1
|
Wang X, Kang J, Li X, Wu P, Huang Y, Duan Y, Feng J, Wang J. Codonopsis pilosula water extract delays D-galactose-induced aging of the brain in mice by activating autophagy and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118016. [PMID: 38462027 DOI: 10.1016/j.jep.2024.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.
Collapse
Affiliation(s)
- Xuewen Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jiachao Kang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xuechan Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Pingmin Wu
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yong Huang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yongqiang Duan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Rothman DL, Behar KL, Dienel GA. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 2024; 168:555-591. [PMID: 36089566 DOI: 10.1111/jnc.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
4
|
Salcedo C, Pozo Garcia V, García-Adán B, Ameen AO, Gegelashvili G, Waagepetersen HS, Freude KK, Aldana BI. Increased glucose metabolism and impaired glutamate transport in human astrocytes are potential early triggers of abnormal extracellular glutamate accumulation in hiPSC-derived models of Alzheimer's disease. J Neurochem 2024; 168:822-840. [PMID: 38063257 DOI: 10.1111/jnc.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 05/19/2024]
Abstract
Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.
Collapse
Affiliation(s)
- Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Pozo Garcia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernat García-Adán
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georgi Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Wang H, Li Z, Cao G, Tang L, Zhou R, Li C, Zhang J, Wu H, Li X, Yang H. Targeted Energy Metabolomics Combined with Spatial Metabolomics Study on the Efficacy of Guhong Injection Against Cerebral Ischemia Reperfusion. Mol Neurobiol 2023; 60:5533-5547. [PMID: 37328677 DOI: 10.1007/s12035-023-03403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Optimizing the metabolic phenotype to improve cerebral function is critical for treatment of cerebral ischemia-reperfusion (I/R) injury. Guhong injection (GHI), which comprised safflower extract and aceglutamide, is widely prescribed in Chinese medicine for the treatment of cerebrovascular diseases. In this study, a combination of LC-QQQ-MS and MALDI-MSI were utilized to explore tissue-specific metabolic alterations in the brain of I/R, as well as to evaluate the therapeutic effect of GHI. Pharmacological evaluation demonstrated that GHI can significantly improve infarction rate, neurological deficit, cerebral blood flow, and neuronal damage in I/R rats. Based on LC-QQQ-MS, 23 energy metabolites were found to be significantly altered in the I/R group compared to the sham group (P < 0.05). After GHI treatment, 12 metabolites, including G6P, TPP, NAD, citrate, succinate, malate, ATP, GTP, GDP, ADP, NADP, and FMN showed a significant tendency of returning to baseline values (P < 0.05). Based on MALDI-MSI, 4 metabolites in glycolysis and TCA, 4 metabolites in nucleic acid metabolism, 4 amino acid metabolites, and 6 metabolites were discovered and compared between the different groups in the four special regions of cortex, hippocampus, hypothalamus, and striatum. Parts of these were found to have significant changes after I/R in the special brain region, and were regulated by GHI. The study provides comprehensive and detailed information for specific metabolic reprogramming of brain tissue in rats with I/R, and the therapeutic effect of GHI. Schema describing the discovery strategies of integrated LC-MS and MALDI-MSI to identify cerebral ischemia reperfusion metabolic reprogramming and GHI therapeutic effects.
Collapse
Affiliation(s)
- Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Zhenkun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China
| | - Caifeng Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing, 100700, China.
| | - Xianyu Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
9
|
Gondáš E, Kráľová Trančíková A, Šofranko J, Majerová P, Lučanský V, Dohál M, Kováč A, Murín R. The presence of pyruvate carboxylase in the human brain and its role in the survival of cultured human astrocytes. Physiol Res 2023; 72:403-414. [PMID: 37449752 PMCID: PMC10669001 DOI: 10.33549/physiolres.935026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/28/2023] [Indexed: 08/26/2023] Open
Abstract
Pyruvate carboxylase (PC) is a mitochondrial, biotin-containing enzyme catalyzing the ATP-dependent synthesis of oxaloacetate from pyruvate and bicarbonate, with a critical anaplerotic role in sustaining the brain metabolism. Based on the studies performed on animal models, PC expression was assigned to be glia-specific. To study PC distribution among human neural cells, we probed the cultured human astrocytes and brain sections with antibodies against PC. Additionally, we tested the importance of PC for the viability of cultured human astrocytes by applying the PC inhibitor 3-chloropropane-1,2-diol (CPD). Our results establish the expression of PC in mitochondria of human astrocytes in culture and brain tissue and also into a subpopulation of the neurons in situ. CPD negatively affected the viability of astrocytes in culture, which could be partially reversed by supplementing media with malate, 2-oxoglutarate, citrate, or pyruvate. The provided data estimates PC expression in human astrocytes and neurons in human brain parenchyma. Furthermore, the enzymatic activity of PC is vital for sustaining the viability of cultured astrocytes.
Collapse
Affiliation(s)
- E Gondáš
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dias C, Fernandes E, Barbosa RM, Laranjinha J, Ledo A. Astrocytic aerobic glycolysis provides lactate to support neuronal oxidative metabolism in the hippocampus. Biofactors 2023; 49:875-886. [PMID: 37070143 DOI: 10.1002/biof.1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Under physiological conditions, the energetic demand of the brain is met by glucose oxidation. However, ample evidence suggests that lactate produced by astrocytes through aerobic glycolysis may also be an oxidative fuel, highlighting the metabolic compartmentalization between neural cells. Herein, we investigate the roles of glucose and lactate in oxidative metabolism in hippocampal slices, a model that preserves neuron-glia interactions. To this purpose, we used high-resolution respirometry to measure oxygen consumption (O2 flux) at the whole tissue level and amperometric lactate microbiosensors to evaluate the concentration dynamics of extracellular lactate. We found that lactate is produced from glucose and transported to the extracellular space by neural cells in hippocampal tissue. Under resting conditions, endogenous lactate was used by neurons to support oxidative metabolism, which was boosted by exogenously added lactate even in the presence of excess glucose. Depolarization of hippocampal tissue with high K+ significantly increased the rate of oxidative phosphorylation, which was accompanied by a transient decrease in extracellular lactate concentration. Both effects were reverted by inhibition of the neuronal lactate transporter, monocarboxylate transporters 2 (MCT2), supporting the concept of an inward flux of lactate to neurons to fuel oxidative metabolism. We conclude that astrocytes are the main source of extracellular lactate which is used by neurons to fuel oxidative metabolism, both under resting and stimulated conditions.
Collapse
Affiliation(s)
- Cândida Dias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Eliana Fernandes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Fernández de la Torre M, Fiuza-Luces C, Laine-Menéndez S, Delmiro A, Arenas J, Martín MÁ, Lucia A, Morán M. Pathophysiology of Cerebellar Degeneration in Mitochondrial Disorders: Insights from the Harlequin Mouse. Int J Mol Sci 2023; 24:10973. [PMID: 37446148 DOI: 10.3390/ijms241310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
By means of a proteomic approach, we assessed the pathways involved in cerebellar neurodegeneration in a mouse model (Harlequin, Hq) of mitochondrial disorder. A differential proteomic profile study (iTRAQ) was performed in cerebellum homogenates of male Hq and wild-type (WT) mice 8 weeks after the onset of clear symptoms of ataxia in the Hq mice (aged 5.2 ± 0.2 and 5.3 ± 0.1 months for WT and Hq, respectively), followed by a biochemical validation of the most relevant changes. Additional groups of 2-, 3- and 6-month-old WT and Hq mice were analyzed to assess the disease progression on the proteins altered in the proteomic study. The proteomic analysis showed that beyond the expected deregulation of oxidative phosphorylation, the cerebellum of Hq mice showed a marked astroglial activation together with alterations in Ca2+ homeostasis and neurotransmission, with an up- and downregulation of GABAergic and glutamatergic neurotransmission, respectively, and the downregulation of cerebellar "long-term depression", a synaptic plasticity phenomenon that is a major player in the error-driven learning that occurs in the cerebellar cortex. Our study provides novel insights into the mechanisms associated with cerebellar degeneration in the Hq mouse model, including a complex deregulation of neuroinflammation, oxidative phosphorylation and glutamate, GABA and amino acids' metabolism.
Collapse
Affiliation(s)
- Miguel Fernández de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Aitor Delmiro
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Bioquímica Clínica, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| | - Miguel Ángel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Genética, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, 28670 Madrid, Spain
- Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| |
Collapse
|
12
|
Banerjee R, Raj A, Potdar C, Pal PK, Yadav R, Kamble N, Holla V, Datta I. Astrocytes Differentiated from LRRK2-I1371V Parkinson's-Disease-Induced Pluripotent Stem Cells Exhibit Similar Yield but Cell-Intrinsic Dysfunction in Glutamate Uptake and Metabolism, ATP Generation, and Nrf2-Mediated Glutathione Machinery. Cells 2023; 12:1592. [PMID: 37371062 PMCID: PMC10297190 DOI: 10.3390/cells12121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signaling pathways. It also has several pathological mutant-variants, and their incidences show ethnicity biases and drug-response differences with expression in dopaminergic-neurons and astrocytes. Here, we aimed to assess the cell-intrinsic effect of the LRRK2-I1371V mutant variant, prevalent in East Asian populations, on astrocyte yield and biology, involving Nrf2-mediated glutathione machinery, glutamate uptake and metabolism, and ATP generation in astrocytes derived from LRRK2-I1371V PD patient iPSCs and independently confirmed in LRRK2-I1371V-overexpressed U87 cells. Astrocyte yield (GFAP-immunopositive) was comparable between LRRK2-I1371V and healthy control (HC) populations; however, the astrocytic capability to mitigate oxidative stress in terms of glutathione content was significantly reduced in the mutant astrocytes, along with a reduction in the gene expression of the enzymes involved in glutathione machinery and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Simultaneously, a significant decrease in glutamate uptake was observed in LRRK2-I1371V astrocytes, with lower gene expression of glutamate transporters SLC1A2 and SLC1A3. The reduction in the protein expression of SLC1A2 was also directly confirmed. Enzymes catalyzing the generation of γ glutamyl cysteine (precursor of glutathione) from glutamate and the metabolism of glutamate to enter the Krebs cycle (α-ketoglutaric acid) were impaired, with significantly lower ATP generation in LRRK2-I1371V astrocytes. De novo glutamine synthesis via the conversion of glutamate to glutamine was also affected, indicating glutamate metabolism disorder. Our data demonstrate for the first time that the mutation in the LRRK2-I1371V allele causes significant astrocytic dysfunction with respect to Nrf2-mediated antioxidant machinery, AT -generation, and glutamate metabolism, even with comparable astrocyte yields.
Collapse
Affiliation(s)
- Roon Banerjee
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Aishwarya Raj
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Vikram Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| |
Collapse
|
13
|
Lu W, Hou Q, Zhang J, Zhang W. Targeted energy metabolomics analysis of postmortem pork in an in vitro model as influenced by protein S-nitrosylation. Meat Sci 2023; 197:109073. [PMID: 36525918 DOI: 10.1016/j.meatsci.2022.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
For exploring the effect of protein S-nitrosylation on the energy metabolism of early postmortem pork (within 24 h postmortem), the six Longissimus thoracis (LT) muscle homogenates were treated with nitric oxide donor (NOR-3, (±)-(E)-4-Ethyl-2-(E)-hydroxyimino-5-nitro-3-hexenamide), nitric oxide synthase (NOS) inhibitor (L-NAME, Nω-nitro-L-arginine methyl ester hydrochloride) and control (0.1 M K2HPO4, pH 7.4) in the in vitro buffer system for 24 h, respectively. The western blotting result showed that NOR-3 treatment led to a greater level of protein S-nitrosylation (p < 0.05). However, S-nitrosylation levels had no significant difference between L-NAME and control groups (p > 0.05). In addition, results showed that 16 significantly differential energy metabolites were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and clearly separated among three groups in the principal component analysis. Four pathways (glycolysis, tricarboxylic acid cycle, purine metabolism and pentose phosphate pathway) related to energy metabolism were significantly influenced by different levels of protein S-nitrosylation. Furthermore, the correlation analysis of metabolites demonstrated that metabolites were in dynamic equilibrium with each other. These results indicate that protein S-nitrosylation can participate in and regulate energy metabolism postmortem pork through glycolysis and tricarboxylic acid (TCA) cycle.
Collapse
Affiliation(s)
- Wenwei Lu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Hou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Wieser M, Beckmann KM, Kutter APN, Mauri N, Richter H, Zölch N, Bektas RN. Ketamine administration in idiopathic epileptic and healthy control dogs: Can we detect differences in brain metabolite response with spectroscopy? Front Vet Sci 2023; 9:1093267. [PMID: 36686158 PMCID: PMC9853535 DOI: 10.3389/fvets.2022.1093267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction In recent years ketamine has increasingly become the focus of multimodal emergency management for epileptic seizures. However, little is known about the effect of ketamine on brain metabolites in epileptic patients. Magnetic resonance spectroscopy (MRS) is a non-invasive technique to estimate brain metabolites in vivo. Our aim was to measure the effect of ketamine on thalamic metabolites in idiopathic epileptic (IE) dogs using 3 Tesla MRS. We hypothesized that ketamine would increase the glutamine-glutamate (GLX)/creatine ratio in epileptic dogs with and without antiseizure drug treatment, but not in control dogs. Furthermore, we hypothesized that no different responses after ketamine administration in other measured brain metabolite ratios between the different groups would be detected. Methods In this controlled prospective experimental trial IE dogs with or without antiseizure drug treatment and healthy client-owned relatives of the breeds Border Collie and Greater Swiss Mountain Dog, were included. After sedation with butorphanol, induction with propofol and maintenance with sevoflurane in oxygen and air, a single voxel MRS at the level of the thalamus was performed before and 2 min after intravenous administration of 1 mg/kg ketamine. An automated data processing spectral fitting linear combination model algorithm was used to estimate all commonly measured metabolite ratios. A mixed ANOVA with the independent variables ketamine administration and group allocation was performed for all measured metabolites. A p < 0.05 was considered statistically significant. Results Twelve healthy control dogs, 10 untreated IE and 12 treated IE dogs were included. No significant effects for GLX/creatine were found. However, increased glucose/creatine ratios were found (p < 0.001) with no effect of group allocation. Furthermore, increases in the GABA/creatine ratio were found in IEU dogs. Discussion MRS was able to detect changes in metabolite/creatine ratios after intravenous administration of 1 mg/kg ketamine in dogs and no evidence was found that excitatory effects are induced in the thalamus. Although it is beyond the scope of this study to investigate the antiseizure potential of ketamine in dogs, results of this research suggest that the effect of ketamine on the brain metabolites could be dependent on the concentrations of brain metabolites before administration.
Collapse
Affiliation(s)
- Manuela Wieser
- Section of Anesthesiology, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland,*Correspondence: Manuela Wieser ✉
| | | | - Annette P. N. Kutter
- Section of Anesthesiology, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| | - Nico Mauri
- Department of Clinical Diagnostics and Services, Clinic for Diagnostic Imaging, University of Zurich, Zurich, Switzerland,Vetimage Diagnostik AG, Oberentfelden, Switzerland
| | - Henning Richter
- Department of Clinical Diagnostics and Services, Clinic for Diagnostic Imaging, University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Rima Nadine Bektas
- Section of Anesthesiology, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
The activity of living cells is necessarily dependent on the amount of available bioenergy. In T cells, the latter is mainly derived from ATP, a molecular energy "coin" generated by one of several metabolic processes that differ in their ability to satisfy energy demand. Thus, whereas naïve or quiescent T cells efficiently utilize oxidative phosphorylation to generate ATP, T cells subjected to antigenic stimulation followed by clonal expansion and cytokine production meet their increased need for energy by supplementing ATP generation by oxidative phosphorylation with ATP generation by glycolysis. Yet additional need for ATP can be met by other basic biologic sources of energy such as glutamine, an amino acid that is metabolized through a process called glutaminolysis to result in end products that flows into the TCA cycle and augment ATP generation by oxidative phosphorylation. It is now possible to track the dominant energy supplying processes (i.e., the ATP generation process) in differentiating or activated T cells in a real-time manner. Here, we provide one element of such tracking by describing protocols for the assessment of the contribution of glutaminolysis to overall ATP production within different T cell subsets. © 2022 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Evaluation of the role of glutaminolysis during T cell activation/differentiation Basic Protocol 2: Evaluation of the role of glutaminolysis in T cell responses utilizing glutaminolysis inhibitors Basic Protocol 3: Evaluation of the effect of glutaminolysis on cellular oxidative phosphorylation/glycolysis.
Collapse
Affiliation(s)
- Masaki Tajima
- Integrated High-Order Regulatory Systems Division, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Zhang S, Xie L, Cui Y, Carone BR, Chen Y. Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance. Biomolecules 2022; 12:biom12081130. [PMID: 36009024 PMCID: PMC9405875 DOI: 10.3390/biom12081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The detection of differentially expressed genes (DEGs) is one of most important computational challenges in the analysis of single-cell RNA sequencing (scRNA-seq) data. However, due to the high heterogeneity and dropout noise inherent in scRNAseq data, challenges in detecting DEGs exist when using a single distribution of gene expression levels, leaving much room to improve the precision and robustness of current DEG detection methods. Here, we propose the use of a new method, DEGman, which utilizes several possible diverse distributions in combination with Bhattacharyya distance. DEGman can automatically select the best-fitting distributions of gene expression levels, and then detect DEGs by permutation testing of Bhattacharyya distances of the selected distributions from two cell groups. Compared with several popular DEG analysis tools on both large-scale simulation data and real scRNA-seq data, DEGman shows an overall improvement in the balance of sensitivity and precision. We applied DEGman to scRNA-seq data of TRAP; Ai14 mouse neurons to detect fear-memory-related genes that are significantly differentially expressed in neurons with and without fear memory. DEGman detected well-known fear-memory-related genes and many novel candidates. Interestingly, we found 25 DEGs in common in five neuron clusters that are functionally enriched for synaptic vesicles, indicating that the coupled dynamics of synaptic vesicles across in neurons plays a critical role in remote memory formation. The proposed method leverages the advantage of the use of diverse distributions in DEG analysis, exhibiting better performance in analyzing composite scRNA-seq datasets in real applications.
Collapse
Affiliation(s)
- Shaoqiang Zhang
- Department of Computer Science, College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Linjuan Xie
- Department of Computer Science, College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yaxuan Cui
- Department of Computer Science, College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Benjamin R. Carone
- Department of Biology and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Yong Chen
- Department of Biology and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
- Correspondence: ; Tel.: +1-856-256-4500
| |
Collapse
|
17
|
Guignard D, Canlet C, Tremblay-Franco M, Chaillou E, Gautier R, Gayrard V, Picard-Hagen N, Schroeder H, Jourdan F, Zalko D, Viguié C, Cabaton NJ. Gestational exposure to bisphenol A induces region-specific changes in brain metabolomic fingerprints in sheep. ENVIRONMENT INTERNATIONAL 2022; 165:107336. [PMID: 35700571 DOI: 10.1016/j.envint.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Collapse
Affiliation(s)
- Davy Guignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Elodie Chaillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Henri Schroeder
- Université de Lorraine, INSERM U1256, NGERE, Nutrition Génétique et Exposition aux Risques Environnementaux, 54000 Nancy, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicolas J Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
18
|
Liu J, Feng X, Wang Y, Xia X, Zheng JC. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front Cell Neurosci 2022; 16:892497. [PMID: 35755777 PMCID: PMC9231434 DOI: 10.3389/fncel.2022.892497] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes, the most numerous glial cells in the brain, play an important role in preserving normal neural functions and mediating the pathogenesis of neurological disorders. Recent studies have shown that astrocytes are GABAceptive and GABAergic astrocytes express GABAA receptors, GABAB receptors, and GABA transporter proteins to capture and internalize GABA. GABAceptive astrocytes thus influence both inhibitory and excitatory neurotransmission by controlling the levels of extracellular GABA. Furthermore, astrocytes synthesize and release GABA to directly regulate brain functions. In this review, we highlight recent research progresses that support astrocytes as GABAceptive and GABAergic cells. We also summarize the roles of GABAceptive and GABAergic astrocytes that serve as an inhibitory node in the intercellular communication in the brain. Besides, we discuss future directions for further expanding our knowledge on the GABAceptive and GABAergic astrocyte signaling.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xuanran Feng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Effects of Chronic Inhalation of Electronic Cigarette Vapor Containing Nicotine on Neurobehaviors and Pre/Postsynaptic Neuron Markers. TOXICS 2022; 10:toxics10060338. [PMID: 35736946 PMCID: PMC9229830 DOI: 10.3390/toxics10060338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
Nicotine-exposed animal models exhibit neurobehavioral changes linked to impaired synaptic plasticity. Previous studies highlighted alterations in neurotransmitter levels following nicotine exposure. Vesicular glutamate transporter (VGLUT1) and vesicular gamma-aminobutyric acid (GABA) transporter (VGAT) are essential for the transport and release of glutamate and GABA, respectively, from presynaptic neurons into synapses. In our work, an e-cigarette device was used to deliver vapor containing nicotine to C57BL/6J mice for four weeks. Novel object recognition, locomotion, and Y-maze tests were performed to investigate the behavioral parameters. Protein studies were conducted to study the hippocampal expression of VGLUT1, VGAT, and postsynaptic density protein 95 (PSD95) as well as brain cytokine markers. Long-term memory and locomotion tests revealed that e-cigarette aerosols containing nicotine modulated recognition memory and motor behaviors. We found that vapor exposure increased VGLUT1 expression and decreased VGAT expression in the hippocampus. No alterations were found in PSD95 expression. We observed that vapor-containing nicotine exposure altered certain brain cytokines such as IFNβ-1 and MCP-5. Our work provides evidence of an association between neurobehavioral changes and altered hippocampal VGLUT1 and VGAT expression in mice exposed to e-cigarette vapors containing nicotine. Such exposure was also associated with altered neurobehaviors, which might affect neurodegenerative diseases.
Collapse
|
20
|
Rothman DL, Dienel GA, Behar KL, Hyder F, DiNuzzo M, Giove F, Mangia S. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J Cereb Blood Flow Metab 2022; 42:844-860. [PMID: 34994222 PMCID: PMC9254033 DOI: 10.1177/0271678x211064399] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last two decades, it has been established that glucose metabolic fluxes in neurons and astrocytes are proportional to the rates of the glutamate/GABA-glutamine neurotransmitter cycles in close to 1:1 stoichiometries across a wide range of functional energy demands. However, there is presently no mechanistic explanation for these relationships. We present here a theoretical meta-analysis that tests whether the brain's unique compartmentation of glycogen metabolism in the astrocyte and the requirement for neuronal glucose homeostasis lead to the observed stoichiometries. We found that blood-brain barrier glucose transport can be limiting during activation and that the energy demand could only be met if glycogenolysis supports neuronal glucose metabolism by replacing the glucose consumed by astrocytes, a mechanism we call Glucose Sparing by Glycogenolysis (GSG). The predictions of the GSG model are in excellent agreement with a wide range of experimental results from rats, mice, tree shrews, and humans, which were previously unexplained. Glycogenolysis and glucose sparing dictate the energy available to support neuronal activity, thus playing a fundamental role in brain function in health and disease.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kevin L Behar
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy.,Fondazione Santa Lucia IRCCS, Rome, RM, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Yakovlev A, Manzhurtsev A, Menshchikov P, Ublinskiy M, Melnikov I, Kupriyanov D, Akhadov T, Semenova N. Functional Magnetic Resonance Spectroscopy Study of Total Glutamate and Glutamine in the Human Visual Cortex Activated by a Short Stimulus. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F. Perception is associated with the brain's metabolic response to sensory stimulation. eLife 2022; 11:71016. [PMID: 35225790 PMCID: PMC9038191 DOI: 10.7554/elife.71016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
| | - Marta Moraschi
- Department of Radiation Oncology, University of Rome, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
23
|
Chen P, Lu YH, Lin YH, Wu CP, Tang CK, Wei SC, Wu YL. Deformed wing virus infection affects the neurological function of Apis mellifera by altering extracellular adenosine signaling. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103674. [PMID: 34737063 DOI: 10.1016/j.ibmb.2021.103674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Deformed wing virus (DWV) infection is believed to be closely associated with colony losses of honeybee (Apis mellifera) due to reduced learning and memory of infected bees. The adenosine (Ado) pathway is important for maintaining immunity and memory function in animals, and it enhances antivirus responses by regulating carbohydrate metabolism in insects. Nevertheless, its effect on the memory of invertebrates is not yet clear. This study investigated how the Ado pathway regulates energy metabolism and memory in honeybees following DWV infection. Decreased Ado receptor (Ado-R) expression in the brain of infected bees resulted in a carbohydrate imbalance as well as impairments of glutamate-glutamine (Glu-Gln) cycle and long-term memory. Dietary supplementation with Ado not only increased the brain energy metabolism but also rescued long-term memory loss by upregulating the expression of memory-related genes. The present study demonstrated the regulation of the Ado pathway upon DWV infection and provides insights into the mechanisms underlying energy regulation and the neurological function of honeybees.
Collapse
Affiliation(s)
- Ping Chen
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Carol-P Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
24
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
25
|
Abstract
Metastases represent a major cause of cancer-associated deaths. Despite extensive research, targeting metastasis remains the main obstacle in cancer therapy. Therefore, it is of tremendous importance to elucidate the mechanisms that impinge on the different steps of the metastatic cascade. Metabolic plasticity is a cornerstone of the tumorigenic process that not only enables cancer cells to rapidly proliferate but also thrive and retain vitality. Plasticity of the metabolic networks that wire cancer cells is of utmost importance during the metastatic cascade when cancer cells are at their most vulnerable and have to survive in a panoply of inhospitable environments as they make their journey to form metastatic lesions. Here, we highlight which metabolic processes are known to power metastasis formation and lay the foundation for additional work aimed at discovering regulatory nodes of metabolic plasticity that can be used to target metastatic disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Berezovskaya AS, Tyganov SA, Nikolaeva SD, Naumova AA, Merkulyeva NS, Shenkman BS, Glazova MV. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats. Cell Mol Neurobiol 2021; 41:1549-1561. [PMID: 32683580 DOI: 10.1007/s10571-020-00922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.
Collapse
Affiliation(s)
- Anna S Berezovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia.
| |
Collapse
|
27
|
Mulica P, Grünewald A, Pereira SL. Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective. Front Endocrinol (Lausanne) 2021; 12:668517. [PMID: 34025580 PMCID: PMC8138625 DOI: 10.3389/fendo.2021.668517] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Converging evidence made clear that declining brain energetics contribute to aging and are implicated in the initiation and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Indeed, both pathologies involve instances of hypometabolism of glucose and oxygen in the brain causing mitochondrial dysfunction, energetic failure and oxidative stress. Importantly, recent evidence suggests that astrocytes, which play a key role in supporting neuronal function and metabolism, might contribute to the development of neurodegenerative diseases. Therefore, exploring how the neuro-supportive role of astrocytes may be impaired in the context of these disorders has great therapeutic potential. In the following, we will discuss some of the so far identified features underlining the astrocyte-neuron metabolic crosstalk. Thereby, special focus will be given to the role of mitochondria. Furthermore, we will report on recent advancements concerning iPSC-derived models used to unravel the metabolic contribution of astrocytes to neuronal demise. Finally, we discuss how mitochondrial dysfunction in astrocytes could contribute to inflammatory signaling in neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrycja Mulica
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sandro L. Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
28
|
Bheemanapally K, Ibrahim MMH, Briski KP. HPLC-electrospray ionization-mass spectrometry optimization by high-performance design of experiments for astrocyte glutamine measurement. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4680. [PMID: 33462970 PMCID: PMC7874509 DOI: 10.1002/jms.4680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The amino acid glutamine (Gln) is a likely source of energy in the brain during neuroglucopenia. Effects of glucose deficiency on astrocyte Gln homeostasis remain unclear, as analytical tools of requisite sensitivity for quantification of intracellular levels of this molecule are not currently available. Here, a primary hypothalamic astrocyte culture model was used in conjunction with design of experiments (DOE)-refined high-performance liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) methodology to investigate the hypothesis that glucoprivation alters astrocyte Gln content in a sex-specific manner. Critical mass spectrometric parameters for Gln derivative chromatographic response were identified by comparing the performance of central composite design, Box-Behnken design, and Optimal Design (OD)-A, -D, -I, -Distance, and -Modified Distance DOE models. The outcomes showed that the OD-A-generated response was superior relative to other design outcomes. Forecasted surface plot critical mass spectrometric parameters were maximized by OD-A, OD-Distance, and OD-Modified Distance designs. OD-A produced a high-performance method that yielded experimental run and forecasted surface plot maximal responses. Optimized mass spectrometric analysis of male versus female astrocyte Gln content provides novel evidence that glucoprivation significantly depletes this amino acid in female, but not in male, and that this sex-specific response may involve differential sensitivity to estrogen receptor signaling. This technological advance will facilitate efforts to ascertain how distinctive physiological and pathophysiological stimuli impact astrocyte Gln metabolism in each sex.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, 71201, USA
| |
Collapse
|
29
|
Hsu CH, Lin S, Ho AC, Johnson TD, Wang PC, Scafidi J, Tu TW. Comparison of in vivo and in situ detection of hippocampal metabolites in mouse brain using 1 H-MRS. NMR IN BIOMEDICINE 2021; 34:e4451. [PMID: 33258202 PMCID: PMC8214416 DOI: 10.1002/nbm.4451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
The study of cerebral metabolites relies heavily on detection methods and sample preparation. Animal experiments in vivo require anesthetic agents that can alter brain metabolism, whereas ex vivo experiments demand appropriate fixation methods to preserve the tissue from rapid postmortem degradation. In this study, the metabolic profiles of mouse hippocampi using proton magnetic resonance spectroscopy (1 H-MRS) were compared in vivo and in situ with or without focused beam microwave irradiation (FBMI) fixation. Ten major brain metabolites, including lactate (Lac), N-acetylaspartate (NAA), total choline (tCho), myo-inositol (mIns), glutamine (Gln), glutamate (Glu), aminobutyric acid (GABA), glutathione (GSH), total creatine (tCr) and taurine (Tau), were analyzed using LCModel. After FBMI fixation, the concentrations of Lac, tCho and mIns were comparable with those obtained in vivo under isoflurane, whereas other metabolites were significantly lower. Except for a decrease in NAA and an increase in Tau, all the other metabolites remained stable over 41 hours in FBMI-fixed brains. Without FBMI, the concentrations of mIns (before 2 hours), tCho and GABA were close to those measured in vivo. However, higher Lac (P < .01) and lower NAA, Gln, Glu, GSH, tCr and Tau were observed (P < .01). NAA, Gln, Glu, GSH, tCr and Tau exhibited good temporal stability for at least 20 hours in the unfixed brain, whereas a linear increase of tCho, mIns and GABA was observed. Possible mechanisms of postmortem degradation are discussed. Our results indicate that a proper fixation method is required for in situ detection depending on the targeted metabolites of specific interests in the brain.
Collapse
Affiliation(s)
- Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Ai-Chen Ho
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - T. Derek Johnson
- Center for Neuroscience Research, Department of Neurology, Children’s National Hospital, Washington, DC, USA
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph Scafidi
- Center for Neuroscience Research, Department of Neurology, Children’s National Hospital, Washington, DC, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| |
Collapse
|
30
|
Almeida RF, Nonose Y, Ganzella M, Loureiro SO, Rocha A, Machado DG, Bellaver B, Fontella FU, Leffa DT, Pettenuzzo LF, Venturin GT, Greggio S, da Costa JC, Zimmer ER, Elisabetsky E, Souza DO. Antidepressant-Like Effects of Chronic Guanosine in the Olfactory Bulbectomy Mouse Model. Front Psychiatry 2021; 12:701408. [PMID: 34421682 PMCID: PMC8371253 DOI: 10.3389/fpsyt.2021.701408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Programa de Pós-Graduação em Ciências Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Yasmine Nonose
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Ganzella
- Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samanta Oliveira Loureiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andréia Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Guilhermano Machado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Urruth Fontella
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Attention Deficit Hyperactivity Disorder Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Letícia Ferreira Pettenuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gianina Teribele Venturin
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departament of Pharmacology, UFRGS, Porto Alegre, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
32
|
Ciminelli BM, Menduti G, Benussi L, Ghidoni R, Binetti G, Squitti R, Rongioletti M, Nica S, Novelletto A, Rossi L, Malaspina P. Polymorphic Genetic Markers of the GABA Catabolism Pathway in Alzheimer's Disease. J Alzheimers Dis 2020; 77:301-311. [PMID: 32804142 DOI: 10.3233/jad-200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The compilation of a list of genetic modifiers in Alzheimer's disease (AD) is an open research field. The GABAergic system is affected in several neurological disorders but its role in AD is largely understudied. OBJECTIVE/METHODS As an explorative study, we considered variants in genes of GABA catabolism (ABAT, ALDH5A1, AKR7A2), and APOE in 300 Italian patients and 299 controls. We introduce a recent multivariate method to take into account the individual APOE genotype, thus controlling for the effect of the discrepant allele distributions in cases versus controls. We add a genotype-phenotype analysis based on age at onset and the Mini-Mental State Evaluation score. RESULTS On the background of strongly divergent APOE allele distributions in AD versus controls, two genotypic interactions that represented a subtle but significant peculiarity of the AD cohort emerged. The first is between ABAT and APOE, and the second between some ALDH5A1 genotypes and APOE. Decreased SSADH activity is predicted in AD carriers of APOEɛ4, representing an additional suggestion for increased oxidative damage. CONCLUSION We identified a difference between AD and controls, not in a shift of the allele frequencies at genes of the GABA catabolism pathway, but rather in gene interactions peculiar of the AD cohort. The emerging view is that of a multifactorial contribution to the disease, with a main risk factor (APOE), and additional contributions by the variants here considered. We consider genes of the GABA degradation pathway good candidates as modifiers of AD, contributing to energy impairment in AD brain.
Collapse
Affiliation(s)
| | | | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Sabrina Nica
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
33
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
34
|
Forster YM, Green JL, Khatiwada A, Liberato JL, Narayana Reddy PA, Salvino JM, Bienz S, Bigler L, dos Santos WF, Karklin Fontana AC. Elucidation of the Structure and Synthesis of Neuroprotective Low Molecular Mass Components of the Parawixia bistriata Spider Venom. ACS Chem Neurosci 2020; 11:1573-1596. [PMID: 32343555 DOI: 10.1021/acschemneuro.0c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.
Collapse
Affiliation(s)
- Yvonne M. Forster
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Apeksha Khatiwada
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - José Luiz Liberato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | | | - Joseph M. Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Bienz
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | | | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
35
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK. Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mech Ageing Dev 2020; 189:111248. [PMID: 32339520 DOI: 10.1016/j.mad.2020.111248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Aging is known to affect adversely the corticosterone status and the brain function including cognition. Calorie restricted (CR) diet has been found to improve brain aging. The objective of the present investigation is to study the effect of short-term CR diet without any food deprivation on aging-induced impairment of cognitive function in relation to the corticosterone status and the brain regional GABA system. The result showed that aging-induced deregulation of the brain regional GABA system, increase in plasma and adrenal corticosterone levels and cognitive impairment were attenuated with short-term CR diet supplementation for consecutive 1 and 2 months to the aged (18 and 24 months) rats. But in young rats (4 months) consumption of the same CR diet under similar conditions reversibly affected those above-mentioned parameters. These results, thus suggest that (a) aging down-regulates brain regional GABA system with an up-regulation of corticosterone status and impairment of cognitive function, (b) CR diet consumption improves this aging-induced deregulation of brain regional GABA system, corticosterone status, and cognitive function, (c) these attenuating effects of CR diet are greater with a longer period of consumption but (d) CR diet consumption is harmful to young rats as observed in those parameters.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Mrinal Kanti Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
36
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Robinson MB, Lee ML, DaSilva S. Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions. Neurochem Res 2020; 45:526-540. [PMID: 32002773 DOI: 10.1007/s11064-020-02974-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
In addition to being an amino acid that is incorporated into proteins, glutamate is the most abundant neurotransmitter in the mammalian CNS, the precursor for the inhibitory neurotransmitter γ-aminobutyric acid, and one metabolic step from the tricarboxylic acid cycle intermediate α-ketoglutarate. Extracellular glutamate is cleared by a family of Na+-dependent transporters. These transporters are variably expressed by all cell types in the nervous system, but the bulk of clearance is into astrocytes. GLT-1 and GLAST (also called EAAT2 and EAAT1) mediate this activity and are extremely abundant proteins with their expression enriched in fine astrocyte processes. In this review, we will focus on three topics related to these astrocytic glutamate transporters. First, these transporters co-transport three Na+ ions and a H+ with each molecule of glutamate and counter-transport one K+; they are also coupled to a Cl- conductance. The movement of Na+ is sufficient to cause profound astrocytic depolarization, and the movement of H+ is linked to astrocytic acidification. In addition, the movement of Na+ can trigger the activation of Na+ co-transporters (e.g. Na+-Ca2+ exchangers). We will describe the ways in which these ionic movements have been linked as signals to brain function and/or metabolism. Second, these transporters co-compartmentalize with mitochondria, potentially providing a mechanism to supply glutamate to mitochondria as a source of fuel for the brain. We will provide an overview of the proteins involved, discuss the evidence that glutamate is oxidized, and then highlight some of the un-resolved issues related to glutamate oxidation. Finally, we will review evidence that ischemic insults (stroke or oxygen/glucose deprivation) cause changes in these astrocytic mitochondria and discuss the ways in which these changes have been linked to glutamate transport, glutamate transport-dependent signaling, and altered glutamate metabolism. We conclude with a broader summary of some of the unresolved issues.
Collapse
Affiliation(s)
- Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, 502N, Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA.
| | - Meredith L Lee
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, 502N, Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA
| | - Sabrina DaSilva
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, 502N, Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA
| |
Collapse
|
38
|
Sun Y, Sun J, He Z, Wang G, Wang Y, Zhao D, Wang Z, Luo C, Tian C, Jiang Q. Monocarboxylate Transporter 1 in Brain Diseases and Cancers. Curr Drug Metab 2019; 20:855-866. [DOI: 10.2174/1389200220666191021103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates
the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological
significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.
Methods:
We summarize the general description of MCT1 and provide a comprehensive understanding of the role of
MCT1 in brain diseases and cancers. Furthermore, this review discusses the opportunities and challenges of MCT1-
targeting drug-delivery systems in the treatment of brain diseases and cancers.
Results:
In the brain, loss of MCT1 function is associated with pathologies of degeneration and injury of the nervous
system. In tumors, MCT1 regulates the activity of signaling pathways and controls the exchange of monocarboxylates
in aerobic glycolysis to affect tumor metabolism, proliferation and invasion. Meanwhile, MCT1 also acts as a
good biomarker for the prediction and diagnosis of cancer progressions.
Conclusion:
MCT1 is an attractive transporter in brain diseases and cancers. Moreover, the development of MCT1-
based small molecule drugs and MCT1 inhibitors in the clinic is promising. This review systematically summarizes
the basic characteristics of MCT1 and its role in brain diseases and cancers, laying the foundation for further research
on MCT1.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
39
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
40
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
McGuire JL, DePasquale EAK, Watanabe M, Anwar F, Ngwenya LB, Atluri G, Romick-Rosendale LE, McCullumsmith RE, Evanson NK. Chronic Dysregulation of Cortical and Subcortical Metabolism After Experimental Traumatic Brain Injury. Mol Neurobiol 2019; 56:2908-2921. [PMID: 30069831 PMCID: PMC7584385 DOI: 10.1007/s12035-018-1276-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/23/2018] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. Although chronic disability is common after TBI, effective treatments remain elusive and chronic TBI pathophysiology is not well understood. Early after TBI, brain metabolism is disrupted due to unregulated ion release, mitochondrial damage, and interruption of molecular trafficking. This metabolic disruption causes at least part of the TBI pathology. However, it is not clear how persistent or pervasive metabolic injury is at later stages of injury. Using untargeted 1H-NMR metabolomics, we examined ex vivo hippocampus, striatum, thalamus, frontal cortex, and brainstem tissue in a rat lateral fluid percussion model of chronic brain injury. We found altered tissue concentrations of metabolites in the hippocampus and thalamus consistent with dysregulation of energy metabolism and excitatory neurotransmission. Furthermore, differential correlation analysis provided additional evidence of metabolic dysregulation, most notably in brainstem and frontal cortex, suggesting that metabolic consequences of injury are persistent and widespread. Interestingly, the patterns of network changes were region-specific. The individual metabolic signatures after injury in different structures of the brain at rest may reflect different compensatory mechanisms engaged to meet variable metabolic demands across brain regions.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Erica A K DePasquale
- Graduate Program in Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Miki Watanabe
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fatima Anwar
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Gowtham Atluri
- Graduate Program in Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45267, USA
| | | | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Nathan K Evanson
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
42
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
43
|
Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res 2019; 97:863-882. [PMID: 30667077 DOI: 10.1002/jnr.24387] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Glycogen levels in resting brain and its utilization rates during brain activation are high, but the functions fulfilled by glycogenolysis in living brain are poorly understood. Studies in cultured astrocytes have identified glycogen as the preferred fuel to provide ATP for Na+ ,K+ -ATPase for the uptake of extracellular K+ and for Ca2+ -ATPase to pump Ca2+ into the endoplasmic reticulum. Studies in astrocyte-neuron co-cultures led to the suggestion that glycogen-derived lactate is shuttled to neurons as oxidative fuel to support glutamatergic neurotransmission. Furthermore, both knockout of brain glycogen synthase and inhibition of glycogenolysis prior to a memory-evoking event impair memory consolidation, and shuttling of glycogen-derived lactate as neuronal fuel was postulated to be required for memory. However, lactate shuttling has not been measured in any of these studies, and procedures to inhibit glycogenolysis and neuronal lactate uptake are not specific. Testable alternative mechanisms to explain the observed findings are proposed: (i) disruption of K+ and Ca2+ homeostasis, (ii) release of gliotransmitters, (iii) imposition of an energy crisis on astrocytes and neurons by inhibition of mitochondrial pyruvate transport by compounds used to block neuronal monocarboxylic acid transporters, and (iv) inhibition of astrocytic filopodial movements that secondarily interfere with glutamate and K+ uptake from the synaptic cleft. Evidence that most pyruvate/lactate derived from glycogen is not oxidized and does not accumulate suggests predominant glycolytic metabolism of glycogen to support astrocytic energy demands. Sparing of blood-borne glucose for use by neurons is a reasonable explanation for the requirement for glycogenolysis in neurotransmission and memory processing.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
44
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Wang K, Liu C, Hou Y, Zhou H, Wang X, Mai K, He G. Differential Apoptotic and Mitogenic Effects of Lectins in Zebrafish. Front Endocrinol (Lausanne) 2019; 10:356. [PMID: 31231312 PMCID: PMC6560201 DOI: 10.3389/fendo.2019.00356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023] Open
Abstract
Plant lectins represent a major group of anti-nutritional factors that can be toxic to human and animals. However, the mechanisms by which lectins regulate cell fates are not well-understood. In the present study, the cellular and molecular impacts of three common lectins, agglutinins from wheat germ [wheat germ agglutinin (WGA)], soybean [soybean agglutinin (SBA)], and peanut [peanut agglutinin (PNA)] were examined in zebrafish embryo and liver cells. WGA and SBA were found to induce cell apoptosis both in vitro and in vivo, while PNA stimulated cell proliferation. WGA and SBA reduced levels of B cell lymphoma-2 (Bcl-2), phosphorylation of Bcl-2-associated death promoter (Bad), cyclin-dependent kinase 4 (Cdk4), and phosphorylation of the retinoblastoma (Rb). WGA and SBA also inhibited the activities of cell survival pathways including protein kinase B (Akt), extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), and target of rapamycin (Tor). Furthermore, WGA and SBA shifted the cellular metabolism characterized by reduced expression of glucose-6-phosphate dehydrogenase (g6pd) and increased expression of glutamine synthetase (glul) and glutamate dehydrogenase (glud). However, PNA showed the opposite effects toward these molecular markers compared to those of WGA and SBA. Therefore, our results revealed some plant lectins (WGA and SBA) were toxic while the other (PNA) was mitogenic. Further characterization of the distinct functions of individual lectins should be valuable for both nutrition and other potential applications.
Collapse
Affiliation(s)
- Kaidi Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yiying Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Gen He
| |
Collapse
|
46
|
Zénon A, Solopchuk O, Pezzulo G. An information-theoretic perspective on the costs of cognition. Neuropsychologia 2018; 123:5-18. [PMID: 30268880 DOI: 10.1016/j.neuropsychologia.2018.09.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/10/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
In statistics and machine learning, model accuracy is traded off with complexity, which can be viewed as the amount of information extracted from the data. Here, we discuss how cognitive costs can be expressed in terms of similar information costs, i.e. as a function of the amount of information required to update a person's prior knowledge (or internal model) to effectively solve a task. We then examine the theoretical consequences that ensue from this assumption. This framework naturally explains why some tasks - for example, unfamiliar or dual tasks - are costly and permits to quantify these costs using information-theoretic measures. Finally, we discuss brain implementation of this principle and show that subjective cognitive costs can originate either from local or global capacity limitations on information processing or from increased rate of metabolic alterations. These views shed light on the potential adaptive value of cost-avoidance mechanisms.
Collapse
Affiliation(s)
- Alexandre Zénon
- Institut de Neuroscience Cognitive et Intégrative d'Aquitaine, Université de Bordeaux, France; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Oleg Solopchuk
- Institut de Neuroscience Cognitive et Intégrative d'Aquitaine, Université de Bordeaux, France; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| |
Collapse
|
47
|
Freyberg Z, Logan RW. The Intertwined Roles of Circadian Rhythms and Neuronal Metabolism Fueling Drug Reward and Addiction. CURRENT OPINION IN PHYSIOLOGY 2018; 5:80-89. [PMID: 30631826 DOI: 10.1016/j.cophys.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug addiction is a highly prevalent and devastating disorder with few effective treatments, resulting in enormous burdens on family and society. The cellular and behavioral effects of drugs of abuse are related to their abilities to elevate synaptic dopamine levels. Midbrain dopaminergic neurons projecting from the ventral tegmental area to the nucleus accumbens play crucial roles in substance-induced neural and behavioral plasticity. Significantly, increasing work suggests that interplay between the brain circadian system and the cellular bioenergetic machinery in these dopamine neurons plays a critical role in mediating the actions of drugs of abuse. Here, we describe recent progress in elucidating the interconnections between circadian and metabolic systems at the molecular and cellular levels and their relationships to modulation of drug reward and addiction.
Collapse
Affiliation(s)
- Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, pittsburgh, PA, USA 15219.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA USA 15213
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, pittsburgh, PA, USA 15219.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| |
Collapse
|
48
|
Ryall JG, Lynch GS. The molecular signature of muscle stem cells is driven by nutrient availability and innate cell metabolism. Curr Opin Clin Nutr Metab Care 2018; 21:240-245. [PMID: 29697538 DOI: 10.1097/mco.0000000000000472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription. RECENT FINDINGS Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function. SUMMARY Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.
Collapse
Affiliation(s)
- James G Ryall
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
49
|
Ishii T, Warabi E, Mann GE. Circadian control of p75 neurotrophin receptor leads to alternate activation of Nrf2 and c-Rel to reset energy metabolism in astrocytes via brain-derived neurotrophic factor. Free Radic Biol Med 2018; 119:34-44. [PMID: 29374533 DOI: 10.1016/j.freeradbiomed.2018.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75NTR-ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75NTR, TrkB.T1 functionally interacts with adenosine A2AR and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan
| | - Giovanni E Mann
- School of Cardiovascular Medicine and Sciences, King's British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
50
|
Hertz L, Chen Y. Additional mechanisms for brain activation failure due to reduced glucose metabolism-a commentary on Zilberter and Zilberter: The vicious circle of hypometabolism in neurodegenerative diseases. J Neurosci Res 2017; 96:757-761. [PMID: 29095528 DOI: 10.1002/jnr.24192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland
| |
Collapse
|