1
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
3
|
Vrban L, Vianello R. Prominent Neuroprotective Potential of Indole-2- N-methylpropargylamine: High Affinity and Irreversible Inhibition Efficiency towards Monoamine Oxidase B Revealed by Computational Scaffold Analysis. Pharmaceuticals (Basel) 2024; 17:1292. [PMID: 39458932 PMCID: PMC11510145 DOI: 10.3390/ph17101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Monoamine oxidases (MAO) are flavoenzymes that metabolize a range of brain neurotransmitters, whose dysregulation is closely associated with the development of various neurological disorders. This is why MAOs have been the central target in pharmacological interventions for neurodegeneration for more than 60 years. Still, existing drugs only address symptoms and not the cause of the disease, which underlines the need to develop more efficient inhibitors without adverse effects. Methods: Our drug design strategy relied on docking 25 organic scaffolds to MAO-B, which were extracted from the ChEMBL20 database with the highest cumulative counts of unique member compounds and bioactivity assays. The most promising candidates were substituted with the inactivating propargylamine group, while further affinity adjustment was made by its N-methylation. A total of 46 propargylamines were submitted to the docking and molecular dynamics simulations, while the best binders underwent mechanistic DFT analysis that confirmed the hydride abstraction mechanism of the covalent inhibition reaction. Results: We identified indole-2-propargylamine 4fH and indole-2-N-methylpropargylamine 4fMe as superior MAO-B binders over the clinical drugs rasagiline and selegiline. DFT calculations highlighted 4fMe as more potent over selegiline, evident in a reduced kinetic requirement (ΔΔG‡ = -2.5 kcal mol-1) and an improved reaction exergonicity (ΔΔGR = -4.3 kcal mol-1), together with its higher binding affinity, consistently determined by docking (ΔΔGBIND = -0.1 kcal mol-1) and MM-PBSA analysis (ΔΔGBIND = -1.5 kcal mol-1). Conclusions: Our findings strongly advocate 4fMe as an excellent drug candidate, whose synthesis and biological evaluation are highly recommended. Also, our results reveal the structural determinants that influenced the affinity and inhibition rates that should cooperate when designing further MAO inhibitors, which are of utmost significance and urgency with the increasing prevalence of brain diseases.
Collapse
Affiliation(s)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Singh V, Shri R, Sood P, Singh M, Singh TG, Singh R, Kumar A, Ahmad SF. 5,7-dihydroxy-3',4',5'-trimethoxyflavone mitigates lead induced neurotoxicity in rats via its chelating, antioxidant, anti-inflammatory and monoaminergic properties. Food Chem Toxicol 2024; 189:114747. [PMID: 38768937 DOI: 10.1016/j.fct.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Chronic exposure to lead (Pb) induces neurodegenerative changes in animals and humans. Drugs with strong antioxidant properties are effective against Pb-mediated neurotoxicity. In a prior study, we identified 5,7-dihydroxy-3',4',5'-trimethoxyflavone (TMF) from Ocimum basilicum L. leaves as a potent antioxidant and neuroprotective compound. This research explores TMF's neuroprotective effects against Pb-induced brain toxicity in rats to establish it as a therapeutic agent. Rats received lead acetate (100 mg/kg, orally, once daily) for 30 days to induce brain injury, followed by TMF treatment (5 and 10 mg/kg, oral, once daily) 30 min later. Cognitive and motor functions were assessed using Morris Water Maze and horizontal bar tests. Lead, monoamine oxidase (MAO) A and B enzymes, reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), Tumor necrosis factor-alpha (TNF-α), and IL-6 levels were measured in the hippocampus and cerebellum. Pb exposure impaired cognitive and motor functions, increased Pb, TBARS, TNF-α, and IL-6 levels, and compromised MAO A & B and GSH levels. TMF reversed Pb-induced memory and motor deficits and normalized biochemical anomalies. TMF's neuroprotective effects against lead involve chelating, antioxidant, anti-inflammatory, and monoaminergic properties, suggesting its potential as a treatment for metal-induced brain injury.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | - Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Solan, Himachal Pradesh, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Ayoup MS, Barakat MR, Abdel-Hamid H, Emam E, Al-Faiyz YS, Masoud AA, Ghareeb DA, Sonousi A, Kassab AE. Design, synthesis, and biological evaluation of 1,2,4-oxadiazole-based derivatives as multitarget anti-Alzheimer agents. RSC Med Chem 2024; 15:2080-2097. [PMID: 38911158 PMCID: PMC11187554 DOI: 10.1039/d4md00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/25/2024] Open
Abstract
A series of novel 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their potential anti-Alzheimer disease activity. The results revealed that compounds 2b, 2c, 2d, 3a, 4a, 6, 9a, 9b, and 13b showed excellent inhibitory activity against acetylcholinesterase (AChE) with IC50 values in the range of 0.0158 to 0.121 μM. They were 1.01 to 7.78 times more potent than donepezil (IC50 = 0.123 μM). The newly synthesized compounds exhibited lower activity towards butyrylcholinesterase (BuChE) when compared to rivastigmine. Compounds 4b and 13b showed the most prominent inhibitory potential against BuChE with IC50 values of 11.50 and 15 μM, respectively. Moreover, 4b, and 9b were found to be more potent antioxidant agents (IC50 values of 59.25, and 56.69 μM, respectively) in comparison with ascorbic acid (IC50 = 74.55 μM). Compounds 2b and 2c exhibited monoamine oxidase-B (MAO-B) inhibitory activity with IC50 values of 74.68 and 225.48 μM, respectively. They were 3.55 and 1.17 times more potent than biperiden (IC50 = 265.85 μM). The prominent interactions of the compounds with the AChE active site can be used to computationally explain the high AChE inhibitory activity. The results unveiled 1,2,4-oxadiazole derivatives 2c and 3a as multitarget anti-AD agents. The predicted ADME properties for compounds 2b and 4a were satisfactory, and 4a had the highest likelihood of crossing the blood-brain barrier (BBB), making it the optimum compound for future optimization.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Mohamed Reda Barakat
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Ehab Emam
- General Q.C Manager, Alexandria company for pharmaceuticals Alexandria 21521 Egypt
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Aliaa A Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city) New Borg El Arab Alexandria Egypt
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University P.O. Box 11562, Kasr El-Aini Street Cairo Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital Cairo Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University P.O. Box 11562, Kasr El-Aini Street Cairo Egypt
| |
Collapse
|
6
|
Dahrendorff J, Currier G, Uddin M. Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review. Am J Med Genet B Neuropsychiatr Genet 2024:e32985. [PMID: 38650309 DOI: 10.1002/ajmg.b.32985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
Collapse
Affiliation(s)
- Jan Dahrendorff
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
7
|
Al-Saad OM, Gabr M, Darwish SS, Rullo M, Pisani L, Miniero DV, Liuzzi GM, Kany AM, Hirsch AKH, Abadi AH, Engel M, Catto M, Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity. Eur J Med Chem 2024; 269:116266. [PMID: 38490063 DOI: 10.1016/j.ejmech.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.
Collapse
Affiliation(s)
- Omar M Al-Saad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
8
|
Sblano S, Boccarelli A, Mesiti F, Purgatorio R, de Candia M, Catto M, Altomare CD. A second life for MAO inhibitors? From CNS diseases to anticancer therapy. Eur J Med Chem 2024; 267:116180. [PMID: 38290352 DOI: 10.1016/j.ejmech.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Monoamine oxidases A and B (MAO A, B) are ubiquitous enzymes responsible for oxidative deamination of amine neurotransmitters and xenobiotics. Despite decades of studies, MAO inhibitors (MAOIs) find today limited therapeutic space as second-line drugs for the treatment of depression and Parkinson's disease. In recent years, a renewed interest in MAOIs has been raised up by several studies investigating the role of MAOs, particularly MAO A, in tumor insurgence and progression, and the efficacy of MAOIs as coadjutants in the therapy of chemoresistant tumors. In this survey, we highlight the implication of MAOs in the biochemical pathways of tumorigenesis and review the state-of-the-art of preclinical and clinical studies of MAOIs as anticancer agents used in monotherapy or in combination with antitumor chemotherapeutics.
Collapse
Affiliation(s)
- Sabina Sblano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Francesco Mesiti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Kumar S, Jayan J, Manoharan A, Benny F, Abdelgawad MA, Ghoneim MM, El-Sherbiny M, Thazhathuveedu Sudevan S, Aneesh TP, Mathew B. Discerning of isatin-based monoamine oxidase (MAO) inhibitors for neurodegenerative disorders by exploiting 2D, 3D-QSAR modelling and molecular dynamics simulation. J Biomol Struct Dyn 2024; 42:2328-2340. [PMID: 37261844 DOI: 10.1080/07391102.2023.2214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023]
Abstract
Almost a billion people worldwide suffer from neurological disorders, which pose public health challenges. An important enzyme that is well-known for many neurodegenerative illnesses is monoamine oxidase (MAO). Although several promising drugs for the treatment of MAO inhibition have recently been examined, it is still necessary to identify the precise structural requirements for robust efficacy. Atom-based, field-based, and GA-MLR (genetic algorithm multiple linear regression) models were created for this investigation. All of the models have strong statistical (R2 and Q2) foundations because of both internal and external validation. Our dataset's molecule has a higher docking score than safinamide, a well-known and co-crystallized MAO-B inhibitor, as we also noticed. Using the SwissSimilarity platform, we further inquired which of our docked molecules would be the best for screening. We chose ZINC000016952895 as the screen molecule with the best binding docking score (XP score = -13.3613). Finally, the 100 ns for the ZINC000016952895-MAO-B complex in our MD investigations is stable. For compounds that we hit, also anticipate ADME properties. Our research revealed that the successful compound ZINC000016952895 might pave the way for the future development of MAO inhibitors for the treatment of neurological disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Amritha Manoharan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Mohamed A Abdelgawad
- Department of pharmaceutical chemistry, College of pharmacy, Jouf university, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
10
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 PMCID: PMC10581567 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
Martins LO. The quest for new robust bacterial monoamine oxidases. FEBS J 2024; 291:846-848. [PMID: 38013404 DOI: 10.1111/febs.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Microbial enzymes are versatile, cost-effective, and sustainable tools, making them a preferred choice for enzymatic processes. Santema et al. harnessed AlphaFold, a cutting-edge structure prediction tool, to discover new thermophilic monoamine oxidases (MAO) that could be relevant for drug development and use in biotechnology fields. The new enzyme displays thermal robustness, offering a unique structure-to-function profile compared to known MAOs. This bacterial enzyme, paired with recent advancements in enzyme engineering, has the potential to meet the biotech sector's need for customized enzymes.
Collapse
Affiliation(s)
- Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
12
|
He K, Yu H, Zhang J, Wu L, Han D, Ma R. A bibliometric analysis of the research hotspots and frontiers related to cell death in spinal cord injury. Front Neurol 2024; 14:1280908. [PMID: 38249747 PMCID: PMC10797099 DOI: 10.3389/fneur.2023.1280908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Background Spinal cord injury (SCI) is a severe central nervous trauma that can cause serious consequences. Cell death is emerging as a common pathogenesis after SCI. In the last two decades, numerous studies have been published in the field of cell death after SCI. However, it is still rare to find relevant bibliometric analyses. This bibliometric study aims to visually represent global research trends in the field of cell death after SCI. Methods Bibliometric data were sourced from the Web of Science Core Collection (WoSCC) database. VOSviewer, CiteSpace, and R software ("bibliometrix" package) were used to analyze and visualize bibliometric data. Annual scientific production, countries/regions, institutions, authors, journals, highly cited papers, keywords, and literature co-citation were evaluated to determine research performance. Results An analysis of 5,078 publications extracted from the WoSCC database revealed a fluctuating yet persistent growth in the field of cell death after SCI over the past 23 years. China and the United States, contributing 69% of the total publications, were the main driving force in this field. The Wenzhou Medical University from China contributed to the most papers. In terms of authors, Salvatore Cuzzocrea from the University of Messina had the highest number of publications. The "Journal of Neurotrauma" was the top journal in terms of the number of publications, however, the "Journal of Neuroscience" was the top journal in terms of the number of citations. The theme of the highly cited articles mainly focused on the mechanism of cell death after SCI. The keyword and literature co-citation analysis mainly focused on the mode of cell death, mechanism research of cell death, and functional recovery after SCI. Conclusion This study analyzes the research hotspots, frontiers, and development trends in the field of cell death after SCI, which is important for future studies.
Collapse
Affiliation(s)
- Kelin He
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Han Yu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jieqi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Wu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Dexiong Han
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Ruijie Ma
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
14
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
15
|
Manoharan A, Jayan J, Rangarajan TM, Bose K, Benny F, Ipe RS, Kumar S, Kukreti N, Abdelgawad MA, Ghoneim MM, Kim H, Mathew B. "Click Chemistry": An Emerging Tool for Developing a New Class of Structural Motifs against Various Neurodegenerative Disorders. ACS OMEGA 2023; 8:44437-44457. [PMID: 38046293 PMCID: PMC10688180 DOI: 10.1021/acsomega.3c04960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Click chemistry is a set of easy, atom-economical reactions that are often utilized to combine two desired chemical entities. Click chemistry accelerates lead identification and optimization, reduces the complexity of chemical synthesis, and delivers extremely high yields without undesirable byproducts. The most well-known click chemistry reaction is the 1,3-dipolar cycloaddition of azides and alkynes to form 1,2,3-triazoles. The resulting 1,2,3-triazoles can serve as both bioisosteres and linkers, leading to an increase in their use in the field of drug discovery. The current Review focuses on the use of click chemistry to identify new molecules for treating neurodegenerative diseases and in other areas such as peptide targeting and the quantification of biomolecules.
Collapse
Affiliation(s)
- Amritha Manoharan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Jayalakshmi Jayan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - T. M. Rangarajan
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Kuntal Bose
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Feba Benny
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Reshma Susan Ipe
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Neelima Kukreti
- School
of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand 248007, India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
16
|
Kim KT, Cho DW, Cho JW, Im WJ, Kim DH, Park JH, Park KD, Yang YS, Han SC. Two weeks dose range-finding and four weeks repeated dose oral toxicity study of a novel reversible monoamine oxidase B inhibitor KDS2010 in cynomolgus monkeys. Toxicol Res 2023; 39:693-709. [PMID: 37779583 PMCID: PMC10541392 DOI: 10.1007/s43188-023-00182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 10/03/2023] Open
Abstract
A novel reversible monoamine oxidase B inhibitor, KDS2010, has been developed as a therapeutic candidate for neurodegenerative diseases. This study investigated its potential toxicity in non-human primates before human clinical trials. Daily KDS2010 doses (25, 50, or 100 mg/kg) were orally administered to cynomolgus monkeys (1 animal/sex/group, 4 males and 4 females) for 2 weeks to determine the dose range. One male was moribund, and one female was found dead in the 100 mg/kg/day group. One male was also found dead in the 50 mg/kg/day group. The death was considered an adverse effect in both sexes since distal tubules/collecting duct dilation and hypertrophy in the epithelium of the papillary duct were observed in their kidneys. Based on dose range finding results, KDS2010 (10, 20, or 40 mg/kg/day) was administered orally for 4 weeks, and animals were given 2 weeks for recovery. No significant changes were observed during daily clinical observations and macro-and microscopic examinations, including body weight, food consumption, hematology, clinical chemistry, and organ weight. And, the kidney was seen as the primary target organ of KDS2010 in the 2 weeks study, but no adverse effect was observed in the 4 weeks study. Therefore, 40 mg/kg/day is considered the no-observed-adverse-effect level in both sexes of cynomolgus monkeys. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00182-4.
Collapse
Affiliation(s)
- Kyung-Tai Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Doo-Wan Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jae-woo Cho
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Wan-Jung Im
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Da-Hee Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Young-Su Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| |
Collapse
|
17
|
Azevedo AR, Cordeiro P, Strelow DN, de Andrade KN, Neto MRS, Goetze Fiorot R, Brüning CA, Braga AL, Lião LM, Bortolatto CF, Neto JSS, Nascimento V. Green Approach for the Synthesis of Chalcogenyl- 2,3-dihydrobenzofuran Derivatives Through Allyl-phenols/ Naphthols and Their Potential as MAO-B Inhibitors. Chem Asian J 2023:e202300586. [PMID: 37733585 DOI: 10.1002/asia.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
This work presents the design, synthesis, and MAO-B inhibitor activity of a series of chalcogenyl-2,3-dihydrobenzofurans derivatives. Using solvent- and metal-free methodology, a series of chalcogen-containing dihydrobenzofurans 7-9 was obtained with yields ranging from 40% to 99%, using an I2 /DMSO catalytic system. All compounds were fully structurally characterized using 1 H and 13 C NMR analysis, and the unprecedented compounds were additionally analyzed using high-resolution mass spectrometry (HRMS). In addition, the mechanistic proposal that iodide is the most likely species to act in the transfer of protons along the reaction path was studied through theoretical calculations. Finally, the compounds 7b-e, 8a-e, and 9a showed great promise as inhibitors against MAO-B activity.
Collapse
Affiliation(s)
- Amanda R Azevedo
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| | - Dianer N Strelow
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - Karine N de Andrade
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense Niterói, Outeiro São João Batista, s/n, 24020-141, RJ, Brazil
| | - Marcos R S Neto
- LabSelen, Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, 88040-900, SC, Brazil
| | - Rodolfo Goetze Fiorot
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense Niterói, Outeiro São João Batista, s/n, 24020-141, RJ, Brazil
| | - César A Brüning
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - Antonio L Braga
- LabSelen, Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, 88040-900, SC, Brazil
| | - Luciano M Lião
- LabRMN, Chemistry Institute, Federal University of Goiás Goiânia, 74690-900, GO, Brazil
| | - Cristiani F Bortolatto
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - José S S Neto
- LabRMN, Chemistry Institute, Federal University of Goiás Goiânia, 74690-900, GO, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| |
Collapse
|
18
|
Moura Alves Seixas G, de Souza Freitas R, Ferreira Fratelli C, de Souza Silva CM, Ramos de Lima L, Morato Stival M, Schwerz Funghetto S, Rodrigues da Silva IC. MAOA uVNTR Polymorphism Influence on Older Adults Diagnosed with Diabetes Mellitus/Systemic Arterial Hypertension. J Aging Res 2023; 2023:8538027. [PMID: 37533936 PMCID: PMC10393510 DOI: 10.1155/2023/8538027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/29/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023] Open
Abstract
Background Monoamine oxidase (MAO) is involved in several biological processes associated with well-being and mental health, and alterations in its function might directly impact various mental disorders. Some mental disorders concomitantly occur in individuals with clinical characteristics, such as substance abuse and diabetes. Objective To analyze the functional MAOA uVNTR polymorphism genotype frequency in an older adult population with diabetes mellitus/arterial hypertension and associate this frequency with clinical characteristics impacting daily life. Methodology. Older adults diagnosed with diabetes mellitus, systemic arterial hypertension, or both (DM/SAH) were selected and had their MAOA gene genotyped for uVNTR polymorphism. The revised Beck Depression Inventory (BDI) and a questionnaire were also applied to determine their mental health and clinical characteristics. Results The allelic variants detected among the participants were the 2R, 3R, 4R, and 3R/4R heterozygous genotypes. Genotypes solely containing the 3R allele had patients who marked yes for smoking and alcoholism, and only those with the 3R genotypes (female 3R/3R homozygote or male 3R∗ hemizygote) were significant. Although not statistically significant, only 3R and 3R/4R genotypes presented cases of severe depression per the revised BDI interpretations. Conclusion The MAOA uVNTR polymorphism's low-activity 3R allele presence in an older adult population diagnosed with DM/SAH may represent a risk for developing substance use (alcohol and smoking) dependence.
Collapse
Affiliation(s)
- Gabriel Moura Alves Seixas
- Graduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasilia, Federal District, Brasília, Brazil
| | - Renata de Souza Freitas
- University Center of Brasília (UniCEUB), Brasília, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Caroline Ferreira Fratelli
- Graduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasilia, Federal District, Brasília, Brazil
| | | | | | - Marina Morato Stival
- Faculty of Ceilândia, University of Brasilia, Federal District, Brasília, Brazil
| | | | | |
Collapse
|
19
|
Syed AU, Liang C, Patel KK, Mondal R, Kamalia VM, Moran TR, Ahmed ST, Mukherjee J. Comparison of Monoamine Oxidase-A, Aβ Plaques, Tau, and Translocator Protein Levels in Postmortem Human Alzheimer's Disease Brain. Int J Mol Sci 2023; 24:10808. [PMID: 37445985 PMCID: PMC10341404 DOI: 10.3390/ijms241310808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Increased monoamine oxidase-A (MAO-A) activity in Alzheimer's disease (AD) may be detrimental to the point of neurodegeneration. To assess MAO-A activity in AD, we compared four biomarkers, Aβ plaques, tau, translocator protein (TSPO), and MAO-A in postmortem AD. Radiotracers were [18F]FAZIN3 for MAO-A, [18F]flotaza and [125I]IBETA for Aβ plaques, [124/125I]IPPI for tau, and [18F]FEPPA for TSPO imaging. Brain sections of the anterior cingulate (AC; gray matter GM) and corpus callosum (CC; white matter WM) from cognitively normal control (CN, n = 6) and AD (n = 6) subjects were imaged using autoradiography and immunostaining. Using competition with clorgyline and (R)-deprenyl, the binding of [18F]FAZIN3 was confirmed to be selective to MAO-A levels in the AD brain sections. Increases in MAO-A, Aβ plaque, tau, and TSPO activity were found in the AD brains compared to the control brains. The [18F]FAZIN3 ratio in AD GM versus CN GM was 2.80, suggesting a 180% increase in MAO-A activity. Using GM-to-WM ratios of AD versus CN, a >50% increase in MAO-A activity was observed (AD/CN = 1.58). Linear positive correlations of [18F]FAZIN3 with [18F]flotaza, [125I]IBETA, and [125I]IPPI were measured and suggested an increase in MAO-A activity with increases in Aβ plaques and tau activity. Our results support the finding that MAO-A activity is elevated in the anterior cingulate cortex in AD and thus may provide a new biomarker for AD in this brain region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Pantalia M, Lin Z, Tener SJ, Qiao B, Tang G, Ulgherait M, O'Connor R, Delventhal R, Volpi J, Syed S, Itzhak N, Canman JC, Fernández MP, Shirasu-Hiza M. Drosophila mutants lacking the glial neurotransmitter-modifying enzyme Ebony exhibit low neurotransmitter levels and altered behavior. Sci Rep 2023; 13:10411. [PMID: 37369755 PMCID: PMC10300103 DOI: 10.1038/s41598-023-36558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Inhibitors of enzymes that inactivate amine neurotransmitters (dopamine, serotonin), such as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), are thought to increase neurotransmitter levels and are widely used to treat Parkinson's disease and psychiatric disorders, yet the role of these enzymes in regulating behavior remains unclear. Here, we investigated the genetic loss of a similar enzyme in the model organism Drosophila melanogaster. Because the enzyme Ebony modifies and inactivates amine neurotransmitters, its loss is assumed to increase neurotransmitter levels, increasing behaviors such as aggression and courtship and decreasing sleep. Indeed, ebony mutants have been described since 1960 as "aggressive mutants," though this behavior has not been quantified. Using automated machine learning-based analyses, we quantitatively confirmed that ebony mutants exhibited increased aggressive behaviors such as boxing but also decreased courtship behaviors and increased sleep. Through tissue-specific knockdown, we found that ebony's role in these behaviors was specific to glia. Unexpectedly, direct measurement of amine neurotransmitters in ebony brains revealed that their levels were not increased but reduced. Thus, increased aggression is the anomalous behavior for this neurotransmitter profile. We further found that ebony mutants exhibited increased aggression only when fighting each other, not when fighting wild-type controls. Moreover, fights between ebony mutants were less likely to end with a clear winner than fights between controls or fights between ebony mutants and controls. In ebony vs. control fights, ebony mutants were more likely to win. Together, these results suggest that ebony mutants exhibit prolonged aggressive behavior only in a specific context, with an equally dominant opponent.
Collapse
Affiliation(s)
- Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bing Qiao
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Grace Tang
- Department of Neuroscience and Behavior, Barnard College, New York, NY, 10027, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Reed O'Connor
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Nissim Itzhak
- Division of Human Genetics and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - María Paz Fernández
- Department of Neuroscience and Behavior, Barnard College, New York, NY, 10027, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Naseem S, Temirak A, Imran A, Jalil S, Fatima S, Taslimi P, Iqbal J, Tasleem M, Tahir MN, Shafiq Z. Therapeutic potential of 1,3,4-oxadiazoles as potential lead compounds for the treatment of Alzheimer's disease. RSC Adv 2023; 13:17526-17535. [PMID: 37304812 PMCID: PMC10253498 DOI: 10.1039/d3ra01953e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
Monoamine oxidase and cholinesterase enzymes are important targets for the treatment of several neurological diseases especially depression, Parkinson disease and Alzheimer's. Here, we report the synthesis and testing of new 1,3,4-oxadiazole derivatives as novel inhibitors of monoamine oxidase enzymes (MAO-A and MAO-B) and cholinesterase enzymes (acetyl and butyryl cholinesterase (AChE, BChE). Compounds 4c, 4d, 4e, 4g, 4j, 4k, 4m, 4n displayed promising inhibitory effects on MAO-A (IC50: 0.11-3.46 μM), MAO-B (IC50: 0.80-3.08 μM) and AChE (IC50: 0.83-2.67 μM). Interestingly, compounds 4d, 4e and 4g are multitargeting MAO-A/B and AChE inhibitors. Also, Compound 4m displayed promising MAO-A inhibition with IC50 of 0.11 μM and high selectivity (∼25-fold) over MAO-B and AChE enzymes. These newly synthesized analogues represent promising hits for the development of promising lead compounds for neurological disease treatment.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Ahmed Temirak
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute Dokki, Cairo P.O. Box 12622 Egypt
| | - Aqeel Imran
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus Punjab 54000 Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Shamool Fatima
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University 74100 Bartin Turkey
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | | | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
22
|
Pacureanu L, Bora A, Crisan L. New Insights on the Activity and Selectivity of MAO-B Inhibitors through In Silico Methods. Int J Mol Sci 2023; 24:ijms24119583. [PMID: 37298535 DOI: 10.3390/ijms24119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
To facilitate the identification of novel MAO-B inhibitors, we elaborated a consolidated computational approach, including a pharmacophoric atom-based 3D quantitative structure-activity relationship (QSAR) model, activity cliffs, fingerprint, and molecular docking analysis on a dataset of 126 molecules. An AAHR.2 hypothesis with two hydrogen bond acceptors (A), one hydrophobic (H), and one aromatic ring (R) supplied a statistically significant 3D QSAR model reflected by the parameters: R2 = 0.900 (training set); Q2 = 0.774 and Pearson's R = 0.884 (test set), stability s = 0.736. Hydrophobic and electron-withdrawing fields portrayed the relationships between structural characteristics and inhibitory activity. The quinolin-2-one scaffold has a key role in selectivity towards MAO-B with an AUC of 0.962, as retrieved by ECFP4 analysis. Two activity cliffs showing meaningful potency variation in the MAO-B chemical space were observed. The docking study revealed interactions with crucial residues TYR:435, TYR:326, CYS:172, and GLN:206 responsible for MAO-B activity. Molecular docking is in consensus with and complementary to pharmacophoric 3D QSAR, ECFP4, and MM-GBSA analysis. The computational scenario provided here will assist chemists in quickly designing and predicting new potent and selective candidates as MAO-B inhibitors for MAO-B-driven diseases. This approach can also be used to identify MAO-B inhibitors from other libraries or screen top molecules for other targets involved in suitable diseases.
Collapse
Affiliation(s)
- Liliana Pacureanu
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| | - Alina Bora
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| | - Luminita Crisan
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| |
Collapse
|
23
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
24
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol 2023; 61:102643. [PMID: 36857930 PMCID: PMC9989693 DOI: 10.1016/j.redox.2023.102643] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
25
|
Heger J, Szabados T, Brosinsky P, Bencsik P, Ferdinandy P, Schulz R. Sex Difference in Cardioprotection against Acute Myocardial Infarction in MAO-B Knockout Mice In Vivo. Int J Mol Sci 2023; 24:ijms24076443. [PMID: 37047416 PMCID: PMC10094730 DOI: 10.3390/ijms24076443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
The cardiomyocyte-specific knockout (KO) of monoamine oxidase (MAO)-B, an enzyme involved in the formation of reactive oxygen species (ROS), reduced myocardial ischemia/reperfusion (I/R) injury in vitro. Because sex hormones have a strong impact on MAO metabolic pathways, we analyzed the myocardial infarct size (IS) following I/R in female and male MAO-B KO mice in vivo. Method and Results: To induce the deletion of MAO-B, MAO-B KO mice (Myh6 Cre+/MAO-Bfl/fl) and wild-type (WT, Cre-negative MAO-Bfl/fl littermates) were fed with tamoxifen for 2 weeks followed by 10 weeks of normal mice chow. Myocardial infarction (assessed by TTC staining and expressed as a percentage of the area at risk as determined by Evans blue staining)) was induced by 45 min coronary occlusion followed by 120 min of reperfusion. Results: The mortality following I/R was higher in male compared to female mice, with the lowest mortality found in MAO-B KO female mice. IS was significantly higher in male WT mice compared to female WT mice. MAO-B KO reduced IS in male mice but had no further impact on IS in female MAO-B KO mice. Interestingly, there was no difference in the plasma estradiol levels among the groups. Conclusion: The cardiomyocyte-specific knockout of MAO-B protects male mice against acute myocardial infarction but had no effect on the infarct size in female mice.
Collapse
|
26
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
27
|
Considerations for Optimizing Warfighter Psychological Health with a Research-Based Flavonoid Approach: A Review. Nutrients 2023; 15:nu15051204. [PMID: 36904203 PMCID: PMC10005237 DOI: 10.3390/nu15051204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Optimal nutrition is imperative for psychological health. Oxidative stress and inflammation are underlying etiologies for alterations in psychological health. Warfighters are at risk of health concerns such as depression due to increased stress in austere environments and family separation while deployed. Over the last decade, research has demonstrated the health benefits of flavonoids found in fruits and berries. Berry flavonoids have potent antioxidant and anti-inflammatory properties by inhibiting oxidative stress and inflammation. In this review, the promising effects of various berries rich in bioactive flavonoids are examined. By inhibiting oxidative stress, berry flavonoids have the potential to modulate brain, cardiovascular, and intestinal health. There is a critical need for targeted interventions to address psychological health concerns within the warfighter population, and a berry flavonoid-rich diet and/or berry flavonoid dietary supplement intervention may prove beneficial as an adjunctive therapy. Structured searches of the literature were performed in the PubMed, CINAHL, and EMBASE databases using predetermined keywords. This review focuses on berry flavonoids' critical and fundamental bioactive properties and their potential effects on psychological health in investigations utilizing cell, animal, and human model systems.
Collapse
|
28
|
Lepcha TT, Kumar M, Sharma AK, Mal S, Majumder D, Jana K, Basu J, Kundu M. Uncovering the role of microRNA671-5p/CDCA7L/monoamine oxidase-A signaling in Helicobacter pylori mediated apoptosis in gastric epithelial cells. Pathog Dis 2023; 81:7143101. [PMID: 37140023 DOI: 10.1093/femspd/ftad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.
Collapse
Affiliation(s)
- Thurbu Tshering Lepcha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Debayan Majumder
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN80 Sector V, Salt Lake City, Kolkata 700091, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| |
Collapse
|
29
|
Nyarko JNK, Heistad RM, Pennington PR, Mousseau DD. Detecting Monoamine Oxidase A and B Proteins: A Western Blotting Protocol and Some Practical Considerations. Methods Mol Biol 2023; 2558:123-141. [PMID: 36169860 DOI: 10.1007/978-1-0716-2643-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The expression of the two isoforms of monoamine oxidase (MAO A and MAO B) is often inferred from proxy measures such as mRNA transcript levels or catalytic activity. Yet the literature is clear that the proportionality of protein, mRNA, and activity does not guarantee that any of these measures can be used as a proxy for any of the others. Here we provide a protocol for the detection of MAO proteins in cell lysates that can be adapted readily to tissue preparations. Given that MAOs influence many physiological and pathological processes, we feel it is essential to include measures of protein expression when exploring genetic regulation or catalytic properties of these important enzymes.
Collapse
Affiliation(s)
| | - Ryan M Heistad
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
30
|
Spagnuolo MS, Mazzoli A, Nazzaro M, Troise AD, Gatto C, Tonini C, Colardo M, Segatto M, Scaloni A, Pallottini V, Iossa S, Cigliano L. Long-Lasting Impact of Sugar Intake on Neurotrophins and Neurotransmitters from Adolescence to Young Adulthood in Rat Frontal Cortex. Mol Neurobiol 2023; 60:1004-1020. [PMID: 36394711 PMCID: PMC9849314 DOI: 10.1007/s12035-022-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Arianna Mazzoli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Martina Nazzaro
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Antonio Dario Troise
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Cristina Gatto
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Claudia Tonini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy
| | - Mayra Colardo
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Marco Segatto
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Andrea Scaloni
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Valentina Pallottini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Susanna Iossa
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Luisa Cigliano
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| |
Collapse
|
31
|
Alyoshina NM, Tkachenko MD, Malchenko LA, Shmukler YB, Nikishin DA. Uptake and Metabolization of Serotonin by Granulosa Cells Form a Functional Barrier in the Mouse Ovary. Int J Mol Sci 2022; 23:ijms232314828. [PMID: 36499156 PMCID: PMC9739058 DOI: 10.3390/ijms232314828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Serotonin (5-HT) plays an essential role in regulating female reproductive function in many animals. 5-HT accumulates in the mammalian ovary with the involvement of membrane serotonin transporter SERT and is functionally active in the oocytes of growing follicles, but shows almost no activity in follicular cells. In this study, we clarified the interplay between 5-HT membrane transport and its degradation by monoamine oxidase (MAO) in the mammalian ovary. Using pharmacologic agents and immunohistochemical staining of the cryosections of ovaries after serotonin administration in vitro, we demonstrated the activity of transport and degradation systems in ovarian follicles. The MAO inhibitor pargyline increased serotonin accumulation in the granulosa cells of growing follicles, indicating the activity of both serotonin uptake and degradation by MAO in these cells. The activity of MAO and the specificity of the membrane transport of serotonin was confirmed in primary granulosa cell culture treated with pargyline and fluoxetine. Moreover, the accumulation of serotonin is more effective in the denuded oocytes and occurs at lower concentrations than in the oocytes within the follicles. This confirms that the activity of SERT and MAO in the granulosa cells surrounding the oocytes impedes the accumulation of serotonin in the oocytes and forms a functional barrier to serotonin.
Collapse
Affiliation(s)
- Nina M. Alyoshina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Maria D. Tkachenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, 119991 Moscow, Russia
| | - Lyudmila A. Malchenko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Yuri B. Shmukler
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Denis A. Nikishin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
32
|
Szurpnicka A, Wrońska AK, Bus K, Kozińska A, Jabłczyńska R, Szterk A, Lubelska K. Phytochemical screening and effect of Viscum album L. on monoamine oxidase A and B activity and serotonin, dopamine and serotonin receptor 5-HTR1A levels in Galleria mellonealla (Lepidoptera). JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115604. [PMID: 35944736 DOI: 10.1016/j.jep.2022.115604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum album L. (European mistletoe), a member of the Santalaceae, is a hemiparasitic, evergreen shrub growing on deciduous and coniferous trees. In traditional and folk medicine, mistletoe was used for the treatment of central nervous system disorders such as epilepsy, hysteria, insomnia, nervous excitability, neuralgia, headache, dizziness and fatigue. However, relatively little is known of its neuropharmacological activity. AIM OF THE STUDY The aim of the present study was to evaluate the effect of treatment with aqueous and hydroethanolic extracts from Viscum album L. parasitizing birch, linden and pine, on MAO-A and MAO-B activity as well as serotonin, dopamine and serotonin receptor 5-HTR1A levels in Galleria mellonella (Lepidoptera) larvae. MATERIALS AND METHODS The phytochemical composition of the extracts was characterised using UPLC-DAD-ESI-MS/MS. To investigate the neuropharmacological activity of Viscum album L. extracts, Galleria mellonella (Lepidoptera) larvae were used as a model organism. The inhibitory potential of the extracts against MAO-A and MAO-B was determined by fluorometry. The serotonin, dopamine and serotonin receptor 5-HTR1A levels in larvae hemolymph after treatment were quantified by ELISA. RESULTS UPLC-DAD-ESI-MS/MS analysis allowed the identification of 88 compounds, either full or in part. Most of the characterised phytochemicals were flavonoids, hydroxycinnamic acids and lignans. Screening found that aqueous and hydroethanolic mistletoe extracts inhibited the enzymatic activity of either MAO-A or MAO-B or both. Additionally, mistletoe extract administration increased the levels of serotonin and serotonin receptor 5-HTR1A. None of the tested extracts had any significant effect on dopamine level. CONCLUSIONS A key novel finding was that the aqueous and hydroethanolic extracts from Viscum album L. inhibited monoamine oxidase activity and increased the levels of serotonin and serotonin receptor 5-HTR1A in Galleria mellonella (Lepidoptera) larvae. These properties may be due to the presence of phenolic constituents, particularly flavonoids. Further research based on bioassay-guided fractionation of mistletoe is needed to identify CNS-active molecules.
Collapse
Affiliation(s)
- Anna Szurpnicka
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Katarzyna Bus
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Renata Jabłczyńska
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Arkadiusz Szterk
- Transfer of Science, Strzygłowska 15, 04-872, Warsaw, Poland; Center for Translationale Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| | - Katarzyna Lubelska
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
33
|
Blinova E, Turovsky E, Eliseikina E, Igrunkova A, Semeleva E, Golodnev G, Termulaeva R, Vasilkina O, Skachilova S, Mazov Y, Zhandarov K, Simakina E, Belanov K, Zalogin S, Blinov D. Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo. Int J Mol Sci 2022; 23:12953. [PMID: 36361739 PMCID: PMC9655885 DOI: 10.3390/ijms232112953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topochemical reaction. The cell-protective effects of 3-EA were studied on a model of glutamate excitotoxicity (GluTox) and glucose-oxygen deprivation (OGD) in a culture of NMRI mice cortical cells. Ca2+ dynamics was studied using fluorescent bioimaging and a Fura-2 probe, cell viability was assessed using cytochemical staining with propidium iodide, and gene expression was assessed by a real-time polymerase chain reaction. The compound anti-ischemic efficacy in vivo was evaluated on a model of irreversible middle cerebral artery (MCA) occlusion in Sprague-Dawley male rats. Brain morphological changes and antioxidant capacity were assessed one week after the pathology onset. The severity of neurological disorder was evaluated dynamically. 3-EA suppressed cortical cell death in a dose-dependent manner under the excitotoxic effect of glutamate and ischemia/reoxygenation. Pre-incubation of cerebral cortex cells with 10-100 µM 3-EA led to significant stagnation in Ca2+ concentration in a cytosol ([Ca2+]i) of neurons and astrocytes suffering GluTox and OGD. Decreasing intracellular Ca2+ and establishing a lower [Ca2+]i baseline inhibited necrotic cell death in an acute experiment. The mechanism of 3-EA cytoprotective action involved changes in the baseline and ischemia/reoxygenation-induced expression of genes encoding anti-apoptotic proteins and proteins of the oxidative status; this led to inhibition of the late irreversible stages of apoptosis. Incubation of brain cortex cells with 3-EA induced an overexpression of the anti-apoptotic genes BCL-2, STAT3, and SOCS3, whereas the expression of genes regulating necrosis and inflammation (TRAIL, MLKL, Cas-1, Cas-3, IL-1β and TNFa) were suppressed. 3-EA 18.0 mg/kg intravenous daily administration for 7 days following MCA occlusion preserved rats' cortex neuron population, decreased the severity of neurological deficit, and spared antioxidant capacity of damaged tissues. 3-EA demonstrated proven short-term anti-ischemic activity in vivo and in vitro, which can be associated with antioxidant activity and the ability to target necrotic and apoptotic death. The compound may be considered a potential neuroprotective molecule for further pre-clinical investigation.
Collapse
Affiliation(s)
- Ekaterina Blinova
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmaceutics Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia
- Department of Fundamental Medicine, National Research Nuclear University MEPHI, 31, Kashirskoe Highway, 115409 Moscow, Russia
| | - Egor Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 3 Institutskaya Street, 142290 Pushchino, Russia
| | - Elena Eliseikina
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia
| | - Alexandra Igrunkova
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmaceutics Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia
| | - Elena Semeleva
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia
| | - Grigorii Golodnev
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmaceutics Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia
| | - Rita Termulaeva
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraja Kupavna, Russia
| | - Olga Vasilkina
- Department of Fundamental Medicine, National Research Nuclear University MEPHI, 31, Kashirskoe Highway, 115409 Moscow, Russia
| | - Sofia Skachilova
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraja Kupavna, Russia
| | - Yan Mazov
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmaceutics Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia
| | - Kirill Zhandarov
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmaceutics Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia
| | - Ekaterina Simakina
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraja Kupavna, Russia
| | - Konstantin Belanov
- Department of Pharmaceutical Technology and Pharmacology, Scientific Centre for Expert Evaluation of Medicinal Products of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, 127051 Moscow, Russia
| | - Saveliy Zalogin
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmaceutics Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia
| | - Dmitrii Blinov
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraja Kupavna, Russia
| |
Collapse
|
34
|
Hong SW, Teesdale-Spittle P, Page R, Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022; 93:163-172. [PMID: 36155069 DOI: 10.1016/j.neuro.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Tobacco smoking is reputed to be the most difficult addiction of all to give up, and nicotine has been noted as the major addictive agent in tobacco smoke. However, research shows that nicotine addiction is due to more than nicotine alone. One hypothesis is that monoamine oxidase (MAO) inhibition from non-nicotinic components in, or derived from, tobacco smoke contributes to nicotine addiction. Harman and norharman, have been recognised as major and potent MAO inhibitors in tobacco smoke, but these two inhibitors together comprise perhaps less than 10% of the total MAO A inhibitory activity in cigarette smoke suggesting other unidentified components may make significant contributions to total inhibitory activity. Therefore, we reviewed an index of the chemical components of tobacco and tobacco smoke and identified those known to be MAO inhibitors. Amongst these inhibitors, phenols and phenolic acids with MAO inhibitory activity are commonly reversible and selective MAO A inhibitors, whereas trans,trans-farnesol, 2-methyl-1,4-naphthoquinone (menadione), 1,4-naphthoquinone, scopoletin, and diosmetin with MAO inhibitory activity are reversible and selective MAO B inhibitors. The compound, 1,4-benzoquinone is an irreversible MAO A inhibitor and to the best of our knowledge, this is the first irreversible MAO A inhibitor to be reported in tobacco smoke. MAO inhibitors have been used clinically to treat depression, anxiety, and Parkinson's disease. The MAO inhibitors identified from tobacco and tobacco smoke and summarized in this review, are potential pharmacological candidates to be investigated further. This review will enhance our knowledge of the way tobacco smoke affects MAO activity in smokers and will also be important in helping to understand nicotine addiction.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
35
|
Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. ENVIRONMENTAL RESEARCH 2022; 212:113431. [PMID: 35569538 DOI: 10.1016/j.envres.2022.113431] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Judith Ford
- University of Sydney, New South Wales, United Kingdom
| | - Gary Owens
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, United Kingdom
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
36
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
37
|
Yuldasheva N, Acikyildiz N, Akyuz M, Yabo-Dambagi L, Aydin T, Cakir A, Kazaz C. The Synthesis of Schiff bases and new secondary amine derivatives of p-vanillin and evaluation of their neuroprotective, antidiabetic, antidepressant and antioxidant potentials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Cheng K, Guo Q, Shen Z, Yang W, Wang Y, Sun Z, Wu H. Bibliometric Analysis of Global Research on Cancer Photodynamic Therapy: Focus on Nano-Related Research. Front Pharmacol 2022; 13:927219. [PMID: 35784740 PMCID: PMC9243586 DOI: 10.3389/fphar.2022.927219] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 01/10/2023] Open
Abstract
A growing body of research has illuminated that photodynamic therapy (PDT) serves as an important therapeutic strategy in oncology and has become a hot topic in recent years. Although numerous papers related to cancer PDT (CPDT) have been published, no bibliometric studies have been conducted to summarize the research landscape, and highlight the research trends and hotspots in this field. This study collected 5,804 records on CPDT published between 2000 and 2021 from Web of Science Core Collection. Bibliometric analysis and visualization were conducted using VOSviewer, CiteSpace, and one online platform. The annual publication and citation results revealed significant increasing trends over the past 22 years. China and the United States, contributing 56.24% of the total publications, were the main driving force in this field. Chinese Academy of Sciences was the most prolific institution. Photodiagnosis and Photodynamic Therapy and Photochemistry and Photobiology were the most productive and most co-cited journals, respectively. All keywords were categorized into four clusters including studies on nanomaterial technology, clinical applications, mechanism, and photosensitizers. “nanotech-based PDT” and “enhanced PDT” were current research hotspots. In addition to several nano-related topics such as “nanosphere,” “nanoparticle,” “nanomaterial,” “nanoplatform,” “nanomedicine” and “gold nanoparticle,” the following topics including “photothermal therapy,” “metal organic framework,” “checkpoint blockade,” “tumor microenvironment,” “prodrug” also deserve further attention in the near future.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Guo
- Department of Orthopaedics, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Weiguang Yang
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Kunming Cheng, ; Zaijie Sun, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- *Correspondence: Kunming Cheng, ; Zaijie Sun, ; Haiyang Wu,
| |
Collapse
|
39
|
Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping Knowledge Landscapes and Emerging Trends of the Links Between Bone Metabolism and Diabetes Mellitus: A Bibliometric Analysis From 2000 to 2021. Front Public Health 2022; 10:918483. [PMID: 35719662 PMCID: PMC9204186 DOI: 10.3389/fpubh.2022.918483] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundDiabetes mellitus (DM) have become seriously threatens to human health and life quality worldwide. As a systemic metabolic disease, multiple studies have revealed that DM is related to metabolic bone diseases and always induces higher risk of fracture. In view of this, the links between bone metabolism (BM) and DM (BMDM) have gained much attention and numerous related papers have been published. Nevertheless, no prior studies have yet been performed to analyze the field of BMDM research through bibliometric approach. To fill this knowledge gap, we performed a comprehensive bibliometric analysis of the global scientific publications in this field.MethodsArticles and reviews regarding BMDM published between 2000 and 2021 were obtained from the Web of Science after manually screening. VOSviewer 1.6.16, CiteSpace V 5.8.R3, Bibliometrix, and two online analysis platforms were used to conduct the bibliometric and visualization analyses.ResultsA total of 2,525 documents including 2,255 articles and 270 reviews were retrieved. Our analysis demonstrated a steady increasing trend in the number of publications over the past 22 years (R2 = 0.989). The United States has occupied the leading position with the largest outputs and highest H-index. University of California San Francisco contributed the most publications, and Schwartz AV was the most influential author. Collaboration among institutions from different countries was relatively few. The journals that published the most BMDM-related papers were Bone and Osteoporosis International. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. According to co-cited references result, “high glucose environment,” “glycation end-product” and “sodium-glucose co-transporter” have been recognized as the current research focus in this domain. The keywords co-occurrence analysis indicated that “diabetic osteoporosis,” “osteoarthritis,” “fracture risk,” “meta-analysis,” “osteogenic differentiation,” “bone regeneration,” “osteogenesis,” and “trabecular bone score” might remain the research hotspots and frontiers in the near future.ConclusionAs a cross-discipline research field, the links between bone metabolism and diabetes mellitus are attracting increased attention. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. These insights may be helpful for clinicians to recognize diabetic osteopenia and provide more attention and support to such patients.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kunming Cheng
| | - Qiang Guo
- Department of Orthopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Zaijie Sun
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Haiyang Wu
| |
Collapse
|
40
|
Deltamethrin and Its Nanoformulations Induce Behavioral Alteration and Toxicity in Rat Brain through Oxidative Stress and JAK2/STAT3 Signaling Pathway. TOXICS 2022; 10:toxics10060303. [PMID: 35736911 PMCID: PMC9228259 DOI: 10.3390/toxics10060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Deltamethrin (DM) is the most powerful synthetic pyrethroid that has toxicity to the central nervous system and results in behavioral changes in both animals and humans. This effect is mediated by inducing alterations in the action of neurotransmitters and brain pathological changes. Nanocarrier encapsulated pesticides may decrease the toxicity of pesticides. Thus, this study aimed to determine the effect of an inorganic metal carrier (silica Nps) and polymeric capsule (chitosan Nps) of deltamethrin nano-formulations on antioxidant levels and oxidative stress in the brain and on behavior of the male albino rat. Sixty male albino rats were equally divided into four groups. Group I: control group; group II given DM liquefied in corn oil at 3.855 mg/kg BW; group III receiving silica-loaded deltamethrin (S/DM Nps) at 8.795 mg/kg BW; and group IV: given chitosan encapsulated deltamethrin (CS/DM Nps) at 30.44 mg/kg BW. All treatments were given orally for four weeks. Following this, behavioral tests were conducted to record locomotor activity, anxiety like behaviors, exploration, and the short memory of rats. In addition, brain antioxidant/oxidant, serum neurotransmitters such as acetylcholine esterase (AchE) and monoamine oxidase (MAO), JAK2 and STAT3 gene and proteins expression were measured. The DM group showed a highly significant elevation in malondialdehyde content, MAO, AchE, vascular endothelial growth factor (VEGF) levels, and the expression level of neurogenic genes, JAK2 and STAT3, in comparison with the control group. Both S/DM Nps and CS/DM Nps significantly decreased MAO, AchE, and VEGF compared with the DM group. Moreover, both S/DM Nps and CS/DM Nps significantly decreased the gene and proteins expression of JAK2 and STAT3 compared with the DM group. These alterations were evidenced by the deficiency in memory and learning behaviors that were accompanied by histopathological findings of the hippocampus and the cortex. It was concluded that the nano formulations containing DM induced less neurobehavioral toxicity than free DM. Additionally, the use of nanocarriers reduced the damage to health and the environment.
Collapse
|
41
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
42
|
Design, Synthesis, and Biological Evaluation of Novel MAO-A Inhibitors Targeting Lung Cancer. Molecules 2022; 27:molecules27092887. [PMID: 35566238 PMCID: PMC9103226 DOI: 10.3390/molecules27092887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.
Collapse
|
43
|
Evaluation of Inhibitory Activities of Sophora flavescens and Angelica gigas Nakai Root Extracts against Monoamine Oxidases, Cholinesterases, and β-Secretase. Processes (Basel) 2022. [DOI: 10.3390/pr10050880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, Sophora flavescens (SF) from Yeongcheon (YSF) and Mt. Jiri (JiSF), and Angelica gias (AG) from Yeongcheon (YAG), Mt. Jiri (JiAG), and Jecheon (JeAG) were extracted using three concentrations of ethanol, 95% (95Et), 70% (70Et), and 50% (50Et), and hot water (DW) to evaluate the inhibitions of monoamine oxidases (MAOs; MAO-A and B), cholinesterases (ChEs; AChE and BChE) and β-secretase (BACE1) for targeting depression and neurodegenerative diseases. There were no significant differences in constituent compounds depending on herbal origins, except that YSF-95Et and JiSF-95Et showed a distinct non-polar spot upper maackiain position, and JiAG and JeAG showed a higher amount of decursin than YAG. Ethanolic YAG and JeAG extracts showed the highest MAO-A inhibition, and YSF-95Et mostly inhibited MAO-B. JiSF-95Et showed the highest AChE inhibition and YSF-70Et, JiSF-95Et, and -70Et showed the highest BChE inhibition. Interestingly, ethanolic AG extracts showed extremely potent BACE1 inhibition, especially for JiAG-95Et and JeAG-50Et, whereas there have been no reports about BACE1 inhibition of decursin, the major compound, or AG extracts in other studies. All extracts were nontoxic to MDCK and SH-SY5Y with a low toxicity to HL-60. The results showed a different pattern of inhibitory activities of the extracts toward target enzymes depending on the origins, and multi-target abilities, especially for MAO-B and BChE by YSF-95Et, for AChE and BChE by JiSF-95Et, and for MAO-B and BACE1 by JiAG-95Et. It is suggested that those extracts are potential candidates for finding novel compounds with multi-target inhibitory activities, and herbal origin is an important factor to be considered in selection of the plants.
Collapse
|
44
|
Zhang KK, Chen LJ, Li JH, Liu JL, Wang LB, Xu LL, Yang JZ, Li XW, Xie XL, Wang Q. Methamphetamine Disturbs Gut Homeostasis and Reshapes Serum Metabolome, Inducing Neurotoxicity and Abnormal Behaviors in Mice. Front Microbiol 2022; 13:755189. [PMID: 35509309 PMCID: PMC9058162 DOI: 10.3389/fmicb.2022.755189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/25/2022] [Indexed: 01/01/2023] Open
Abstract
As an illicit psychostimulant, repeated methamphetamine (MA) exposure results in addiction and causes severe neurotoxicity. Studies have revealed complex interactions among gut homeostasis, metabolism, and the central nervous system (CNS). To investigate the disturbance of gut homeostasis and metabolism in MA-induced neurotoxicity, 2 mg/kg MA or equal volume saline was intraperitoneally (i.p.) injected into C57BL/6 mice. Behavioral tests and western blotting were used to evaluate neurotoxicity. To determine alterations of colonic dysbiosis, 16s rRNA gene sequencing was performed to analyze the status of gut microbiota, while RNA-sequencing (RNA-seq) and Western Blot analysis were performed to detect colonic damage. Serum metabolome was profiled by LC–MS analysis. We found that MA induced locomotor sensitization, depression-, and anxiety-like behaviors in mice, along with dysfunction of the dopaminergic system and stimulation of autophagy as well as apoptosis in the striatum. Notably, MA significantly decreased microbial diversity and altered the component of microbiota. Moreover, findings from RNA-seq implied stimulation of the inflammation-related pathway after MA treatment. Western blotting confirmed that MA mediated colonic inflammation by activating the TLR4-MyD88-NF-κB pathway and impaired colonic barrier. In addition, serum metabolome was reshaped after MA treatment. Specifically, bacteroides-derived sphingolipids and serotonin were obviously altered, which were closely correlated with locomotor sensitization, depression-, and anxiety-like behaviors. These findings suggest that MA disrupts gut homeostasis by altering its microbiome and arousing inflammation, and reshapes serum metabolome, which provide new insights into understanding the interactions between gut homeostasis and MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xiao-Li Xie,
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Qi Wang, ;
| |
Collapse
|
45
|
Abstract
BACKGROUND Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder. METHODS According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]"; (2) "(platelets[Title]) AND depressive disorder[Title/Abstract]"; (3) "(Platelet[Title]) AND major depressive disorder[Title]"; (4) (platelets[Title]) AND depressed[Title]"; (5) (platelets[Title]) AND depressive episode[Title]"; (6) (platelets[Title]) AND major depression[Title]"; (7) platelet activation in depression[All fields]"; and (8) platelet reactivity in depression[All fields]." RESULTS After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways. CONCLUSIONS Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
46
|
Herrera-Arozamena C, Estrada-Valencia M, López-Caballero P, Pérez C, Morales-García JA, Pérez-Castillo A, Sastre ED, Fernández-Mendívil C, Duarte P, Michalska P, Lombardía J, Senar S, León R, López MG, Rodríguez-Franco MI. Resveratrol-Based MTDLs to Stimulate Defensive and Regenerative Pathways and Block Early Events in Neurodegenerative Cascades. J Med Chem 2022; 65:4727-4751. [PMID: 35245051 PMCID: PMC8958504 DOI: 10.1021/acs.jmedchem.1c01883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
By replacing a phenolic
ring of (E)-resveratrol
with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new
resveratrol-based multitarget-directed ligands (MTDLs) were obtained.
They were evaluated in several assays related to oxidative stress
and inflammation (monoamine oxidases, nuclear erythroid 2-related
factor, quinone reductase-2, and oxygen radical trapping) and then
in experiments of increasing complexity (neurogenic properties and
neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile:
cellular activation of the NRF2-ARE pathway (CD = 9.83 μM),
selective inhibition of both hMAO-B and QR2 (IC50s = 8.05
and 0.57 μM), and the best ability to promote hippocampal neurogenesis.
It showed a good drug-like profile (positive in vitro central nervous
system permeability, good physiological solubility, no glutathione
conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective
and antioxidant actions in both acute and chronic Alzheimer models
using hippocampal tissues. Thus, 4e is an interesting
MTDL that could stimulate defensive and regenerative pathways and
block early events in neurodegenerative cascades.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Programa de Doctorado en Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Patricia López-Caballero
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain.,Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Pablo Duarte
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - José Lombardía
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Sergio Senar
- DrTarget Machine Learning, C/Alejo Carpentier 13, E-28806 Alcalá de Henares, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa (IIS-IP), C/Diego de León 62, E-28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
47
|
Roe K. An Alternative Explanation for Alzheimer's Disease and Parkinson's Disease Initiation from Specific Antibiotics, Gut Microbiota Dysbiosis and Neurotoxins. Neurochem Res 2022; 47:517-530. [PMID: 34669122 DOI: 10.1007/s11064-021-03467-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
The late onset neuropathologies, including Alzheimer's disease and Parkinson's disease, have become increasingly prevalent. Their causation has been linked to genetics, gut microbiota dysbiosis (gut dysbiosis), autoimmune diseases, pathogens and exposures to neurotoxins. An alternative explanatory hypothesis is provided for their pathogenesis. Virtually everyone has pervasive daily exposures to neurotoxins, through inhalation, skin contact, direct blood transmission and through the gastrointestinal tract by ingestion. As a result, every individual has substantial and fluctuating neurotoxin blood levels. Two major barriers to neurotoxin entry into the central nervous system are the blood-brain barrier and the intestinal wall, in the absence of gut dysbiosis. Inflammation from gut dysbiosis, induced by antibiotic usage, can increase the intestinal wall permeability for neurotoxins to reach the bloodstream, and also increase the blood-brain barrier permeability to neurotoxins. Gut dysbiosis, including gut dysbiosis caused by antibiotic treatments, is an especially high risk for neurotoxin entry into the brain to cause late onset neuropathologies. Gut dysbiosis has far-reaching immune system and central nervous system effects, and even a transient gut dysbiosis can act in combination with neurotoxins, such as aluminum, mercury, lead, arsenic, cadmium, selenium, manganese, organophosphate pesticides and organochlorines, to reach neurotoxin blood levels that can initiate a late onset neuropathology, depending on an individual's age and genetic vulnerability.
Collapse
|
48
|
Hu Y, Chen Z, Lu L, Zhang L, Liu T, Luo X, Liao X. Determination of dietary copper requirement by the monoamine oxidase activity in kidney of broilers from 1 to 21 d of age. ANIMAL NUTRITION 2022; 8:227-234. [PMID: 34988304 PMCID: PMC8688862 DOI: 10.1016/j.aninu.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 10/30/2022]
Abstract
The current dietary copper (Cu) requirement (8 mg/kg) of broilers is mainly based on growth, hemoglobin concentration, or hematocrit, which might not be the most sensitive indices to evaluate dietary Cu requirements of broilers. The present study was carried out to estimate dietary Cu requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age using biochemical or molecular biomarkers. A total of 384 1-d-old Arbor Acres male broilers were randomly allocated to 1 of 6 treatments with 8 replicates and fed a Cu-unsupplemented corn-soybean meal basal diet containing 5.17 mg Cu/kg by analysis and the basal diet supplemented with 3, 6, 9, 12 or 15 mg Cu/kg as CuSO4⋅5H2O for 21 d. Regression analysis was performed to estimate the optimal dietary Cu level using the broken-line model. Dietary supplemental Cu level affected (P < 0.05) Cu contents in serum and liver and kidney monoamine oxidase (MAO) activity, but had no effects (P > 0.05) on the growth performance, Cu contents in heart, kidney, pancreas and spleen, Cu- and zinc-containing superoxide dismutase (CuZnSOD) activity and ceruloplasmin content in serum, CuZnSOD and cytochrome c oxidase (COX) activities and ceruloplasmin, CuZnSOD, MAO A, MAO B, COX4I1 and COX1 mRNA and protein expressions in the above tissues of broilers. As dietary supplemental Cu levels increased, Cu contents in serum and liver increased linearly (P < 0.05), but kidney MAO activity decreased linearly and quadratically (P < 0.05). The estimated dietary Cu requirement based on the fitted broken-line model (P = 0.035) of kidney MAO activity was 11.30 mg/kg. In conclusion, kidney MAO activity is a new and sensitive criterion to evaluate the dietary Cu requirement of broilers, and the dietary Cu requirement was 11.30 mg/kg for broilers fed the conventional corn-soybean meal diet from 1 to 21 d of age, which is higher than the current National Research Council (NRC) Cu requirement (8 mg/kg) of broilers.
Collapse
|
49
|
Environmental Pollution to Blame for Depressive Disorder? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031737. [PMID: 35162759 PMCID: PMC8835056 DOI: 10.3390/ijerph19031737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Public concern has emerged about the effects of endocrine-disrupting compounds (EDCs) on neuropsychiatric disorders. Preclinical evidence suggests that exposure to EDCs is associated with the development of major depressive disorder (MDD) and could result in neural degeneration. The interaction of EDCs with hormonal receptors is the best-described mechanism of their biological activity. However, the dysregulation of the hypothalamic-pituitary-gonadal adrenal axis has been reported and linked to neurological disorders. At a worldwide level and in Mexico, the incidence of MDD has recently been increasing. Of note, in Mexico, there are no clinical associations on blood levels of EDCs and the incidence of the MDD. Methodology: Thus, we quantified for the first time the serum levels of parent compounds of two bisphenols and four phthalates in patients with MDD. The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP), and di-ethyl-phthalate (DEP), bisphenol A (BPA), and bisphenol S (BPS) in men and women with or without MDD were determined with a gas chromatograph-mass spectrometer. Results/conclusion: We found significant differences between concentrations of BBP between controls and patients with MDD. Interestingly, the serum levels of this compound have a dysmorphic behavior, being much higher in women (~500 ng/mL) than in men (≤10 ng/mL). We did not observe significant changes in the serum concentrations of the other phthalates or bisphenols tested, neither when comparing healthy and sick subjects nor when they were compared by gender. The results point out that BBP has a critical impact on the etiology of MDD disorder in Mexican patients, specifically in women.
Collapse
|
50
|
Oliveira AA, Róg T, da Silva ABF, Amaro RE, Johnson MS, Postila PA. Examining the Effect of Charged Lipids on Mitochondrial Outer Membrane Dynamics Using Atomistic Simulations. Biomolecules 2022; 12:183. [PMID: 35204684 PMCID: PMC8961577 DOI: 10.3390/biom12020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
The outer mitochondrial membrane (OMM) is involved in multiple cellular functions such as apoptosis, inflammation and signaling via its membrane-associated and -embedded proteins. Despite the central role of the OMM in these vital phenomena, the structure and dynamics of the membrane have regularly been investigated in silico using simple two-component models. Accordingly, the aim was to generate the realistic multi-component model of the OMM and inspect its properties using atomistic molecular dynamics (MD) simulations. All major lipid components, phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), were included in the probed OMM models. Because increased levels of anionic PS lipids have potential effects on schizophrenia and, more specifically, on monoamine oxidase B enzyme activity, the effect of varying the PS concentration was explored. The MD simulations indicate that the complex membrane lipid composition (MLC) behavior is notably different from the two-component PC-PE model. The MLC changes caused relatively minor effects on the membrane structural properties such as membrane thickness or area per lipid; however, notable effects could be seen with the dynamical parameters at the water-membrane interface. Increase of PS levels appears to slow down lateral diffusion of all lipids and, in general, the presence of anionic lipids reduced hydration and slowed down the PE headgroup rotation. In addition, sodium ions could neutralize the membrane surface, when PI was the main anionic component; however, a similar effect was not seen for high PS levels. Based on these results, it is advisable for future studies on the OMM and its protein or ligand partners, especially when wanting to replicate the correct properties on the water-membrane interface, to use models that are sufficiently complex, containing anionic lipid types, PI in particular.
Collapse
Affiliation(s)
- Aline A. Oliveira
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, Brazil;
| | - Tomasz Róg
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland;
| | - Albérico B. F. da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, Brazil;
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
| | - Pekka A. Postila
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy, University of Turku, FI-20520 Turku, Finland
- Aurlide Ltd., FI-21420 Lieto, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|