1
|
Fermin ASR, Sasaoka T, Maekawa T, Ono K, Chan HL, Yamawaki S. Insula-cortico-subcortical networks predict interoceptive awareness and stress resilience. Asian J Psychiatr 2024; 95:103991. [PMID: 38484483 DOI: 10.1016/j.ajp.2024.103991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Interoception, the neural sensing of visceral signals, and interoceptive awareness (IA), the conscious perception of interoception, are crucial for life survival functions and mental health. Resilience, the capacity to overcome adversity, has been associated with reduced interoceptive disturbances. Here, we sought evidence for our Insula Modular Active Control (IMAC) model that suggest that the insula, a brain region specialized in the processing of interoceptive information, realizes IA and contributes to resilience and mental health via cortico-subcortical connections. METHODS 64 healthy participants (32 females; ages 18-34 years) answered questionnaires that assess IA and resilience. Mental health was evaluated with the Beck Depression Inventory II that assesses depressive mood. Participants also underwent a 15 minute resting-state functional resonance imaging session. Pearson correlations and mediation analyses were used to investigate the relationship between IA and resilience and their contributions to depressive mood. We then performed insula seed-based functional connectivity analyzes to identify insula networks involved in IA, resilience and depressive mood. RESULTS We first demonstrated that resilience mediates the relationship between IA and depressive mood. Second, shared and distinct intra-insula, insula-cortical and insula-subcortical networks were associated with IA, resilience and also predicted the degree of experienced depressive mood. Third, while resilience was associated with stronger insula-precuneus, insula-cerebellum and insula-prefrontal networks, IA was linked with stronger intra-insula, insula-striatum and insula-motor networks. CONCLUSIONS Our findings help understand the roles of insula-cortico-subcortical networks in IA and resilience. These results also highlight the potential use of insula networks as biomarkers for depression prediction.
Collapse
Affiliation(s)
- Alan S R Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Sasaoka
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Toru Maekawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ono
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Hui-Ling Chan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Čukić M, Olejarzcyk E, Bachmann M. Fractal Analysis of Electrophysiological Signals to Detect and Monitor Depression: What We Know So Far? ADVANCES IN NEUROBIOLOGY 2024; 36:677-692. [PMID: 38468058 DOI: 10.1007/978-3-031-47606-8_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Depression is currently one of the most complicated public health problems with the rising number of patients, increasing partly due to pandemics, but also due to increased existential insecurities and complicated aetiology of disease. Besides the tsunami of mental health issues, there are limitations imposed by ambiguous clinical rules of assessment of the symptoms and obsolete and inefficient standard therapy approaches. Here we are summarizing the neuroimaging results pointing out the actual complexity of the disease and novel attempts to detect depression that are evidence-based, mostly related to electrophysiology. It is repeatedly shown that the complexity of resting-state EEG recorded in patients suffering from depression is increased compared to healthy controls. We are discussing here how that can be interpreted and what we can learn about future effective therapies. Also, there is evidence that novel options of treatment, like different modalities of electromagnetic stimulation, are successful just because they are capable of decreasing that aberrated complexity. And complexity measures extracted from electrophysiological signals of depression patients can serve as excellent features for further machine learning models in order to automatize detection. In addition, after initial detection and even selection of responders for further therapy route, it is possible to monitor the therapeutic flow for one person, which leads us to possible tailored treatment for patients suffering from depression.
Collapse
Affiliation(s)
- Milena Čukić
- Empa Swiss Federal Labs for Materials Science and Technology, St. Gallen, Switzerland.
| | - Elzbieta Olejarzcyk
- Nalez Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
3
|
Herrmann L, Ade J, Kühnel A, Widmann A, Demenescu LR, Li M, Opel N, Speck O, Walter M, Colic L. Cross-sectional study of retrospective self-reported childhood emotional neglect and inhibitory neurometabolite levels in the pregenual anterior cingulate cortex in adult humans. Neurobiol Stress 2023; 25:100556. [PMID: 37521513 PMCID: PMC10371855 DOI: 10.1016/j.ynstr.2023.100556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
High childhood emotional maltreatment (CM-EMO) is reported in mood and anxiety disorders. The associations with an increased risk for psychopathology are not fully understood. One potential factor may be through alterations in gamma-Aminobutyric acid (GABA). The pregenual anterior cingulate cortex (pgACC) is an important brain region for emotion processing and its' GABA levels were previously implicated in mood and anxiety disorders pathophysiology. We examined the association between the self-reported CM-EMO in adulthood and GABA + levels in the pgACC and in a control region, anterior mid cingulate cortex. GABA+ and total creatine (tCr) were measured in the pgACC and aMCC voxels in seventy-four healthy volunteers (32 (43%) women, ages 19-54, age [standard deviation] = 27.1 [6.5]) using proton magnetic resonance spectroscopy at 7 T. Childhood Trauma Questionnaire was completed by adult participants to measure retrospective self-reported experience of emotional neglect (CM-EMO-NEG) and emotional abuse (CM-EMO-AB) during childhood. Linear mixed models tested the interaction between the region and the two subscales, and GABA+/tCr ratios, with an adjusted alpha = 0.025. Following, linear models, including with covariates were tested. There was an interaction effect between region and CM-EMO-NEG (B = -0.007, p = 0.009), driven by a negative relationship between CM-EMO-NEG and GABA+/tCr in the pgACC (B = -0.004, p = 0.013). Results for CM-EMO-NEG were robust to inclusion of different covariates (ps < 0.035). There was no interaction effect for the CM-EMO-AB (B = 0.007, p = 0.4). Limitations include cross-sectional measurement and retrospective nature of the CTQ. The findings indicate preliminary importance of inhibitory neurometabolite concentrations in the pgACC for retrospective reporting of CM-EMO-NEG.
Collapse
Affiliation(s)
- Luisa Herrmann
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- University Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Johanna Ade
- Institute of Clinical Psychology, Center for Mental Health, Hospital Stuttgart, Stuttgart, Germany
| | - Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Section of Medical Psychology, Department of Psychiatry & Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Annina Widmann
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | | | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| | - Oliver Speck
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- University Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| |
Collapse
|
4
|
Chen X, Yang H, Cui LB, Li X. Neuroimaging study of electroconvulsive therapy for depression. Front Psychiatry 2023; 14:1170625. [PMID: 37363178 PMCID: PMC10289201 DOI: 10.3389/fpsyt.2023.1170625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an important treatment for depression. Although it is known as the most effective acute treatment for severe mood disorders, its therapeutic mechanism is still unclear. With the rapid development of neuroimaging technology, various neuroimaging techniques have been available to explore the alterations of the brain by ECT, such as structural magnetic resonance imaging, functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, single photon emission computed tomography, arterial spin labeling, etc. This article reviews studies in neuroimaging on ECT for depression. These findings suggest that the neurobiological mechanism of ECT may regulate the brain functional activity, and neural structural plasticity, as well as balance the brain's neurotransmitters, which finally achieves a therapeutic effect.
Collapse
Affiliation(s)
- Xiaolu Chen
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanjie Yang
- Department of Neurology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Long-Biao Cui
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi’an, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhang X, Wang X, Dong D, Sun X, Zhong X, Xiong G, Cheng C, Lei H, Chai Y, Yu M, Quan P, Gehrman PR, Detre JA, Yao S, Rao H. Persistent Ventral Anterior Cingulate Cortex and Resolved Amygdala Hyper-responses to Negative Outcomes After Depression Remission: A Combined Cross-sectional and Longitudinal Study. Biol Psychiatry 2023; 93:268-278. [PMID: 36567087 DOI: 10.1016/j.biopsych.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent mood disorder affecting more than 300 million people worldwide. Biased processing of negative information and neural hyper-responses to negative events are hallmarks of depression. This study combined cross-sectional and longitudinal experiments to explore both persistent and resolved neural hyper-responses to negative outcomes from risky decision making in patients with current MDD (cMDD) and remitted MDD (rMDD). METHODS A total of 264 subjects participated in the cross-sectional study, including 117 patients with medication-naïve, first-episode current depression; 45 patients with rMDD with only 1 episode of depression; and 102 healthy control subjects. Participants completed a modified balloon analog risk task during functional magnetic resonance imaging. In the longitudinal arm of the study, 42 patients with cMDD were followed and 26 patients with rMDD were studied again after 8 weeks of antidepressant treatment. RESULTS Patients with cMDD showed hyper-responses to loss outcomes in multiple limbic regions including the amygdala and ventral anterior cingulate cortex (vACC). Amygdala but not vACC hyperactivity correlated with depression scores in patients with cMDD. Furthermore, amygdala hyperactivity resolved while vACC hyperactivity persisted in patients with rMDD in both cross-sectional and longitudinal studies. CONCLUSIONS These findings provide consistent evidence supporting differential patterns of amygdala and vACC hyper-responses to negative outcomes during depression remission. Amygdala hyperactivity may be a symptomatic and state-dependent marker of depressive neural responses, while vACC hyperactivity may reflect a persistent and state-independent effect of depression on brain function. These findings offer new insights into the neural underpinnings of depression remission and prevention of depression recurrence.
Collapse
Affiliation(s)
- Xiaocui Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, Changsha, China; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; School of Educational Science, Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, China.
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China
| | - Hui Lei
- College of Education, Hunan Agricultural University, Changsha, Hunan, China; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ya Chai
- Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meichen Yu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peng Quan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China
| | - Philip R Gehrman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China; Medical Psychological Institute of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, Changsha, China
| | - Hengyi Rao
- Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Bonnekoh LM, Seidenbecher S, Knigge K, Hünecke AK, Metzger CD, Tempelmann C, Kanowski M, Kaufmann J, Meyer-Lotz G, Schlaaff K, Dobrowolny H, Tozzi L, Gescher DM, Steiner J, Kirschbaum C, Frodl T. Long-term cortisol stress response in depression and comorbid anxiety is linked with reduced N-acetylaspartate in the anterior cingulate cortex. World J Biol Psychiatry 2023; 24:34-45. [PMID: 35332851 DOI: 10.1080/15622975.2022.2058084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Major Depression (MDD) and anxiety disorders are stress-related disorders that share pathophysiological mechanisms. There is evidence for alterations of glutamate-glutamine, N-acetylaspartate (NAA) and GABA in the anterior cingulate cortex (ACC), a stress-sensitive region affected by hypothalamic-pituitary-adrenal axis (HPA). The aim was to investigate metabolic alterations in the ACC and whether hair cortisol, current stress or early life adversity predict them. METHODS We investigated 22 patients with MDD and comorbid anxiety disorder and 23 healthy controls. Proton magnetic resonance spectroscopy was performed with voxels placed in pregenual (pg) and dorsal (d) ACC in 3 T. Analysis of hair cortisol was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The N-acetylaspartate/Creatin ratio (NAA/Cr) was reduced in patients in both pgACC (p = .040) and dACC (p = .016). A significant interactive effect of diagnosis and cortisol on both pg-NAA/Cr (F = 5.00, p = .033) and d-NAA/Cr (F = 7.86, p = .009) was detected, whereby in controls cortisol was positively correlated with d-NAA/Cr (r = 0.61, p = .004). CONCLUSIONS Our results suggest a relationship between NAA metabolism in ACC and HPA axis activity as represented by long-term cortisol output.
Collapse
Affiliation(s)
- Linda M Bonnekoh
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Münster, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Katrin Knigge
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Anne-Kathrin Hünecke
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences (CBBS), Otto von Guericke Universität Magdeburg, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Translational Psychiatry Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Dorothee M Gescher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University RWTH, Aachen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Translational Psychiatry Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Clemens Kirschbaum
- Department of Psychology, Dresden University of Technology, Dresden, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences (CBBS), Otto von Guericke Universität Magdeburg, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University RWTH, Aachen, Germany
| |
Collapse
|
7
|
Talishinsky A, Downar J, Vértes PE, Seidlitz J, Dunlop K, Lynch CJ, Whalley H, McIntosh A, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Liston C. Regional gene expression signatures are associated with sex-specific functional connectivity changes in depression. Nat Commun 2022; 13:5692. [PMID: 36171190 PMCID: PMC9519925 DOI: 10.1038/s41467-022-32617-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
The neural substrates of depression may differ in men and women, but the underlying mechanisms are incompletely understood. Here, we show that depression is associated with sex-specific patterns of abnormal functional connectivity in the default mode network and in five regions of interest with sexually dimorphic transcriptional effects. Regional differences in gene expression in two independent datasets explained the neuroanatomical distribution of abnormal connectivity. These gene sets varied by sex and were strongly enriched for genes implicated in depression, synapse function, immune signaling, and neurodevelopment. In an independent sample, we confirmed the prediction that individual differences in default mode network connectivity are explained by inferred brain expression levels for six depression-related genes, including PCDH8, a brain-specific protocadherin integral membrane protein implicated in activity-related synaptic reorganization. Together, our results delineate both shared and sex-specific changes in the organization of depression-related functional networks, with implications for biomarker development and fMRI-guided therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aleksandr Talishinsky
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Downar
- Krembil Research Institute and Centre for Mental Health, University Health Network, Toronto, ON, USA.
- Department of Psychiatry, University of Toronto, Toronto, ON, USA.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharine Dunlop
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Heather Whalley
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew McIntosh
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Lab and Department of Psychiatry, University of British Columbia, Vancouver, BC, USA
| | | | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, USA
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Weigand A, Gärtner M, Scheidegger M, Wyss PO, Henning A, Seifritz E, Stippl A, Herrera-Melendez A, Bajbouj M, Aust S, Grimm S. Predicting Antidepressant Effects of Ketamine: the Role of the Pregenual Anterior Cingulate Cortex as a Multimodal Neuroimaging Biomarker. Int J Neuropsychopharmacol 2022; 25:1003-1013. [PMID: 35948274 PMCID: PMC9743970 DOI: 10.1093/ijnp/pyac049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Growing evidence underscores the utility of ketamine as an effective and rapid-acting treatment option for major depressive disorder (MDD). However, clinical outcomes vary between patients. Predicting successful response may enable personalized treatment decisions and increase clinical efficacy. METHODS We here explored the potential of pregenual anterior cingulate cortex (pgACC) activity to predict antidepressant effects of ketamine in relation to ketamine-induced changes in glutamatergic metabolism. Prior to a single i.v. infusion of ketamine, 24 patients with MDD underwent functional magnetic resonance imaging during an emotional picture-viewing task and magnetic resonance spectroscopy. Changes in depressive symptoms were evaluated using the Beck Depression Inventory measured 24 hours pre- and post-intervention. A subsample of 17 patients underwent a follow-up magnetic resonance spectroscopy scan. RESULTS Antidepressant efficacy of ketamine was predicted by pgACC activity during emotional stimulation. In addition, pgACC activity was associated with glutamate increase 24 hours after the ketamine infusion, which was in turn related to better clinical outcome. CONCLUSIONS Our results add to the growing literature implicating a key role of the pgACC in mediating antidepressant effects and highlighting its potential as a multimodal neuroimaging biomarker of early treatment response to ketamine.
Collapse
Affiliation(s)
| | | | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Anke Henning
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simone Grimm
- Correspondence: Simone Grimm, PhD, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany ()
| |
Collapse
|
9
|
Horáková A, Němcová H, Mohr P, Sebela A. Structural, functional, and metabolic signatures of postpartum depression: A systematic review. Front Psychiatry 2022; 13:1044995. [PMID: 36465313 PMCID: PMC9709336 DOI: 10.3389/fpsyt.2022.1044995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Postpartum depression (PPD) is a serious condition with debilitating consequences for the mother, offspring, and the whole family. The scope of negative outcomes of PPD highlights the need to specify effective diagnostics and treatment which might differ from major depressive disorder (MDD). In order to improve our clinical care, we need to better understand the underlying neuropathological mechanisms of PPD. Therefore, we conducted a systematic review of published neuroimaging studies assessing functional, structural, and metabolic correlates of PPD. METHODS Relevant papers were identified using a search code for English-written studies in the PubMed, Scopus, and Web of Science databases published by March 2022. Included were studies with structural magnetic resonance imaging, functional magnetic resonance imaging, both resting-state and task-related, magnetic resonance spectroscopy, or positron emission tomography. The findings were analyzed to assess signatures in PPD-diagnosed women compared to healthy controls. The review protocol was registered in PROSPERO (CRD42022313794). RESULTS The total of 3,368 references were initially identified. After the removal of duplicates and non-applicable papers, the search yielded 74 full-text studies assessed for eligibility. Of them, 26 met the inclusion criteria and their findings were analyzed and synthesized. The results showed consistent functional, structural, and metabolic changes in the default mode network and the salient network in women with PPD. During emotion-related tasks, PPD was associated with changes in the corticolimbic system activity, especially the amygdala. DISCUSSION This review offers a comprehensive summary of neuroimaging signatures in PPD-diagnosed women. It indicates the brain regions and networks which show functional, structural, and metabolic changes. Our findings offer better understanding of the nature of PPD, which clearly copies some features of MDD, while differs in others.
Collapse
Affiliation(s)
- Anna Horáková
- Center of Perinatal Mental Health, National Institute of Mental Health, Klecany, Czechia.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia
| | - Hana Němcová
- Center of Perinatal Mental Health, National Institute of Mental Health, Klecany, Czechia.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia
| | - Pavel Mohr
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia.,Clinical Center, National Institute of Mental Health, Klecany, Czechia
| | - Antonin Sebela
- Center of Perinatal Mental Health, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Wang Q, Tian S, Zhao P, Cao Q, Lu Q, Yao Z. Association Between Antidepressant Efficacy and Interactions of Three Core Depression-Related Brain Networks in Major Depressive Disorder. Front Psychiatry 2022; 13:862507. [PMID: 35356714 PMCID: PMC8959148 DOI: 10.3389/fpsyt.2022.862507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The central executive network (CEN), salience network (SN), and default mode network (DMN) are the three most studied depression-related brain networks. Many studies have shown that they are related to depression symptoms and treatment effects. However, few studies have related these three networks and their activity frequency bands to depressive symptoms and treatment efficacy. METHODS Sixty-six medication-free patients with major depressive disorder (MDD) were enrolled. Magnetoencephalography (MEG) was administered at baseline to calculate imaging indicators such as the power and functional connectivity (FC) of each brain network. The Hamilton Rating Score for Depression (HRSD-17) was assessed at baseline and weekly for 4 weeks. Pearson correlation and receiver operating characteristic curves (ROC) analyses were used to explore the relationship between brain imaging indicators and antidepressant efficacy. RESULTS The difference between therapeutically effective and ineffective groups was mainly manifested in the beta power of the SN. The FC of beta waves between the three networks was related to antidepressant efficacy, with ROC analysis results of AUC = 0.794, P = 0.004, sensitivity = 76.7%, and specificity = 81.8%. LIMITATIONS The sample size was small and a healthy control group was not available. CONCLUSIONS The interaction between the three networks is related to antidepressant efficacy and the relief of depressive symptoms.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Medical Psychology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Zhao
- Department of Medical Psychology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiuyun Cao
- Department of Medical Psychology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Xiao M, Chen X, Yi H, Luo Y, Yan Q, Feng T, He Q, Lei X, Qiu J, Chen H. Stronger functional network connectivity and social support buffer against negative affect during the COVID-19 outbreak and after the pandemic peak. Neurobiol Stress 2021; 15:100418. [PMID: 34805450 PMCID: PMC8592855 DOI: 10.1016/j.ynstr.2021.100418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023] Open
Abstract
Health and financial uncertainties, as well as enforced social distancing, during the COVID-19 pandemic have adversely affected the mental health of people. These impacts are expected to continue even after the pandemic, particularly for those who lack support from family and friends. The salience network (SN), default mode network (DMN), and frontoparietal network (FPN) function in an interconnected manner to support information processing and emotional regulation processes in stressful contexts. In this study, we examined whether functional connectivity of the SN, DMN, and FPN, measured using resting-state functional magnetic resonance imaging before the pandemic, is a neurobiological marker of negative affect (NA) during the COVID-19 pandemic and after its peak in a large sample (N = 496, 360 females); the moderating role of social support in the brain-NA association was also investigated. We found that participants reported an increase in NA during the pandemic compared to before the pandemic, and the NA did not decrease, even after the peak period. People with higher connectivity within the SN and between the SN and the other two networks reported less NA during and after the COVID-19 outbreak peak, and the buffer effect was stronger if their social support was greater. These findings suggest that the functional networks that are responsible for affective processing and executive functioning, as well as the social support from family and friends, play an important role in protecting against NA under stressful and uncontrollable situations.
Collapse
Affiliation(s)
- Mingyue Xiao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Haijing Yi
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Qiaoling Yan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Zacharopoulos G, Emir U, Cohen Kadosh R. The cross-sectional interplay between neurochemical profile and brain connectivity. Hum Brain Mapp 2021; 42:2722-2733. [PMID: 33835605 PMCID: PMC8127145 DOI: 10.1002/hbm.25396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023] Open
Abstract
Neurochemical profile and brain connectivity are both critical aspects of brain function. However, our knowledge of their interplay across development is currently poor. We combined single-voxel magnetic resonance spectroscopy and resting functional magnetic resonance imaging in a cross-sectional sample spanning from childhood to adulthood which was reassessed in ~1.5 years (N = 293). We revealed the developmental trajectories of 20 neurochemicals in two key developmental brain regions (the intraparietal sulcus, IPS, and the middle frontal gyrus, MFG). We found that certain neurochemicals exhibited similar developmental trajectories across the two regions, while other trajectories were region-specific. Crucially, we mapped the connectivity of the brain regions IPS and MFG to the rest of the brain across development as a function of regional glutamate and GABA concentration. We demonstrated that glutamate concentration within the IPS is modulated by age in explaining IPS connectivity with frontal, temporal and parietal regions. In mature participants, higher glutamate within the IPS was related to more negative connectivity while the opposite pattern was found for younger participants. Our findings offer specific developmental insights on the interplay between the brain's resting activity and the glutamatergic system both of which are crucial for regulating normal functioning and are dysregulated in several clinical conditions.
Collapse
Affiliation(s)
- George Zacharopoulos
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of Health Sciences, College of Health and Human SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Martens L, Herrmann L, Colic L, Li M, Richter A, Behnisch G, Stork O, Seidenbecher C, Schott BH, Walter M. Met carriers of the BDNF Val66Met polymorphism show reduced Glx/NAA in the pregenual ACC in two independent cohorts. Sci Rep 2021; 11:6742. [PMID: 33762638 PMCID: PMC7990923 DOI: 10.1038/s41598-021-86220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The Met allele of the Val66Met SNP of the BDNF gene (rs6265) is associated with impaired activity-dependent release of brain-derived neurotrophic factor (BDNF), resulting in reduced synaptic plasticity, impaired glutamatergic neurotransmission, and morphological changes. While previous work has demonstrated Val66Met effects on magnetic resonance spectroscopy (MRS) markers of either glutamatergic metabolism (Glx) or neuronal integrity (NAA), no study has investigated Val66Met effects on these related processes simultaneously. As these metabolites share a metabolic pathway, the Glx/NAA ratio may be a more sensitive marker of changes associated with the Val66Met SNP. This ratio is increased in psychiatric disorders linked to decreased functioning in the anterior cingulate cortex (ACC). In this study, we investigated the correlation of the Val66Met polymorphism of the BDNF gene with Glx/NAA in the pregenual anterior cingulate cortex (pgACC) using MRS at 3 Tesla (T) (n = 30, all males) and 7 T (n = 98, 40 females). In both cohorts, Met carriers had lower Glx/NAA compared to Val homozygotes. Follow-up analyses using absolute quantification revealed that the Met carriers do not show decreased pgACC glutamate or glutamine levels, but instead show increased NAA compared to the Val homozygotes. This finding may in part explain conflicting evidence for Val66Met as a risk factor for developing psychiatric illnesses.
Collapse
Affiliation(s)
- Louise Martens
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Graduate Training Center, IMPRS, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Luisa Herrmann
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-Von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Martin Walter
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany. .,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. .,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.
| |
Collapse
|
15
|
Li Y, Liu T, Luo W. Botulinum Neurotoxin Therapy for Depression: Therapeutic Mechanisms and Future Perspective. Front Psychiatry 2021; 12:584416. [PMID: 33967844 PMCID: PMC8102733 DOI: 10.3389/fpsyt.2021.584416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Depression is one of the most common mental disorders, which causes global burden. Antidepressants and psychotherapies are the mainstay of treatment for depression, which have limited efficacy. Thus, alternative approaches for preventing and treating depression are urgently required. Recent clinical trials and preclinical researches have clarified that peripheral facial injection of botulinum neurotoxin type A (BoNT/A) is a rapid, effective and relative safe therapy for improving some symptoms of depression. Despite its safety and efficacy, the underlying therapeutic mechanisms of BoNT/A for depression remains largely unclear. In the present review, we updated and summarized the clinical and preclinical evidence supporting BoNT/A therapy for the treatment of depression. We further discussed the potential mechanisms underlying therapeutic effects of BoNT/A on depression. Notably, we recently identified that the anti-depressant effects of BoNT/A associated with up-regulation of 5-HT levels and brain-derived neurotrophic factor (BDNF) expression in the hippocampus in a preclinical mouse model. In summary, these studies suggest that BoNT/A therapy is a potential effective and safe intervention for the management of depression. However, fundamental questions remain regarding the future prospects of BoNT/A therapy, including safety, efficacy, dose-response relationships, identification of potential predictors of response, and the precise mechanisms underlying BoNT/A therapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China
| | - Weifeng Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Martens L, Kroemer NB, Teckentrup V, Colic L, Palomero-Gallagher N, Li M, Walter M. Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex. J Neurosci 2020; 40:9028-9042. [PMID: 33046545 PMCID: PMC7673009 DOI: 10.1523/jneurosci.0897-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022] Open
Abstract
Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.SIGNIFICANCE STATEMENT Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.
Collapse
Affiliation(s)
- Louise Martens
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory, 39120 Magdeburg, Germany
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- C. and O. Vogt Institute for Brain Research, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Martin Walter
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
- Clinical Affective Neuroimaging Laboratory, 39120 Magdeburg, Germany
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
- Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| |
Collapse
|
17
|
Lewis CP, Port JD, Blacker CJ, Sonmez AI, Seewoo BJ, Leffler JM, Frye MA, Croarkin PE. Altered anterior cingulate glutamatergic metabolism in depressed adolescents with current suicidal ideation. Transl Psychiatry 2020; 10:119. [PMID: 32327639 PMCID: PMC7181616 DOI: 10.1038/s41398-020-0792-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023] Open
Abstract
The anterior cingulate cortex (ACC) is involved in emotion regulation and salience processing. Prior research has implicated ACC dysfunction in suicidal ideation (SI) and suicidal behavior. This study aimed to quantify ACC glutamatergic concentrations and to examine relationships with SI in a sample of healthy and depressed adolescents. Forty adolescents underwent clinical evaluation and proton magnetic resonance spectroscopy (1H-MRS) at 3 T, utilizing a 2-dimensional J-averaged PRESS sequence sampling a medial pregenual ACC voxel. Cerebrospinal fluid-corrected ACC metabolite concentrations were compared between healthy control (HC, n = 16), depressed without SI (Dep/SI-, n = 13), and depressed with SI (Dep/SI+, n = 11) youth using general linear models covarying for age, sex, and psychotropic medication use. Relationships between ACC metabolites and continuous measures of SI were examined using multiple linear regressions. ROC analysis was used to determine the ability of glutamate+glutamine (Glx) and the N-acetylaspartate (NAA)/Glx ratio to discriminate Dep/SI- and Dep/SI+ adolescents. Dep/SI+ adolescents had higher Glx than Dep/SI- participants (padj = 0.012) and had lower NAA/Glx than both Dep/SI- (padj = 0.002) and HC adolescents (padj = 0.039). There were significant relationships between SI intensity and Glx (pFDR = 0.026), SI severity and NAA/Glx (pFDR = 0.012), and SI intensity and NAA/Glx (pFDR = 0.004). ACC Glx and NAA/Glx discriminated Dep/SI- from Dep/SI+ participants. Uncoupled NAA-glutamatergic metabolism in the ACC may play a role in suicidal ideation and behavior. Longitudinal studies are needed to establish whether aberrant glutamatergic metabolism corresponds to acute or chronic suicide risk. Glutamatergic biomarkers may be promising targets for novel risk assessment and interventional strategies for suicidal ideation and behavior.
Collapse
Affiliation(s)
- Charles P Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - A Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, University of Western Australia, Perth, WA, Australia
| | - Jarrod M Leffler
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Jing Y, Zhao N, Deng XP, Feng ZJ, Huang GF, Meng M, Zang YF, Wang J. Pregenual or subgenual anterior cingulate cortex as potential effective region for brain stimulation of depression. Brain Behav 2020; 10:e01591. [PMID: 32147973 PMCID: PMC7177590 DOI: 10.1002/brb3.1591] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The dorsolateral prefrontal cortex (DLPFC) is the standard stimulation target for the repetitive transcranial magnetic stimulation (rTMS) treatment of major depression disorder (MDD). A retrospective study by Fox and colleagues found that a more negative resting-state functional magnetic resonance imaging (RS-fMRI) functional connectivity (FC) between left DLPFC and the subgenual anterior cingulate cortex (sgACC) in a large group of healthy participants is associated with a better curative effects of rTMS in MDD, suggesting that the sgACC may be an effective region. However, a recent meta-analysis on RS-fMRI studies found that the pregenual ACC (pgACC), rather than the sgACC, of MDD patients showed increased local activity. METHODS We used the stimulation coordinates in the left DLPFC analyzed by Fox et al. to perform RS-fMRI FC between the stimulation targets obtained from previous rTMS MDD studies and the potential effective regions (sgACC and pgACC, respectively) on the RS-fMRI data from 88 heathy participants. RESULTS (a) Both the pgACC and the sgACC were negatively connected to the left DLPFC; (b) both FCs of sgACC-DLPFC and pgACC-DLPFC were more negative in responders than in nonresponders; and (c) the associations between DLPFC-sgACC functional connectivity and clinical efficacy were clustered around the midline sgACC. CONCLUSIONS Both the pgACC and the sgACC may be potential effective regions for rTMS on the left DLPFC for treatment of MDD. However, individualized ACC-DLPFC FC-based rTMS on depression should be performed in the future to test the pgACC or the sgACC as effective regions.
Collapse
Affiliation(s)
- Ying Jing
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Na Zhao
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xin-Ping Deng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Zi-Jian Feng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Guo-Feng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Meng Meng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jue Wang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Valenza G, Passamonti L, Duggento A, Toschi N, Barbieri R. Uncovering complex central autonomic networks at rest: a functional magnetic resonance imaging study on complex cardiovascular oscillations. J R Soc Interface 2020; 17:20190878. [PMID: 32183642 DOI: 10.1098/rsif.2019.0878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aims to uncover brain areas that are functionally linked to complex cardiovascular oscillations in resting-state conditions. Multi-session functional magnetic resonance imaging (fMRI) and cardiovascular data were gathered from 34 healthy volunteers recruited within the human connectome project (the '100-unrelated subjects' release). Group-wise multi-level fMRI analyses in conjunction with complex instantaneous heartbeat correlates (entropy and Lyapunov exponent) revealed the existence of a specialized brain network, i.e. a complex central autonomic network (CCAN), reflecting what we refer to as complex autonomic control of the heart. Our results reveal CCAN areas comprised the paracingulate and cingulate gyri, temporal gyrus, frontal orbital cortex, planum temporale, temporal fusiform, superior and middle frontal gyri, lateral occipital cortex, angular gyrus, precuneous cortex, frontal pole, intracalcarine and supracalcarine cortices, parahippocampal gyrus and left hippocampus. The CCAN visible at rest does not include the insular cortex, thalamus, putamen, amygdala and right caudate, which are classical CAN regions peculiar to sympatho-vagal control. Our results also suggest that the CCAN is mainly involved in complex vagal control mechanisms, with possible links with emotional processing networks.
Collapse
Affiliation(s)
- Gaetano Valenza
- Bioengineering and Robotics Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Deparment of Information Engineering, University of Pisa, Pisa, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
20
|
Li M, Woelfer M, Colic L, Safron A, Chang C, Heinze HJ, Speck O, Mayberg HS, Biswal BB, Salvadore G, Fejtova A, Walter M. Default mode network connectivity change corresponds to ketamine's delayed glutamatergic effects. Eur Arch Psychiatry Clin Neurosci 2020; 270:207-216. [PMID: 30353262 DOI: 10.1007/s00406-018-0942-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Ketamine exerts rapid antidepressant effects peaking 24 h after a single infusion, which have been suggested to be reflected by both reduced functional connectivity (FC) within default mode network (DMN) and altered glutamatergic levels in the perigenual anterior cingulate cortex (pgACC) at 24 h. Understanding the interrelation and time point specificity of ketamine-induced changes of brain circuitry and metabolism is thus key to future therapeutic developments. We investigated the correlation of late glutamatergic changes with FC changes seeded from the posterior cingulate cortex (PCC) and tested the prediction of the latter by acute fractional amplitude of low-frequency fluctuations (fALFF). In a double-blind, randomized, placebo-controlled study of 61 healthy subjects, we compared effects of subanesthetic ketamine infusion (0.5 mg/kg over 40 min) on resting-state fMRI and MR-Spectroscopy at 7 T 1 h and 24 h post-infusion. FC decrease between PCC and dorsomedial prefrontal cortex (dmPFC) was found at 24 h post-infusion (but not 1 h) and this FC decrease correlated with glutamatergic changes at 24 h in pgACC. Acute increase in fALFF was found in ventral PCC at 1 h which was not observed at 24 h and inversely correlated with the reduced dPCC FC towards the dmPFC at 24 h. The correlation of metabolic and functional markers of delayed ketamine effects and their temporal specificity suggest a potential mechanistic relationship between glutamatergic modulation and reconfiguration of brain regions belonging to the DMN.
Collapse
Affiliation(s)
- Meng Li
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke-University, Magdeburg, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke-University, Magdeburg, Germany
- New Jersey Institute of Technology, Newark, NJ, USA
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke-University, Magdeburg, Germany
| | - Adam Safron
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
- Department Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Oliver Speck
- Department Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University, Magdeburg, Germany
| | - Helen S Mayberg
- Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Anna Fejtova
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany.
- Otto-von-Guericke-University, Magdeburg, Germany.
- Department Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Osianderstrasse 24, 72076, Tuebingen, Germany.
| |
Collapse
|
21
|
Li G, Liu Y, Zheng Y, Li D, Liang X, Chen Y, Cui Y, Yap P, Qiu S, Zhang H, Shen D. Large-scale dynamic causal modeling of major depressive disorder based on resting-state functional magnetic resonance imaging. Hum Brain Mapp 2020; 41:865-881. [PMID: 32026598 PMCID: PMC7268036 DOI: 10.1002/hbm.24845] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness characterized by dysfunctional connectivity among distributed brain regions. Previous connectome studies based on functional magnetic resonance imaging (fMRI) have focused primarily on undirected functional connectivity and existing directed effective connectivity (EC) studies concerned mostly task-based fMRI and incorporated only a few brain regions. To overcome these limitations and understand whether MDD is mediated by within-network or between-network connectivities, we applied spectral dynamic causal modeling to estimate EC of a large-scale network with 27 regions of interests from four distributed functional brain networks (default mode, executive control, salience, and limbic networks), based on large sample-size resting-state fMRI consisting of 100 healthy subjects and 100 individuals with first-episode drug-naive MDD. We applied a newly developed parametric empirical Bayes (PEB) framework to test specific hypotheses. We showed that MDD altered EC both within and between high-order functional networks. Specifically, MDD is associated with reduced excitatory connectivity mainly within the default mode network (DMN), and between the default mode and salience networks. In addition, the network-averaged inhibitory EC within the DMN was found to be significantly elevated in the MDD. The coexistence of the reduced excitatory but increased inhibitory causal connections within the DMNs may underlie disrupted self-recognition and emotional control in MDD. Overall, this study emphasizes that MDD could be associated with altered causal interactions among high-order brain functional networks.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Yujie Liu
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yanting Zheng
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Danian Li
- Cerebropathy CenterThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xinyu Liang
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yaoping Chen
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Ying Cui
- Cerebropathy CenterThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Pew‐Thian Yap
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Shijun Qiu
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Han Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulSouth Korea
| |
Collapse
|
22
|
Renteria C, Liu YZ, Chaney EJ, Barkalifa R, Sengupta P, Boppart SA. Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. Sci Rep 2020; 10:2540. [PMID: 32054882 PMCID: PMC7018813 DOI: 10.1038/s41598-020-59227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson's correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12-15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.
Collapse
Affiliation(s)
- Carlos Renteria
- Beckman Institute for Advanced Science and Technology, Urbana, USA
- Department of Bioengineering, Urbana, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, USA.
- Department of Bioengineering, Urbana, USA.
- Department of Electrical and Computer Engineering, Urbana, USA.
- Neuroscience Program, Urbana, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, USA.
| |
Collapse
|
23
|
Shen J, Shenkar D, An L, Tomar JS. Local and Interregional Neurochemical Associations Measured by Magnetic Resonance Spectroscopy for Studying Brain Functions and Psychiatric Disorders. Front Psychiatry 2020; 11:802. [PMID: 32848957 PMCID: PMC7432119 DOI: 10.3389/fpsyt.2020.00802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) studies have found significant correlations among neurometabolites (e.g., between glutamate and GABA) across individual subjects and altered correlations in neuropsychiatric disorders. In this article, we discuss neurochemical associations among several major neurometabolites which underpin these observations by MRS. We also illustrate the role of spectral editing in eliminating unwanted correlations caused by spectral overlapping. Finally, we describe the prospects of mapping macroscopic neurochemical associations across the brain and characterizing excitation-inhibition balance of neural networks using glutamate- and GABA-editing MRS imaging.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Dina Shenkar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Li An
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jyoti Singh Tomar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Vega JN, Taylor WD, Gandelman JA, Boyd BD, Newhouse PA, Shokouhi S, Albert KM. Persistent Intrinsic Functional Network Connectivity Alterations in Middle-Aged and Older Women With Remitted Depression. Front Psychiatry 2020; 11:62. [PMID: 32153440 PMCID: PMC7047962 DOI: 10.3389/fpsyt.2020.00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In younger adults, residual alterations in functional neural networks persist during remitted depression. However, there are fewer data for midlife and older adults at risk of recurrence. Such residual network alterations may contribute to vulnerability to recurrence. This study examined intrinsic network functional connectivity in midlife and older women with remitted depression. METHODS A total of 69 women (24 with a history of depression, 45 with no psychiatric history) over 50 years of age completed 3T fMRI with resting-state acquisition. Participants with remitted depression met DSM-IV-TR criteria for an episode in the last 10 years but not the prior year. Whole-brain seed-to-voxel resting-state functional connectivity analyses examined the default mode network (DMN), executive control network (ECN), and salience network (SN), plus bilateral hippocampal seeds. All analyses were adjusted for age and used cluster-level correction for multiple comparisons with FDR < 0.05 and a height threshold of p < 0.001, uncorrected. RESULTS Women with a history of depression exhibited decreased functional connectivity between the SN (right insula seed) and ECN regions, specifically the left superior frontal gyrus. They also exhibited increased functional connectivity between the left hippocampus and the left postcentral gyrus. We did not observe any group differences in functional connectivity for DMN or ECN seeds. CONCLUSIONS Remitted depression in women is associated with connectivity differences between the SN and ECN and between the hippocampus and the postcentral gyrus, a region involved in interoception. Further work is needed to determine whether these findings are related to functional alterations or are predictive of recurrence.
Collapse
Affiliation(s)
- Jennifer N Vega
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, United States
| | - Jason A Gandelman
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Brian D Boyd
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, United States
| | - Sepideh Shokouhi
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kimberly M Albert
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
25
|
Byrne Á, O'Dea RD, Forrester M, Ross J, Coombes S. Next-generation neural mass and field modeling. J Neurophysiol 2019; 123:726-742. [PMID: 31774370 DOI: 10.1152/jn.00406.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Wilson-Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large-scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. Here, we consider a neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event-related synchronization and desynchronization. This derived mean-field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson-Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex-valued population synchrony measure. To highlight the usefulness of this next-generation Wilson-Cowan style model, we deploy it in a number of neurobiological contexts, providing understanding of the changes in power spectra observed in electro- and magnetoencephalography neuroimaging studies of motor cortex during movement, insights into patterns of functional connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.
Collapse
Affiliation(s)
- Áine Byrne
- Center for Neural Science, New York University, New York, New York.,School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael Forrester
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James Ross
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
von Düring F, Ristow I, Li M, Denzel D, Colic L, Demenescu LR, Li S, Borchardt V, Liebe T, Vogel M, Walter M. Glutamate in Salience Network Predicts BOLD Response in Default Mode Network During Salience Processing. Front Behav Neurosci 2019; 13:232. [PMID: 31632250 PMCID: PMC6783560 DOI: 10.3389/fnbeh.2019.00232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Brain investigations identified salience network (SN) comprising the dorsal Anterior Cingulate Cortex (dACC) and the Anterior Insula (AI). Magnetic resonance spectroscopy (MRS) studies revealed the link between the glutamate concentration in the ACC and alterations in attentional scope. Hence, we investigated whether glutamate concentration in the dACC modulates brain response during salience processing. Methods Twenty-seven healthy subjects (12♀, 15♁) provided both STEAM MRS at 7T measuring glutamate concentrations in the dACC as well as a functional magnetic resonance imaging (fMRI) task to study the influence on content-related salience processing and expectedness. Salience was modulated for both sexual and non-sexual emotional photos in either expected or unexpected situations. Correlation between MRS and task fMRI was investigated by performing regression analyses controlling for age, gender, and gray matter partial volume. Results/Conclusion During picture processing, the extent of deactivation in the Posterior Cingulate Cortex (PCC) was attenuated by two different salience attributions: sexual content and unexpectedness of emotional content. Our results indicate that stimulus inherent salience induces an attenuation of the deactivation in PCC, which is in turn balanced by higher level of glutamate in the dACC.
Collapse
Affiliation(s)
- Felicia von Düring
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Inka Ristow
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dominik Denzel
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Liliana Ramona Demenescu
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Shijia Li
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany.,School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Viola Borchardt
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thomas Liebe
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Vogel
- Department of Psychosomatic Medicine and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
| |
Collapse
|
27
|
Ousdal OT, Milde AM, Craven AR, Ersland L, Endestad T, Melinder A, Huys QJ, Hugdahl K. Prefrontal glutamate levels predict altered amygdala-prefrontal connectivity in traumatized youths. Psychol Med 2019; 49:1822-1830. [PMID: 30223909 PMCID: PMC6650776 DOI: 10.1017/s0033291718002519] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 05/22/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neurobiological models of stress and stress-related mental illness, including post-traumatic stress disorder, converge on the amygdala and the prefrontal cortex (PFC). While a surge of research has reported altered structural and functional connectivity between amygdala and the medial PFC following severe stress, few have addressed the underlying neurochemistry. METHODS We combined resting-state functional magnetic resonance imaging measures of amygdala connectivity with in vivo MR-spectroscopy (1H-MRS) measurements of glutamate in 26 survivors from the 2011 Norwegian terror attack and 34 control subjects. RESULTS Traumatized youths showed altered amygdala-anterior midcingulate cortex (aMCC) and amygdala-ventromedial prefrontal cortex (vmPFC) connectivity. Moreover, the trauma survivors exhibited reduced levels of glutamate in the vmPFC which fits with the previous findings of reduced levels of Glx (glutamate + glutamine) in the aMCC (Ousdal et al., 2017) and together suggest long-term impact of a traumatic experience on glutamatergic pathways. Importantly, local glutamatergic metabolite levels predicted the individual amygdala-aMCC and amygdala-vmPFC functional connectivity, and also mediated the observed group difference in amygdala-aMCC connectivity. CONCLUSIONS Our findings suggest that traumatic stress may influence amygdala-prefrontal neuronal connectivity through an effect on prefrontal glutamate and its compounds. Understanding the neurochemical underpinning of altered amygdala connectivity after trauma may ultimately lead to the discovery of new pharmacological agents which can prevent or treat stress-related mental illness.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Anne Marita Milde
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Regional Centre for Child and Youth Mental Health and Child Welfare, UNI Research Health, Bergen, Norway
| | - Alexander R. Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT, Centre of Excellence, University of Oslo, Oslo, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Tor Endestad
- Institute of Psychology, University of Oslo, Oslo, Norway
| | | | - Quentin J. Huys
- Translational Neuromodeling Unit, Institute of Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
- Department of Psychiatry, Centre for Addiction Disorders, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zürich, Zurich, Switzerland
| | - Kenneth Hugdahl
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT, Centre of Excellence, University of Oslo, Oslo, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Whitton AE, Webb CA, Dillon DG, Kayser J, Rutherford A, Goer F, Fava M, McGrath P, Weissman M, Parsey R, Adams P, Trombello JM, Cooper C, Deldin P, Oquendo MA, McInnis MG, Carmody T, Bruder G, Trivedi MH, Pizzagalli DA. Pretreatment Rostral Anterior Cingulate Cortex Connectivity With Salience Network Predicts Depression Recovery: Findings From the EMBARC Randomized Clinical Trial. Biol Psychiatry 2019; 85:872-880. [PMID: 30718038 PMCID: PMC6499696 DOI: 10.1016/j.biopsych.2018.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Baseline rostral anterior cingulate cortex (rACC) activity is a well-replicated nonspecific predictor of depression improvement. The rACC is a key hub of the default mode network, which prior studies indicate is hyperactive in major depressive disorder. Because default mode network downregulation is reliant on input from the salience network and frontoparietal network, an important question is whether rACC connectivity with these systems contributes to depression improvement. METHODS Our study evaluated this hypothesis in outpatients (N = 238; 151 female) enrolled in the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) 8-week randomized clinical trial of sertraline versus placebo for major depressive disorder. Depression severity was measured using the Hamilton Rating Scale for Depression, and electroencephalography was recorded at baseline and week 1. Exact low-resolution electromagnetic tomography was used to compute activity from the rACC, and key regions within the default mode network (posterior cingulate cortex), frontoparietal network (left dorsolateral prefrontal cortex), and salience network (right anterior insula [rAI]). Connectivity in the theta band (4.5-7 Hz) and beta band (12.5-21 Hz) was computed using lagged phase synchronization. RESULTS Stronger baseline theta-band rACC-rAI (salience network hub) connectivity predicted greater depression improvement across 8 weeks of treatment for both treatment arms (B = -0.57, 95% confidence interval = -1.07, -0.08, p = .03). Early increases in theta-band rACC-rAI connectivity predicted greater likelihood of achieving remission at week 8 (odds ratio = 2.90, p = .03). CONCLUSIONS Among patients undergoing treatment, theta-band rACC-rAI connectivity is a prognostic, albeit treatment-nonspecific, indicator of depression improvement, and early connectivity changes may predict clinically meaningful outcomes.
Collapse
Affiliation(s)
- Alexis E. Whitton
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety & Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Christian A. Webb
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety & Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Daniel G. Dillon
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety & Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Jürgen Kayser
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Ashleigh Rutherford
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Franziska Goer
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Patrick McGrath
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Myrna Weissman
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Ramin Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, 100 Nicolls Road, Stony Brook, NY 11794
| | - Phil Adams
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Joseph M. Trombello
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Crystal Cooper
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Patricia Deldin
- Department of Psychiatry, University of Michigan, 500 S State Street, Ann Arbor, MI 48109
| | - Maria A. Oquendo
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan, 500 S State Street, Ann Arbor, MI 48109
| | - Thomas Carmody
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Gerard Bruder
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Madhukar H. Trivedi
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Diego A. Pizzagalli
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety & Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
29
|
Brain functional connectivity correlates of coping styles. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:495-508. [PMID: 29572771 DOI: 10.3758/s13415-018-0583-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coping abilities represent the individual set of mental and behavioral strategies adopted when facing stress or traumatic experiences. Coping styles related to avoidance have been linked to a disposition to develop psychiatric disorders such as PTSD, anxiety, and major depression, whereas problem-oriented coping skills have been positively correlated with well-being and high quality of life. Even though coping styles constitute an important determinant of resilience and can impact many aspects of everyday living, no study has investigated their brain functional connectivity underpinnings in humans. Here we analyzed both psychometric scores of coping and resting-state fMRI data from 102 healthy adult participants. Controlling for personality and problem-solving abilities, we identified significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks-namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus. Also, a reduced negative correlation between AS and DMN nodes explained variability in one specific coping style, related to avoiding problems while focusing on the emotional component of the stressor at hand, instead of relying on cognitive resources. These results might be integrated with current neurophysiological models of resilience and individual responses to stress, in order to understand the propensity to develop clinical conditions (e.g., PTSD) and predict the outcomes of psychotherapeutic interventions.
Collapse
|
30
|
Cortical thickness reductions associate with abnormal resting-state functional connectivity in non-neuropsychiatric systemic lupus erythematosus. Brain Imaging Behav 2019; 12:674-684. [PMID: 28451920 DOI: 10.1007/s11682-017-9729-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To detect the abnormal cortical thickness and disrupted brain resting-state functional connectivity (RSFC) in patients with systemic lupus erythematosus (SLE) without neuropsychiatric symptoms (non-NPSLE). Using T1-weighted 3D brain structural data, we first determined the regions with abnormal cortical thickness in a cohort of 33 adult female non-NPSLE patients. By taking brain regions with significantly reduced cortical thickness as the seeds, we calculated their RSFC based on the resting-fMRI data and detected the relationship between the RSFC and cortical thickness in the non-NPSLE patients. Compared to the controls, the non-NPSLE patients showed significantly cortical thinning in the left fusiform gyrus (FUS.L), left lingual gyrus (LING.L), right lingual gyrus (LING.R) and left superior frontal cortex (SFC.L). As for the RSFC, statistical analyses indicated that the abnormal cortical thickness in LING.L is associated with increased RSFC in the left posterior cingulate cortex (PCC.L), and cortical thinning in SFC.L associated with decreased RSFC in left cerebellum 6 (CRBL 6.L) in non-NPSLE patients. In addition, in non-NPSLE patients, the decreased cortical thickness in LING.L was correlated to the increased RSFC in PCC.L, and decreased cortical thickness in SFC.L was correlated to the decreased RSFC in CRBL 6.L. Our findings suggest that the cortical abnormalities may affect brain intrinsic connectivity in non-NPSLE patients.
Collapse
|
31
|
Quintero JE, Ai Y, Andersen AH, Hardy P, Grondin R, Guduru Z, Gash DM, Gerhardt GA, Zhang Z. Validations of apomorphine-induced BOLD activation correlations in hemiparkinsonian rhesus macaques. NEUROIMAGE-CLINICAL 2019; 22:101724. [PMID: 30822717 PMCID: PMC6396014 DOI: 10.1016/j.nicl.2019.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
Identification of Parkinson's disease at the earliest possible stage of the disease may provide the best opportunity for the use of disease modifying treatments. However, diagnosing the disease during the pre-symptomatic period remains an unmet goal. To that end, we used pharmacological MRI (phMRI) to assess the function of the cortico-basal ganglia circuit in a non-human primate model of dopamine deficiency to determine the possible relationships between phMRI signals with behavioral, neurochemical, and histological measurements. Animals with unilateral treatments with the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that expressed stable, long-term hemiparkinsonism were challenged with the dopaminergic receptor agonist, apomorphine, and structure-specific phMRI blood oxygen level-dependent (BOLD) activation responses were measured. Behavioral, histopathological, and neurochemical measurements were obtained and correlated with phMRI activation of structures of the cortico-basal ganglia system. Greater phMRI activations in the basal ganglia and cortex were associated with slower movement speed, decreased daytime activity, or more pronounced parkinsonian features. Animals showed decreased stimulus-evoked dopamine release in the putamen and substantia nigra pars compacta and lower basal glutamate levels in the motor cortex on the MPTP-lesioned hemisphere compared to the contralateral hemisphere. The altered neurochemistry was significantly correlated with phMRI signals in the motor cortex and putamen. Finally, greater phMRI activations in the caudate nucleus correlated with fewer tyrosine hydroxylase-positive (TH+) nigral cells and decreased TH+ fiber density in the putamen. These results reveal the correlation of phMRI signals with the severity of the motor deficits and pathophysiological changes in the cortico-basal ganglia circuit. Apomorphine in hemiparkinsonian animals can evoke changes in functional MRI signals. Cortico-basal ganglia activation correlates to behavior, neurochemistry, histology Pharmacological MRI has potential to be biomarker for Parkinson's disease.
Collapse
Affiliation(s)
- J E Quintero
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Yi Ai
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - A H Andersen
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - P Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - R Grondin
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Guduru
- Department of Neurology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - D M Gash
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - G A Gerhardt
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Zhang
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA.
| |
Collapse
|
32
|
Tang S, Powell EM, Zhu W, Lo FS, Erzurumlu RS, Xu S. Altered Forebrain Functional Connectivity and Neurotransmission in a Kinase-Inactive Met Mouse Model of Autism. Mol Imaging 2019; 18:1536012118821034. [PMID: 30799683 PMCID: PMC6322103 DOI: 10.1177/1536012118821034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
MET, the gene encoding the tyrosine kinase receptor for hepatocyte growth factor, is a susceptibility gene for autism spectrum disorder (ASD). Genetically altered mice with a kinase-inactive Met offer a potential model for understanding neural circuit organization changes in autism. Here, we focus on the somatosensory thalamocortical circuitry because distinct somatosensory sensitivity phenotypes accompany ASD, and this system plays a major role in sensorimotor and social behaviors in mice. We employed resting-state functional magnetic resonance imaging and in vivo high-resolution proton MR spectroscopy to examine neuronal connectivity and neurotransmission of wild-type, heterozygous Met-Emx1, and fully inactive homozygous Met-Emx1 mice. Met-Emx1 brains showed impaired maturation of large-scale somatosensory network connectivity when compared with wild-type controls. Significant sex × genotype interaction in both network features and glutamate/gamma-aminobutyric acid (GABA) balance was observed. Female Met-Emx1 brains showed significant connectivity and glutamate/GABA balance changes in the somatosensory thalamocortical system when compared with wild-type brains. The glutamate/GABA ratio in the thalamus was correlated with the connectivity between the somatosensory cortex and the thalamus in heterozygous Met-Emx1 female brains. The findings support the hypothesis that aberrant functioning of the somatosensory thalamocortical system is at the core of the conspicuous somatosensory behavioral phenotypes observed in Met-Emx1 mice.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Powell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
James GM, Gryglewski G, Vanicek T, Berroterán-Infante N, Philippe C, Kautzky A, Nics L, Vraka C, Godbersen GM, Unterholzner J, Sigurdardottir HL, Spies M, Seiger R, Kranz GS, Hahn A, Mitterhauser M, Wadsak W, Bauer A, Hacker M, Kasper S, Lanzenberger R. Parcellation of the Human Cerebral Cortex Based on Molecular Targets in the Serotonin System Quantified by Positron Emission Tomography In vivo. Cereb Cortex 2019; 29:372-382. [PMID: 30357321 PMCID: PMC6294402 DOI: 10.1093/cercor/bhy249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/21/2023] Open
Abstract
Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.
Collapse
Affiliation(s)
- Gregory M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, Jülich, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Development of Neuroimaging-Based Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:159-195. [PMID: 31705495 DOI: 10.1007/978-981-32-9721-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.
Collapse
|
35
|
Hilland E, Landrø NI, Harmer CJ, Maglanoc LA, Jonassen R. Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial. Front Hum Neurosci 2018; 12:508. [PMID: 30622463 PMCID: PMC6308203 DOI: 10.3389/fnhum.2018.00508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/05/2018] [Indexed: 11/30/2022] Open
Abstract
Alterations in resting state networks (RSNs) are associated with emotional- and attentional control difficulties in depressed individuals. Attentional bias modification (ABM) training may lead to more adaptive emotional processing in depression, but little is known about the neural underpinnings associated with ABM. In the current study a sample of 134 previously depressed individuals were randomized into 14 days of computerized ABM- or a closely matched placebo training regime followed by a resting state magnetic resonance imaging (MRI) scan. Using independent component analysis (ICA) we examined within-network connectivity in three major RSN's, the default mode network (DMN), the salience network (SN) and the central executive network (CEN) after 2 weeks of ABM training. We found a significant difference between the training groups within the SN, but no difference within the DMN or CEN. Moreover, a significant symptom improvement was observed in the ABM group after training. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02931487.
Collapse
Affiliation(s)
- Eva Hilland
- Clinical Neuro-science Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Division of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Nils I. Landrø
- Clinical Neuro-science Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Division of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Catherine J. Harmer
- Clinical Neuro-science Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Psychopharmacology and Emotional Research Laboratory (PERL), Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Luigi A. Maglanoc
- Clinical Neuro-science Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT: Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rune Jonassen
- Clinical Neuro-science Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Faculty of Health Sciences, OsloMet—Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
36
|
Rzepa E, McCabe C. Anhedonia and depression severity dissociated by dmPFC resting-state functional connectivity in adolescents. J Psychopharmacol 2018; 32:1067-1074. [PMID: 30260258 PMCID: PMC6380625 DOI: 10.1177/0269881118799935] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Given the heterogeneity within depression, in this study we aim to examine how resting-state functional connectivity (RSFC) in adolescents is related to anhedonia and depression severity on a continuum in line with the research domain criteria (RDoC) approach. METHODS We examined how RSFC in the dorsal medial prefrontal cortex (dmPFC), nucleus accumbens (NAcc) and pregenual anterior cingulate cortex (pgACC) was related to anhedonia and depression severity in 86 adolescents (13-21 years). RESULTS We found both anhedonia and depression severity related to decreased dmPFC RSFC with the precuneus, a part of the default mode network. However we also found that increased dmPFC connectivity with the ACC/paracingulate gyrus related to anhedonia whereas increased RSFC with the frontal pole related to depression severity. DISCUSSION This work extends the view that the dmPFC is a potential therapeutic target for depression in two ways: 1. We report dmPFC connectivity in adolescents; and 2. We show different dmPFC RSFC specific to anhedonia and depression severity, providing neural targets for intervention in young people at risk of depression.
Collapse
Affiliation(s)
| | - Ciara McCabe
- Ciara McCabe, Associate Professor of Neuroscience,
School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6
6AL, UK.
| |
Collapse
|
37
|
Mullins PG. Towards a theory of functional magnetic resonance spectroscopy (fMRS): A meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scand J Psychol 2018; 59:91-103. [PMID: 29356002 DOI: 10.1111/sjop.12411] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023]
Abstract
Proton magnetic resonance spectroscopy is a powerful tool to investigate neurochemistry and physiology in vivo. Recently researchers have started to use MRS to measure neurotransmitter changes related to neural activity, so called functional MRS (fMRS). Particular interest has been placed on measuring glutamate changes associated with neural function, but differences are reported in the size of changes seen. This review discusses fMRS, and includes meta-analyses of the relative size of glutamate changes seen in fMRS, and the impact experimental design and stimulus paradigm may have. On average glutamate was found to increase by 6.97% (±1.739%) in response to neural activation. However, factors of experimental design may have a large impact on the size of these changes. For example an increase of 4.749% (±1.45%) is seen in block studies compared to an increase of 13.429% (±3.59) in studies using event related paradigms. The stimulus being investigated also seems to play a role with prolonged visual stimuli showing a small mean increase in glutamate of 2.318% (±1.227%) while at the other extreme, pain stimuli show a mean stimulation effect of 14.458% (±3.736%). These differences are discussed with regards to possible physiologic interpretations, as well experimental design implications.
Collapse
|
38
|
Gandelman JA, Albert K, Boyd BD, Park JW, Riddle M, Woodward ND, Kang H, Landman BA, Taylor WD. Intrinsic Functional Network Connectivity Is Associated With Clinical Symptoms and Cognition in Late-Life Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:160-170. [PMID: 30392844 DOI: 10.1016/j.bpsc.2018.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 09/01/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Late-life depression (LLD) has been associated with alterations in intrinsic functional networks, best characterized in the default mode network (DMN), cognitive control network (CCN), and salience network. However, these findings often derive from small samples, and it is not well understood how network findings relate to clinical and cognitive symptomatology. METHODS We studied 100 older adults (n = 79 with LLD, n = 21 nondepressed) and collected resting-state functional magnetic resonance imaging, clinical measures of depression, and performance on cognitive tests. We selected canonical network regions for each intrinsic functional network (DMN, CCN, and salience network) as seeds in seed-to-voxel analysis. We compared connectivity between the depressed and nondepressed groups and correlated connectivity with depression severity among depressed subjects. We then investigated whether the observed connectivity findings were associated with greater severity of common neuropsychiatric symptoms or poorer cognitive performance. RESULTS LLD was characterized by decreased DMN connectivity to the frontal pole, a CCN region (Wald χ21 = 22.33, p < .001). No significant group differences in connectivity were found for the CCN or salience network. However, in the LLD group, increased CCN connectivity was associated with increased depression severity (Wald χ21 > 20.14, p < .001), greater anhedonia (Wald χ21 = 7.02, p = .008) and fatigue (Wald χ21 = 6.31, p = .012), and poorer performance on tests of episodic memory (Wald χ21 > 4.65, p < .031), executive function (Wald χ21 = 7.18, p = .007), and working memory (Wald χ21 > 4.29, p < .038). CONCLUSIONS LLD is characterized by differences in DMN connectivity, while CCN connectivity is associated with LLD symptomology, including poorer performance in several cognitive domains.
Collapse
Affiliation(s)
| | - Kimberly Albert
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian D Boyd
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jung Woo Park
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meghan Riddle
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neil D Woodward
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bennett A Landman
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee; Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
39
|
Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl Psychiatry 2018; 8:189. [PMID: 30202011 PMCID: PMC6131242 DOI: 10.1038/s41398-018-0241-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Combined increases in peripheral inflammation and brain glutamate may identify a subtype of depression with distinct neuroimaging signatures. Two contrasting subgroups of depressed subjects-with and without combined elevations in plasma C-reactive protein (CRP) and basal ganglia glutamate (high and low CRP-Glu, respectively) were identified by hierarchical clustering using plasma CRP (indexing peripheral inflammation) and magnetic resonance spectroscopy (MRS)-based measurement of left basal ganglia glutamate. High CRP-Glu group status was associated with greater severity of anhedonia and cognitive and motor slowing. Local- and network-level measures of functional integrity were determined using brain oxygen level-dependent (BOLD)-oscillatory activity and graph theory. Greater decreases in concordance of oscillatory activity between neighboring voxels (Regional Homogeneity 'ReHo', p < 0.01) within the MRS volume-of-interest was associated with the High CRP-Glu subgroup. Using brain-wide, CRP-Glu ReHo contrast maps, a covariance network of 41 regions-of-interest (ROIs) with similar ReHo decreases was identified in the High CRP-Glu group and was located to brain structures previously implicated in depression. The 41-ROI network was further decomposed into four subnetworks. ReHo decreases within Subnetwork4-comprised of reward processing regions -was associated with anhedonia. Subnetwork4 ReHo also predicted decreased network integrity, which mediated the link between local ReHo and anhedonia in the Low but not High CRP-Glu group. These findings suggest that decreased ReHo and related disruptions in network integrity may reflect toxic effects of inflammation-induced increases in extrasynaptic glutamate signaling. Moreover, local BOLD oscillatory activity as reflected in ReHo might be a useful measure of target-engagement in the brain for treatment of inflammation-induced behaviors.
Collapse
|
40
|
7T 1H-MRS in major depressive disorder: a Ketamine Treatment Study. Neuropsychopharmacology 2018; 43:1908-1914. [PMID: 29748628 PMCID: PMC6046051 DOI: 10.1038/s41386-018-0057-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
The glutamatergic modulator ketamine has striking and rapid antidepressant effects in major depressive disorder (MDD), but its mechanism of action remains unknown. Proton magnetic resonance spectroscopy (1H-MRS) is the only non-invasive method able to directly measure glutamate levels in vivo; in particular, glutamate and glutamine metabolite concentrations are separable by 1H-MRS at 7T. This double-blind, placebo-controlled, crossover study that included 1H-MRS scans at baseline and at 24 h post ketamine and post-placebo infusions sought to determine glutamate levels in the pregenual anterior cingulate (pgACC) of 20 medication-free MDD subjects and 17 healthy volunteers (HVs) 24 h post ketamine administration, and to evaluate any other measured metabolite changes, correlates, or predictors of antidepressant response. Metabolite levels were compared at three scan times (baseline, post-ketamine, and post-placebo) in HVs and MDD subjects at 7T using a 1H-MRS sequence specifically optimized for glutamate. No significant between-group differences in 1H-MRS-measured metabolites were observed at baseline. Antidepressant response was not predicted by baseline glutamate levels. Our results suggest that any infusion-induced increases in glutamate at the 24-h post ketamine time point were below the sensitivity of the current technique; that these increases may occur in different brain regions than the pgACC; or that subgroups of MDD subjects may exist that have a differential glutamate response to ketamine.
Collapse
|
41
|
Schoenen J, Coppola G. Efficacy and mode of action of external trigeminal neurostimulation in migraine. Expert Rev Neurother 2018; 18:545-555. [PMID: 29897267 DOI: 10.1080/14737175.2018.1488588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Available preventive drug treatments for migraine lack complete efficacy and often have unpleasant adverse effects. Hence, their clinical utility and therapeutic adherence are limited. Noninvasive neurostimulation methods applied over various peripheral sites (forehead, mastoid, upper arm, cervical vagus nerve) have raised great interest because of their excellent efficacy/tolerance profile. Among them external trigeminal nerve stimulation (eTNS) was first to obtain FDA approval for migraine therapy. Areas covered: All clinical trials of eTNS as preventive or acute migraine treatment published in extenso or presented at congresses are reviewed. The paper analyzes neuroimaging and neurophysiological studies on mechanisms of action of eTNS. As many of these studies point toward the anterior cingulate cortex (ACC) as a likely eTNS target, the paper scrutinizes the available literature on the ACC implication in migraine pathophysiology. Expert commentary: eTNS is a viable alternative to standard pharmacological antimigraine strategies both for prevention and abortive therapy. eTNS could chiefly exert its action by modulating the perigenual ACC, which might also be of interest for treating other disorders like fibromyalgia or depression. It remains to be determined if this might be a common mechanism to other peripheral noninvasive neurostimulation methods.
Collapse
Affiliation(s)
- Jean Schoenen
- a Headache Research Unit , University Department of Neurology CHR Citadelle Hospital , Liège , Belgium
| | - Gianluca Coppola
- b Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology , G. B. Bietti Foundation IRCCS , Rome , Italy
| |
Collapse
|
42
|
To WT, De Ridder D, Hart J, Vanneste S. Changing Brain Networks Through Non-invasive Neuromodulation. Front Hum Neurosci 2018; 12:128. [PMID: 29706876 PMCID: PMC5908883 DOI: 10.3389/fnhum.2018.00128] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
Background/Objective: Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method: This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion: Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks.
Collapse
Affiliation(s)
- Wing Ting To
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John Hart
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
43
|
Samara Z, Evers EAT, Peeters F, Uylings HBM, Rajkowska G, Ramaekers JG, Stiers P. Orbital and Medial Prefrontal Cortex Functional Connectivity of Major Depression Vulnerability and Disease. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:348-357. [PMID: 29628067 DOI: 10.1016/j.bpsc.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pathophysiology models of major depression (MD) center on the dysfunction of various cortical areas within the orbital and medial prefrontal cortex. While independent structural and functional abnormalities in these areas are consistent findings in MD, the complex interactions among them and the rest of the cortex remain largely unexplored. METHODS We used resting-state functional magnetic resonance imaging connectivity to systematically map alterations in the communication between orbital and medial prefrontal cortex fields and the rest of the brain in MD. Functional connectivity (FC) maps from participants with current MD (n = 35), unaffected first-degree relatives (n = 36), and healthy control subjects (n = 38) were subjected to conjunction analyses to distinguish FC markers of MD vulnerability and FC markers of MD disease. RESULTS FC abnormalities in MD vulnerability were found for dorsal medial wall regions and the anterior insula and concerned altered communication of these areas with the inferior parietal cortex and dorsal posterior cingulate, occipital areas and the brainstem. FC aberrations in current MD included the anterior insula, rostral and dorsal anterior cingulate cortex, and lateral orbitofrontal areas and concerned altered communication with the dorsal striatum, the cerebellum, the precuneus, the anterior prefrontal cortex, somatomotor cortex, dorsolateral prefrontal cortex, and visual areas in the occipital and inferior temporal lobes. CONCLUSIONS Functionally delineated parcellation maps can be used to identify putative connectivity markers in extended cortical regions such as the orbital and medial prefrontal cortex. The anterior insula and the rostral anterior cingulate cortex play a central role in the pathophysiology of MD, being consistently implicated both in the MD vulnerability and MD disease states.
Collapse
Affiliation(s)
- Zoe Samara
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - Elisabeth A T Evers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Frenk Peeters
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Harry B M Uylings
- Department of Anatomy and Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Peter Stiers
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Ristow I, Li M, Colic L, Marr V, Födisch C, von Düring F, Schiltz K, Drumkova K, Witzel J, Walter H, Beier K, Kruger THC, Ponseti J, Schiffer B, Walter M. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex. NEUROIMAGE-CLINICAL 2018; 18:335-341. [PMID: 29876253 PMCID: PMC5987735 DOI: 10.1016/j.nicl.2018.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders (N = 13) and matched controls (N = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.
Collapse
Affiliation(s)
- Inka Ristow
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Vanessa Marr
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Carina Födisch
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Felicia von Düring
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Kolja Schiltz
- Section of Forensic Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany; Department of Psychiatry and Psychotherapy, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Krasimira Drumkova
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Joachim Witzel
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Klaus Beier
- Institute of Sexology and Sexual Medicine, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tillmann H C Kruger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Jorge Ponseti
- Institute of Sexual Medicine and Forensic Psychiatry and Psychotherapy, Kiel University, Medical School, Kiel, Germany
| | - Boris Schiffer
- University of Duisburg-Essen, Institute of Forensic Psychiatry, Essen, Germany; LWL-University Hospital, Division of Forensic Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, Bochum, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany; Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto von Guericke University of Magdeburg, Magdeburg, Germany; Department of Psychiatry, Eberhard Karls University, Tübingen, Germany; Max Planck Institute for Biological Cybernetics Tübingen, Germany.
| |
Collapse
|
45
|
Ramirez-Mahaluf JP, Roxin A, Mayberg HS, Compte A. A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics. Cereb Cortex 2018; 27:660-679. [PMID: 26514163 DOI: 10.1093/cercor/bhv249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Major depression disease (MDD) is associated with the dysfunction of multinode brain networks. However, converging evidence implicates the reciprocal interaction between midline limbic regions (typified by the ventral anterior cingulate cortex, vACC) and the dorso-lateral prefrontal cortex (dlPFC), reflecting interactions between emotions and cognition. Furthermore, growing evidence suggests a role for abnormal glutamate metabolism in the vACC, while serotonergic treatments (selective serotonin reuptake inhibitor, SSRI) effective for many patients implicate the serotonin system. Currently, no mechanistic framework describes how network dynamics, glutamate, and serotonin interact to explain MDD symptoms and treatments. Here, we built a biophysical computational model of 2 areas (vACC and dlPFC) that can switch between emotional and cognitive processing. MDD networks were simulated by slowing glutamate decay in vACC and demonstrated sustained vACC activation. This hyperactivity was not suppressed by concurrent dlPFC activation and interfered with expected dlPFC responses to cognitive signals, mimicking cognitive dysfunction seen in MDD. Simulation of clinical treatments (SSRI or deep brain stimulation) counteracted this aberrant vACC activity. Theta and beta/gamma oscillations correlated with network function, representing markers of switch-like operation in the network. The model shows how glutamate dysregulation can cause aberrant brain dynamics, respond to treatments, and be reflected in EEG rhythms as biomarkers of MDD.
Collapse
Affiliation(s)
| | - Alexander Roxin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centre de Recerca Matemàtica, Bellaterra, Spain
| | | | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
46
|
Deng Y, Li S, Zhou R, Walter M. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity. Hum Brain Mapp 2018; 39:1664-1672. [PMID: 29314499 DOI: 10.1002/hbm.23942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 01/20/2023] Open
Abstract
Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks.
Collapse
Affiliation(s)
- Yaling Deng
- Department of Psychology, Nanjing University, Nanjing, 210023, China.,National Key Laboratory of Cognitive Neuroscience and Learning, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, 100875, China.,Research Center of Emotion Regulation, Beijing Normal University, Beijing, 100875, China
| | - Shijia Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Shanghai, China.,Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing, 210023, China.,National Key Laboratory of Cognitive Neuroscience and Learning, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, 100875, China.,Research Center of Emotion Regulation, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany†
| |
Collapse
|
47
|
Helm K, Viol K, Weiger TM, Tass PA, Grefkes C, Del Monte D, Schiepek G. Neuronal connectivity in major depressive disorder: a systematic review. Neuropsychiatr Dis Treat 2018; 14:2715-2737. [PMID: 30425491 PMCID: PMC6200438 DOI: 10.2147/ndt.s170989] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The causes of major depressive disorder (MDD), as one of the most common psychiatric disorders, still remain unclear. Neuroimaging has substantially contributed to understanding the putative neuronal mechanisms underlying depressed mood and motivational as well as cognitive impairments in depressed individuals. In particular, analyses addressing changes in interregional connectivity seem to be a promising approach to capture the effects of MDD at a systems level. However, a plethora of different, sometimes contradicting results have been published so far, making general conclusions difficult. Here we provide a systematic overview about connectivity studies published in the field over the last decade considering different methodological as well as clinical issues. METHODS A systematic review was conducted extracting neuronal connectivity results from studies published between 2002 and 2015. The findings were summarized in tables and were graphically visualized. RESULTS The review supports and summarizes the notion of an altered frontolimbic mood regulation circuitry in MDD patients, but also stresses the heterogeneity of the findings. The brain regions that are most consistently affected across studies are the orbitomedial prefrontal cortex, anterior cingulate cortex, amygdala, hippocampus, cerebellum and the basal ganglia. CONCLUSION The results on connectivity in MDD are very heterogeneous, partly due to different methods and study designs, but also due to the temporal dynamics of connectivity. While connectivity research is an important step toward a complex systems approach to brain functioning, future research should focus on the dynamics of functional and effective connectivity.
Collapse
Affiliation(s)
- Katharina Helm
- Institute of Physiology and Pathophysiology, Paracelsus Medical University Salzburg, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Kathrin Viol
- Institute of Synergetics and Psychotherapy Research, University Hospital for Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University Salzburg, Salzburg, Austria,
| | - Thomas M Weiger
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford CA, USA
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Medicine and Neurosciences - Cognitive Neurology (INM-3), Research Center Juelich, Juelich, Germany
| | - Damir Del Monte
- Institute of Synergetics and Psychotherapy Research, University Hospital for Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University Salzburg, Salzburg, Austria,
| | - Günter Schiepek
- Institute of Synergetics and Psychotherapy Research, University Hospital for Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University Salzburg, Salzburg, Austria, .,Ludwig Maximilians University, Department for Psychology, Munich, Germany,
| |
Collapse
|
48
|
Jenkins LM, Stange JP, Barba A, DelDonno SR, Kling LR, Briceño EM, Weisenbach SL, Phan KL, Shankman SA, Welsh RC, Langenecker SA. Integrated cross-network connectivity of amygdala, insula, and subgenual cingulate associated with facial emotion perception in healthy controls and remitted major depressive disorder. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:1242-1254. [PMID: 29110183 PMCID: PMC5803100 DOI: 10.3758/s13415-017-0547-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Emotion perception deficits could be due to disrupted connectivity of key nodes in the salience and emotion network (SEN), including the amygdala, subgenual anterior cingulate cortex (sgACC), and insula. We examined SEN resting-state (rs-)fMRI connectivity in rMDD in relation to Facial Emotion Perception Test (FEPT) performance. Fifty-two medication-free people ages 18 to 23 years participated. Twenty-seven had major depressive disorder (MDD) in remission (rMDD, 10 males), as MDD is associated with emotion perception deficits and alterations in rsfMRI. Twenty-five healthy controls (10 males) also participated. Participants completed the FEPT during fMRI, in addition to an 8-minute eyes-open resting-state scan. Seed regions of interest were defined in the amygdala, anterior insula and sgACC. Multiple regression analyses co-varied diagnostic group, sex and movement parameters. Emotion perception accuracy was positively associated with connectivity between amygdala seeds and regions primarily in the SEN and cognitive control network (CCN), and also the default mode network (DMN). Accuracy was also positively associated with connectivity between the sgACC seeds and other SEN regions, and the DMN, particularly for the right sgACC. Connectivity negatively associated with emotion perception was mostly with regions outside of these three networks, other than the left insula and part of the DMN. This study is the first to our knowledge to demonstrate relationships between facial emotion processing and resting-state connectivity with SEN nodes and between SEN nodes and regions located within other neural networks.
Collapse
Affiliation(s)
- Lisanne M Jenkins
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA
| | - Jonathan P Stange
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA
| | - Alyssa Barba
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA
| | - Sophie R DelDonno
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA
| | - Leah R Kling
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA
| | - Emily M Briceño
- Department of Psychiatry, The University of Michigan, Ann Arbor, USA
| | - Sara L Weisenbach
- Department of Psychiatry, The University of Utah, Salt Lake City, USA
| | - K Luan Phan
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA
| | - Stewart A Shankman
- Department of Psychology, The University of Illinois at Chicago, Chicago, USA
| | - Robert C Welsh
- Department of Psychiatry, The University of Utah, Salt Lake City, USA
| | - Scott A Langenecker
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, USA.
- Department of Psychiatry, The University of Michigan, Ann Arbor, USA.
- Cognitive Neuroscience Center, Department of Psychiatry, The University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL, 60612, USA.
| |
Collapse
|
49
|
Abstract
Depression is a chronic, debilitating, and common illness. Currently available pharmacotherapies can be helpful but have several major drawbacks, including substantial rates of low or no response and a long therapeutic time lag. In pursuit of better treatment options, recent research has focussed on rapid-acting antidepressants, including the N-methyl-d-aspartate (NMDA) receptor (NMDAR) antagonist ketamine, which affects a range of signaling pathways in ways that are distinct from the mechanisms of typical antidepressants. Because ketamine and similar drugs hold the promise of dramatically improving treatment options for depressed patients, there has been considerable interest in developing new ways to understand how these compounds affect the brain. Here, we review the current understanding of how rapid-acting antidepressants function, including their effects on neuronal signaling pathways and neural circuits, and the research techniques being used to address these questions.
Collapse
|
50
|
Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Edden RA, Onofrj M, Ferretti A, Bonanni L. GABA content within medial prefrontal cortex predicts the variability of fronto-limbic effective connectivity. Brain Struct Funct 2017; 222:3217-3229. [PMID: 28386778 PMCID: PMC5630505 DOI: 10.1007/s00429-017-1399-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/05/2017] [Indexed: 12/13/2022]
Abstract
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in social behavior. The amygdala and mPFC are bidirectionally connected, functionally and anatomically, via the uncinate fasciculus. Recent evidence suggests that GABA-ergic neurotransmission within the mPFC could be central to the regulation of amygdala activity related to emotions and anxiety processing. However, the functional and neurochemical interactions within amygdala-mPFC circuits are unclear. In the current study, multimodal magnetic resonance imaging techniques were combined to investigate effective connectivity within the amygdala-mPFC network and its relationship with mPFC neurotransmission in 22 healthy subjects aged between 41 and 88 years. Effective connectivity in the amygdala-mPFC circuit was assessed on resting-state functional magnetic resonance imaging data using spectral dynamic causal modelling. State and trait anxiety were also assessed. The mPFC was shown to be the target of incoming outputs from the amygdalae and the source of exciting inputs to the limbic system. The amygdalae were reciprocally connected by excitatory projections. About half of the variance relating to the strength of top-down endogenous connection between right amygdala and mPFC was explained by mPFC GABA levels. State anxiety was correlated with the strength of the endogenous connections between right amygdala and mPFC. We suggest that mPFC GABA content predicts variability in the effective connectivity within the mPFC-amygdala circuit, providing new insights on emotional physiology and the underlying functional and neurochemical interactions.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
- Center of Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Dante Mantini
- Research Centre for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center of Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
- Center of Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|