1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Szymczak B, Pegoraro A, De Marchi E, Grignolo M, Maciejewski B, Czarnecka J, Adinolfi E, Roszek K. Retinoic acid-induced alterations enhance eATP-mediated anti-cancer effects in glioma cells: Implications for P2X7 receptor variants as key players. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167611. [PMID: 39626856 DOI: 10.1016/j.bbadis.2024.167611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Retinoic acid (RA) is a small, lipophilic molecule that inhibits cell proliferation and induces differentiation through activation of a family of nuclear receptors (RARs). The therapeutic potential of RA in the treatment of glioma was first evaluated two decades ago, but these attempts were considered not conclusive. Based on the complexity of tumor microenvironment and the role of purinergic signals within TME, we aimed to support RA-induced alterations in glioma cells with extracellular ATP. Our experiments focused on defining the purinergic signaling dynamics of two different human glioma cell lines M059K and M059J subjected to RA-based differentiation protocol. The applied procedure caused considerable modulation in P2X7 receptor variants expression at the gene and protein level, and decrease in ecto-nucleotidase activity. Collectively, it led to the decrease in cell proliferation rate and migration, as well as boosted sensitivity to cytotoxic eATP influence. We confirmed that micromolar concentrations of ATP decreased cell viability by 40 and 20 % in RA-treated M059K and M059J cells, respectively. Moreover, the decrease in migration capability up to 60 % in the presence of 100 μM ATP was observed. Both effects were mediated by P2X7R activation and reversed in the presence of A740003 antagonist, confirming the role of P2X7 receptor. We postulate that retinoic acid-induced changes coupled with micromolar eATP could be effective as anti-cancer treatment affecting the purinergic signaling. The obtained results point out the role of P2X7R variants in influencing potential of glioma cells, as well as the possibility of using these isoforms as therapeutic targets.
Collapse
Affiliation(s)
- Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marianna Grignolo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
3
|
Akcay E, Karatas H. P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol. Brain Behav Immun Health 2024; 41:100853. [PMID: 39296605 PMCID: PMC11407962 DOI: 10.1016/j.bbih.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Many patients with depressive disorder do not respond to conventional antidepressant treatment. There is an ongoing interest in investigating potential mechanisms of treatment resistance in depression to provide alternative treatment options involving inflammatory mechanisms. Increasing evidence implicates the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome as a critical factor in neuroinflammation. ATP-induced P2X7 receptor (P2X7R) activation is a major trigger for inflammation, activating the canonical NLRP3 inflammatory cascade. Psychosocial stress, the primary environmental risk factor for depression, is associated with changes in ATP-mediated P2X7R signaling. Depression and stress response can be alleviated by Cannabidiol (CBD). CBD has an anti-inflammatory activity related to the regulation of NLRP3 inflammasome activation. However, CBD's effects on the inflammasome pathway are poorly understood in central nervous system (CNS) cells, including microglia, astrocytes, and neurons. This review will emphasize some findings for neuroinflammation and NLRP3 inflammasome pathway involvement in depression, particularly addressing the ATP-induced P2X7R activation. Moreover, we will underline evidence for the effect of CBD on depression and address its potential impacts on neuroinflammation through the NLRP3 inflammasome cascade.
Collapse
Affiliation(s)
- Elif Akcay
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- University of Health Sciences, Ankara Bilkent City Hospital, Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
4
|
Oken AC, Ditter IA, Lisi NE, Krishnamurthy I, Godsey MH, Mansoor SE. P2X 7 receptors exhibit at least three modes of allosteric antagonism. SCIENCE ADVANCES 2024; 10:eado5084. [PMID: 39365862 PMCID: PMC11451537 DOI: 10.1126/sciadv.ado5084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
P2X receptors are trimeric ion channels activated by adenosine triphosphate (ATP) that contribute to pathophysiological processes ranging from asthma to neuropathic pain and neurodegeneration. A number of small-molecule antagonists have been identified for these important pharmaceutical targets. However, the molecular pharmacology of P2X receptors is poorly understood because of the chemically disparate nature of antagonists and their differential actions on the seven constituent subtypes. Here, we report high-resolution cryo-electron microscopy structures of the homomeric rat P2X7 receptor bound to five previously known small-molecule allosteric antagonists and a sixth antagonist that we identify. Our structural, biophysical, and electrophysiological data define the molecular determinants of allosteric antagonism in this pharmacologically relevant receptor, revealing three distinct classes of antagonists that we call shallow, deep, and starfish. Starfish binders, exemplified by the previously unidentified antagonist methyl blue, represent a unique class of inhibitors with distinct functional properties that could be exploited to develop potent P2X7 ligands with substantial clinical impact.
Collapse
Affiliation(s)
- Adam C. Oken
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ismayn A. Ditter
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Nicolas E. Lisi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ipsita Krishnamurthy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael H. Godsey
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Steven E. Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Mosavie M, Rynne J, Fish M, Smith P, Jennings A, Singh S, Millar J, Harvala H, Mora A, Kaloyirou F, Griffiths A, Hopkins V, Washington C, Estcourt LJ, Roberts D, Shankar-Hari M. Changes in Phenotypic and Molecular Features of Naïve and Central Memory T Helper Cell Subsets following SARS-CoV-2 Vaccination. Vaccines (Basel) 2024; 12:1040. [PMID: 39340069 PMCID: PMC11435719 DOI: 10.3390/vaccines12091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Molecular changes in lymphocytes following SARS-CoV-2 vaccination are incompletely understood. We hypothesized that studying the molecular (transcriptomic, epigenetic, and T cell receptor (TCR) repertoire) changes in CD4+ T cells following SARS-CoV-2 vaccination could inform protective mechanisms and refinement of future vaccines. We tested this hypothesis by reporting alterations in CD4+ T cell subsets and molecular features of CD4+ naïve and CD4+ central memory (CM) subsets between the unvaccinated and vaccinated groups. Compared with the unvaccinated, the vaccinated had higher HLA-DR expression in CD4+ T subsets, a greater number of differentially expressed genes (DEGs) that overlapped with key differentially accessible regions (DARs) along the chromatin linked to inflammasome activation, translation, regulation (of apoptosis, inflammation), and significant changes in clonal architecture beyond SARS-CoV-2 specificity. Several of these differences were more pronounced in the CD4+CM subset. Taken together, our observations imply that the COVID-19 vaccine exerts its protective effects via modulation of acute inflammation to SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Mia Mosavie
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Rynne
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Matthew Fish
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter Smith
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Aislinn Jennings
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Shivani Singh
- Department of Medicine, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Jonathan Millar
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Microbiology Services, Colindale, NHS Blood and Transplant, Colindale NW9 5BG, UK
| | - Ana Mora
- Heart Lung Research Institute Clinical Research Facility, Cambridge CB2 0BB, UK
| | - Fotini Kaloyirou
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Alexandra Griffiths
- Statistics and Clinical Research, NHS Blood and Transplant, Bristol BS34 7QH, UK
| | - Valerie Hopkins
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | | | - Lise J Estcourt
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David Roberts
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
- Department of Critical Care Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| |
Collapse
|
6
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| | - Michael R Bruchas
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Benjamin B Land
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
De Salis SKF, Chen JZ, Skarratt KK, Fuller SJ, Balle T. Deep learning structural insights into heterotrimeric alternatively spliced P2X7 receptors. Purinergic Signal 2024; 20:431-447. [PMID: 38032425 DOI: 10.1007/s11302-023-09978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
P2X7 receptors (P2X7Rs) are membrane-bound ATP-gated ion channels that are composed of three subunits. Different subunit structures may be expressed due to alternative splicing of the P2RX7 gene, altering the receptor's function when combined with the wild-type P2X7A subunits. In this study, the application of the deep-learning method, AlphaFold2-Multimer (AF2M), for the generation of trimeric P2X7Rs was validated by comparing an AF2M-generated rat wild-type P2X7A receptor with a structure determined by cryogenic electron microscopy (cryo-EM) (Protein Data Bank Identification: 6U9V). The results suggested AF2M could firstly, accurately predict the structures of P2X7Rs and secondly, accurately identify the highest quality model through the ranking system. Subsequently, AF2M was used to generate models of heterotrimeric alternatively spliced P2X7Rs consisting of one or two wild-type P2X7A subunits in combination with one or two P2X7B, P2X7E, P2X7J, and P2X7L splice variant subunits. The top-ranking models were deemed valid based on AF2M's confidence measures, stability in molecular dynamics simulations, and consistent flexibility of the conserved regions between the models. The structure of the heterotrimeric receptors, which were missing key residues in the ATP binding sites and carboxyl terminal domains (CTDs) compared to the wild-type receptor, help to explain their observed functions. Overall, the models produced in this study (available as supplementary material) unlock the possibility of structure-based studies into the heterotrimeric P2X7Rs.
Collapse
Affiliation(s)
- Sophie K F De Salis
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jake Zheng Chen
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Kristen K Skarratt
- The University of Sydney, Nepean Clinical School, Kingswood, NSW, 2747, Australia
| | - Stephen J Fuller
- The University of Sydney, Nepean Clinical School, Kingswood, NSW, 2747, Australia
| | - Thomas Balle
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
- Sydney Pharmacy School, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
8
|
Alves M, Gil B, Villegas-Salmerón J, Salari V, Martins-Ferreira R, Arribas Blázquez M, Menéndez Méndez A, Da Rosa Gerbatin R, Smith J, de Diego-Garcia L, Conte G, Sierra-Marquez J, Merino Serrais P, Mitra M, Fernandez Martin A, Wang Y, Kesavan J, Melia C, Parras A, Beamer E, Zimmer B, Heiland M, Cavanagh B, Parcianello Cipolat R, Morgan J, Teng X, Prehn JHM, Fabene PF, Bertini G, Artalejo AR, Ballestar E, Nicke A, Olivos-Oré LA, Connolly NMC, Henshall DC, Engel T. Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice. Brain Behav Immun 2024; 120:121-140. [PMID: 38777288 DOI: 10.1016/j.bbi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Beatriz Gil
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; The SFI Centre for Research Training in Genomics Data Science, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Valentina Salari
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Immunogenetics Laboratory, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Autoimmunity and Neuroscience Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marina Arribas Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odon, Spain
| | - Rogerio Da Rosa Gerbatin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Ocupharm Research Group, Faculty of Optics and Optometry, Complutense University of Madrid, Avda. Arcos de Jalon, 118 (28037), Madrid, Spain
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Juan Sierra-Marquez
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Paula Merino Serrais
- Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Meghma Mitra
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ana Fernandez Martin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Yitao Wang
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jaideep Kesavan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ciara Melia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; VivoArchitect, Route de la Corniche 5, 1066 Epalinges, Vaud, Switzerland
| | - Alberto Parras
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mona Heiland
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Rafael Parcianello Cipolat
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - James Morgan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy; Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, Faculty of Medicine, University of Verona, Verona, Italy; Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, Faculty of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
9
|
Maldifassi MC, Guerra-Fernández MJ, Ponce D, Alfonso-Bueno S, Maripillán J, Vielma AH, Báez-Matus X, Marengo FD, Acuña-Castillo C, Sáez JC, Martínez AD, Cárdenas AM. Autocrine activation of P2X7 receptors mediates catecholamine secretion in chromaffin cells. Br J Pharmacol 2024; 181:2905-2922. [PMID: 38679932 DOI: 10.1111/bph.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.
Collapse
Affiliation(s)
- María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela Ponce
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Samuel Alfonso-Bueno
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Thakku Sivakumar D, Jain K, Alfehaid N, Wang Y, Teng X, Fischer W, Engel T. The Purinergic P2X7 Receptor as a Target for Adjunctive Treatment for Drug-Refractory Epilepsy. Int J Mol Sci 2024; 25:6894. [PMID: 39000004 PMCID: PMC11241490 DOI: 10.3390/ijms25136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.
Collapse
Affiliation(s)
- Divyeshz Thakku Sivakumar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Krishi Jain
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Noura Alfehaid
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Yitao Wang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | | | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
12
|
Guggemos J, Fuller SJ, Skarratt KK, Mayer B, Schneider EM. Loss-of-function/gain-of-function polymorphisms of the ATP sensitive P2X7R influence sepsis, septic shock, pneumonia, and survival outcomes. Front Immunol 2024; 15:1352789. [PMID: 38966639 PMCID: PMC11222724 DOI: 10.3389/fimmu.2024.1352789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.
Collapse
Affiliation(s)
- Johanna Guggemos
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| | - Stephen J. Fuller
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Kristen K. Skarratt
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
13
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Kesavan J, Watters O, de Diego-Garcia L, Méndez AM, Alves M, Dinkel K, Hamacher M, Prehn JHM, Henshall DC, Engel T. Functional expression of the ATP-gated P2X7 receptor in human iPSC-derived astrocytes. Purinergic Signal 2024; 20:303-309. [PMID: 37453017 PMCID: PMC11189378 DOI: 10.1007/s11302-023-09957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Activation of the ATP-gated P2X7 receptor (P2X7R), implicated in numerous diseases of the brain, can trigger diverse responses such as the release of pro-inflammatory cytokines, modulation of neurotransmission, cell proliferation or cell death. However, despite the known species-specific differences in its pharmacological properties, to date, most functional studies on P2X7R responses have been analyzed in cells from rodents or immortalised cell lines. To assess the endogenous and functional expression of P2X7Rs in human astrocytes, we differentiated human-induced pluripotent stem cells (hiPSCs) into GFAP and S100 β-expressing astrocytes. Immunostaining revealed prominent punctate P2X7R staining. P2X7R protein expression was also confirmed by Western blot. Importantly, stimulation with the potent non-selective P2X7R agonist 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'- triphosphate (BzATP) or endogenous agonist ATP induced robust calcium rises in hiPSC-derived astrocytes which were blocked by the selective P2X7R antagonists AFC-5128 or JNJ-47965567. Our findings provide evidence for the functional expression of P2X7Rs in hiPSC-derived astrocytes and support their in vitro utility in investigating the role of the P2X7R and drug screening in disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Jaideep Kesavan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Orla Watters
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Science & Computing, SETU Waterford, Cork Rd., Co., Waterford, X91 K0EK, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- Department of Optic and Optometry, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28037, Spain
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
| | - Klaus Dinkel
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Michael Hamacher
- Affectis Pharmaceuticals AG, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
15
|
Munaron L, Chinigò G, Scarpellino G, Ruffinatti FA. The fallacy of functional nomenclature in the kingdom of biological multifunctionality: physiological and evolutionary considerations on ion channels. J Physiol 2024; 602:2367-2381. [PMID: 37635695 DOI: 10.1113/jp284422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.
Collapse
Affiliation(s)
- Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
16
|
Nespoux J, Monaghan MLT, Jones NK, Stewart K, Denby L, Czopek A, Mullins JJ, Menzies RI, Baker AH, Bailey MA. P2X7 receptor knockout does not alter renal function or prevent angiotensin II-induced kidney injury in F344 rats. Sci Rep 2024; 14:9573. [PMID: 38670993 PMCID: PMC11053004 DOI: 10.1038/s41598-024-59635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
P2X7 receptors mediate immune and endothelial cell responses to extracellular ATP. Acute pharmacological blockade increases renal blood flow and filtration rate, suggesting that receptor activation promotes tonic vasoconstriction. P2X7 expression is increased in kidney disease and blockade/knockout is renoprotective. We generated a P2X7 knockout rat on F344 background, hypothesising enhanced renal blood flow and protection from angiotensin-II-induced renal injury. CRISPR/Cas9 introduced an early stop codon into exon 2 of P2rx7, abolishing P2X7 protein in kidney and reducing P2rx7 mRNA abundance by ~ 60% in bone-marrow derived macrophages. The M1 polarisation response to lipopolysaccharide was unaffected but P2X7 receptor knockout suppressed ATP-induced IL-1β release. In male knockout rats, acetylcholine-induced dilation of the renal artery ex vivo was diminished but not the response to nitroprusside. Renal function in male and female knockout rats was not different from wild-type. Finally, in male rats infused with angiotensin-II for 6 weeks, P2X7 knockout did not reduce albuminuria, tubular injury, renal macrophage accrual, and renal perivascular fibrosis. Contrary to our hypothesis, global P2X7 knockout had no impact on in vivo renal hemodynamics. Our study does not indicate a major role for P2X7 receptor activation in renal vascular injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Marie-Louise T Monaghan
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Natalie K Jones
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Kevin Stewart
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Laura Denby
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Alicja Czopek
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - John J Mullins
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Robert I Menzies
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
17
|
Magni L, Yu H, Christensen NM, Poulsen MH, Frueh A, Deshar G, Johansen AZ, Johansen JS, Pless SA, Jørgensen NR, Novak I. Human P2X7 receptor variants Gly150Arg and Arg276His polymorphisms have differential effects on risk association and cellular functions in pancreatic cancer. Cancer Cell Int 2024; 24:148. [PMID: 38664691 PMCID: PMC11044319 DOI: 10.1186/s12935-024-03339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The purinergic P2X7 receptor (P2X7R) plays an important role in the crosstalk between pancreatic stellate cells (PSCs) and cancer cells, thus promoting progression of pancreatic ductal adenocarcinoma (PDAC). Single nucleotide polymorphisms (SNPs) in the P2X7R have been reported for several cancers, but have not been explored in PDAC. MATERIALS AND METHODS Blood samples from PDAC patients and controls were genotyped for 11 non-synonymous SNPs in P2X7R and a risk analysis was performed. Relevant P2X7R-SNP GFP variants were expressed in PSCs and cancer cells and their function was assayed in the following tests. Responses in Ca2+ were studied with Fura-2 and dye uptake with YO-PRO-1. Cell migration was monitored by fluorescence microscopy. Released cytokines were measured with MSD assay. RESULTS Risk analysis showed that two SNPs 474G>A and 853G>A (rs28360447, rs7958316), that lead to the Gly150Arg and Arg276His variants, had a significant but opposite risk association with PDAC development, protecting against and predisposing to the disease, respectively. In vitro experiments performed on cancer cells and PSCs expressing the Gly150Arg variant showed reduced intracellular Ca2+ response, fluorescent dye uptake, and cell migration, while the Arg276His variant reduced dye uptake but displayed WT-like Ca2+ responses. As predicted, P2X7R was involved in cytokine release (IL-6, IL-1β, IL-8, TNF-α), but the P2X7R inhibitors displayed varied effects. CONCLUSION In conclusion, we provide evidence for the P2X7R SNPs association with PDAC and propose that they could be considered as potential biomarkers.
Collapse
Affiliation(s)
- Lara Magni
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Haoran Yu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Mette H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Frueh
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Ganga Deshar
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
18
|
Longo Y, Mascaraque SM, Andreacchio G, Werner J, Katahira I, De Marchi E, Pegoraro A, Lebbink RJ, Köhrer K, Petzsch P, Tao R, Di Virgilio F, Adinolfi E, Drexler I. The purinergic receptor P2X7 as a modulator of viral vector-mediated antigen cross-presentation. Front Immunol 2024; 15:1360140. [PMID: 38711513 PMCID: PMC11070468 DOI: 10.3389/fimmu.2024.1360140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.
Collapse
Affiliation(s)
- Ylenia Longo
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| | | | | | - Julia Werner
- Institute of Molecular Medicine II, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ichiro Katahira
- Institute of Molecular Medicine II, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Robert Jan Lebbink
- Institute of Infection Immunity, University of Utrecht, Utrecht, Netherlands
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| | | | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ingo Drexler
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| |
Collapse
|
19
|
Notarangelo MP, Penolazzi L, Lambertini E, Falzoni S, De Bonis P, Capanni C, Di Virgilio F, Piva R. The NFATc1/P2X7 receptor relationship in human intervertebral disc cells. Front Cell Dev Biol 2024; 12:1368318. [PMID: 38638530 PMCID: PMC11024252 DOI: 10.3389/fcell.2024.1368318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
A comprehensive understanding of the molecules that play key roles in the physiological and pathological homeostasis of the human intervertebral disc (IVD) remains challenging, as does the development of new therapeutic treatments. We recently found a positive correlation between IVD degeneration (IDD) and P2X7 receptor (P2X7R) expression increases both in the cytoplasm and in the nucleus. Using immunocytochemistry, reverse transcription PCR (RT-PCR), overexpression, and chromatin immunoprecipitation, we found that NFATc1 and hypoxia-inducible factor-1α (HIF-1α) are critical regulators of P2X7R. Both transcription factors are recruited at the promoter of the P2RX7 gene and involved in its positive and negative regulation, respectively. Furthermore, using the proximity ligation assay, we revealed that P2X7R and NFATc1 form a molecular complex and that P2X7R is closely associated with lamin A/C, a major component of the nuclear lamina. Collectively, our study identifies, for the first time, P2X7R and NFATc1 as markers of IVD degeneration and demonstrates that both NFATc1 and lamin A/C are interaction partners of P2X7R.
Collapse
Affiliation(s)
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Chemical, Pharmaceutical and Agricultural Sciences of the University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pasquale De Bonis
- Neurosurgery Department, Sant’Anna University Hospital, Ferrara, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | | | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Gil-Redondo JC, Queipo MJ, Trueba Y, Llorente-Sáez C, Serrano J, Ortega F, Gómez-Villafuertes R, Pérez-Sen R, Delicado EG. DUSP1/MKP-1 represents another piece in the P2X7R intracellular signaling puzzle in cerebellar cells: our last journey with Mª Teresa along the purinergic pathways of Eden. Purinergic Signal 2024; 20:127-144. [PMID: 37776398 PMCID: PMC10997573 DOI: 10.1007/s11302-023-09970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The P2X7 receptor (P2X7R) stands out within the purinergic family as it has exclusive pharmacological and regulatory features, and it fulfills distinct roles depending on the type of stimulation and cellular environment. Tonic activation of P2X7R promotes cell proliferation, whereas sustained activation is associated with cell death. Yet strikingly, prolonged P2X7R activation in rat cerebellar granule neurons and astrocytes does not affect cell survival. The intracellular pathways activated by P2X7Rs involve proteins like MAPKs, ERK1/2 and p38, and interactions with growth factor receptors could explain their behavior in populations of rat cerebellar cells. In this study, we set out to characterize the intracellular mechanisms through which P2X7Rs and Trk receptors, EGFR (epidermal growth factor receptor) and BDNFR (brain-derived neurotrophic factor receptor), regulate the dual-specificity phosphatase DUSP1. In cerebellar astrocytes, the regulation of DUSP1 expression by P2X7R depends on ERK and p38 activation. EGFR stimulation can also induce DUSP1 expression, albeit less strongly than P2X7R. Conversely, EGF was virtually ineffective in regulating DUSP1 in granule neurons, a cell type in which BDNF is the main regulator of DUSP1 expression and P2X7R only induces a mild response. Indeed, the regulation of DUSP1 elicited by BDNF reflects the balance between both transcriptional and post-transcriptional mechanisms. Importantly, when the regulation of DUSP1 expression is compromised, the viability of both astrocytes and neurons is impaired, suggesting this phosphatase is essential to maintain proper cell cytoarchitecture and functioning.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yaiza Trueba
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Celia Llorente-Sáez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julia Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
21
|
Rodriguez NR, Fortune T, Hegde E, Weinstein MP, Keane AM, Mangold JF, Swartz TH. Oxidative phosphorylation in HIV-1 infection: impacts on cellular metabolism and immune function. Front Immunol 2024; 15:1360342. [PMID: 38529284 PMCID: PMC10962326 DOI: 10.3389/fimmu.2024.1360342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) presents significant challenges to the immune system, predominantly characterized by CD4+ T cell depletion, leading to Acquired Immunodeficiency Syndrome (AIDS). Antiretroviral therapy (ART) effectively suppresses the viral load in people with HIV (PWH), leading to a state of chronic infection that is associated with inflammation. This review explores the complex relationship between oxidative phosphorylation, a crucial metabolic pathway for cellular energy production, and HIV-1, emphasizing the dual impact of HIV-1 infection and the metabolic and mitochondrial effects of ART. The review highlights how HIV-1 infection disrupts oxidative phosphorylation, promoting glycolysis and fatty acid synthesis to facilitate viral replication. ART can exacerbate metabolic dysregulation despite controlling viral replication, impacting mitochondrial DNA synthesis and enhancing reactive oxygen species production. These effects collectively contribute to significant changes in oxidative phosphorylation, influencing immune cell metabolism and function. Adenosine triphosphate (ATP) generated through oxidative phosphorylation can influence the metabolic landscape of infected cells through ATP-detected purinergic signaling and contributes to immunometabolic dysfunction. Future research should focus on identifying specific targets within this pathway and exploring the role of purinergic signaling in HIV-1 pathogenesis to enhance HIV-1 treatment modalities, addressing both viral infection and its metabolic consequences.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Talia H. Swartz
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Ye T, Yang J, Liu Z, Yu Y, Zhang C, Guo Y, Yu F, Zhou Y, Song Z, Shi J, Wang L, Yang B, Wang X. Inhibition of the P2X7 receptor prevents atrial proarrhythmic remodeling in experimental post-operative atrial fibrillation. Int Immunopharmacol 2024; 129:111536. [PMID: 38320354 DOI: 10.1016/j.intimp.2024.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Post-operative atrial fibrillation (POAF) is a common complication in patients undergoing cardiac surgery. The purinergic receptor P2X7 (P2X7R) is involved in some cardiovascular diseases, whereas its effects on atrial fibrillation (AF) are unclear. OBJECTIVE This study was to assess the effect of P2X7R on atrial arrhythmogenic remodeling in the rat model of sterile pericarditis (SP). METHODS Male Sprague-Dawley (SD) rats were used to induce the SP model. Electrocardiogram, atrial electrophysiological protocol, histology, mRNA sequencing, real-time quantitative PCR, western blot, and Elisa assay were performed. RESULTS SP significantly up-regulated P2X7R expression; increased AF susceptibility; reduced the protein expression of ion channels including Nav1.5, Cav1.2, Kv4.2, Kv4.3, and Kv1.5; caused atrial fibrosis; increased norepinephrine (NE) level in plasma; promoted the production of inflammatory cytokines such as TNF-α, IL-1β, and IL-6; increased the accumulation of immune cells (CD68- and MPO- positive cells); and activated NLRP3 inflammasome signaling pathway. P2X7R antagonist Brilliant Blue G (BBG) mitigated SP-induced alterations. The mRNA sequencing demonstrated that BBG prevented POAF mainly by regulating the immune system. In addition, another selective P2X7R antagonist A740003, and IL-1R antagonist anakinra also reduced AF inducibility in the SP model. CONCLUSIONS P2X7R inhibition prevents SP-induced atrial proarrhythmic remodeling, which is closely associated with the improvement of inflammatory changes, ion channel expression, atrial fibrosis, and sympathetic activation. The findings point to P2X7R inhibition as a promising target for AF (particularly POAF) and perhaps other conditions.
Collapse
Affiliation(s)
- Tianxin Ye
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinxiu Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yan Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fangcong Yu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yunping Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhuonan Song
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longbo Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Xingxiang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
23
|
Kidder E, Gangopadhyay S, Francis S, Alfaidi M. "How to Release or Not Release, That Is the Question." A Review of Interleukin-1 Cellular Release Mechanisms in Vascular Inflammation. J Am Heart Assoc 2024; 13:e032987. [PMID: 38390810 PMCID: PMC10944040 DOI: 10.1161/jaha.123.032987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques. A more in-depth understanding of the process of IL-1's release into the vascular environment is necessary for the treatment of inflammatory disease processes, as the current selection of medicines being used primarily target IL-1 after it has been released. IL-1 is secreted by several heterogenous mechanisms, some of which are cell type-specific and could provide further specialized targets for therapeutic intervention. A major unmet challenge is to understand the mechanism before and leading to IL-1 release, especially by cells in atherosclerotic plaques, including endothelial cells, vascular smooth muscle cells, and macrophages. Data so far indicate a heterogeneity of IL-1 release mechanisms that vary according to cell type and are stimulus-dependent. Unraveling this complexity may reveal new targets to block excess vascular inflammation.
Collapse
Affiliation(s)
- Evan Kidder
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Siddhartha Gangopadhyay
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Sheila Francis
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| |
Collapse
|
24
|
Romenskaja D, Jonavičė U, Tunaitis V, Pivoriūnas A. Extracellular vesicles from oral mucosa stem cells promote lipid raft formation in human microglia through TLR4, P2X4R, and αVβ3/αVβ5 signaling pathways. Cell Biol Int 2024; 48:358-368. [PMID: 38100213 DOI: 10.1002/cbin.12111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 12/01/2023] [Indexed: 02/15/2024]
Abstract
Targeting of disease-associated microglia represents a promising therapeutic approach that can be used for the prevention or slowing down neurodegeneration. In this regard, the use of extracellular vesicles (EVs) represents a promising therapeutic approach. However, the molecular mechanisms by which EVs regulate microglial responses remain poorly understood. In the present study, we used EVs derived from human oral mucosa stem cells (OMSCs) to investigate the effects on the lipid raft formation and the phagocytic response of human microglial cells. Lipid raft labeling with fluorescent cholera toxin subunit B conjugates revealed that both EVs and lipopolysaccharide (LPS) by more than two times increased lipid raft formation in human microglia. By contrast, combined treatment with LPS and EVs significantly decreased lipid raft formation indicating possible interference of EVs with the process of LPS-induced lipid raft formation. Specific inhibition of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody as well as inhibition of purinergic P2X4 receptor (P2X4R) with selective antagonist 5-BDBD inhibited EVs- and LPS-induced lipid raft formation. Selective blockage of αvβ3/αvβ5 integrins with cilengitide suppressed EV- and LPS-induced lipid raft formation in microglia. Furthermore, inhibition of TLR4 and P2X4R prevented EV-induced phagocytic activity of human microglial cells. We demonstrate that EVs induce lipid raft formation in human microglia through interaction with TLR4, P2X4R, and αVβ3/αVβ5 signaling pathways. Our results provide new insights about the molecular mechanisms regulating EV/microglia interactions and could be used for the development of new therapeutic strategies against neurological disorders.
Collapse
Affiliation(s)
- Diana Romenskaja
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
25
|
Tang H, Wei W, Luo Y, Lu X, Chen J, Yang S, Wu F, Zhou H, Ma W, Yang X. P2X7 receptors: a bibliometric review from 2002 to 2023. Purinergic Signal 2024:10.1007/s11302-024-09996-9. [PMID: 38421486 DOI: 10.1007/s11302-024-09996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.
Collapse
Affiliation(s)
- Haiting Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Luo
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqing Lu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Chen
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenqiao Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wu
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haiyan Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenbin Ma
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
26
|
Néré R, Kouba S, Carreras-Sureda A, Demaurex N. S-acylation of Ca2+ transport proteins: molecular basis and functional consequences. Biochem Soc Trans 2024; 52:407-421. [PMID: 38348884 PMCID: PMC10903462 DOI: 10.1042/bst20230818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Calcium (Ca2+) regulates a multitude of cellular processes during fertilization and throughout adult life by acting as an intracellular messenger to control effector functions in excitable and non-excitable cells. Changes in intracellular Ca2+ levels are driven by the co-ordinated action of Ca2+ channels, pumps, and exchangers, and the resulting signals are shaped and decoded by Ca2+-binding proteins to drive rapid and long-term cellular processes ranging from neurotransmission and cardiac contraction to gene transcription and cell death. S-acylation, a lipid post-translational modification, is emerging as a critical regulator of several important Ca2+-handling proteins. S-acylation is a reversible and dynamic process involving the attachment of long-chain fatty acids (most commonly palmitate) to cysteine residues of target proteins by a family of 23 proteins acyltransferases (zDHHC, or PATs). S-acylation modifies the conformation of proteins and their interactions with membrane lipids, thereby impacting intra- and intermolecular interactions, protein stability, and subcellular localization. Disruptions of S-acylation can alter Ca2+ signalling and have been implicated in the development of pathologies such as heart disease, neurodegenerative disorders, and cancer. Here, we review the recent literature on the S-acylation of Ca2+ transport proteins of organelles and of the plasma membrane and highlight the molecular basis and functional consequence of their S-acylation as well as the therapeutic potential of targeting this regulation for diseases caused by alterations in cellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Raphaël Néré
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sana Kouba
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Acuña-Castillo C, Escobar A, García-Gómez M, Bachelet VC, Huidobro-Toro JP, Sauma D, Barrera-Avalos C. P2X7 Receptor in Dendritic Cells and Macrophages: Implications in Antigen Presentation and T Lymphocyte Activation. Int J Mol Sci 2024; 25:2495. [PMID: 38473744 DOI: 10.3390/ijms25052495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
The P2X7 receptor, a member of the P2X purinergic receptor family, is a non-selective ion channel. Over the years, it has been associated with various biological functions, from modulating to regulating inflammation. However, its emerging role in antigen presentation has captured the scientific community's attention. This function is essential for the immune system to identify and respond to external threats, such as pathogens and tumor cells, through T lymphocytes. New studies show that the P2X7 receptor is crucial for controlling how antigens are presented and how T cells are activated. These studies focus on antigen-presenting cells, like dendritic cells and macrophages. This review examines how the P2X7 receptor interferes with effective antigen presentation and activates T cells and discusses the fundamental mechanisms that can affect the immune response. Understanding these P2X7-mediated processes in great detail opens up exciting opportunities to create new immunological therapies.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380000, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Vivienne C Bachelet
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Juan Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Centro Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba 8580000, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| |
Collapse
|
28
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Salcman B, Bahri R, West PW, Tontini C, Affleck K, Bulfone-Paus S. P2X7 Receptor-Induced Human Mast Cell Degranulation Is Enhanced by Interleukin 33. Int J Mol Sci 2024; 25:1730. [PMID: 38339008 PMCID: PMC10855801 DOI: 10.3390/ijms25031730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
MCs are tissue-resident immune cells that strategically reside in barrier organs and respond effectively to a wide range of stimuli, such as IL-33, a mediator released upon epithelial damage. Adenosine triphosphate (ATP) accumulates at sites of tissue injury and is known to modulate MC activities. This study investigated how an inflammatory tissue environment rich in IL-33 modulates the ATP-mediated activation of MCs. Human primary MCs primed with IL-33 displayed a strongly increased response to ATP but not ADP. This resulted in increased degranulation, IL-8 release, and pERK1/2 signalling. Such effects are unique to IL-33 stimulation and not shared by the epithelial alarmin, TSLP. MC exposure to IL-33 also increased membrane expression of purinergic and ATP-binding P2X receptors. The use of selective P2X receptor inhibitors identified P2X7 receptor as the key mediator of the enhanced ATP-induced ERK1/2 signalling and degranulation in IL-33-primed MCs. Whilst the inhibition of P2X1 and P2X4 receptors had no effect on MC degranulation, inhibiting these receptors together with P2X7 resulted in further decreased MC-mediated degranulation. These data therefore point toward the potential mechanisms by which IL-33 contributes to the modulation of ATP-mediated activation in human MCs.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| |
Collapse
|
30
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
31
|
Erbaş E, Celep NA, Tekiner D, Genç A, Gedikli S. Assessment of toxicological effects of favipiravir (T-705) on the lung tissue of rats: An experimental study. J Biochem Mol Toxicol 2024; 38:e23536. [PMID: 37942797 DOI: 10.1002/jbt.23536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
This study aimed to present new data on the side effects of favipiravir on healthy lung tissue and the respiratory system. In the study, two different durations (5 and 10 days) were preferred to determine the effect of favipiravir treatment due to clinical improvement rates of approximately 5 and 10 days during the use of favipiravir in COVID-19 patients. In addition, after 10 days of favipiravir treatment, animals were kept for 5 days without any treatment to determine the regeneration of lung tissues. Favipiravir was administered to rats by oral gavage at a daily dose of 200 mg/kg for 5 and 10 days, as in previous studies. At the end of the experiment, the histopathological and biochemical effects of favipiravir in the lung tissue were investigated. The data obtained from the study showed that favipiravir increased oxidative stress parameters, expression of apoptotic markers, and pro-inflammatory markers in lung tissue. Since malondialdehydes is an oxidant parameter, it increased in favipiravir-administered groups; It was determined that the antioxidant parameters glutathione, superoxide dismutase, glutathione peroxidase, and catalase decreased. Other markers used in the analysis are Bcl-2, Bax, NF-κB, interleukin (IL)-6, Muc1, iNOS, P2X7R, IL-6 and caspase-3. The levels of Bax, caspase-3, NF-κB, IL-6, Muc1, and P2X7R were increased in the Fav-treated groups compared with the control. However, the levels of Bcl-2 decreased in the Fav-treated groups. The present study proves that favipiravir, widely used today, causes side effects in lung tissue.
Collapse
Affiliation(s)
- Elif Erbaş
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Nevra Aydemir Celep
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
- Department of Pharmacology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Deniz Tekiner
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Aydın Genç
- Department of Biochemistry, Bingöl University Faculty of Veterinary Medicine, Bingöl, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| |
Collapse
|
32
|
Qi W, Jin X, Guan W. Purinergic P2X7 receptor as a potential therapeutic target in depression. Biochem Pharmacol 2024; 219:115959. [PMID: 38052270 DOI: 10.1016/j.bcp.2023.115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
The elaborate mechanisms of depression have always been a research hotspot in recent years, and the pace of research has never ceased. The P2X7 receptor (P2X7R) belongs to one of the adenosine triphosphates (ATP)-gated cation channels that exist widely in brain tissues and play a prominent role in the regulation of depression-related pathology. To date, the role of purinergic P2X7R in the mechanisms underlying depression is not fully understood. In this review, we conclude that the purinergic receptor P2X7 is a potential therapeutic target for depression based on research results published over the past 5 years in Google Scholar and the National Library of Medicine (PubMed). Additionally, we introduced the functional characteristics of P2X7R and confirmed that excessive activation of P2X7R led to increased release of inflammatory cytokines, which eventually contributed to depression. Furthermore, the inhibition of P2X7R produced antidepressant-like effects in animal models of depression, further proving that P2X7R signalling mediates depression-like behaviours. Finally, we summarised related studies on drugs that exert antidepressant effects by regulating the expression of P2X7R. We hope that the conclusions of this review will provide information on the role of P2X7R in the neuropathophysiology of depression and novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong 226002, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
33
|
Hu Z, Luo Y, Zhu J, Jiang D, Luo Z, Wu L, Li J, Peng S, Hu J. Role of the P2 × 7 receptor in neurodegenerative diseases and its pharmacological properties. Cell Biosci 2023; 13:225. [PMID: 38093352 PMCID: PMC10720200 DOI: 10.1186/s13578-023-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Neurodegenerative diseases seriously affect patients' physical and mental health, reduce their quality of life, and impose a heavy burden on society. However, their treatment remains challenging. Therefore, exploring factors potentially related to the pathogenesis of neurodegenerative diseases and improving their diagnosis and treatment are urgently needed. Recent studies have shown that P2 × 7R plays a crucial role in regulating neurodegenerative diseases caused by neuroinflammation. P2 × 7R is an adenosine 5'-triphosphate ligand-gated cation channel receptor present in most tissues of the human body. An increase in P2 × 7R levels can affect the progression of neurodegenerative diseases, and the inhibition of P2 × 7R can alleviate neurodegenerative diseases. In this review, we comprehensively describe the biological characteristics (structure, distribution, and function) of this gene, focusing on its potential association with neurodegenerative diseases, and we discuss the pharmacological effects of drugs (P2 × 7R inhibitors) used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziyan Hu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yifan Luo
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jinxi Zhu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lidong Wu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin Li
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
34
|
Krantz M, Eklund D, Särndahl E, Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Front Immunol 2023; 14:1233680. [PMID: 38077364 PMCID: PMC10699087 DOI: 10.3389/fimmu.2023.1233680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1β and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1β and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.
Collapse
Affiliation(s)
- Marcus Krantz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
35
|
Pariente A, Peláez R, Ochoa R, Pérez-Sala Á, Villanueva-Martínez Á, Bobadilla M, Larráyoz IM. Targeting 7KCh-Induced Cell Death Response Mediated by p38, P2X7 and GSDME in Retinal Pigment Epithelium Cells with Sterculic Acid. Pharmaceutics 2023; 15:2590. [PMID: 38004569 PMCID: PMC10675123 DOI: 10.3390/pharmaceutics15112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Age-related macular degeneration (AMD) is the main cause of blindness in developed countries. AMD is characterized by the formation of drusen, which are lipidic deposits, between retinal pigment epithelium (RPE) and the choroid. One of the main molecules accumulated in drusen is 7-Ketocholesterol (7KCh), an oxidized-cholesterol derivative. It is known that 7KCh induces inflammatory and cytotoxic responses in different cell types and the study of its mechanism of action is interesting in order to understand the development of AMD. Sterculic acid (SA) counteracts 7KCh response in RPE cells and could represent an alternative to improve currently used AMD treatments, which are not efficient enough. In the present study, we determine that 7KCh induces a complex cell death signaling characterized by the activation of necrosis and an alternative pyroptosis mediated by P2X7, p38 and GSDME, a new mechanism not yet related to the response to 7KCh until now. On the other hand, SA treatment can successfully attenuate the activation of both necrosis and pyroptosis, highlighting its therapeutic potential for the treatment of AMD.
Collapse
Affiliation(s)
- Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Rodrigo Ochoa
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
- Proteomics Research Core Facility, Aragonese Institute of Health Sciences (IACS), San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Ángela Villanueva-Martínez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Miriam Bobadilla
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain; (A.P.); (R.P.); (R.O.); (Á.P.-S.); (Á.V.-M.)
- Biomarkers, Artificial Intelligence and Signaling (BIAS), Department of Nursing, University of La Rioja, Duquesa de la Victoria 88, 26006 Logroño, Spain
| |
Collapse
|
36
|
Shokoples BG, Berillo O, Comeau K, Chen HY, Higaki A, Caillon A, Ferreira NS, Engert JC, Thanassoulis G, Paradis P, Schiffrin EL. P2RX7 gene knockout or antagonism reduces angiotensin II-induced hypertension, vascular injury and immune cell activation. J Hypertens 2023; 41:1701-1712. [PMID: 37796207 DOI: 10.1097/hjh.0000000000003520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Extracellular ATP is elevated in hypertensive mice and humans and may trigger immune activation through the purinergic receptor P2X7 (P2RX7) causing interleukin-1β production and T-cell activation and memory T-cell development. Furthermore, P2RX7 single nucleotide polymorphisms (SNP) are associated with hypertension. We hypothesized that P2RX7 activation contributes to hypertension and cardiovascular injury by promoting immune activation. METHODS Male wild-type and P2rx7-/- mice were infused or not with angiotensin II (AngII) for 14 days. A second group of AngII-infused wild-type mice were co-infused with the P2RX7 antagonist AZ10606120 or vehicle. BP was monitored by telemetry. Cardiac and mesenteric artery function and remodeling were assessed using ultrasound and pressure myography, respectively. T cells were profiled in thoracic aorta/perivascular adipose tissue by flow cytometry. Associations between SNPs within 50 kb of P2RX7 transcription, and BP or hypertension were modeled in 384 653 UK Biobank participants. RESULTS P2rx7 inactivation attenuated AngII-induced SBP elevation, and mesenteric artery dysfunction and remodeling. This was associated with decreased perivascular infiltration of activated and effector memory T-cell subsets. Surprisingly, P2rx7 knockout exaggerated AngII-induced cardiac dysfunction and remodeling. Treatment with a P2RX7 antagonist reduced BP elevation, preserved mesenteric artery function and reduced activated and effector memory T cell perivascular infiltration without adversely affecting cardiac function and remodeling in AngII-infused mice. Three P2RX7 SNPs were associated with increased odds of DBP elevation. CONCLUSION P2RX7 may represent a target for attenuating BP elevation and associated vascular damage by decreasing immune activation.
Collapse
Affiliation(s)
- Brandon G Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Kevin Comeau
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Hao Yu Chen
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute
| | - Akinori Higaki
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Antoine Caillon
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
| | - James C Engert
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute
- Department of Medicine, McGill University, Montreal, Canada
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute
- Department of Medicine, McGill University, Montreal, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, McGill University, Montreal, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital
- Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
37
|
Beltran-Lobo P, Hughes MM, Troakes C, Croft CL, Rupawala H, Jutzi D, Ruepp MD, Jimenez-Sanchez M, Perkinton MS, Kassiou M, Golde TE, Hanger DP, Verkhratsky A, Perez-Nievas BG, Noble W. P2X 7R influences tau aggregate burden in human tauopathies and shows distinct signalling in microglia and astrocytes. Brain Behav Immun 2023; 114:414-429. [PMID: 37716378 PMCID: PMC10896738 DOI: 10.1016/j.bbi.2023.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
The purinoceptor P2X7R is a promising therapeutic target for tauopathies, including Alzheimer's disease (AD). Pharmacological inhibition or genetic knockdown of P2X7R ameliorates cognitive deficits and reduces pathological tau burden in mice that model aspects of tauopathy, including mice expressing mutant human frontotemporal dementia (FTD)-causing forms of tau. However, disagreements remain over which glial cell types express P2X7R and therefore the mechanism of action is unresolved. Here, we show that P2X7R protein levels increase in human AD post-mortem brain, in agreement with an upregulation of P2RX7 mRNA observed in transcriptome profiles from the AMP-AD consortium. P2X7R protein increases mirror advancing Braak stage and coincide with synapse loss. Using RNAScope we detect P2RX7 mRNA in microglia and astrocytes in human AD brain, including in the vicinity of senile plaques. In cultured microglia, P2X7R activation modulates the NLRP3 inflammasome pathway by promoting the formation of active complexes and release of IL-1β. In astrocytes, P2X7R activates NFκB signalling and increases production of the cytokines CCL2, CXCL1 and IL-6 together with the acute phase protein Lcn2. To further explore the role of P2X7R in a disease-relevant context, we expressed wild-type or FTD-causing mutant forms of tau in mouse organotypic brain slice cultures. Inhibition of P2X7R reduces insoluble tau levels without altering soluble tau phosphorylation or synaptic localisation, suggesting a non-cell autonomous role of glial P2X7R on pathological tau aggregation. These findings support further investigations into the cell-type specific effects of P2X7R-targeting therapies in tauopathies.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Martina M Hughes
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Claire Troakes
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Cara L Croft
- UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK; The Francis Crick Institute, London, UK
| | - Huzefa Rupawala
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Daniel Jutzi
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marc-David Ruepp
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Jimenez-Sanchez
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | | | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Diane P Hanger
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK.
| | - Wendy Noble
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; University of Exeter, Department of Clinical and Biomedical Science, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK.
| |
Collapse
|
38
|
Naranjo-Galvis CA, McLeod R, Gómez-Marín JE, de-la-Torre A, Rocha-Roa C, Cardona N, Sepúlveda-Arias JC. Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia. Microorganisms 2023; 11:2508. [PMID: 37894166 PMCID: PMC10609425 DOI: 10.3390/microorganisms11102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular toxoplasmosis (OT) is characterized by inflammation within the eye and is the most recognized clinical manifestation of toxoplasmosis. The objective of this study was to identify new single-nucleotide polymorphisms (SNPs) in the P2RX7 gene that may have significance in the immune response to OT in Colombian patients. A case-control study was conducted to investigate the associations between SNPs (rs1718119 and rs2230912) in the P2RX7 gene and OT in 64 Colombian patients with OT and 64 controls. Capillary electrophoresis was used to analyze the amplification products, and in silico algorithms were employed to predict deleterious SNPs. Stability analysis of amino acid changes indicated that both mutations could lead to decreased protein structure stability. A nonsynonymous SNP, Gln460Arg, located in the long cytoplasmic tail of the receptor, showed a significant association with OT (Bonferroni correction (BONF) = 0.029; odds ratio OR = 3.46; confidence interval CI: 1.05 to 11.39), while no significant association between rs1718119 and OT risk was observed. Based on the 3D structure analysis of the P2RX7 protein trimer, it is hypothesized that an increase in the flexibility of the cytoplasmic domain of this receptor could alter its function. This SNP could potentially serve as a biomarker for identifying Colombian patients at risk of OT.
Collapse
Affiliation(s)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences and Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL 60637, USA
| | - Jorge Enrique Gómez-Marín
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
| | - Alejandra de-la-Torre
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
- Grupo de Investigación en Neurociencias (NeURos), Neurovitae Research Center, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110111, Colombia
| | - Cristian Rocha-Roa
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
| | - Néstor Cardona
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
- Facultad de Odontología, Universidad Antonio Nariño, Armenia 630004, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
39
|
Machado FA, Souza RF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Effects of experimental ulcerative colitis on myenteric neurons in P2X7-knockout mice. Histochem Cell Biol 2023; 160:321-339. [PMID: 37306742 DOI: 10.1007/s00418-023-02208-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.
Collapse
Affiliation(s)
- Felipe Alexandre Machado
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
40
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
41
|
Adinolfi E, De Marchi E, Grignolo M, Szymczak B, Pegoraro A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int J Mol Sci 2023; 24:13906. [PMID: 37762206 PMCID: PMC10531279 DOI: 10.3390/ijms241813906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
Collapse
Affiliation(s)
- Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Elena De Marchi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Marianna Grignolo
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Anna Pegoraro
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| |
Collapse
|
42
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Autophagy may protect the brain against prolonged consequences of headache attacks: A narrative/hypothesis review. Headache 2023; 63:1154-1166. [PMID: 37638395 DOI: 10.1111/head.14625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE To assess the potential of autophagy in migraine pathogenesis. BACKGROUND The interplay between neurons and microglial cells is important in migraine pathogenesis. Migraine-related effects, such as cortical spreading depolarization and release of calcitonin gene-related peptide, may initiate adenosine triphosphate (ATP)-mediating pro-nociceptive signaling in the meninges causing headaches. Such signaling may be induced by the interaction of ATP with purinergic receptor P2X 7 (P2X7R) on microglial cells leading to a Ca2+ -mediated pH increase in lysosomes and release of autolysosome-like vehicles from microglial cells indicating autophagy impairment. METHODS A search in PubMed was conducted with the use of the terms "migraine," "autophagy," "microglia," and "degradation" in different combinations. RESULTS Impaired autophagy in microglia may activate secretory autophagy and release of specific proteins, including brain-derived neurotrophic factor (BDNF), which can be also released through the pores induced by P2X7R activation in microglial cells. BDNF may be likewise released from microglial cells upon ATP- and Ca2+ -mediated activation of another purinergic receptor, P2X4R. BDNF released from microglia might induce autophagy in neurons to clear cellular debris produced by oxidative stress, which is induced in the brain as the response to migraine-related energy deficit. Therefore, migraine-related signaling may impair degradative autophagy, stimulate secretory autophagy in microglia, and degradative autophagy in neurons. These effects are mediated by purinergic receptors P2X4R and P2X7R, BDNF, ATP, and Ca2+ . CONCLUSION Different effects of migraine-related events on degradative autophagy in microglia and neurons may prevent prolonged changes in the brain related to headache attacks.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
43
|
Zhang R, Su K, Yang L, Tang M, Zhao M, Ye N, Cai X, Jiang X, Li N, Peng J, Zhang X, Wang B, Wu W, Ma L, Ye H. Design, Synthesis, and Biological Evaluation of Novel P2X7 Receptor Antagonists for the Treatment of Septic Acute Kidney Injury. J Med Chem 2023; 66:11365-11389. [PMID: 37582195 DOI: 10.1021/acs.jmedchem.3c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Sepsis-associated acute kidney injury (AKI) is a serious clinical problem, without effective drugs. Abnormal activation of the purinergic P2X7 receptor (P2X7R) in septic kidneys makes its antagonist a promising therapeutic approach. Herein, a series of novel P2X7R antagonists were designed, synthesized, and structurally optimized. Based on in vitro potency in human/mouse P2X7R using HEK293 cells, hepatic microsomal stability, and pharmacokinetic and preliminary in vivo assessments, compound 14a was identified by respective human and mouse P2X7R IC50 values of 64.7 and 10.1 nM, together with favorable pharmacokinetic properties. Importantly, 14a dose-dependently alleviated kidney dysfunction and pathological injury in both lipopolysaccharide (LPS)- and cecal ligation/perforation (CLP)-induced septic AKI mice with a good safety profile. Mechanistically, 14a could suppress NLRP3 inflammasome activation to inhibit the expression of cleaved caspase-1, gasdermin D, IL-1β, and IL-18 in the injured kidneys of septic mice. Collectively, these results highlighted that P2X7R antagonist 14a exerted a therapeutic potential against septic AKI.
Collapse
Affiliation(s)
- Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Letian Yang
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wang
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Lis-López L, Bauset C, Seco-Cervera M, Macias-Ceja D, Navarro F, Álvarez Á, Esplugues JV, Calatayud S, Barrachina MD, Ortiz-Masià D, Cosín-Roger J. P2X7 Receptor Regulates Collagen Expression in Human Intestinal Fibroblasts: Relevance in Intestinal Fibrosis. Int J Mol Sci 2023; 24:12936. [PMID: 37629116 PMCID: PMC10454509 DOI: 10.3390/ijms241612936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal fibrosis is a common complication that affects more than 50% of Crohn´s Disease (CD) patients. There is no pharmacological treatment against this complication, with surgery being the only option. Due to the unknown role of P2X7 in intestinal fibrosis, we aim to analyze the relevance of this receptor in CD complications. Surgical resections from CD and non-Inflammatory Bowel Disease (IBD) patients were obtained. Intestinal fibrosis was induced with two different murine models: heterotopic transplant model and chronic-DSS colitis in wild-type and P2X7-/- mice. Human small intestine fibroblasts (HSIFs) were transfected with an siRNA against P2X7 and treated with TGF-β. A gene and protein expression of P2X7 receptor was significantly increased in CD compared to non-IBD patients. The lack of P2X7 in mice provoked an enhanced collagen deposition and increased expression of several profibrotic markers in both murine models of intestinal fibrosis. Furthermore, P2X7-/- mice exhibited a higher expression of proinflammatory cytokines and a lower expression of M2 macrophage markers. Moreover, the transient silencing of the P2X7 receptor in HSIFs significantly induced the expression of Col1a1 and potentiated the expression of Col4 and Col5a1 after TGF-β treatment. P2X7 regulates collagen expression in human intestinal fibroblasts, while the lack of this receptor aggravates intestinal fibrosis.
Collapse
Affiliation(s)
- Lluis Lis-López
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Marta Seco-Cervera
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica), Hospital Dr. Peset, 46017 Valencia, Spain;
| | - Dulce Macias-Ceja
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Francisco Navarro
- Servicio Cirugía y Coloproctología, Hospital de Manises, 46940 Valencia, Spain;
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Maria Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Dolores Ortiz-Masià
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| |
Collapse
|
45
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
46
|
Terziev D, Terzieva D. Experimental Data on the Role of Melatonin in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:1722. [PMID: 37371817 DOI: 10.3390/biomedicines11061722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide, its complex pathogenesis remains incompletely understood. The currently stated hypotheses cannot fully clarify the interrelationships between individual pathogenetic mechanisms of the disease. No appropriate health strategies have been developed for treating NAFLD. NAFLD is characterized by an accumulation of triglycerides in hepatic cells (steatosis), with the advanced form known as nonalcoholic steatohepatitis. In the latter, superimposed inflammation can lead to fibrosis. There are scientific data on NAFLD's association with components of metabolic syndrome. Hormonal factors are thought to play a role in the development of metabolic syndrome. Endogenous melatonin, an indoleamine hormone synthesized by the pineal gland mainly at night, is a powerful chronobiotic that probably regulates metabolic processes and has antioxidant, anti-inflammatory, and genomic effects. Extrapineal melatonin has been found in various tissues and organs, including the liver, pancreas, and gastrointestinal tract, where it likely maintains cellular homeostasis. Melatonin exerts its effects on NAFLD at the cellular, subcellular, and molecular levels, affecting numerous signaling pathways. In this review article, we discuss the experimental scientific data accumulated on the involvement of melatonin in the intimate processes of the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Dimitar Terziev
- Second Department of Internal Medicine, Gastroenterology Section, Faculty of Medicine, Medical University, 4002 Plovdiv, Bulgaria
| | - Dora Terzieva
- MDL "Bioiv", Medical University, 4002 Plovdiv, Bulgaria
| |
Collapse
|
47
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown.
AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs.
METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF).
RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon.
CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
48
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
49
|
Rupert M, Bhattacharya A, Sivcev S, Knezu M, Cimicka J, Zemkova H. Identification of residues in the first transmembrane domain of the P2X7 that regulates receptor trafficking, sensitization, and dye uptake function. J Neurochem 2023; 165:874-891. [PMID: 36945903 DOI: 10.1111/jnc.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
P2X receptors (P2X1-7) are trimeric ion channels activated by extracellular ATP. Each P2X subunit contains two transmembrane helices (TM1 and TM2). We substituted all residues in TM1 of rat P2X7 with alanine or leucine one by one, expressed mutants in HEK293T cells, and examined the pore permeability by recording both membrane currents and fluorescent dye uptake in response to agonist application. Alanine substitution of G27, K30, H34, Y40, F43, L45, M46, and D48 inhibited agonist-stimulated membrane current and dye uptake, and all but one substitution, D48A, prevented surface expression. Mutation V41A partially reduced both membrane current and dye uptake, while W31A and A44L showed reduced dye uptake not accompanied by reduced membrane current. Mutations T28A, I29A, and L33A showed small changes in agonist sensitivity, but they had no or small impact on dye uptake function. Replacing charged residues with residues of the same charge (K30R, H34K, and D48E) rescued receptor function, while replacement with residues of opposite charge inhibited (K30E and H34E) or potentiated (D48K) receptor function. Prolonged stimulation with agonist-induced current facilitation and a leftward shift in the dose-response curve in the P2X7 wild-type and most functional mutants, but sensitization was absent in the W31A, L33A, and A44L. Detailed analysis of the decay of responses revealed two kinetically distinct mechanisms of P2X7 deactivation: fast represents agonist unbinding, and slow might represent resetting of the receptor to the resting closed state. These results indicate that conserved and receptor-specific TM1 residues control surface expression of the P2X7 protein, non-polar residues control receptor sensitization, and D48 regulates intrinsic channel properties.
Collapse
Affiliation(s)
- Marian Rupert
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Anirban Bhattacharya
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sonja Sivcev
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Jana Cimicka
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
50
|
Zabłocki K, Górecki DC. The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies. Int J Mol Sci 2023; 24:ijms24119434. [PMID: 37298386 DOI: 10.3390/ijms24119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|