance (CAS), and chasing with net (CN). After the stress protocols, the animals were individually transferred to a novel tank diving test for behavioral analysis. Subsequently, their brains were collected and subjected to GABA and glutamate release assay for quantification by HPLC. Our behavioral results showed that all aversive stimuli were capable of inducing anxiety-like behavior. However, the impact of anxiogenic behavior was more prominent in the CN and CAS groups when compared to ARS. This phenomenon was evident in all analyzed behavioral parameters (time on top, freezing, mean speed, maximum speed, and erratic swimming). Our data also showed that all aversive stimuli significantly decreased GABA release compared to the control group. Only animals exposed to CN and CAS presented an increase in extracellular glutamate levels. Different acute stressors induced different levels of anxiety-like behavior in zebrafish as well as specific alterations in GABAergic and glutamatergic release in the brain. These results demonstrate the complexity of anxiety disorders, highlighting that both behavioral and neurochemical responses are highly context-dependent.
Collapse
Affiliation(s)
- Milena Letícia Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | - Emerson Feio Pinheiro
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | - Geovanna Ayami Saito
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | | | - Luana Ketlen Reis Leão
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Nucleus, UFPA, Belém, Brazil
| | | | - Amauri Gouveia
- Laboratory of Neuroscience and Behavior, UFPA, Belém, Brazil
| | | | | |
Collapse
|
3
|
Soto DC, Uribe-Salazar JM, Kaya G, Valdarrago R, Sekar A, Haghani NK, Hino K, La GN, Mariano NAF, Ingamells C, Baraban AE, Turner TN, Green ED, Simó S, Quon G, Andrés AM, Dennis MY. Gene expansions contributing to human brain evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615256. [PMID: 39386494 PMCID: PMC11463660 DOI: 10.1101/2024.09.26.615256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Genomic drivers of human-specific neurological traits remain largely undiscovered. Duplicated genes expanded uniquely in the human lineage likely contributed to brain evolution, including the increased complexity of synaptic connections between neurons and the dramatic expansion of the neocortex. Discovering duplicate genes is challenging because the similarity of paralogs makes them prone to sequence-assembly errors. To mitigate this issue, we analyzed a complete telomere-to-telomere human genome sequence (T2T-CHM13) and identified 213 duplicated gene families likely containing human-specific paralogs (>98% identity). Positing that genes important in universal human brain features should exist with at least one copy in all modern humans and exhibit expression in the brain, we narrowed in on 362 paralogs with at least one copy across thousands of ancestrally diverse genomes and present in human brain transcriptomes. Of these, 38 paralogs co-express in gene modules enriched for autism-associated genes and potentially contribute to human language and cognition. We narrowed in on 13 duplicate gene families with human-specific paralogs that are fixed among modern humans and show convincing brain expression patterns. Using long-read DNA sequencing revealed hidden variation across 200 modern humans of diverse ancestries, uncovering signatures of selection not previously identified, including possible balancing selection of CD8B. To understand the roles of duplicated genes in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and transiently introduced mRNA-encoding paralogs, effectively "humanizing" the larvae. Morphometric, behavioral, and single-cell RNA-seq screening highlighted, for the first time, a possible role for GPR89B in dosage-mediated brain expansion and FRMPD2B function in altered synaptic signaling, both hallmark features of the human brain. Our holistic approach provides important insights into human brain evolution as well as a resource to the community for studying additional gene expansion drivers of human brain evolution.
Collapse
Affiliation(s)
- Daniela C. Soto
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - José M. Uribe-Salazar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Gulhan Kaya
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Ricardo Valdarrago
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aarthi Sekar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Nicholas K. Haghani
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gabriana N. La
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Natasha Ann F. Mariano
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
- Postbaccalaureate Research Education Program, University of California, Davis, CA 95616, USA
| | - Cole Ingamells
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Aidan E. Baraban
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St Louis, MS, 63110, USA
| | - Eric D. Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,20892, USA
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aida M. Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College, London, WC1E 6BT, UK
| | - Megan Y. Dennis
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Mani A, Haddad F, Barreda DR, Salinas I. The telencephalon is a neuronal substrate for systemic inflammatory responses in teleosts via polyamine metabolism. Proc Natl Acad Sci U S A 2024; 121:e2404781121. [PMID: 39284055 PMCID: PMC11441480 DOI: 10.1073/pnas.2404781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 10/02/2024] Open
Abstract
Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Farah Haddad
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
5
|
Inoue S, Masaki Y, Nakagawa S, Yokoi S. An evolutionarily distinct Hmgn2 variant influences shape recognition in Medaka Fish. Commun Biol 2024; 7:973. [PMID: 39179658 PMCID: PMC11344144 DOI: 10.1038/s42003-024-06667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Protein sequence diversification significantly impacts physiological traits. In this study, using medaka fish (Oryzias latipes), we identify a novel protein variant affecting shape preference behavior. Re-analysis of sequencing data reveals that LOC101156433 encodes a unique Hmgn2 variant with unusual subnuclear localization, clustered separately from the Hmgn2 clades of other species. Medaka mutants with this variant showed reduce telencephalic regions and altered shape preference, suggesting a link between protein sequence variation and behavioral changes. Additionally, this Hmgn2 variant is common in Acanthopterygii fishes, which are adapted to a variety of environments, indicating its potential evolutionary significance. Our findings highlight the relationship between amino acid sequence variation and the development of new molecular and behavioral adaptations, providing insights into the visual shape perception system in fish.
Collapse
Affiliation(s)
- Shuntaro Inoue
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yume Masaki
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
6
|
Rajput N, Parikh K, Squires A, Fields KK, Wong M, Kanani D, Kenney JW. Whole-brain mapping in adult zebrafish and identification of a novel tank test functional connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607981. [PMID: 39229236 PMCID: PMC11370427 DOI: 10.1101/2024.08.16.607981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Identifying general principles of brain function requires the study of structure-function relationships in a variety of species. Zebrafish have recently gained prominence as a model organism in neuroscience, yielding important insights into vertebrate brain function. Although methods have been developed for mapping neural activity in larval animals, we lack similar techniques for adult zebrafish that have the advantage of a fully developed neuroanatomy and larger behavioral repertoire. Here, we describe a pipeline built around open-source tools for whole-brain activity mapping in freely swimming adult zebrafish. Our pipeline combines recent advances in histology, microscopy, and machine learning to capture cfos activity across the entirety of the adult brain. Images captured using light-sheet microscopy are registered to the recently created adult zebrafish brain atlas (AZBA) for automated segmentation using advanced normalization tools (ANTs). We used our pipeline to measure brain activity after zebrafish were subject to the novel tank test. We found that cfos levels peaked 15 minutes following behavior and that several regions containing serotoninergic, dopaminergic, noradrenergic, and cholinergic neurons were active during exploration. Finally, we generated a novel tank test functional connectome. Functional network analysis revealed that several regions of the medial ventral telencephalon form a cohesive sub-network during exploration. We also found that the anterior portion of the parvocellular preoptic nucleus (PPa) serves as a key connection between the ventral telencephalon and many other parts of the brain. Taken together, our work enables whole-brain activity mapping in adult zebrafish for the first time while providing insight into neural basis for the novel tank test.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kush Parikh
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Ada Squires
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kailyn K Fields
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Matheu Wong
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Dea Kanani
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
7
|
Gedzun VR, Sukhanova IA, Aliper GM, Kotova MM, Melnik NO, Karimova EB, Voronkova AS, Coffman A, Pavshintcev VV, Mitkin NA, Doronin II, Babkin GA, Malyshev AV. From land to water: "Sunken" T-maze for associated learning in cichlid fish. Behav Brain Res 2024; 471:115077. [PMID: 38825022 DOI: 10.1016/j.bbr.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The study introduced and evaluated learning paradigms for Maylandia callainos cichlids using a modified version of the rodent T-maze, filled with tank water (the "sunken" modification). Both male and female fish underwent training in two distinct conditioning paradigms. Firstly, simple operant conditioning involved placing a food reward in either the right or left compartment. Cichlids demonstrated the ability to purposefully find the bait within 6 days of training, with a persistent place preference lasting up to 6 days. Additionally, the learning dynamics varied with sex: female cichlids exhibited reduction in latency to visit the target compartment and consume the bait, along with a decrease in the number of errors 3 and 4 days earlier than males, respectively. Secondly, visually-cued operant conditioning was conducted, with a food reward exclusively placed in the yellow compartment, randomly positioned on the left or right side of the maze during each training session. Visual learning persisted for 10 days until reaction time improvement plateaued. Color preference disappeared after 4 consecutive check-ups, with no sex-related interference. For further validation of visually-cued operant conditioning paradigm, drugs MK-801 (dizocilpine) and caffeine, known to affect performance in learning tasks, were administered intraperitoneally. Chronic MK-801 (0.17 mg/kg) impaired maze learning, resulting in no color preference development. Conversely, caffeine administration enhanced test performance, increasing precision in fish. This developed paradigm offers a viable approach for studying learning and memory and presents an effective alternative to rodent-based drug screening tools, exhibiting good face and predictive validity.
Collapse
|
8
|
Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024; 32:2219-2233. [PMID: 38926297 PMCID: PMC11300644 DOI: 10.1007/s10787-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Immune-mediated inflammatory disease (IMID) prevalence is estimated at 3-7% for Westernised populations, with annual incidence reported at almost 1 in 100 people globally. More recently, drug discovery approaches have been evolving towards more targeted therapies with an improved long-term safety profile, while the requirement for individualisation of medicine in complex conditions such as IMIDs, is acknowledged. However, existing preclinical models-such as cellular and in vivo mammalian models-are not ideal for modern drug discovery model requirements, such as real-time in vivo visualisation of drug effects, logistically feasible safety assessment over the course of a lifetime, or dynamic assessment of physiological changes during disease development. Zebrafish share high homology with humans in terms of proteins and disease-causing genes, with high conservation of physiological processes at organ, tissue, cellular and molecular level. These and other unique attributes, such as high fecundity, relative transparency and ease of genetic manipulation, positions zebrafish as the next major role player in IMID drug discovery. This review provides a brief overview of the suitability of this organism as model for human inflammatory disease and summarises the range of approaches used in zebrafish-based drug discovery research. Strengths and limitations of zebrafish as model organism, as well as important considerations in research study design, are discussed. Finally, under-utilised avenues for investigation in the IMID context are highlighted.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Group, Department of Medicine, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
9
|
Yamamoto K, Estienne P, Bloch S. Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist? BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:230-247. [PMID: 38952102 PMCID: PMC11614313 DOI: 10.1159/000537746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/04/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Comparative neuroanatomists have long sought to determine which part of the pallium in nonmammals is homologous to the mammalian neocortex. A number of similar connectivity patterns across species have led to the idea that the basic organization of the vertebrate brain is relatively conserved; thus, efforts of the last decades have been focused on determining a vertebrate "morphotype" - a model comprising the characteristics believed to have been present in the last common ancestor of all vertebrates. SUMMARY The endeavor to determine the vertebrate morphotype has been riddled with controversies due to the extensive morphological diversity of the pallium among vertebrate taxa. Nonetheless, most proposed scenarios of pallial homology are variants of a common theme where the vertebrate pallium is subdivided into subdivisions homologous to the hippocampus, neocortex, piriform cortex, and amygdala, in a one-to-one manner. We review the rationales of major propositions of pallial homology and identify the source of the discrepancies behind different hypotheses. We consider that a source of discrepancies is the prevailing assumption that there is a single "morphotype of the pallial subdivisions" throughout vertebrates. Instead, pallial subdivisions present in different taxa probably evolved independently in each lineage. KEY MESSAGES We encounter discrepancies when we search for a single morphotype of subdivisions across vertebrates. These discrepancies can be resolved by considering that several subdivisions within the pallium were established after the divergence of the different lineages. The differences of pallial organization are especially remarkable between actinopterygians (including teleost fishes) and other vertebrates. Thus, the prevailing notion of a simple one-to-one homology between the mammalian and teleost pallia needs to be reconsidered.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Pierre Estienne
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Solal Bloch
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| |
Collapse
|
10
|
Jeong I, Andreassen SN, Hoang L, Poulain M, Seo Y, Park HC, Fürthauer M, MacAulay N, Jurisch-Yaksi N. The evolutionarily conserved choroid plexus contributes to the homeostasis of brain ventricles in zebrafish. Cell Rep 2024; 43:114331. [PMID: 38843394 DOI: 10.1016/j.celrep.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Søren N Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Morgane Poulain
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway.
| |
Collapse
|
11
|
Zabegalov KN, Costa FV, Kolesnikova TO, de Abreu MS, Petersen EV, Yenkoyan KB, Kalueff AV. Can we gain translational insights into the functional roles of cerebral cortex from acortical rodent and naturally acortical zebrafish models? Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110964. [PMID: 38354895 DOI: 10.1016/j.pnpbp.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Cerebral cortex is found only in mammals and is particularly prominent and developed in humans. Various rodent models with fully or partially ablated cortex are commonly used to probe the role of cortex in brain functions and its multiple subcortical projections, including pallium, thalamus and the limbic system. Various rodent models are traditionally used to study the role of cortex in brain functions. A small teleost fish, the zebrafish (Danio rerio), has gained popularity in neuroscience research, and albeit (like other fishes) lacking cortex, its brain performs well some key functions (e.g., memory, consciousness and motivation) with complex, context-specific and well-defined behaviors. Can rodent and zebrafish models help generate insights into the role of cortex in brain functions, and dissect its cortex-specific (vs. non-cortical) functions? To address this conceptual question, here we evaluate brain functionality in intact vs. decorticated rodents and further compare it in the zebrafish, a naturally occurring acortical species. Overall, comparing cortical and acortical rodent models with naturally acortical zebrafish reveals both distinct and overlapping contributions of neocortex and 'precortical' zebrafish telencephalic regions to higher brain functions. Albeit morphologically different, mammalian neocortex and fish pallium may possess more functional similarities than it is presently recognized, calling for further integrative research utilizing both cortical and decorticated/acortical vertebrate model organisms.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan; Life Improvement by Future Technologies (LIFT) Center, LLC, Moscow, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | | | | | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia; Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
12
|
Hiraki-Kajiyama T, Miyasaka N, Ando R, Wakisaka N, Itoga H, Onami S, Yoshihara Y. An atlas and database of neuropeptide gene expression in the adult zebrafish forebrain. J Comp Neurol 2024; 532:e25619. [PMID: 38831653 DOI: 10.1002/cne.25619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.
Collapse
Affiliation(s)
- Towako Hiraki-Kajiyama
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Laboratory of Molecular Ethology, Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Reiko Ando
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Wakisaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hiroya Itoga
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Life Science Data Sharing Unit, RIKEN Information R&D and Strategy Headquarters, Kobe, Hyogo, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
13
|
Blanco I, Caccavano A, Wu JY, Vicini S, Glasgow E, Conant K. Coupling of Sharp Wave Events between Zebrafish Hippocampal and Amygdala Homologs. J Neurosci 2024; 44:e1467232024. [PMID: 38508712 PMCID: PMC11044098 DOI: 10.1523/jneurosci.1467-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.
Collapse
Affiliation(s)
- Ismary Blanco
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Adam Caccavano
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Jian-Young Wu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057
| | - Eric Glasgow
- Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
14
|
Muscò A, Martini D, Digregorio M, Broccoli V, Andreazzoli M. Shedding a Light on Dark Genes: A Comparative Expression Study of PRR12 Orthologues during Zebrafish Development. Genes (Basel) 2024; 15:492. [PMID: 38674426 PMCID: PMC11050278 DOI: 10.3390/genes15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Haploinsufficiency of the PRR12 gene is implicated in a human neuro-ocular syndrome. Although identified as a nuclear protein highly expressed in the embryonic mouse brain, PRR12 molecular function remains elusive. This study explores the spatio-temporal expression of zebrafish PRR12 co-orthologs, prr12a and prr12b, as a first step to elucidate their function. In silico analysis reveals high evolutionary conservation in the DNA-interacting domains for both orthologs, with significant syntenic conservation observed for the prr12b locus. In situ hybridization and RT-qPCR analyses on zebrafish embryos and larvae reveal distinct expression patterns: prr12a is expressed early in zygotic development, mainly in the central nervous system, while prr12b expression initiates during gastrulation, localizing later to dopaminergic telencephalic and diencephalic cell clusters. Both transcripts are enriched in the ganglion cell and inner neural layers of the 72 hpf retina, with prr12b widely distributed in the ciliary marginal zone. In the adult brain, prr12a and prr12b are found in the cerebellum, amygdala and ventral telencephalon, which represent the main areas affected in autistic patients. Overall, this study suggests PRR12's potential involvement in eye and brain development, laying the groundwork for further investigations into PRR12-related neurobehavioral disorders.
Collapse
Affiliation(s)
- Alessia Muscò
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Davide Martini
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Matteo Digregorio
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20132 Milan, Italy
| | | |
Collapse
|
15
|
Watanabe S. Analysis of visual discrimination in Japanese eel (Anguilla japonica). Behav Brain Res 2024; 463:114916. [PMID: 38401603 DOI: 10.1016/j.bbr.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Japanese eels were trained to discriminate between a checkerboard panel and a plain gray panel in a circular pool with three pipes. One of the pipes was open, whereas the others were closed. The correct choice of discriminative stimulus was reinforced by entering the pipe. When the panels were displayed vertically (on the wall), the eels successfully learned discrimination, but they were unable to acquire the task when the panels were presented horizontally (on the floor). Enucleation of the retina impaired discrimination, whereas ablation of the olfactory plates did not. In the second experiment, the eels underwent three tests after discriminative training with vertical stimuli displayed. When plain black or white panels were presented instead of a checkerboard panel, the eels could not discriminate. Thus, the discriminative stimulus must have both black and white components. The eels exhibited a generalization gradient along the fines of the checkerboard. Finally, the pallium was damaged by coagulation, and the eels did not maintain the discrimination after the lesions. The behavioral deficits were classified into successful relearning and no relearning. Damage to the dorso-lateral (DL) or dorso-central (DC) pallium was associated with severe impairment (no relearning), although it was not possible to isolate the particular brain area or combination of brain areas which was required. The DL damage probably causes memory deficits, but the deficits caused by the DC damage might be motor or motivational deficits.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| |
Collapse
|
16
|
Masuda M, Ihara S, Mori N, Koide T, Miyasaka N, Wakisaka N, Yoshikawa K, Watanabe H, Touhara K, Yoshihara Y. Identification of olfactory alarm substances in zebrafish. Curr Biol 2024; 34:1377-1389.e7. [PMID: 38423017 DOI: 10.1016/j.cub.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Escaping from danger is one of the most fundamental survival behaviors for animals. Most freshwater fishes display olfactory alarm reactions in which an injured fish releases putative alarm substances from the skin to notify its shoaling company about the presence of danger. Here, we identified two small compounds in zebrafish skin extract, designated as ostariopterin and daniol sulfate. Ostariopterin is a pterin derivative commonly produced in many freshwater fishes belonging to the Ostariophysi superorder. Daniol sulfate is a novel sulfated bile alcohol specifically present in the Danio species, including zebrafish. Ostariopterin and daniol sulfate activate distinct glomeruli in the olfactory bulb. Zebrafish display robust alarm reactions, composed of darting, freezing, and bottom dwelling, only when they are concomitantly stimulated with ostariopterin and daniol sulfate. These results demonstrate that the fish alarm reaction is driven through a coincidence detection mechanism of the two compounds along the olfactory neural circuitry.
Collapse
Affiliation(s)
- Miwa Masuda
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, RIKEN Center for Brain Science, Saitama 351-0198, Japan; ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan
| | - Sayoko Ihara
- ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan; Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Mori
- Laboratory of Organic Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsuya Koide
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Noriko Wakisaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Keiichi Yoshikawa
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hidenori Watanabe
- Laboratory of Organic Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan; Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, RIKEN Center for Brain Science, Saitama 351-0198, Japan; ERATO Touhara Chemosensory Signal Project, JST, Tokyo 113-8657, Japan.
| |
Collapse
|
17
|
Folgueira M, Clarke JDW. Telencephalic eversion in embryos and early larvae of four teleost species. Evol Dev 2024; 26:e12474. [PMID: 38425004 DOI: 10.1111/ede.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.
Collapse
Affiliation(s)
- Mónica Folgueira
- Departamento de Bioloxía, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
18
|
Anneser L, Satou C, Hotz HR, Friedrich RW. Molecular organization of neuronal cell types and neuromodulatory systems in the zebrafish telencephalon. Curr Biol 2024; 34:298-312.e4. [PMID: 38157860 PMCID: PMC10808507 DOI: 10.1016/j.cub.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The function of neuronal networks is determined not only by synaptic connectivity but also by neuromodulatory systems that broadcast information via distributed connections and volume transmission. To understand the molecular constraints that organize neuromodulatory signaling in the telencephalon of adult zebrafish, we used transcriptomics and additional approaches to delineate cell types, to determine their phylogenetic conservation, and to map the expression of marker genes at high granularity. The combinatorial expression of GPCRs and cell-type markers indicates that all neuronal cell types are subject to modulation by multiple monoaminergic systems and distinct combinations of neuropeptides. Individual cell types were associated with multiple (typically >30) neuromodulatory signaling networks but expressed only a few diagnostic GPCRs at high levels, suggesting that different neuromodulatory systems act in combination, albeit with unequal weights. These results provide a detailed map of cell types and brain areas in the zebrafish telencephalon, identify core components of neuromodulatory networks, highlight the cell-type specificity of neuropeptides and GPCRs, and begin to decipher the logic of combinatorial neuromodulation.
Collapse
Affiliation(s)
- Lukas Anneser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Chie Satou
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
19
|
Tibi M, Biton Hayun S, Hochgerner H, Lin Z, Givon S, Ophir O, Shay T, Mueller T, Segev R, Zeisel A. A telencephalon cell type atlas for goldfish reveals diversity in the evolution of spatial structure and cell types. SCIENCE ADVANCES 2023; 9:eadh7693. [PMID: 37910612 PMCID: PMC10619943 DOI: 10.1126/sciadv.adh7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Teleost fish form the largest group of vertebrates and show a tremendous variety of adaptive behaviors, making them critically important for the study of brain evolution and cognition. The neural basis mediating these behaviors remains elusive. We performed a systematic comparative survey of the goldfish telencephalon. We mapped cell types using single-cell RNA sequencing and spatial transcriptomics, resulting in de novo molecular neuroanatomy parcellation. Glial cells were highly conserved across 450 million years of evolution separating mouse and goldfish, while neurons showed diversity and modularity in gene expression. Specifically, somatostatin interneurons, famously interspersed in the mammalian isocortex for local inhibitory input, were curiously aggregated in a single goldfish telencephalon nucleus but molecularly conserved. Cerebral nuclei including the striatum, a hub for motivated behavior in amniotes, had molecularly conserved goldfish homologs. We suggest elements of a hippocampal formation across the goldfish pallium. Last, aiding study of the teleostan everted telencephalon, we describe substantial molecular similarities between goldfish and zebrafish neuronal taxonomies.
Collapse
Affiliation(s)
- Muhammad Tibi
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Stav Biton Hayun
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Zhige Lin
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Thomas Mueller
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
20
|
Hamilton TJ, Tresguerres M, Kwan GT, Szaskiewicz J, Franczak B, Cyronak T, Andersson AJ, Kline DI. Effects of ocean acidification on dopamine-mediated behavioral responses of a coral reef damselfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162860. [PMID: 36931527 DOI: 10.1016/j.scitotenv.2023.162860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
We investigated whether CO2-induced ocean acidification (OA) affects dopamine receptor-dependent behavior in bicolor damselfish (Stegastes partitus). Damselfish were kept in aquaria receiving flow through control (pH ~ 8.03; pCO2 ~ 384 μatm) or OA (pH ~ 7.64; CO2 ~ 1100 μatm) seawater at a rate of 1 L min-1. Despite this relatively fast flow rate, fish respiration further acidified the seawater in both control (pH ~7.88; pCO2 ~ 595 μatm) and OA (pH ~7.55; pCO2 ~ 1450 μatm) fish-holding aquaria. After five days of exposure, damselfish locomotion, boldness, anxiety, and aggression were assessed using a battery of behavioral tests using automated video analysis. Two days later, these tests were repeated following application of the dopamine D1 receptor agonist SKF 38393. OA-exposure induced ceiling anxiety levels that were significantly higher than in control damselfish, and SKF 38393 increased anxiety in control damselfish to a level not significantly different than that of OA-exposed damselfish. Additionally, SKF 38393 decreased locomotion and increased boldness in control damselfish but had no effect in OA-exposed damselfish, suggesting an alteration in activity of dopaminergic pathways that regulate behavior under OA conditions. These results indicate that changes in dopamine D1 receptor function affects fish behavior during exposure to OA. However, subsequent measurements of seawater sampled using syringes during the daytime (~3-4 pm local time) from crevasses in coral reef colonies, which are used as shelter by damselfish, revealed an average pH of 7.73 ± 0.03 and pCO2 of 925.8 ± 62.2 μatm; levels which are comparable to Representative Concentration Pathway (RCP) 8.5 predicted end-of-century mean OA levels in the open ocean. Further studies considering the immediate environmental conditions experienced by fish as well as individual variability and effect size are required to understand potential implications of the observed OA-induced behavioral effects on damselfish fitness in the wild.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Fisheries Resources Division, Southwest Fisheries Sciences Center, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Joshua Szaskiewicz
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Brian Franczak
- Department of Mathematics and Statistics, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Tyler Cyronak
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30460
| | - Andreas J Andersson
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David I Kline
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panamá, Panama
| |
Collapse
|
21
|
Esancy K, Conceicao LL, Curtright A, Tran T, Condon L, Lecamp B, Dhaka A. A novel small molecule, AS1, reverses the negative hedonic valence of noxious stimuli. BMC Biol 2023; 21:69. [PMID: 37013580 PMCID: PMC10071644 DOI: 10.1186/s12915-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Pain is the primary reason people seek medical care, with chronic pain affecting ~ 20% of people in the USA. However, many existing analgesics are ineffective in treating chronic pain, while others (e.g., opioids) have undesirable side effects. Here, we describe the screening of a small molecule library using a thermal place aversion assay in larval zebrafish to identify compounds that alter aversion to noxious thermal stimuli and could thus serve as potential analgesics. RESULTS From our behavioral screen, we discovered a small molecule, Analgesic Screen 1 (AS1), which surprisingly elicited attraction to noxious painful heat. When we further explored the effects of this compound using other behavioral place preference assays, we found that AS1 was similarly able to reverse the negative hedonic valence of other painful (chemical) and non-painful (dark) aversive stimuli without being inherently rewarding. Interestingly, targeting molecular pathways canonically associated with analgesia did not replicate the effects of AS1. A neuronal imaging assay revealed that clusters of dopaminergic neurons, as well as forebrain regions located in the teleost equivalent of the basal ganglia, were highly upregulated in the specific context of AS1 and aversive heat. Through a combination of behavioral assays and pharmacological manipulation of dopamine circuitry, we determined that AS1 acts via D1 dopamine receptor pathways to elicit this attraction to noxious stimuli. CONCLUSIONS Together, our results suggest that AS1 relieves an aversion-imposed "brake" on dopamine release, and that this unique mechanism may provide valuable insight into the development of new valence-targeting analgesic drugs, as well as medications for other valence-related neurological conditions, such as anxiety and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Lais L Conceicao
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Thanh Tran
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Bryce Lecamp
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, USA.
| |
Collapse
|
22
|
Pandey S, Moyer AJ, Thyme SB. A single-cell transcriptome atlas of the maturing zebrafish telencephalon. Genome Res 2023; 33:658-671. [PMID: 37072188 PMCID: PMC10234298 DOI: 10.1101/gr.277278.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
The zebrafish telencephalon is composed of highly specialized subregions that regulate complex behaviors such as learning, memory, and social interactions. The transcriptional signatures of the neuronal cell types in the telencephalon and the timeline of their emergence from larva to adult remain largely undescribed. Using an integrated analysis of single-cell transcriptomes of approximately 64,000 cells obtained from 6-day-postfertilization (dpf), 15-dpf, and adult telencephalon, we delineated nine main neuronal cell types in the pallium and eight in the subpallium and nominated novel marker genes. Comparing zebrafish and mouse neuronal cell types revealed both conserved and absent types and marker genes. Mapping of cell types onto a spatial larval reference atlas created a resource for anatomical and functional studies. Using this multiage approach, we discovered that although most neuronal subtypes are established early in the 6-dpf fish, some emerge or expand in number later in development. Analyzing the samples from each age separately revealed further complexity in the data, including several cell types that expand substantially in the adult forebrain and do not form clusters at the larval stages. Together, our work provides a comprehensive transcriptional analysis of the cell types in the zebrafish telencephalon and a resource for dissecting its development and function.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| | - Anna J Moyer
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| |
Collapse
|
23
|
Lozano D, López JM, Jiménez S, Morona R, Ruíz V, Martínez A, Moreno N. Expression of SATB1 and SATB2 in the brain of bony fishes: what fish reveal about evolution. Brain Struct Funct 2023; 228:921-945. [PMID: 37002478 PMCID: PMC10147777 DOI: 10.1007/s00429-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
AbstractSatb1 and Satb2 belong to a family of homeodomain proteins with highly conserved functional and regulatory mechanisms and posttranslational modifications in evolution. However, although their distribution in the mouse brain has been analyzed, few data exist in other non-mammalian vertebrates. In the present study, we have analyzed in detail the sequence of SATB1 and SATB2 proteins and the immunolocalization of both, in combination with additional neuronal markers of highly conserved populations, in the brain of adult specimens of different bony fish models at key evolutionary points of vertebrate diversification, in particular including representative species of sarcopterygian and actinopterygian fishes. We observed a striking absence of both proteins in the pallial region of actinopterygians, only detected in lungfish, the only sarcopterygian fish. In the subpallium, including the amygdaloid complex, or comparable structures, we identified that the detected expressions of SATB1 and SATB2 have similar topologies in the studied models. In the caudal telencephalon, all models showed significant expression of SATB1 and SATB2 in the preoptic area, including the acroterminal domain of this region, where the cells were also dopaminergic. In the alar hypothalamus, all models showed SATB2 but not SATB1 in the subparaventricular area, whereas in the basal hypothalamus the cladistian species and the lungfish presented a SATB1 immunoreactive population in the tuberal hypothalamus, also labeled with SATB2 in the latter and colocalizing with the gen Orthopedia. In the diencephalon, all models, except the teleost fish, showed SATB1 in the prethalamus, thalamus and pretectum, whereas only lungfish showed also SATB2 in prethalamus and thalamus. At the midbrain level of actinopterygian fish, the optic tectum, the torus semicircularis and the tegmentum harbored populations of SATB1 cells, whereas lungfish housed SATB2 only in the torus and tegmentum. Similarly, the SATB1 expression in the rhombencephalic central gray and reticular formation was a common feature. The presence of SATB1 in the solitary tract nucleus is a peculiar feature only observed in non-teleost actinopterygian fishes. At these levels, none of the detected populations were catecholaminergic or serotonergic. In conclusion, the protein sequence analysis revealed a high degree of conservation of both proteins, especially in the functional domains, whereas the neuroanatomical pattern of SATB1 and SATB2 revealed significant differences between sarcopterygians and actinopterygians, and these divergences may be related to the different functional involvement of both in the acquisition of various neural phenotypes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Víctor Ruíz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ana Martínez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain.
| |
Collapse
|
24
|
Reemst K, Shahin H, Shahar OD. Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Front Cell Dev Biol 2023; 11:1120984. [PMID: 36968211 PMCID: PMC10034119 DOI: 10.3389/fcell.2023.1120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Research on learning and memory formation at the level of neural networks, as well as at the molecular level, is challenging due to the immense complexity of the brain. The zebrafish as a genetically tractable model organism can overcome many of the current challenges of studying molecular mechanisms of learning and memory formation. Zebrafish have a translucent, smaller and more accessible brain than that of mammals, allowing imaging of the entire brain during behavioral manipulations. Recent years have seen an extensive increase in published brain research describing the use of zebrafish for the study of learning and memory. Nevertheless, due to the complexity of the brain comprising many neural cell types that are difficult to isolate, it has been difficult to elucidate neural networks and molecular mechanisms involved in memory formation in an unbiased manner, even in zebrafish larvae. Therefore, data regarding the identity, location, and intensity of nascent proteins during memory formation is still sparse and our understanding of the molecular networks remains limited, indicating a need for new techniques. Here, we review recent progress in establishing learning paradigms for zebrafish and the development of methods to elucidate neural and molecular networks of learning. We describe various types of learning and highlight directions for future studies, focusing on molecular mechanisms of long-term memory formation and promising state-of-the-art techniques such as cell-type-specific metabolic labeling.
Collapse
Affiliation(s)
- Kitty Reemst
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Heba Shahin
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Or David Shahar
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
- *Correspondence: Or David Shahar,
| |
Collapse
|
25
|
Bodas DS, Maduskar A, Kaniganti T, Wakhloo D, Balasubramanian A, Subhedar N, Ghose A. Convergent Energy State-Dependent Antagonistic Signaling by Cocaine- and Amphetamine-Regulated Transcript (CART) and Neuropeptide Y (NPY) Modulates the Plasticity of Forebrain Neurons to Regulate Feeding in Zebrafish. J Neurosci 2023; 43:1089-1110. [PMID: 36599680 PMCID: PMC9962846 DOI: 10.1523/jneurosci.2426-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.
Collapse
Affiliation(s)
- Devika S Bodas
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aditi Maduskar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Tarun Kaniganti
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Debia Wakhloo
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| |
Collapse
|
26
|
Current State of Modeling Human Psychiatric Disorders Using Zebrafish. Int J Mol Sci 2023; 24:ijms24043187. [PMID: 36834599 PMCID: PMC9959486 DOI: 10.3390/ijms24043187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Psychiatric disorders are highly prevalent brain pathologies that represent an urgent, unmet biomedical problem. Since reliable clinical diagnoses are essential for the treatment of psychiatric disorders, their animal models with robust, relevant behavioral and physiological endpoints become necessary. Zebrafish (Danio rerio) display well-defined, complex behaviors in major neurobehavioral domains which are evolutionarily conserved and strikingly parallel to those seen in rodents and humans. Although zebrafish are increasingly often used to model psychiatric disorders, there are also multiple challenges with such models as well. The field may therefore benefit from a balanced, disease-oriented discussion that considers the clinical prevalence, the pathological complexity, and societal importance of the disorders in question, and the extent of its detalization in zebrafish central nervous system (CNS) studies. Here, we critically discuss the use of zebrafish for modeling human psychiatric disorders in general, and highlight the topics for further in-depth consideration, in order to foster and (re)focus translational biological neuroscience research utilizing zebrafish. Recent developments in molecular biology research utilizing this model species have also been summarized here, collectively calling for a wider use of zebrafish in translational CNS disease modeling.
Collapse
|
27
|
Social Enhancement of Adult Neurogenesis in Zebrafish is Not Regulated by Cortisol. Neuroscience 2023; 509:51-62. [PMID: 36400322 DOI: 10.1016/j.neuroscience.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
In Mammals adult neurogenesis is influenced by environmental conditions, and the glucocorticoid hormones (GC) play a major role in this regulation. In contrast in fish, the study of the effects of cortisol on the regulation of environmental driven adult neurogenesis has produced conflicting results. While in some species elevated cortisol levels impair cell proliferation, in others, it promotes cell proliferation and differentiation. This lack of consistency may be explained by methodological differences across studies, namely in the stimuli and/or cortisol treatments used. Here, we tested the effects of the social environment on adult neurogenesis, considering a positive and a negative social context, and different durations of cortisol exposure. We hypothesise that there is an interaction between the valence of the social environment and cortisol, such that elevated acute cortisol experienced during social interactions only have a detrimental effect on neurogenesis in negative social contexts. Therefore, fish were exposed to a positive (conspecific shoal) or negative (predator) social experience, and the interaction between the valence of the social context and cortisol exposure (acute and chronic) was tested. Our results indicate that adult neurogenesis is modulated by the social environment, with the number of newly generated cells being dependent on the valence of the social information (positive > negative). These effects were independent of cortisol, either for acute or chronic exposure, highlighting the social environment as a key factor in the modulation of cell proliferation in the adult zebrafish brain, and rejecting a role for cortisol in this modulation.
Collapse
|
28
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
29
|
Afferent and efferent connections of the nucleus posterior tuberis in the firemouth cichlid, Thorichthys meeki. Neurosci Res 2023; 186:10-20. [PMID: 36007624 DOI: 10.1016/j.neures.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
The nucleus posterior tuberis (NPT) in teleost fishes, also called posterior tuberal nucleus, is situated in the posterior tuberculum of the diencephalon. It is fused across the midline and densely packed with small cells, but little is known about its connections. In this study, the afferent and efferent connections of the NPT were examined by means of tracer applications of the carbocyanine dye DiI in the firemouth cichlid, Thorichthys meeki. Retrogradely labeled cell bodies were found in the corpus mamillare and nucleus periventricularis of the inferior lobe; and anterogradely labeled terminal fibers were detected in the medial zone of the dorsal telencephalon, medial part of the nucleus lateralis tuberis, dorsal posterior thalamic nucleus, torus lateralis, medial part of the nucleus diffusus of the inferior lobe, and tectum opticum. All these connections show an ipsilateral tendency. The NPT is apparently a significant relay nucleus in the diencephalon of T. meeki, and possibly involved in a variety of feedback circuits. It seems also to be part of a tecto-hypothalamo-telencephalic pathway in cichlids.
Collapse
|
30
|
Lucon-Xiccato T, Tomain M, D’Aniello S, Bertolucci C. bdnf loss affects activity, sociability, and anxiety-like behaviour in zebrafish. Behav Brain Res 2023; 436:114115. [DOI: 10.1016/j.bbr.2022.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
31
|
Deryckere A, Woych J, Jaeger ECB, Tosches MA. Molecular Diversity of Neuron Types in the Salamander Amygdala and Implications for Amygdalar Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2022; 98:61-75. [PMID: 36574764 PMCID: PMC10096051 DOI: 10.1159/000527899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 12/28/2022]
Abstract
The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.
Collapse
Affiliation(s)
- Astrid Deryckere
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | - Jamie Woych
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | - Eliza C. B. Jaeger
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | | |
Collapse
|
32
|
Wullimann MF. The Neuromeric/Prosomeric Model in Teleost Fish Neurobiology. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:336-360. [PMID: 35728561 PMCID: PMC9808694 DOI: 10.1159/000525607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
The neuromeric/prosomeric model has been rejuvenated by Puelles and Rubenstein [Trends Neurosci. 1993;16(11):472-9]. Here, its application to the (teleostean) fish brain is detailed, beginning with a historical account. The second part addresses three main issues with particular interest for fish neuroanatomy and looks at the impact of the neuromeric model on their understanding. The first one is the occurrence of four early migrating forebrain areas (M1 through M4) in teleosts and their comparative interpretation. The second issue addresses the complex development and neuroanatomy of the teleostean alar and basal hypothalamus. The third topic is the vertebrate dopaminergic system, with the focus on some teleostean peculiarities. Most of the information will be coming from zebrafish studies, although the general ductus is a comparative one. Throughout the manuscript, comparative developmental and organizational aspects of the teleostean amygdala are discussed. One particular focus is cellular migration streams into the medial amygdala.
Collapse
Affiliation(s)
- Mario F. Wullimann
- Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München (LMU Munich), Martinsried, Germany,Department Genes-Circuits-Behavior, Max-Planck-Institute for Biological Intelligence (i.F.), Martinsried, Germany,*Mario F. Wullimann,
| |
Collapse
|
33
|
Abstract
Social buffering of stress refers to the effect of a social partner in reducing the cortisol or corticosterone response to a stressor. It has been well studied in mammals, particularly those that form pair bonds. Recent studies on fishes suggest that social buffering of stress also occurs in solitary species, gregarious species that form loose aggregations and species with well-defined social structures and bonds. The diversity of social contexts in which stress buffering has been observed in fishes holds promise to shed light on the evolution of this phenomenon among vertebrates. Equally, the relative simplicity of the fish brain is advantageous for identifying the neural mechanisms responsible for social buffering. In particular, fishes have a relatively small and simple forebrain but the brain regions that are key to social buffering, including the social behaviour network, the amygdala and the hypothalamic-pituitary-adrenal/interrenal axis, are functionally conserved across vertebrates. Thus, we suggest that insight into the mechanistic and evolutionary underpinnings of stress buffering in vertebrates can be gained from the study of social buffering of stress in fishes.
Collapse
Affiliation(s)
- Kathleen M. Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Brittany Bard
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
34
|
Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA, Napoli AJ, Burgess HA, Wollmuth LP, Sirotkin HI. Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism 2022; 13:38. [PMID: 36138431 PMCID: PMC9502958 DOI: 10.1186/s13229-022-00516-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD), like many neurodevelopmental disorders, has complex and varied etiologies. Advances in genome sequencing have identified multiple candidate genes associated with ASD, including dozens of missense and nonsense mutations in the NMDAR subunit GluN2B, encoded by GRIN2B. NMDARs are glutamate-gated ion channels with key synaptic functions in excitatory neurotransmission. How alterations in these proteins impact neurodevelopment is poorly understood, in part because knockouts of GluN2B in rodents are lethal. METHODS Here, we use CRISPR-Cas9 to generate zebrafish lacking GluN2B (grin2B-/-). Using these fish, we run an array of behavioral tests and perform whole-brain larval imaging to assay developmental roles and functions of GluN2B. RESULTS We demonstrate that zebrafish GluN2B displays similar structural and functional properties to human GluN2B. Zebrafish lacking GluN2B (grin2B-/-) surprisingly survive into adulthood. Given the prevalence of social deficits in ASD, we assayed social preference in the grin2B-/- fish. Wild-type fish develop a strong social preference by 3 weeks post fertilization. In contrast, grin2B-/- fish at this age exhibit significantly reduced social preference. Notably, the lack of GluN2B does not result in a broad disruption of neurodevelopment, as grin2B-/- larvae do not show alterations in spontaneous or photic-evoked movements, are capable of prey capture, and exhibit learning. Whole-brain imaging of grin2B-/- larvae revealed reduction of an inhibitory neuron marker in the subpallium, a region linked to ASD in humans, but showed that overall brain size and E/I balance in grin2B-/- is comparable to wild type. LIMITATIONS Zebrafish lacking GluN2B, while useful in studying developmental roles of GluN2B, are unlikely to model nuanced functional alterations of human missense mutations that are not complete loss of function. Additionally, detailed mammalian homologies for larval zebrafish brain subdivisions at the age of whole-brain imaging are not fully resolved. CONCLUSIONS We demonstrate that zebrafish completely lacking the GluN2B subunit of the NMDAR, unlike rodent models, are viable into adulthood. Notably, they exhibit a highly specific deficit in social behavior. As such, this zebrafish model affords a unique opportunity to study the roles of GluN2B in ASD etiologies and establish a disease-relevant in vivo model for future studies.
Collapse
Affiliation(s)
- Josiah D Zoodsma
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Emma J Keegan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Gabrielle R Moody
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Ashwin A Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Amalia J Napoli
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
35
|
Hong X, Chen R, Zhang L, Yan L, Xin J, Li J, Zha J. Long-Term Exposure to SSRI Citalopram Induces Neurotoxic Effects in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12380-12390. [PMID: 35985052 DOI: 10.1021/acs.est.2c01514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Residual antidepressants are of increasing concern worldwide, yet critical information on their long-term neurotoxic impacts on nontarget aquatic animals is lacking. Here, we investigated the long-term effects (from 0 to 150 days postfertilization) of the selective serotonin reuptake inhibitor citalopram (0.1-100 μg/L) on motor function, learning, and memory in zebrafish over two generations and explored the reversibility of the effect in F1 larvae. Unlike F0+ larvae, we found that F1+ larvae displayed decreased sensorimotor performance when continuously exposed to citalopram at 100 μg/L. No adverse effects were found in F1- larvae after they were transferred to a clean medium. Whole-mount immunofluorescence assays suggested that the motor impairments were related to axonal projections of the spinal motor neurons (MNs). For F0+ adults, long-term citalopram exposure mainly caused male-specific declines in motor, learning, and memory performance. Analysis of serotonergic and cholinergic MNs revealed no significant changes in the male zebrafish spinal cord. In contrast, the number of glutamatergic spinal MNs decreased, likely associated with the impairment of motor function. Additionally, treatment with 100 μg/L citalopram significantly reduced the number of dopaminergic neurons, but no significant neuronal apoptosis was observed in the adult telencephalon. Overall, this study provides neurobehavioral evidence and novel insights into the neurotoxic mechanisms of long-term citalopram exposure and may facilitate the assessment of the environmental and health risks posed by citalopram-containing antidepressant drugs.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Xin
- Department of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci 2022; 12:brainsci12091147. [PMID: 36138883 PMCID: PMC9496774 DOI: 10.3390/brainsci12091147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex disorders which can be associated with many comorbidities and exhibit multifactorial-dependent phenotypes. An important characteristic is represented by the early onset of the symptoms, during childhood or young adulthood, with a great impact on the socio-cognitive functioning of the affected individuals. Thus, the aim of our review is to describe and to argue the necessity of early developmental stages zebrafish models, focusing on NDDs, especially autism spectrum disorders (ASD) and also on schizophrenia. The utility of the animal models in NDDs or schizophrenia research remains quite controversial. Relevant discussions can be opened regarding the specific characteristics of the animal models and the relationship with the etiologies, physiopathology, and development of these disorders. The zebrafish models behaviors displayed as early as during the pre-hatching embryo stage (locomotor activity prone to repetitive behavior), and post-hatching embryo stage, such as memory, perception, affective-like, and social behaviors can be relevant in ASD and schizophrenia research. The neurophysiological processes impaired in both ASD and schizophrenia are generally highly conserved across all vertebrates. However, the relatively late individual development and conscious social behavior exhibited later in the larval stage are some of the most important limitations of these model animal species.
Collapse
|
37
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals’ cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors’ behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
|
38
|
Alba‐González A, Folgueira M, Castro A, Anadón R, Yáñez J. Distribution of neurogranin-like immunoreactivity in the brain and sensory organs of the adult zebrafish. J Comp Neurol 2022; 530:1569-1587. [PMID: 35015905 PMCID: PMC9415131 DOI: 10.1002/cne.25297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.
Collapse
Affiliation(s)
- Anabel Alba‐González
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Antonio Castro
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Julián Yáñez
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| |
Collapse
|
39
|
Mueller T. The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:321-335. [PMID: 35760049 DOI: 10.1159/000525669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The amygdala, a complex array of nuclei in the forebrain, controls emotions and emotion-related behaviors in vertebrates. Current research aims to understand the amygdala's evolution in ray-finned fish such as zebrafish because of the region's relevance for social behavior and human psychiatric disorders. Clear-cut molecular definitions of the amygdala and its evolutionary-developmental relationship to the one of mammals are critical for zebrafish models of affective disorders and autism. In this review, I argue that the prosomeric model and a focus on the olfactory system's organization provide ideal tools for discovering deep ancestral relationships between the emotional systems of zebrafish and mammals. The review's focus is on the "extended amygdala," which refers to subpallial amygdaloid territories including the central (autonomic) and the medial (olfactory) amygdala required for reproductive and social behaviors. Amphibians, sauropsids, and lungfish share many characteristics with the basic amygdala ground plan of mammals, as molecular and hodological studies have shown. Further exploration of the evolution of the amygdala in basally derived fish vertebrates requires researchers to test these "tetrapod-based" concepts. Historically, this has been a daunting task because the forebrains of basally derived fish vertebrates look very different from those of more familiar tetrapod ones. An extreme case are ray-finned fish (Actinopterygii) like zebrafish because their telencephalon develops through a distinct outward-growing process called eversion. To this day, scientists have struggled to determine how the everted telencephalon compares to non-actinopterygian vertebrates. Using the teleost zebrafish as a genetic model, comparative neurologists began to establish quantifiable molecular definitions that allow direct comparisons between ray-finned fish and tetrapods. In this review, I discuss how the most recent discovery of the zebrafish amygdala ground plan offers an opportunity to identify the developmental constraints of amygdala evolution and function. In addition, I explain how the zebrafish prethalamic eminence (PThE) topologically relates to the medial amygdala proper and the nucleus of the lateral olfactory tract (nLOT). In fact, I consider these previously misinterpreted olfactory structures the most critical missing evolutionary links between actinopterygian and tetrapod amygdalae. In this context, I will also explain why recognizing both the PThE and the nLOT is crucial to understanding the telencephalon eversion. Recognizing these anatomical hallmarks allows direct comparisons of the amygdalae of zebrafish and mammals. Ultimately, the new concepts of the zebrafish amygdala will overcome current dogmas and reach a holistic understanding of amygdala circuits of cognition and emotion in actinopterygians.
Collapse
Affiliation(s)
- Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
40
|
Turner KJ, Hawkins TA, Henriques PM, Valdivia LE, Bianco IH, Wilson SW, Folgueira M. A Structural Atlas of the Developing Zebrafish Telencephalon Based on Spatially-Restricted Transgene Expression. Front Neuroanat 2022; 16:840924. [PMID: 35721460 PMCID: PMC9198225 DOI: 10.3389/fnana.2022.840924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Zebrafish telencephalon acquires an everted morphology by a two-step process that occurs from 1 to 5 days post-fertilization (dpf). Little is known about how this process affects the positioning of discrete telencephalic cell populations, hindering our understanding of how eversion impacts telencephalic structural organization. In this study, we characterize the neurochemistry, cycle state and morphology of an EGFP positive (+) cell population in the telencephalon of Et(gata2:EGFP)bi105 transgenic fish during eversion and up to 20dpf. We map the transgene insertion to the early-growth-response-gene-3 (egr3) locus and show that EGFP expression recapitulates endogenous egr3 expression throughout much of the pallial telencephalon. Using the gata2:EGFPbi105 transgene, in combination with other well-characterized transgenes and structural markers, we track the development of various cell populations in the zebrafish telencephalon as it undergoes the morphological changes underlying eversion. These datasets were registered to reference brains to form an atlas of telencephalic development at key stages of the eversion process (1dpf, 2dpf, and 5dpf) and compared to expression in adulthood. Finally, we registered gata2:EGFPbi105 expression to the Zebrafish Brain Browser 6dpf reference brain (ZBB, see Marquart et al., 2015, 2017; Tabor et al., 2019), to allow comparison of this expression pattern with anatomical data already in ZBB.
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Thomas A. Hawkins
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Pedro M. Henriques
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Leonardo E. Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Isaac H. Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- *Correspondence: Stephen W. Wilson,
| | - Mónica Folgueira
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Department of Biology, University of A Coruña, A Coruña, Spain
- Mónica Folgueira,
| |
Collapse
|
41
|
Jiménez S, Moreno N. Analysis of the Pallial Amygdala in Anurans: Derivatives and Cellular Components. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:309-320. [PMID: 35613549 DOI: 10.1159/000525018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022]
Abstract
The amygdaloid complex plays a crucial role in socio-emotional conduct, learning, survival, and reproductive behaviors. It is constituted by a set of nuclei presenting a great cellular heterogeneity and embryonic origin diversity (pallial, subpallial, and even extra-telencephalic). In the last two decades, the tetrapartite pallial paradigm defined the pallial portion of the amygdala as a derivative of the lateroventral pallium. However, the pallial conception is currently being reanalyzed and one of these new proposals is to consider the mouse pallial amygdala as a radial histogenetic domain independent from the rest of the pallial subdomains. In anamniotes, and particularly in amphibian anurans, the amygdaloid complex was described as a region with pallial and subpallial components similar to those described in amniotes. In the present study carried out in Xenopus laevis, after a detailed analysis of the orientation of the amygdalar radial glia, we propose an additional amygdala derived from the pallial region. It is independent of the vomeronasal/olfactory amygdaloid nuclei described in anurans, expresses markers such as Lhx9 present in the mammalian pallial amygdala, and lacks Otp-expressing cells, detected in the adjacent medial amygdala. Further studies are needed to clarify the functional involvement of this area, and whether it is a derivative of the adjacent ventral pallium or an independent pallial domain.
Collapse
Affiliation(s)
- Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| |
Collapse
|
42
|
Lal P, Kawakami K. Integrated Behavioral, Genetic and Brain Circuit Visualization Methods to Unravel Functional Anatomy of Zebrafish Amygdala. Front Neuroanat 2022; 16:837527. [PMID: 35692259 PMCID: PMC9174433 DOI: 10.3389/fnana.2022.837527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
The mammalian amygdala is a complex forebrain structure consisting of a heterogeneous group of nuclei derived from the pallial and subpallial telencephalon. It plays a critical role in a broad range of behaviors such as emotion, cognition, and social behavior; within the amygdala each nucleus has a distinct role in these behavioral processes. Topological, hodological, molecular, and functional studies suggest the presence of an amygdala-like structure in the zebrafish brain. It has been suggested that the pallial amygdala homolog corresponds to the medial zone of the dorsal telencephalon (Dm) and the subpallial amygdala homolog corresponds to the nuclei in the ventral telencephalon located close to and topographically basal to Dm. However, these brain regions are broad and understanding the functional anatomy of the zebrafish amygdala requires investigating the role of specific populations of neurons in brain function and behavior. In zebrafish, the highly efficient Tol2 transposon-mediated transgenesis method together with the targeted gene expression by the Gal4-UAS system has been a powerful tool in labeling, visualizing, and manipulating the function of specific cell types in the brain. The transgenic resource combined with neuronal activity imaging, optogenetics, pharmacology, and quantitative behavioral analyses enables functional analyses of neuronal circuits. Here, we review earlier studies focused on teleost amygdala anatomy and function and discuss how the transgenic resource and tools can help unravel the functional anatomy of the zebrafish amygdala.
Collapse
Affiliation(s)
- Pradeep Lal
- Integrative Fish Biology Group, Climate and Environment Department, NORCE Norwegian Research Centre, Bergen, Norway
- *Correspondence: Pradeep Lal
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Koichi Kawakami
| |
Collapse
|
43
|
Metwalli AH, Abellán A, Freixes J, Pross A, Desfilis E, Medina L. Distinct Subdivisions in the Transition Between Telencephalon and Hypothalamus Produce Otp and Sim1 Cells for the Extended Amygdala in Sauropsids. Front Neuroanat 2022; 16:883537. [PMID: 35645737 PMCID: PMC9133795 DOI: 10.3389/fnana.2022.883537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Based on the coexpression of the transcription factors Foxg1 and Otp, we recently identified in the mouse a new radial embryonic division named the telencephalon-opto-hypothalamic (TOH) domain that produces the vast majority of glutamatergic neurons found in the medial extended amygdala. To know whether a similar division exists in other amniotes, we carried out double labeling of Foxg1 and Otp in embryonic brain sections of two species of sauropsids, the domestic chicken (Gallus gallus domesticus), and the long-tailed lacertid lizard (Psammodromus algirus). Since in mice Otp overlaps with the transcription factor Sim1, we also analyzed the coexpression of Foxg1 and Sim1 and compared it to the glutamatergic cell marker VGLUT2. Our results showed that the TOH domain is also present in sauropsids and produces subpopulations of Otp/Foxg1 and Sim1/Foxg1 cells for the medial extended amygdala. In addition, we found Sim1/Foxg1 cells that invade the central extended amygdala, and other Otp and Sim1 cells not coexpressing Foxg1 that invade the extended and the pallial amygdala. These different Otp and Sim1 cell subpopulations, with or without Foxg1, are likely glutamatergic. Our results highlight the complex divisional organization of telencephalon-hypothalamic transition, which contributes to the heterogeneity of amygdalar cells. In addition, our results open new venues to study further the amygdalar cells derived from different divisions around this transition zone and their relationship to other cells derived from the pallium or the subpallium.
Collapse
Affiliation(s)
- Alek H. Metwalli
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Júlia Freixes
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- *Correspondence: Loreta Medina,
| |
Collapse
|
44
|
Yi W, Mueller T, Rücklin M, Richardson MK. Developmental neuroanatomy of the rosy bitterling Rhodeus ocellatus (Teleostei: Cypriniformes)-A microCT study. J Comp Neurol 2022; 530:2132-2153. [PMID: 35470436 PMCID: PMC9245027 DOI: 10.1002/cne.25324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022]
Abstract
Bitterlings are carp-like teleost fish (Cypriniformes: Acheilanathidae) known for their specialized brood parasitic lifestyle. Bitterling embryos, in fact, develop inside the gill chamber of their freshwater mussel hosts. However, little is known about how their parasitic lifestyle affects brain development in comparison to nonparasitic species. Here, we document the development of the brain of the rosy bitterling, Rhodeus ocellatus, at four embryonic stages of 165, 185, 210, 235 hours postfertilization (hpf) using micro-computed tomography (microCT). Focusing on developmental regionalization and brain ventricular organization, we relate the development of the brain divisions to those described for zebrafish using the prosomeric model as a reference paradigm. Segmentation and three-dimensional visualization of the ventricular system allowed us to identify changes in the longitudinal brain axis as a result of cephalic flexure during development. The results show that during early embryonic and larval development, histological differentiation, tissue boundaries, periventricular proliferation zones, and ventricular spaces are all detectable by microCT. The results of this study visualized with differential CT profiles are broadly consistent with comparable histological studies, and with the genoarchitecture of teleosts like the zebrafish. Compared to the zebrafish, our study identifies distinct developmental heterochronies in the rosy bitterling, such as a precocious development of the inferior lobe.
Collapse
Affiliation(s)
- Wenjing Yi
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Thomas Mueller
- Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands.,Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Martin Rücklin
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Michael K Richardson
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| |
Collapse
|
45
|
Suryanarayana SM, Robertson B, Grillner S. The neural bases of vertebrate motor behaviour through the lens of evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200521. [PMID: 34957847 PMCID: PMC8710883 DOI: 10.1098/rstb.2020.0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The primary driver of the evolution of the vertebrate nervous system has been the necessity to move, along with the requirement of controlling the plethora of motor behavioural repertoires seen among the vast and diverse vertebrate species. Understanding the neural basis of motor control through the perspective of evolution, mandates thorough examinations of the nervous systems of species in critical phylogenetic positions. We present here, a broad review of studies on the neural motor infrastructure of the lamprey, a basal and ancient vertebrate, which enjoys a unique phylogenetic position as being an extant representative of the earliest group of vertebrates. From the central pattern generators in the spinal cord to the microcircuits of the pallial cortex, work on the lamprey brain over the years, has provided detailed insights into the basic organization (a bauplan) of the ancestral vertebrate brain, and narrates a compelling account of common ancestry of fundamental aspects of the neural bases for motion control, maintained through half a billion years of vertebrate evolution. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Shreyas M. Suryanarayana
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brita Robertson
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| |
Collapse
|
46
|
Pessoa L, Medina L, Desfilis E. Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200534. [PMID: 34957851 PMCID: PMC8710886 DOI: 10.1098/rstb.2020.0534] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mental terms-such as perception, cognition, action, emotion, as well as attention, memory, decision-making-are epistemically sterile. We support our thesis based on extensive comparative neuroanatomy knowledge of the organization of the vertebrate brain. Evolutionary pressures have moulded the central nervous system to promote survival. Careful characterization of the vertebrate brain shows that its architecture supports an enormous amount of communication and integration of signals, especially in birds and mammals. The general architecture supports a degree of 'computational flexibility' that enables animals to cope successfully with complex and ever-changing environments. Here, we suggest that the vertebrate neuroarchitecture does not respect the boundaries of standard mental terms, and propose that neuroscience should aim to unravel the dynamic coupling between large-scale brain circuits and complex, naturalistic behaviours. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Loreta Medina
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
47
|
Kenney JW, Steadman PE, Young O, Shi MT, Polanco M, Dubaishi S, Covert K, Mueller T, Frankland PW. A 3D adult zebrafish brain atlas (AZBA) for the digital age. eLife 2021; 10:69988. [PMID: 34806976 PMCID: PMC8639146 DOI: 10.7554/elife.69988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023] Open
Abstract
Zebrafish have made significant contributions to our understanding of the vertebrate brain and the neural basis of behavior, earning a place as one of the most widely used model organisms in neuroscience. Their appeal arises from the marriage of low cost, early life transparency, and ease of genetic manipulation with a behavioral repertoire that becomes more sophisticated as animals transition from larvae to adults. To further enhance the use of adult zebrafish, we created the first fully segmented three-dimensional digital adult zebrafish brain atlas (AZBA). AZBA was built by combining tissue clearing, light-sheet fluorescence microscopy, and three-dimensional image registration of nuclear and antibody stains. These images were used to guide segmentation of the atlas into over 200 neuroanatomical regions comprising the entirety of the adult zebrafish brain. As an open source, online (azba.wayne.edu), updatable digital resource, AZBA will significantly enhance the use of adult zebrafish in furthering our understanding of vertebrate brain function in both health and disease.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, United States.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Patrick E Steadman
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Olivia Young
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Meng Ting Shi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Maris Polanco
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Saba Dubaishi
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Kristopher Covert
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, United States
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Yáñez J, Folgueira M, Lamas I, Anadón R. The organization of the zebrafish pallium from a hodological perspective. J Comp Neurol 2021; 530:1164-1194. [PMID: 34697803 DOI: 10.1002/cne.25268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
We studied the connections (connectome) of the adult zebrafish pallium using carbocyanine dye tracing and ancillary anatomical methods. The everted zebrafish pallium (dorsal telencephalic area, D) is composed of several major zones (medial, lateral, dorsal, central, anterior, and posterior) distinguishable by their topography, cytoarchitecture, immunohistochemistry, and genoarchitecture. Our comprehensive study reveals poor interconnectivity between these pallial areas, especially between medial (Dm), lateral/dorsal (Dl, Dd), and posterior (Dp) regions. This suggests that the zebrafish pallium has dedicated modules for different neural processes. Pallial connections with extrapallial regions also show compartmental organization. Major extratelencephalic afferents come from preglomerular nuclei (to Dl, Dd, and Dm), posterior tuberal nucleus (to Dm), and lateral recess nucleus (to Dl). The subpallial (ventral, V) zones dorsal Vv, Vd, and Vs, considered homologues of the striatum, amygdala, and pallidum, are mainly afferent to Dl/Dd and Dp. Regarding the efferent pathways, they also appear characteristic of each pallial region. Rostral Dm projects to the dorsal entopeduncular nucleus. Dp is interconnected with the olfactory bulbs. The central region (Dc) defined here receives mainly projections from Dl-Dd and projects toward the pretectum and optic tectum, connections, which help to delimiting Dc. The connectome of the adult pallium revealed here complements extant studies on the neuroanatomical organization of the brain, and may be useful for neurogenetic studies performed during early stages of development. The connectome of the zebrafish pallium was also compared with the pallial connections reported in other teleosts, a large group showing high pallial diversity.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| | - Ibán Lamas
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Rodríguez-Moldes I, Quintana-Urzainqui I, Santos-Durán GN, Ferreiro-Galve S, Pereira-Guldrís S, Candás M, Mazan S, Candal E. Identifying Amygdala-Like Territories in Scyliorhinus canicula (Chondrichthyan): Evidence for a Pallial Amygdala. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:283-304. [PMID: 34662880 DOI: 10.1159/000519221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark Scyliorhinus canicula, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as Tbr1, Lhx9, Emx1, and Dlx2. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (Tbr1 and Lhx9 expressions in an Emx1 negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Idoia Quintana-Urzainqui
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gabriel Nicolás Santos-Durán
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Susana Ferreiro-Galve
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Santiago Pereira-Guldrís
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Candás
- REBUSC-Marine Biology Station of A Graña, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls, France
| | - Eva Candal
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
50
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|