1
|
Kumar S, Ratha KK, Jaiswal S, Rao MM, Acharya R. Exploring the potential of andrographis paniculata and its bioactive compounds in the management of liver diseases: A comprehensive food chemistry perspective. FOOD CHEMISTRY ADVANCES 2024; 4:100674. [DOI: 10.1016/j.focha.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Blagojević S, Andrić B, Jovankić J, Milutinović M, Nikodijević D, Arsenijević P, Cvetković D. MicroRNA expression as a diagnostic parameter in early endometrial cancer. Int J Gynecol Cancer 2023; 33:1394-1401. [PMID: 37541686 DOI: 10.1136/ijgc-2023-004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) have emerged as biomarkers that showed strong diagnostic potential in various diseases, including cancer. This study aimed to estimate the expression and diagnostic potential of miRNAs (miR-200a, miR-21, miR-210, miR-126, and miR-130a) in endometrial cancer samples. The DICER1 and AGO2 genes were also analysed. METHODS The expression of miRNAs, DICER1, and AGO2 was quantified using the quantitative real-time PCR method in 40 tissue samples with early-stage endometrial cancer and 16 normal controls. RESULTS All tested miRNAs showed significantly higher expression in endometrial cancer compared with the control group, while DICER1 was significantly downregulated. The expression levels of miR-200a, miR-21, and miR-210 were negatively correlated with DICER1 expression. Individually, miR-200a, miR-21, miR-210, and DICER1 showed the best diagnostic performance in distinguishing patients with endometrial cancer from normal controls, whereas a combination of all biomarkers resulted in an even higher area under the curve. CONCLUSIONS Our study showed that a panel of selected biomarkers (miR-200a, miR-21, miR-210, miR-126, miR-130a, DICER1, and AGO2) may be candidates for the detection of early-stage endometrial cancer.
Collapse
Affiliation(s)
| | | | - Jovana Jovankić
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | | | | | - Petar Arsenijević
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Danijela Cvetković
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| |
Collapse
|
3
|
Wu Y, Zhang X, Liu C, Li Z, Wen Y, Zheng R, Xu C, Tian J, Wei L, Wang J, Yan Q, Zheng X, Ma J. Epstein-Barr virus microRNA miR-BART2-5p accelerates nasopharyngeal carcinoma metastasis by suppressing RNase Ⅲ endonuclease DICER1. J Biol Chem 2023; 299:105082. [PMID: 37495108 PMCID: PMC10470218 DOI: 10.1016/j.jbc.2023.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
The development and progression of nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. NPC is usually asymptomatic until it spreads to other sites, and more than 70% of cases are classified as locally advanced disease at diagnosis. EBV-positive nasopharyngeal cancer tissues express only limited viral latent proteins, but express high levels of the EBV-encoded BamHI-A rightward transcript (BART) miRNA molecules. Here, we report that EBV-miRNA-BART2-5p (BART2-5p) promotes NPC cell invasion and metastasis in vivo and in vitro but has no effect on NPC cell proliferation and apoptosis. In addition, BART2-5p altered the mRNA and miRNA expression profiles of NPC cells. The development of human tumors has been reported to be associated with altered miRNAs expression, and overall miRNAs expression is reduced in many types of tumors. We found that BART2-5p downregulated the expression of several miRNAs that could exert oncogenic functions. Mechanistically, BART2-5p directly targets the RNase III endonuclease DICER1, inhibiting its function of cleaving double-stranded stem-loop RNA into short double-stranded RNA, which in turn causes altered expression of a series of key epithelial-mesenchymal transition molecules, and reverting DICER1 expression can rescue this phenotype. Furthermore, analysis from clinical samples showed a negative correlation between BART2-5p and DICER1 expression. According to our study, high expression of BART2-5p in tissues and plasma of patients with NPC is associated with poor prognosis. Our results suggest that, BART2-5p can accelerate NPC metastasis through modulating miRNA profiles which are mediated by DICER1, implying a novel role of EBV miRNAs in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Yangge Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Can Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Yuqing Wen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Chenxiao Xu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Junrui Tian
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Lingyu Wei
- Department of Pathology and Immunology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jia Wang
- Department of Pathology and Immunology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
4
|
Xia QL, He XM, Ma Y, Li QY, Du YZ, Wang J. 5-mRNA-based prognostic signature of survival in lung adenocarcinoma. World J Clin Oncol 2023; 14:27-39. [PMID: 36699627 PMCID: PMC9850667 DOI: 10.5306/wjco.v14.i1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common non-small-cell lung cancer, with a high incidence and a poor prognosis.
AIM To construct effective predictive models to evaluate the prognosis of LUAD patients.
METHODS In this study, we thoroughly mined LUAD genomic data from the Gene Expression Omnibus (GEO) (GSE43458, GSE32863, and GSE27262) and the Cancer Genome Atlas (TCGA) datasets, including 698 LUAD and 172 healthy (or adjacent normal) lung tissue samples. Univariate regression and LASSO regression analyses were used to screen differentially expressed genes (DEGs) related to patient prognosis, and multivariate Cox regression analysis was applied to establish the risk score equation and construct the survival prognosis model. Receiver operating characteristic curve and Kaplan-Meier survival analyses with clinically independent prognostic parameters were performed to verify the predictive power of the model and further establish a prognostic nomogram.
RESULTS A total of 380 DEGs were identified in LUAD tissues through GEO and TCGA datasets, and 5 DEGs (TCN1, CENPF, MAOB, CRTAC1 and PLEK2) were screened out by multivariate Cox regression analysis, indicating that the prognostic risk model could be used as an independent prognostic factor (Hazard ratio = 1.520, P < 0.001). Internal and external validation of the model confirmed that the prediction model had good sensitivity and specificity (Area under the curve = 0.754, 0.737). Combining genetic models and clinical prognostic factors, nomograms can also predict overall survival more effectively.
CONCLUSION A 5-mRNA-based model was constructed to predict the prognosis of lung adenocarcinoma, which may provide clinicians with reliable prognostic assessment tools and help clinical treatment decisions.
Collapse
Affiliation(s)
- Qian-Lin Xia
- Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao-Meng He
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yan Ma
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qiu-Yue Li
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yu-Zhen Du
- Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
5
|
Kozłowski HM, Sobocińska J, Jędrzejewski T, Maciejewski B, Dzialuk A, Wrotek S. Fever-range whole body hyperthermia leads to changes in immune-related genes and miRNA machinery in Wistar rats. Int J Hyperthermia 2023; 40:2216899. [PMID: 37279921 DOI: 10.1080/02656736.2023.2216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE Fever is defined as a rise in body temperature upon disease. Fever-range hyperthermia (FRH) is a simplified model of fever and a well-established medical procedure. Despite its beneficial effects, the molecular changes induced by FRH remain poorly characterized. The aim of this study was to investigate the influence of FRH on regulatory molecules such as cytokines and miRNAs involved in inflammatory processes. METHODS We developed a novel, fast rat model of infrared-induced FRH. The body temperature of animals was monitored using biotelemetry. FRH was induced by the infrared lamp and heating pad. White blood cell counts were monitored using Auto Hematology Analyzer. In peripheral blood mononuclear cells, spleen and liver expression of immune-related genes (IL-10, MIF and G-CSF, IFN-γ) and miRNA machinery (DICER1, TARBP2) was analyzed with RT-qPCR. Furthermore, RT-qPCR was used to explore miRNA-155 levels in the plasma of rats. RESULTS We observed a decrease in the total number of leukocytes due to lower number of lymphocytes, and an increase in the number of granulocytes. Furthermore, we observed elevated expressions of DICER1, TARBP2 and granulocyte colony-stimulating factor (G-CSF) in the spleen, liver and PBMCs immediately following FRH. FRH treatment also had anti-inflammatory effects, evidenced by the downregulation of pro-inflammatory macrophage migration inhibitor factor (MIF) and miR-155, and the increased expression of anti-inflammatory IL-10. CONCLUSION FRH affects the expression of molecules involved in inflammatory processes leading to alleviated inflammation. We suppose these effects may be miRNAs-dependent and FRH can be involved in therapies where anti-inflammatory action is needed.
Collapse
Affiliation(s)
- Henryk Mikołaj Kozłowski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Artur Dzialuk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
6
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
7
|
Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022; 11:cells11182791. [PMID: 36139366 PMCID: PMC9497241 DOI: 10.3390/cells11182791] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiho Rhim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Woosun Baek
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2204
| |
Collapse
|
8
|
Waninger JJ, Beyett TS, Gadkari VV, Siebenaler RF, Kenum C, Shankar S, Ruotolo BT, Chinnaiyan AM, Tesmer JJ. Biochemical characterization of the interaction between KRAS and Argonaute 2. Biochem Biophys Rep 2022; 29:101191. [PMID: 34988297 PMCID: PMC8695255 DOI: 10.1016/j.bbrep.2021.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
Oncogenic mutations in KRAS result in a constitutively active, GTP-bound form that in turn activates many proliferative pathways. However, because of its compact and simple architecture, directly targeting KRAS with small molecule drugs has been challenging. Another approach is to identify targetable proteins that interact with KRAS. Argonaute 2 (AGO2) was recently identified as a protein that facilitates RAS-driven oncogenesis. Whereas previous studies described the in vivo effect of AGO2 on cancer progression in cells harboring mutated KRAS, here we sought to examine their direct interaction using purified proteins. We show that full length AGO2 co-immunoprecipitates with KRAS using purified components, however, a complex between FL AGO2 and KRAS could not be isolated. We also generated a smaller N-terminal fragment of AGO2 (NtAGO2) which is believed to represent the primary binding site of KRAS. A complex with NtAGO2 could be detected via ion-mobility mass spectrometry and size exclusion chromatography. However, the data suggest that the interaction of KRAS with purified AGO2 (NtAGO2 or FL AGO2) is weak and likely requires additional cellular components or proteo-forms of AGO2 that are not readily available in our purified assay systems. Future studies are needed to determine what conformation or modifications of AGO2 are necessary to enrich KRAS association and regulate its activities.
Collapse
Affiliation(s)
- Jessica J. Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tyler S. Beyett
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ronald F. Siebenaler
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - John J.G. Tesmer
- Departments of Biological Sciences and Medicinal Chemistry & Molecular Pharmacology, Purdue University, Indiana, USA
| |
Collapse
|
9
|
Circulating microRNA-197-3p as a potential biomarker for asbestos exposure. Sci Rep 2021; 11:23955. [PMID: 34907223 PMCID: PMC8671556 DOI: 10.1038/s41598-021-03189-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Asbestos is considered the main cause of diseases in workers exposed to this mineral in the workplace as well as an environmental pollutant. The association between asbestos and the onset of different diseases has been reported, but asbestos exposure specific biomarkers are not known. MicroRNAs (miRNAs) are small, single-strand, non-coding RNAs, with potential value as diagnostic, prognostic, and predictive markers in liquid biopsies. Sera collected from workers ex-exposed to asbestos (WEA) fibers were compared with sera from healthy subjects (HS) of similar age, as liquid biopsies. The expression of the circulating miRNA 197-3p was investigated employing two different highly analytical PCR methods, i.e. RT-qPCR and ddPCR. MiR-197-3p levels were tested in sera from WEA compared to HS. MiR-197-3p tested dysregulated in sera from WEA (n = 75) compared to HS (n = 62). Indeed, miR-197-3p was found to be 2.6 times down-regulated in WEA vs. HS (p = 0.0001***). In addition, an inverse correlation was detected between miR-197-3p expression level and cumulative asbestos exposure, being this miRNA down-regulated 2.1 times in WEA, with high cumulative asbestos exposure, compared to WEA with low exposure (p = 0.0303*). Circulating miR-197-3p, found to be down regulated in sera from WEA, is proposed as a new potential biomarker of asbestos exposure.
Collapse
|
10
|
Teixeira AL, Patrão AS, Dias F, Silva C, Vieira I, Silva JF, Ferreira M, Morais A, Maurício J, Medeiros R. AGO2 expression levels and related genetic polymorphisms: influence in renal cell progression and aggressive phenotypes. Pharmacogenomics 2021; 22:1069-1079. [PMID: 34672687 DOI: 10.2217/pgs-2021-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Renal cell carcinoma (RCC) is the most lethal urological cancer and up to 40% of patients submitted to surgery will relapse. Thus, the study aim was to analyze the associations of AGO2 SNPs with RCC patients' prognosis, and evaluate their effect on AGO2 mRNA levels. Materials & methods: The AGO2 rs4961280, rs3928672 and rs11996715 polymorphisms and the relative quantification of AGO2 mRNA levels were analyzed by real-time PCR. Results: We observed that AGO2 rs4961280 AC + AA genotypes carriers presented a higher cancer progression risk (odds ratio= 3.13, p < 0.001), a reduced progression-free survival (log rank test, p = 0.003) and an increased risk of an early relapse (hazard ratio= 2.26, p = 0.008). In fact, these patients also presented higher circulating levels of AGO2 mRNA (p = 0.043), with the high levels being associated with more aggressive tumors. Conclusion: The AGO2 rs4961280 AA/AC genotypes are unfavorable RCC prognostic biomarkers, with the AGO2 levels being a useful RCC aggressive phenotype biomarker.
Collapse
Affiliation(s)
- Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC)
| | - Ana Sofia Patrão
- Medical Oncology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISECI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC)
| | - Carlos Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISECI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC)
| | - Isabel Vieira
- Urology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - José Fernando Silva
- Urology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Marta Ferreira
- Medical Oncology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - António Morais
- Urology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Joaquina Maurício
- Medical Oncology Department of The Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISECI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto CCC).,ICBAS, Abel Salazar Institute for The Biomedical Sciences, University of Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NR Norte), Porto, Portugal.,Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
11
|
Huang C, Liang J, Lin S, Wang D, Xie Q, Lin Z, Yao T. N 6-Methyladenosine Associated Silencing of miR-193b Promotes Cervical Cancer Aggressiveness by Targeting CCND1. Front Oncol 2021; 11:666597. [PMID: 34178650 PMCID: PMC8222573 DOI: 10.3389/fonc.2021.666597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Cervical cancer is a frequently encountered gynecological malignancy as a major contributor to cancer-related deaths in women. This study focuses on how miR-193b promotes cervical cancer aggressiveness as well as the role of m6A in miR-193b silencing. Methods Cervical cancer samples and the matching adjacent normal cervical tissues were used to determine the significance of miR-193b in cervical cancer. The CCK-8 assay, cell cycle analysis, qRT-PCR, Western blot assay, IHC, RIP, and xenograft models were utilized to explore the impact of miR-193b in cervical cancer and how m6A regulates miR-193b expression. Luciferase reporter assays, qRT-PCR, and Western blotting were enlisted to study the interaction between miR-193b and CCND1. Results Our study suggested that lower miR-193b expressions were strongly linked to more advanced cervical cancer stages and the presence of deeper stromal invasion. miR-193b functions as a tumor suppressor that is regulated by m6A methylation in cervical tumors. METTL3 modulates miR-193b mature process in an m6A-dependent manner. Reintroduction of miR-193b profoundly inhibits tumorigenesis of cervical cancer cells both in vivo and in vitro through CCND1 targeting. Conclusions m6A associated downregulation of miR-193b promotes cervical cancer aggressiveness by targeting CCND1.
Collapse
Affiliation(s)
- Chunxian Huang
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinxiao Liang
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaodan Lin
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongyan Wang
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingsheng Xie
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
13
|
Liu Y, Zhang Y, Zhang J, Ma J, Xu X, Wang Y, Zhou Z, Jiang D, Shen S, Ding Y, Zhou Y, Zhuang R. Silencing of HuR Inhibits Osteosarcoma Cell Epithelial-Mesenchymal Transition via AGO2 in Association With Long Non-Coding RNA XIST. Front Oncol 2021; 11:601982. [PMID: 33816232 PMCID: PMC8017292 DOI: 10.3389/fonc.2021.601982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background Osteosarcoma (OS) is a highly malignant and aggressive bone tumor. This study was performed to explore the mechanisms of HuR (human antigen R) in the progression of OS. Methods HuR expression levels in OS tissues and cells were detected by immunohistochemistry and western blotting. HuR siRNA was transfected into SJSA-1 OS cells to downregulate HuR expression, and then cell proliferation, migration, and epithelial-mesenchymal transition (EMT) were evaluated. RNA immunoprecipitation was performed to determine the association of the long non-coding RNA (lncRNA) XIST and argonaute RISC catalytic component (AGO) 2 with HuR. Fluorescence in situ hybridization analysis was performed to detect the expression of lncRNA XIST. Western blotting and immunofluorescence assays were performed to observe AGO2 expression after HuR or/and lncRNA XIST knockdown. Results Knockdown of HuR repressed OS cell migration and EMT. AGO2 was identified as a target of HuR and silencing of HuR decreased AGO2 expression. The lncRNA XIST was associated with HuR-mediated AGO2 suppression. Moreover, knockdown of AGO2 significantly inhibited cell proliferation, migration, and EMT in OS. Conclusion Our findings indicate that HuR knockdown suppresses OS cell EMT by regulating lncRNA XIST/AGO2 signaling.
Collapse
Affiliation(s)
- Yongming Liu
- Orthopedic Department of Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Jinxue Zhang
- Orthopedic Department of Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jingchang Ma
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xuexue Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yuling Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Ziqing Zhou
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongxu Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shen Shen
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yong Zhou
- Orthopedic Department of Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.,Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
MicroRNA-Independent Modulation of DICER1 Expression by hAgo2. Mol Cell Biol 2020; 40:MCB.00221-20. [PMID: 32778571 DOI: 10.1128/mcb.00221-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Many proteins, including DICER1 and hAgo2, are involved in the biogenesis of microRNAs (miRNAs). Whether hAgo2 regulates DICER1 expression is unknown. Exogenously overexpressed hAgo2 suppressed DICER1 expression at the levels of both protein and mRNA, and the reduction in hAgo2 expression enhanced DICER1 expression. Precursor miRNA processing mediated by DICER1 was also modulated by hAgo2. However, hAgo2 protein did not suppress DICER1 promoter activity. Therefore, hAgo2 protein probably regulates DICER1 expression at the posttranscriptional level. Indeed, hAgo2 protein inhibited the reporter assay of the DICER1 mRNA 3' untranslated region (3'-UTR). Previous reports have demonstrated that miRNAs (e.g., let-7 and miR-103/107) inhibited DICER1 expression posttranscriptionally. However, hAgo2 still suppressed DICER1 expression in the cells depleted of these miRNAs. Moreover, the reporter activities of the DICER1 mRNA 3'-UTR without these miRNA binding sites were still suppressed by hAgo2. Therefore, in addition to an miRNA-dependent pathway, hAgo2 can also modulate DICER1 expression through an miRNA-independent mechanism. Downregulation of DICER1 expression was further proven to be dependent on both hAgo2 and AUF1 proteins. Interactions of hAgo2 and AUF1 proteins were demonstrated by the coimmunoprecipitation assay. As expected, hAgo2 could not suppress the DICER1 mRNA 3'-UTR reporter with a mutation in the potential AUF1-binding site. Thus, downregulation of DICER1 expression through the 3'-UTR requires both hAgo2 and AUF1.
Collapse
|
15
|
Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, Schönhuth A, Kraneveld AD, Garssen J, Tonda A. Machine Learning-Based Ensemble Recursive Feature Selection of Circulating miRNAs for Cancer Tumor Classification. Cancers (Basel) 2020; 12:cancers12071785. [PMID: 32635415 PMCID: PMC7407482 DOI: 10.3390/cancers12071785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating microRNAs (miRNA) are small noncoding RNA molecules that can be detected in bodily fluids without the need for major invasive procedures on patients. miRNAs have shown great promise as biomarkers for tumors to both assess their presence and to predict their type and subtype. Recently, thanks to the availability of miRNAs datasets, machine learning techniques have been successfully applied to tumor classification. The results, however, are difficult to assess and interpret by medical experts because the algorithms exploit information from thousands of miRNAs. In this work, we propose a novel technique that aims at reducing the necessary information to the smallest possible set of circulating miRNAs. The dimensionality reduction achieved reflects a very important first step in a potential, clinically actionable, circulating miRNA-based precision medicine pipeline. While it is currently under discussion whether this first step can be taken, we demonstrate here that it is possible to perform classification tasks by exploiting a recursive feature elimination procedure that integrates a heterogeneous ensemble of high-quality, state-of-the-art classifiers on circulating miRNAs. Heterogeneous ensembles can compensate inherent biases of classifiers by using different classification algorithms. Selecting features then further eliminates biases emerging from using data from different studies or batches, yielding more robust and reliable outcomes. The proposed approach is first tested on a tumor classification problem in order to separate 10 different types of cancer, with samples collected over 10 different clinical trials, and later is assessed on a cancer subtype classification task, with the aim to distinguish triple negative breast cancer from other subtypes of breast cancer. Overall, the presented methodology proves to be effective and compares favorably to other state-of-the-art feature selection methods.
Collapse
Affiliation(s)
- Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
- Correspondence:
| | - Lucero Mendoza-Maldonado
- Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Salvador Quevedo y Zubieta 750, Independencia Oriente, Guadalajara C.P. 44340, Jalisco, Mexico;
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y Diseno de farmacos, Seccion de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Alexander Schönhuth
- Life Sciences and Health, Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands;
- Genome Data Science, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
- Global Centre of Excellence Immunology Danone Nutricia Research, Uppsalaan 12, 3584 CT Utrecht, The Netherlands
| | - Alberto Tonda
- UMR 518 MIA-Paris, INRAE, Université Paris-Saclay, 75013 Paris, France;
| |
Collapse
|
16
|
Lee Y, Ahn EH, Ryu CS, Kim JO, An HJ, Cho SH, Kim JH, Kim YR, Lee WS, Kim NK. Association between microRNA machinery gene polymorphisms and recurrent implantation failure. Exp Ther Med 2020; 19:3113-3123. [PMID: 32226488 PMCID: PMC7092926 DOI: 10.3892/etm.2020.8556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the potential association of five miRNA machinery gene polymorphisms (DICER1 rs3742330A>G, DROSHA rs10719T>C, RAN rs14035C>T, XPO5 rs11077A>C and DGCR8 rs417309G>A) with recurrent implantation failure (RIF), a clinical condition in which good-quality embryos repeatedly fail to implant following two or more in vitro fertilization cycles, and its associated risk factors in Korean women. Therefore, the present study performed genotype analysis and assessed the frequency of these miRNA gene polymorphisms in patients diagnosed with RIF (n=119) and randomly selected controls (n=210) with at least one live birth and no history of pregnancy loss. The DROSHA rs10719T>C and RAN rs14035C>T polymorphisms were identified to be significantly associated with decreased prevalence of RIF. Additionally, the DROSHA rs10719 TC and the RAN rs14035 CT genotypes were present at significantly lower frequencies in the RIF group than in the control group (adjusted odds ratio=0.550; 95% CI, 0.339-0.893; P=0.016; and adjusted odds ratio=0.590; 95% CI, 0.363-0.958; P=0.033, respectively). Furthermore, the combined RAN rs14035 CT+TT genotype was observed to be associated with decreased RIF prevalence (adjusted odds ratio=0.616; 95% CI, 0.386-0.982; P=0.042). Genotype combination analysis for the various miRNA polymorphisms revealed that the DROSHA TC genotype exhibited a highly significant negative association with RIF prevalence when combined with the RAN CT genotype (adjusted odds ratio=0.314; 95% CI, 0.147-0.673; P=0.003; false discovery rate-adjusted P=0.023). The present study revealed an association between the DROSHA rs10719 and RAN rs14035 3'UTR polymorphisms and decreased risk of RIF in Korean women, which suggests that these gene polymorphisms could represent potential markers for predicting RIF risk.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea.,CHA Fertility Center, Seoul Station, Seoul 04637, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
17
|
Lin XJ, Liu H, Li P, Wang HF, Yang AK, Di JM, Jiang QW, Yang Y, Huang JR, Yuan ML, Xing ZH, Wei MN, Li Y, Shi Z, Ye J. miR-936 Suppresses Cell Proliferation, Invasion, and Drug Resistance of Laryngeal Squamous Cell Carcinoma and Targets GPR78. Front Oncol 2020; 10:60. [PMID: 32117723 PMCID: PMC7011958 DOI: 10.3389/fonc.2020.00060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) play important roles in tumor progression. miR-936 has been reported to suppress cell invasion and proliferation of glioma and non-small cell lung cancer. Nevertheless, the function of miR-936 in laryngeal squamous cell carcinoma (LSCC) remains undiscovered. Hence, our study was to investigate the role of miR-936 in LSCC. In our present research, we have testified that miR-936 was substantially downregulated in LSCC tissues compared with adjacent normal tissues. Furthermore, miR-936 could inhibit proliferation, migration and invasion, and improve the sensitivity to doxorubicin and cisplatin of LSCC cells. Additionally, luciferase reporter assays were performed to confirm that GPR78 was a novel target of miR-936, and the protein expression of GPR78 was obviously inhibited by miR-936 in LSCC cells. In summary, our study indicates that the miR-936/GPR78 axis could be both a diagnostic marker and a therapeutic target for LSCC.
Collapse
Affiliation(s)
- Xi-Jun Lin
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Feng Wang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - An-Kui Yang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin-Ming Di
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ling Yuan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Hao Xing
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jin Ye
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
19
|
Casey MC, Prakash A, Holian E, McGuire A, Kalinina O, Shalaby A, Curran C, Webber M, Callagy G, Bourke E, Kerin MJ, Brown JA. Quantifying Argonaute 2 (Ago2) expression to stratify breast cancer. BMC Cancer 2019; 19:712. [PMID: 31324173 PMCID: PMC6642579 DOI: 10.1186/s12885-019-5884-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Argonaute-2 (Ago2) is an essential component of microRNA biogenesis implicated in tumourigenesis. However Ago2 expression and localisation in breast cancer remains undetermined. The aim was to define Ago2 expression (mRNA and protein) and localisation in breast cancer, and investigate associations with clinicopathological details. METHODS Ago2 protein was stained in breast cancer cell lines and tissue microarrays (TMAs), with intensity and localization assessed. Staining intensity was correlated with clinicopathological details. Using independent databases, Ago2 mRNA expression and gene alterations in breast cancer were investigated. RESULTS In the breast cancer TMAs, 4 distinct staining intensities were observed (Negative, Weak, Moderate, Strong), with 64.2% of samples stained weak or negatively for Ago2 protein. An association was found between strong Ago2 staining and, the Her2 positive or basal subtypes, and between Ago2 intensity and receptor status (Estrogen or Progesterone). In tumours Ago2 mRNA expression correlated with reduced relapse free survival. Conversely, Ago2 mRNA was expressed significantly lower in SK-BR-3 (HER2 positive) and BT-20 (Basal/Triple negative) cell lines. Interestingly, high levels of Ago2 gene amplification (10-27%) were observed in breast cancer across multiple patient datasets. Importantly, knowledge of Ago2 expression improves predictions of breast cancer subtype by 20%, ER status by 15.7% and PR status by 17.5%. CONCLUSIONS Quantification of Ago2 improves the stratification of breast cancer and suggests a differential role for Ago2 in breast cancer subtypes, based on levels and cellular localisation. Further investigation of the mechanisms affecting Ago2 dysregulation will reveal insights into the molecular differences underpinning breast cancer subtypes.
Collapse
Affiliation(s)
- M C Casey
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - A Prakash
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - E Holian
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - A McGuire
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - O Kalinina
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - A Shalaby
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - C Curran
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M Webber
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - G Callagy
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - E Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M J Kerin
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - J A Brown
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
Bertucci A, Pierron F, Ye T, Gonzalez P, Couture P, Baudrimont M. Identification and expression of microRNAs in european eels Anguilla anguilla from two natural sites with different pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:274-283. [PMID: 30999204 DOI: 10.1016/j.envpol.2019.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA that control multiple biological processes through negative post-transcriptional regulation of gene expression. Recently a role of miRNAs in the response of aquatic organisms to environmental toxicants emerged. Toxicant-induced changes in miRNA expression might then represent novel biomarkers to evaluate the health status of these organisms. In this study, we aimed to identify the miRNA repertoire in the liver of the European eel Anguilla anguilla and to compare their differential expression between a polluted site located in the Gironde Estuary and a pristine site in Arcachon Bay (France). A total of 299 mature miRNAs were identified. In polluted water, 19 miRNAs were up-regulated and 22 were down-regulated. We predicted that these differentially expressed miRNAs could target 490 genes that were involved in ribosome biogenesis, response to hormones, response to chemical and chromatin modification. Moreover, we observed only few examples (29) of negative correlation between the expression levels of miRNAs and their targets suggesting that, in the system studied, miRNAs might not only regulate gene expression directly by degrading mRNA but also by inhibiting protein translation or by regulating other epigenetic processes. This study is the first example of in situ investigation of the role of miRNAs in the response of a fish species to water quality. Our findings provide new insights into the involvement of epigenetic mechanisms in the response of animals chronically exposed to pollution and pave the way for the utilization of miRNAs in aquatic ecotoxicology.
Collapse
Affiliation(s)
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, 33615, Pessac, France
| | - Tao Ye
- IGBMC - CNRS UMR 7104 - Inserm U 964, 1 BP 10142, 67404, Illkirch Cedex, France
| | | | - Patrice Couture
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue De La Couronne, Québec, QC, G1K 9A9, Canada
| | | |
Collapse
|
21
|
Gambichler T, Salveridou K, Schmitz L, Käfferlein H, Brüning T, Stockfleth E, Sand M, Lang K. Low Drosha protein expression in cutaneous T‐cell lymphoma is associated with worse disease outcome. J Eur Acad Dermatol Venereol 2019; 33:1695-1699. [DOI: 10.1111/jdv.15652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Affiliation(s)
- T. Gambichler
- Department of Dermatology Ruhr‐University Bochum Bochum Germany
| | - K. Salveridou
- Department of Dermatology Ruhr‐University Bochum Bochum Germany
| | - L. Schmitz
- Department of Dermatology Ruhr‐University Bochum Bochum Germany
| | - H.U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances Ruhr‐University Bochum (IPA) Bochum Germany
| | - T. Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances Ruhr‐University Bochum (IPA) Bochum Germany
| | - E. Stockfleth
- Department of Dermatology Ruhr‐University Bochum Bochum Germany
| | - M. Sand
- Department of Dermatology Ruhr‐University Bochum Bochum Germany
| | - K. Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurances Ruhr‐University Bochum (IPA) Bochum Germany
| |
Collapse
|
22
|
Gungormez C, Gumushan Aktas H, Dilsiz N, Borazan E. Novel miRNAs as potential biomarkers in stage II colon cancer: microarray analysis. Mol Biol Rep 2019; 46:4175-4183. [PMID: 31123908 DOI: 10.1007/s11033-019-04868-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to determine oncogenic and tumor-suppressing miRNA profiles associated with the development and progression of cancer using tumor tissues from patients with colorectal cancer (stage II) that did not show nodal spread or advanced metastasis to identify potential biomarkers. A microarray system (GeneChip miRNA 4.0 Array chip, Affymetrix) was used to determine the microRNA profiles of five patients with stage II colon cancer based on normal and colon tumor tissues. Of 32 identified miRNAs, an increase in three microRNAs (hsa-miR-4745-5p, hsa-miR-6126, and hsa-miR-1469) was observed in tumor tissues relative to that in control tissues. Additionally, this study demonstrated for the first time that the expression of the 8 miRNAs (hsa-miR-378i, hsa-miR-378a-3p, hsa-miR-378c, hsa-miR-378d, hsa-miR-378e, hsa-miR-378f, hsa-miR-378a-5p, and hsa-miR-378g) from miR-378 members among the differentially expressed miRNAs is reduced. The target genes of these downregulated miRNAs were determined by using DIANA miRPath v3. The effect of identified genes on colon cancer stage II was determined the biological process and biological pathway using Funrich Gene Enrichment. It was revealed that these miRNAs were affected the signaling pathways which control cell proliferation, cell-cell interaction, and apoptosis in stage II colon cancer. In patients with early stage II colon cancer, miR-378 can be used as a biomarker of colorectal cancer. Thus, miR-378 can facilitate treatment with early diagnosis.
Collapse
Affiliation(s)
- Cigdem Gungormez
- Central Research Laboratory, Harran University, 63100, Şanlıurfa, Turkey. .,Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey.
| | - Hatice Gumushan Aktas
- Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Nihat Dilsiz
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Medeniyet University, Istanbul, Turkey
| | - Ersin Borazan
- General Surgery Department, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
23
|
Vahabi M, Pulito C, Sacconi A, Donzelli S, D'Andrea M, Manciocco V, Pellini R, Paci P, Sanguineti G, Strigari L, Spriano G, Muti P, Pandolfi PP, Strano S, Safarian S, Ganci F, Blandino G. miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:141. [PMID: 30925916 PMCID: PMC6440033 DOI: 10.1186/s13046-019-1119-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer worldwide. They are typically characterized by a high incidence of local recurrence, which is the most common cause of death in HNSCC patients. TP53 is the most frequently mutated gene in HNSCC and patients carrying TP53 mutations are associated with a higher probability to develop local recurrence. MiRNAs, which are among the mediators of the oncogenic activity of mt-p53 protein, emerge as an appealing tool for screening, diagnosis and prognosis of cancer. We previously identified a signature of 12 miRNAs whose aberrant expression associated with TP53 mutations and was prognostic for HNSCC. Among them miR-96-5p emerges as an oncogenic miRNAs with prognostic significance in HNSCC. METHODS To evaluate the oncogenic role of miR-96-5p in a tumoral context, we performed colony formation, cell migration and cell viability assays in two HNSCC cell lines transfected for miR-96-5p mimic or inhibitor and treated with or without radio/chemo-therapy. In addition, to identify genes positively and negatively correlated to miR-96-5p expression in HNSCC, we analyzed the correlation between gene expression and miR-96-5p level in the subset of TCGA HNSCC tumors carrying missense TP53 mutations by Spearman and Pearson correlation. To finally identify targets of miR-96-5p, we used in silico analysis and the luciferase reporter assay to confirm PTEN as direct target. RESULTS Our data showed that overexpression of miR-96-5p led to increased cell migration and radio-resistance, chemotherapy resistance in HNSCC cells. In agreement with these results, among the most statistically significant pathways in which miR-96-5p is involved, are focal Adhesion, extracellular matrix organization and PI3K-Akt-mTOR-signaling pathway. As a direct target of miR-96-5p, we identified PTEN, the main negative regulator of PI3K-Akt signalling pathway activation. CONCLUSIONS These results highlight a new mechanism of chemo/radio-resistance insurgence in HNSCC cells and support the possibility that miR-96-5p expression could be used as a novel promising biomarker to predict radiotherapy response and local recurrence development in HNSCC patients. In addition, the identification of pathways in which miR-96-5p is involved could contribute to develop new therapeutic strategies to overcome radio-resistance.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy.,Cell and Molecular Biology Department, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Claudio Pulito
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marco D'Andrea
- Unit of Radiotherapy, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Manciocco
- Unit of Otolaryngology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Unit of Otolaryngology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council, Rome, Italy.,SysBio Centre for Systems Biology, Rome, Italy
| | - Giuseppe Sanguineti
- Unit of Radiotherapy, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Canada
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Strano
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Shahrokh Safarian
- Cell and Molecular Biology Department, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran.
| | - Federica Ganci
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS-Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
24
|
Zheng J, Wang L, Cheng Z, Pei Z, Zhang Z, Li Z, Zhang X, Yan D, Xia Q, Feng Y, Song Y, Chen W, Zhang X, Xu J, Wang J. Molecular Changes of Lung Malignancy in HIV Infection. Sci Rep 2018; 8:13128. [PMID: 30177858 PMCID: PMC6120915 DOI: 10.1038/s41598-018-31572-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/07/2018] [Indexed: 01/02/2023] Open
Abstract
Malignancy of the lung is a major source of morbidity and mortality in persons with human immunodeficiency virus infection; as the most prevalent non-acquired immunodeficiency syndrome-defining malignancy, it represents an important and growing problem confronting HIV-infected patients. To evaluate the molecular changes of lung malignancy in HIV infection, we analyzed differential gene expression profiles and screened for early detection biomarkers of HIV-associated lung cancer using Affymetrix arrays and IPA analysis. A total of 59 patients were diagnosed with HIV-associated lung cancer from Jan 2010 to May 2018. The primary outcome was a significant difference in survival outcome between stages III-IV (10.46 ± 1.87 months) and I-II (17.66 ± 2.88 months). We identified 758 differentially expressed genes in HIV-associated lung cancer. The expression levels of SIX1 and TFAP2A are specifically increased in HIV-associated lung cancer and are associated with poorly differentiated tumor tissue. We also found decreased ADH1B, INMT and SYNPO2 mRNA levels in HIV lung cancer. A comprehensive network and pathway analysis of the dysregulated genes revealed that these genes were associated with four network functions and six canonical pathways relevant to the development of HIV-associated lung cancer. The molecular changes in lung malignancy may help screen the growing population of HIV patients who have or will develop this malignancy.
Collapse
Affiliation(s)
- Jianghua Zheng
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China.,Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Lin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Zenghui Cheng
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China.,Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zenglin Pei
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Zhiyong Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Zehuan Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China.,Department of General Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China
| | - Xuan Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Dong Yan
- Department of Medical Oncology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Qianlin Xia
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Yanzheng Song
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, P.R. China.
| |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, involved in the silencing of messenger RNA (mRNA) translation. The importance of miRNA signatures in disease screening, prognosis, and progression of different tumor types and subtypes is increasing. miRNA expression levels change depending on numerous factors. In this review, we are describing the circumstances under which miRNA levels can change, these are named 'levels' of heterogeneity of miRNAs. miRNAs can have oncogenic, tumor suppressive, or both roles depending on tumor type and target mRNA whose translation they silence. The expression levels of a single miRNA may vary across different cancer types and subtypes, indicating that a miRNA signature may be tissue specific. miRNA levels of expression also vary during disease formation and propagation, indicating the presence of a time profile for their expression. The complexity of the miRNA-mRNA interference network mirrors different genetic and epigenetic changes that influence miRNA and mRNA availability to each other, and hence, their binding ability. The potential role of miRNAs as biomarkers is two-fold; first, for monitoring of the phases of cancer pathogenesis, and second, to characterize the particular type/subtype of cancer. It is important that a particular miRNA should be characterized by examining as many types and subtypes of cancers as are available, as well as being extracted from different types of samples, in order to obtain a complete picture of its behavior and importance in the disease pathology.
Collapse
Affiliation(s)
- Nina Petrovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia. .,Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia.
| | - Sercan Ergün
- Ulubey Vocational Higher School, Ordu University, 52850, Ordu, Turkey
| | - Esma R Isenovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia.,Faculty of Stomatology, Pancevo, University Business Academy, Novi Sad, Serbia
| |
Collapse
|
26
|
Patrão AS, Dias F, Teixeira AL, Maurício J, Medeiros R. XPO5 genetic polymorphisms in cancer risk and prognosis. Pharmacogenomics 2018; 19:799-808. [DOI: 10.2217/pgs-2018-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
miRNAs are small noncoding RNA molecules that have a very important role in gene expression regulation and, therefore, in cell homeostasis. SNPs in certain miRNA-related genes have been shown to influence cancer risk and prognosis. miRNA cellular processing is complex and involves multiple proteins. XPO5 is a key factor in this process as it is responsible for the nuclear export of the precursor pre-miRNA to the cytoplasm, where it will be further processed to its final miRNA conformation in order to be loaded to RNA inducing silencing complex to exert its regulatory effect. SNPs in miRNA machinery related genes have previously been shown to influence carcinogenesis, but the role of XPO5 SNPs in its expression and function is not yet fully understood. In our review, we elaborate comprehensively on the role of XPO5 and how polymorphisms have been shown to influence cancer risk and prognosis to date.
Collapse
Affiliation(s)
- Ana Sofia Patrão
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Porto, Portugal
| | - Joaquina Maurício
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
27
|
Jeong W, Bae H, Lim W, Song G. Dicer1, AGO3, and AGO4 microRNA machinery genes are differentially expressed in developing female reproductive organs and overexpressed in cancerous ovaries of chickens. J Anim Sci 2018; 95:4857-4868. [PMID: 29293730 DOI: 10.2527/jas2017.1846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miRNA)-mediated gene silencing is a key mechanism regulating numerous biological processes such as development of organs and tumorigenesis. The expression of miRNA machinery genes linked to miRNA biogenesis and processing is finely regulated. Despite accumulating evidence for chicken miRNA in the female reproduction system, precise regulatory mechanisms are largely unknown. Therefore, the objective of this study was to determine changes in expression levels of miRNA machinery genes in developmental stages of the oviduct and ovarian carcinogenesis of laying hens. In the present study, differential expression of miRNA machinery genes during ovarian carcinogenesis was determined using cancerous and normal ovaries collected from normal laying hens and hens with cancer. Our results showed that 3 miRNA machinery genes (, , and ) were differentially expressed as laying hens' reproductive organs developed. These genes were simultaneously upregulated in cancerous ovaries compared with those in normal ovaries. Their transcripts were abundantly localized in glandular epithelial cells of cancerous ovaries. Our results indicate that , , and play critical roles in the development of reproductive organs and ovarian carcinogenesis in laying hens, suggesting that simultaneous overexpression of these genes might serve as a prognostic factor for ovarian cancer.
Collapse
|
28
|
Sherman Horev H, Rabinowitz KM, Elad H, Barkan R, Ben-Shachar S, Pasmanik Chor M, Dotan I. Increase in Processing Factors Is Involved in Skewed MicroRNA Expression in Patients with Ulcerative Colitis Who Develop Small Intestine Inflammation after Pouch Surgery. Inflamm Bowel Dis 2018; 24:1045-1054. [PMID: 29688474 DOI: 10.1093/ibd/izy034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND A large-scale increase in microRNA (miRNA) expression was observed in patients with ulcerative colitis who underwent pouch surgery and developed inflammation of the pouch (pouchitis). In this study, we assessed miRNA expression in these patients and investigated how regulation of its expression changes in the setting of pouchitis. METHODS Autologous samples that included mucosal biopsies, peripheral blood cells, and plasma were collected from the patients. Candidate primary and mature miRNA expressions were analyzed by quantitative polymerase chain reaction. A human intestinal epithelial cell line was used to test DICER activity, and the expression of key miRNA processing factors was analyzed by Western blot. miRNA-424 and its potential target serotonin reuptake transporter (SERT) expressions were examined by quantitative reverse transcription polymerase chain reaction and Western blot in human pouch tissues and in a human intestinal epithelial cell line stimulated with inflammatory cytokines TNF-α, IL-1β, and INF-γ. RESULTS Candidate miRNA expression and protein expression of DICER-1, EXPORTIN-5, and AGO-2 were increased in association with pouch inflammation. Similarly, inflammatory cytokines increased protein expression of DICER-1, EXPORTIN-5, and AGO-2 and DICER activity in the epithelial cell line. The miRNA-424 expression increased whereas SERT expression decreased in the patients' mucosa. Similarly, incubation of the epithelial cell line with inflammatory cytokines resulted in increased miRNA-424 and decreased SERT mRNA and protein expression. CONCLUSIONS The miRNA expression and processing are augmented in the inflamed intestinal mucosa of patients with pouchitis. These alterations are accompanied by increased expression of proteins involved in miRNA processing, suggesting that pouch inflammation contributes to miRNA processing and expression.
Collapse
Affiliation(s)
- Hadas Sherman Horev
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren M Rabinowitz
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hofit Elad
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Barkan
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Iris Dotan
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
de Sena Cortabitarte A, Berkel S, Cristian FB, Fischer C, Rappold GA. A direct regulatory link between microRNA-137 and SHANK2: implications for neuropsychiatric disorders. J Neurodev Disord 2018; 10:15. [PMID: 29665782 PMCID: PMC5905159 DOI: 10.1186/s11689-018-9233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in the SHANK genes, which encode postsynaptic scaffolding proteins, have been linked to a spectrum of neurodevelopmental disorders. The SHANK genes and the schizophrenia-associated microRNA-137 show convergence on several levels, as they are both expressed at the synapse, influence neuronal development, and have a strong link to neurodevelopmental and neuropsychiatric disorders like intellectual disability, autism, and schizophrenia. This compiled evidence raised the question if the SHANKs might be targets of miR-137. METHODS In silico analysis revealed a putative binding site for microRNA-137 (miR-137) in the SHANK2 3'UTR, while this was not the case for SHANK1 and SHANK3. Luciferase reporter assays were performed by overexpressing wild type and mutated SHANK2-3'UTR and miR-137 in human neuroblastoma cells and mouse primary hippocampal neurons. miR-137 was also overexpressed or inhibited in hippocampal neurons, and Shank2 expression was analyzed by quantitative real-time PCR and Western blot. Additionally, expression levels of experimentally validated miR-137 target genes were analyzed in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia and control individuals using the RNA-Seq data from the CommonMind Consortium. RESULTS miR-137 directly targets the 3'UTR of SHANK2 in a site-specific manner. Overexpression of miR-137 in mouse primary hippocampal neurons significantly lowered endogenous Shank2 protein levels without detectable influence on mRNA levels. Conversely, miR-137 inhibition increased Shank2 protein expression, indicating that miR-137 regulates SHANK2 expression by repressing protein translation rather than inducing mRNA degradation. To find out if the miR-137 signaling network is altered in schizophrenia, we compared miR-137 precursor and miR-137 target gene expression in the DLPFC of schizophrenia and control individuals using the CommonMind Consortium RNA sequencing data. Differential expression of 23% (16/69) of known miR-137 target genes was detected in the DLPFC of schizophrenia individuals compared with controls. We propose that in further targets (e.g., SHANK2, as described in this paper) which are not regulated on RNA level, effects may only be detectable on protein level. CONCLUSION Our study provides evidence that a direct regulatory link exists between miR-137 and SHANK2 and supports the finding that miR-137 signaling might be altered in schizophrenia.
Collapse
Affiliation(s)
| | - Simone Berkel
- Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | | | - Christine Fischer
- Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Gudrun A. Rappold
- Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), Ruprecht-Karls-University, Heidelberg, Germany
- Department of Human Molecular Genetics, Institute of Human Genetics, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Martin EC, Qureshi AT, Llamas CB, Burow ME, King AG, Lee OC, Dasa V, Freitas MA, Forsberg JA, Elster EA, Davis TA, Gimble JM. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation. Adipocyte 2018; 7:96-105. [PMID: 29411671 DOI: 10.1080/21623945.2018.1423911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.
Collapse
Affiliation(s)
- E. C. Martin
- Department for Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA
| | - A. T. Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
| | - C. B. Llamas
- Center for Regenerative Medicine and Stem Cell Therapy, Tulane University School of Medicine, New Orleans, LA, USA
| | - M. E. Burow
- Department of Hematology/Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - A. G. King
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - O. C. Lee
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - V. Dasa
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - M. A. Freitas
- Department of Molecular Virology, Immunology Medical & Genetics, Ohio State University, Columbus, OH, USA
| | - J. A. Forsberg
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center Bethesda, MD, USA
| | - E. A. Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center Bethesda, MD, USA
| | - T. A. Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center Bethesda, MD, USA
| | - J. M. Gimble
- Departments of Medicine, Structural and Cellular Biology, & Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- LaCell LLC, New Orleans, LA, USA
- Center for Regenerative Medicine and Stem Cell Therapy, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
31
|
Frixa T, Sacconi A, Cioce M, Roscilli G, Ferrara FF, Aurisicchio L, Pulito C, Telera S, Carosi M, Muti P, Strano S, Donzelli S, Blandino G. MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis 2017; 39:293-304. [DOI: 10.1093/carcin/bgx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tania Frixa
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | | | | | | | - Claudio Pulito
- Molecular Chemoprevention Group, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Stefano Telera
- Department of Neurosurgery, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Mariantonia Carosi
- Department of Pathology, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, ON Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Group, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, ON Ontario, Canada
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, ON Ontario, Canada
| |
Collapse
|
32
|
Rassi DM, De Paiva CS, Dias LC, Módulo CM, Adriano L, Fantucci MZ, Rocha EM. Review: MicroRNAS in ocular surface and dry eye diseases. Ocul Surf 2017; 15:660-669. [PMID: 28483646 DOI: 10.1016/j.jtos.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
|
33
|
Wang L, Zhu J, Deng FY, Wu LF, Mo XB, Zhu XW, Xia W, Xie FF, He P, Bing PF, Qiu YH, Lin X, Lu X, Zhang L, Yi NJ, Zhang YH, Lei SF. Correlation analyses revealed global microRNA-mRNA expression associations in human peripheral blood mononuclear cells. Mol Genet Genomics 2017; 293:95-105. [PMID: 28879530 DOI: 10.1007/s00438-017-1367-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P < 0.05) and ~70% were negative. The correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.
Collapse
Affiliation(s)
- Lan Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Center for Disease Prevention and Control, Yichun, 336000, Jiangxi, People's Republic of China
| | - Jiang Zhu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fang-Fei Xie
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng-Fei Bing
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Ying-Hua Qiu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiang Lin
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Neng-Jun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (21-23 nucleotides in length) that regulate gene expression at translational or posttranslational levels. The major regulatory mechanisms include translational repression or mRNA degradation (Filipowicz et al., Curr Opin Struct Biol 15:331-341, 2005).Aberrant expression of miRNAs has been found to be associated with a variety of human diseases such as cancers/tumors, diabetes, viral infections, cardiovascular diseases, neurodegenerative diseases, and other diseases (Wang et al., J Cell Physiol 23:25-30, 2016; Lawrie, MicroRNAs in medicine, 2013). The expression of miRNAs is tissue specific and can be used to identify tumor type and its origin (Mishra and Merlino, J Clin Invest 119:2119-2123, 2009). Many investigations suggest that the miRNA-expression profiles are novel diagnostic and prognostic biomarkers for multiple human diseases. Manipulating relevant miRNA expression or function may serve as potential therapeutic strategies for different diseases.
Collapse
Affiliation(s)
- Weili Huang
- Miracle Query, Incorporated, 456 W. 29th Ave., Eugene, OR, 97405, USA.
| |
Collapse
|
35
|
Esquinas C, Janciauskiene S, Gonzalo R, Mas de Xaxars G, Olejnicka B, Belmonte I, Barrecheguren M, Rodriguez E, Nuñez A, Rodriguez-Frias F, Miravitlles M. Gene and miRNA expression profiles in PBMCs from patients with severe and mild emphysema and PiZZ alpha1-antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis 2017; 12:3381-3390. [PMID: 29238183 PMCID: PMC5713702 DOI: 10.2147/copd.s145445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION COPD has complex etiologies involving both genetic and environmental determinants. Among genetic determinants, the most recognized is a severe PiZZ (Glu342Lys) inherited alpha1-antitrypsin deficiency (AATD). Nonetheless, AATD patients present a heterogeneous clinical evolution, which has not been completely explained by sociodemographic or clinical factors. Here we performed the gene expression profiling of blood cells collected from mild and severe COPD patients with PiZZ AATD. Our aim was to identify differences in messenger RNA (mRNA) and microRNA (miRNA) expressions that may be associated with disease severity. MATERIALS AND METHODS Peripheral blood mononuclear cells from 12 COPD patients with PiZZ AATD (6 with severe disease and 6 with mild disease) were used in this pilot, high-throughput microarray study. We compared the cellular expression levels of RNA and miRNA of the 2 groups, and performed functional and enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene-ontology (GO) terms. We also integrated the miRNA and the differentially expressed putative target mRNA. For data analyses, we used the R statistical language R Studio (version 3.2.5). RESULTS The severe and mild COPD-AATD groups were similar in terms of age, gender, exacerbations, comorbidities, and use of augmentation therapy. In severe COPD-AATD patients, we found 205 differentially expressed genes (DEGs) (114 upregulated and 91 downregulated) and 28 miRNA (20 upregulated and 8 downregulated) compared to patients with mild COPD-AATD disease. Of these, hsa-miR-335-5p was downregulated and 12 target genes were involved in cytokine signaling, MAPK/mk2, JNK signaling cascades, and angiogenesis were much more highly expressed in severe compared with mild patients. CONCLUSIONS Despite the small sample size, we identified downregulated miRNA (hsa-miR-335) and the activation of pathways related to inflammation and angiogenesis on comparing patients with severe vs mild COPD-AATD. Nonetheless, our findings warrant further validation in large studies.
Collapse
Affiliation(s)
- Cristina Esquinas
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
- Public Health, Mental, Maternal and Child Health Nursing Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, BREATH, German Center for Lung Research (DZL), Hannover, Germany
| | - Ricardo Gonzalo
- Statistics and Bioinformatics Unit (UEB), Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Gemma Mas de Xaxars
- Statistics and Bioinformatics Unit (UEB), Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Beata Olejnicka
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Irene Belmonte
- Biochemistry Department, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Miriam Barrecheguren
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
| | - Esther Rodriguez
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
| | - Alexa Nuñez
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
| | | | - Marc Miravitlles
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
- Correspondence: Marc Miravitlles, Servei de Pneumologia, Hospital Universitari Vall d’Hebron, P Vall d’Hebron 119–129, 08035 Barcelona, Spain, Tel +34 93 274 6157, Fax +34 93 274 6083, Email
| |
Collapse
|
36
|
Suttamanatwong S. MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis. Connect Tissue Res 2017; 58:90-102. [PMID: 26963177 DOI: 10.3109/03008207.2016.1139580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs approximately 22 nucleotides in length. miRNAs play an important role in the posttranscriptional regulation of gene expression via translational repression and targeting messenger RNA for degradation. In vivo and in vitro evidence has established the importance of miRNAs in physiology and developmental processes such as cell proliferation, differentiation, survival and apoptosis. miRNA dysregulation is associated with the pathogenesis of cardiovascular diseases, metabolic syndromes, and degenerative diseases. An increasing number of miRNAs have been found to play an important role in bone homeostasis. In this review, the roles of miRNAs in the regulation of bone formation and resorption as well as miRNAs that regulate key transcription factors of osteogenesis are discussed. A special emphasis is given to miRNAs whose direct targets have been identified. The miRNAs that contribute to the pathogenesis of osteoporosis and their therapeutic potential are also considered.
Collapse
Affiliation(s)
- Supaporn Suttamanatwong
- a Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Physiology, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
37
|
Liu W, Dong Z, Liang J, Guo X, Guo Y, Shen S, Kuang G, Guo W. Downregulation of Potential Tumor Suppressor miR-203a by Promoter Methylation Contributes to the Invasiveness of Gastric Cardia Adenocarcinoma. Cancer Invest 2016; 34:506-516. [PMID: 27791400 DOI: 10.1080/07357907.2016.1242010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Like many tumor suppressor genes, some miRNA genes harboring CpG islands undergo methylation-mediated silencing. In the study, we found significant downregulation and proximal promoter methylation of miR-203a and miR-203b in gastric cardia adenocarcinoma (GCA) tissues. The methylation status of miR-203a and miR-203b in tumor tissues was negatively correlated with their expression level. GCA patients in stage III and IV with reduced expression or hypermethylation of miR-203a demonstrated poor patient survival. In all, miR-203a and miR-203b may function as tumor suppressive miRNAs, and reactivation of miR-203a may have therapeutic potential and may be used as prognostic marker for GCA patients.
Collapse
Affiliation(s)
- Wei Liu
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China.,b Surgical Oncology Department , Cangzhou Central Hospital , Cangzhou , Hebei , China
| | - Zhiming Dong
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jia Liang
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Xin Guo
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yanli Guo
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Supeng Shen
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Gang Kuang
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Wei Guo
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|
38
|
Yue S, Shi H, Han J, Zhang T, Zhu W, Zhang D. Prognostic value of microRNA-126 and CRK expression in gastric cancer. Onco Targets Ther 2016; 9:6127-6135. [PMID: 27785060 PMCID: PMC5066993 DOI: 10.2147/ott.s87778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA (miR)-126, acting as a tumor suppressor, has been reported to inhibit the invasion of gastric cancer cells in part by targeting v-crk sarcoma virus CT10 oncogene homologue (CRK). The aim of this study was to investigate the clinical significance of miR-126/CRK axis in gastric cancer. Methods miR-126 and CRK mRNA expression levels were detected by real-time quantitative reverse transcription polymerase chain reaction in 220 self-pairs of gastric cancer and adjacent noncancerous tissues. Results Expression levels of miR-126 and CRK mRNA in gastric cancer tissues were, respectively, lower and higher than those in adjacent noncancerous tissues (both P<0.001). Low miR-126 expression and high CRK expression, alone or in combination, were all significantly associated with positive lymph node and distant metastases and advanced TNM stage of human gastric cancer (all P<0.05). We also found that the overall survival rates of the patients with low miR-126 expression and high CRK expression were, respectively, shorter than those with high miR-126 expression and low CRK expression. Interestingly, miR-126-low/CRK-high expression was associated with a significantly worse overall survival of all miR-126/CRK groups (P<0.001). Moreover, multivariate analysis identified miR-126 and/or CRK expression as independent prognostic factors for patients with gastric cancer. Notably, the prognostic relevance of miR-126 and/or CRK expression was more obvious in the subgroup of patients with TNM stage IV. Conclusion Dysregulation of miR-126/CRK axis may promote the malignant progression of human gastric cancer. miR-126 and CRK combined expression may serve as an independent predictor of overall survival in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Shun Yue
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| | - Huichang Shi
- Department of Medical Oncology, The Second People's Hospital of Huai'an, Huai'an City
| | - Jun Han
- Department of Medical Oncology, Qinghai Province People's Hospital, Xining City, People's Republic of China
| | - Tiecheng Zhang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| | - Weiguo Zhu
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| | - Dahong Zhang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an City
| |
Collapse
|
39
|
Mogilyansky E, Clark P, Quann K, Zhou H, Londin E, Jing Y, Rigoutsos I. Post-transcriptional Regulation of BRCA2 through Interactions with miR-19a and miR-19b. Front Genet 2016; 7:143. [PMID: 27630665 PMCID: PMC5005319 DOI: 10.3389/fgene.2016.00143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
Breast cancer type 2, early onset susceptibility gene (BRCA2) is a major component of the homologous recombination DNA repair pathway. It acts as a tumor suppressor whose function is often lost in cancers. Patients with specific mutations in the BRCA2 gene often display discrete clinical, histopathological, and molecular features. However, a subset of sporadic cancers has wild type BRCA2 and display defects in the homology-directed repair pathway, which is the hallmark of ‘BRCAness.’ The mechanisms by which BRCAness arises are not well understood but post-transcriptional regulation of BRCA2 gene expression by microRNAs (miRNAs) may contribute to this phenotype. Here, we examine the post-transcriptional effects that some members of the six-miRNA cluster known as the miR-17/92 cluster have on the abundance of BRCA2’s messenger RNA (mRNA) and protein. We discuss two interactions involving the miR-19a and miR-19b members of the cluster and the 3′UTR of BRCA2’s mRNA. We investigated these miRNA:mRNA interactions in 15 cell lines derived from pancreatic, breast, colon, and kidney tissue. We show that over-expression of these two miRNAs results in a concomitant decrease of BRCA2’s mRNA and protein expression in a subset of the tested cell lines. Additionally, using luciferase reporter assays we identified direct interactions between miR-19a/miR-19b and a miRNA response element (MRE) in BRCA2’s 3′UTR. Our results suggest that BRCA2 is subject to a complex post-transcriptional regulatory program that has specific dependencies on the genetic and phenotypic background of cell types.
Collapse
Affiliation(s)
- Elena Mogilyansky
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Peter Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia PA, USA
| | - Kevin Quann
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Honglei Zhou
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| |
Collapse
|
40
|
Nikolić Z, Savić Pavićević D, Vučić N, Cerović S, Vukotić V, Brajušković G. Genetic variants in RNA-induced silencing complex genes and prostate cancer. World J Urol 2016; 35:613-624. [PMID: 27498138 DOI: 10.1007/s00345-016-1917-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/30/2016] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The purpose of this study is to evaluate the potential association between genetic variants in genes encoding the components of RNA-induced silencing complex and prostate cancer (PCa) risk. Genetic variants chosen for this study are rs3742330 in DICER1, rs4961280 in AGO2, rs784567 in TARBP2, rs7813 in GEMIN4 and rs197414 in GEMIN3. METHODS The study involved 355 PCa patients, 360 patients with benign prostatic hyperplasia and 318 healthy controls. For individuals diagnosed with PCa, clinicopathological characteristics including serum prostate-specific antigen level at diagnosis, Gleason score (GS) and clinical stage were determined. Genotyping was performed using high-resolution melting analysis, PCR-RFLP, TaqMan SNP Genotyping Assay and real-time PCR-based genotyping assay using specific probes. Allelic and genotypic associations were evaluated by unconditional linear and logistic regression methods. RESULTS The study provided no evidence of association between the analyzed genetic variants and PCa risk. Nevertheless, allele A of rs784567 was found to confer the reduced risk of higher serum PSA level at diagnosis (P = 0.046; Difference = -66.64, 95 % CI -131.93 to 1.35, for log-additive model). Furthermore, rs4961280, as well as rs3742330, were shown to be associated with GS. These variants, together with rs7813, were found to be associated with the lower clinical stage of PCa. Also, rs3742330 minor allele G was found to be associated with lower PCa aggressiveness (P = 0.036; OR 0.14, 95 % CI 0.023-1.22, for recessive model). CONCLUSIONS According to our data, rs3742330, rs4961280 and rs7813 qualify for potentially protective genetic variants against PCa progression. These variants were not shown to be associated with PCa risk.
Collapse
Affiliation(s)
- Z Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - N Vučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - S Cerović
- Institute of Pathology, Military Medical Academy, Belgrade, Serbia
| | - V Vukotić
- Department of Urology, Clinical Centre "dr Dragiša Mišović", Belgrade, Serbia
| | - G Brajušković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
41
|
Wang DD, Chen X, Yu DD, Yang SJ, Shen HY, Sha HH, Zhong SL, Zhao JH, Tang JH. miR-197: A novel biomarker for cancers. Gene 2016; 591:313-9. [PMID: 27320730 DOI: 10.1016/j.gene.2016.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are small noncoding RNAs that could regulate post-transcription level through binding to 3' untranslated region (3'UTR) of target messenger RNAs (mRNAs), which were reported to be related with the incidence and development of diverse neoplasms. Among them, miR-197 was confirmed to play a vital role of oncogene or anti-oncogene in different cancers via targeting key tumorigenic or tumor-suppressive genes. Additionally, miR-197 had extensively been studied in carcinogenesis progression of cancers through various mechanisms, including apoptosis, proliferation, angiogenesis, metastasis, drug resistance and tumor suppressor, and also played a role in prognosis of cancers. In this review, we summarized the roles of miR-197 in cancers and considered it as a potentially novel biomarker for different cancers, offering an alternatively secure and effective tool in molecular targeting cancer treatment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- The First Clinical School of Nanjing Medical University, Nanjing 210009, China; The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China
| | - Xiu Chen
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Dan-Dan Yu
- The First Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Su-Jin Yang
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Hong-Yu Shen
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Huan-Huan Sha
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.
| |
Collapse
|
42
|
Li Y, Zeng C, Tu M, Jiang W, Dai Z, Hu Y, Deng Z, Xiao W. MicroRNA-200b acts as a tumor suppressor in osteosarcoma via targeting ZEB1. Onco Targets Ther 2016; 9:3101-11. [PMID: 27307751 PMCID: PMC4888717 DOI: 10.2147/ott.s96561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma is the most common type of cancer that develops in bone, mainly arising from the metaphysis of the long bones. MicroRNA (miR)-200b has been found to generally act as a tumor suppressor in multiple types of human cancers. However, the detailed role of miR-200b in osteosarcoma still remains to be fully understood. This study aimed to investigate the exact role of miR-200b in the progression of osteosarcoma and the underlying mechanism. Real-time reverse transcription-polymerase chain reaction data showed that miR-200b was significantly downregulated in osteosarcoma tissues compared to their matched adjacent nontumor tissues. Low miR-200b level was associated with the advanced clinical stage and positive distant metastasis. Besides, it was also downregulated in osteosarcoma cell lines (U2OS, Saos2, HOS, and MG63) compared to normal osteoblast cell line NHOst. In vitro study showed that restoration of miR-200b led to a significant decrease in proliferation, migration, and invasion of osteosarcoma cells. Moreover, ZEB1 was identified as a target gene of miR-200b, and its expression levels were negatively mediated by miR-200b in osteosarcoma cells. In addition, ZEB1 was significantly upregulated in osteosarcoma cells compared to the normal osteoblast cell line NHOst, and inhibition of ZEB1 expression also suppressed the proliferation, migration, and invasion in osteosarcoma cells. Finally, we showed that ZEB1 was frequently upregulated in osteosarcoma tissues compared to their matched adjacent normal tissues, and its expression was reversely correlated to the miR-200b levels in osteosarcoma tissues. Based on these findings, our study suggests that miR-200b inhibits the proliferation, migration, and invasion of osteosarcoma cells, probably via the inhibition of ZEB1 expression. Therefore, miR-200b/ZEB1 may become a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| | - Chao Zeng
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| | - Min Tu
- Department of Orthopedics, Second People’s Hospital of Jingmen, Jingmen, Hubei, People’s Republic of China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, People’s Republic of China
| | - Zixun Dai
- Department of Orthopedics, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuling Hu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhenhan Deng
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
43
|
The altered microRNA profile in andrographolide-induced inhibition of hepatoma tumor growth. Gene 2016; 588:124-33. [PMID: 27182051 DOI: 10.1016/j.gene.2016.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to play critical roles in regulating gene expression in tumor development. Natural compound andrographolide (Andro), isolated from medicinal herb Andrographis paniculata, was reported to inhibit hepatoma tumor growth in our previous studies. The present study aims to observe the altered miRNAs profile and related signaling pathways involved in Andro-induced inhibition on hepatoma tumor growth. RESULTS The inhibition on hepatoma tumor growth induced by Andro (10mg/kg) was found in a xenograft mouse tumor model in vivo. The results of miRNAs chip analysis showed that the expression of 22 miRNAs was increased, whereas the expression of other 10 miRNAs was decreased after Andro treatment. Further, the increased expression of miR-222-3p, miR-106b-5p, miR-30b-5p, and miR-23a-5p was confirmed in hepatoma Hep3B and SMCC7721 cells in vitro after cells were treated with Andro (50μM) for the indicated time. Functional annotation of the target genes based on the differentially expressed miRNAs demonstrated that the majority of the genes were involved in a variety of signaling pathways, including miRNAs in cancer, mitogen-activated protein kinases (MPAKs), focal adhesion. Furthermore, the expression of 24 target genes (total 31) involved in above signaling pathways based on miRNAs analysis was found to be consistent with the alteration of miRNAs. CONCLUSIONS The results demonstrate that Andro alters the expression of miRNAs profile and downstream signals, which may contribute to its inhibition on hepatoma tumor growth.
Collapse
|
44
|
Abstract
Small evolutionarily conserved noncoding RNAs, microRNAs (miRNAs), regulate gene expression either by translational repression or by mRNA degradation in mammals. miRNAs play functional roles in diverse physiological and pathological processes. miRNA processing is accurately regulated through multifarious factors. The canonical miRNA processing pathway consists of four sequential steps: (a) miRNA gene is transcribed into primary miRNA (pri-miRNA) mainly by RNA polymerase II; (b) pri-miRNA is processed into precursor miRNA (pre-miRNA) through microprocessor complex; (c) pre-miRNA is exported from the nucleus to the cytoplasm with the assistance of Exportin 5 (EXP5/XP05) protein; and (d) pre-miRNA is further processed into mature miRNA via Dicer. Emerging evidence has also demonstrated that some miRNAs undergo alternative processing pathways. Dysregulation of miRNA processing is closely related to tumorigenesis. Here, we review the current advances in the knowledge of miRNA processing and briefly discuss its impact on human cancers.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Yan
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
45
|
Rosani U, Pallavicini A, Venier P. The miRNA biogenesis in marine bivalves. PeerJ 2016; 4:e1763. [PMID: 26989613 PMCID: PMC4793324 DOI: 10.7717/peerj.1763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova , Padova , Italy
| | | | - Paola Venier
- Department of Biology, University of Padova , Padova , Italy
| |
Collapse
|
46
|
Casey MC, Sweeney KJ, Brown JAL, Kerin MJ. Exploring circulating micro-RNA in the neoadjuvant treatment of breast cancer. Int J Cancer 2016; 139:12-22. [PMID: 26756433 PMCID: PMC5066681 DOI: 10.1002/ijc.29985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy amongst females worldwide. In recent years the management of this disease has transformed considerably, including the administration of chemotherapy in the neoadjuvant setting. Aside from increasing rates of breast conserving surgery and enabling surgery via tumour burden reduction, use of chemotherapy in the neoadjuvant setting allows monitoring of in vivo tumour response to chemotherapeutics. Currently, there is no effective means of identifying chemotherapeutic responders from non‐responders. Whilst some patients achieve complete pathological response (pCR) to chemotherapy, a good prognostic index, a proportion of patients derive little or no benefit, being exposed to the deleterious effects of systemic treatment without any knowledge of whether they will receive benefit. The identification of predictive and prognostic biomarkers could confer multiple benefits in this setting, specifically the individualization of breast cancer management and more effective administration of chemotherapeutics. In addition, biomarkers could potentially expedite the identification of novel chemotherapeutic agents or increase their efficacy. Micro‐RNAs (miRNAs) are small non‐coding RNA molecules. With their tissue‐specific expression, correlation with clinicopathological prognostic indices and known dysregulation in breast cancer, miRNAs have quickly become an important avenue in the search for novel breast cancer biomarkers. We provide a brief history of breast cancer chemotherapeutics and explore the emerging field of circulating (blood‐borne) miRNAs as breast cancer biomarkers for the neoadjuvant treatment of breast cancer. Established molecular markers of breast cancer are outlined, while the potential role of circulating miRNAs as chemotherapeutic response predictors, prognosticators or potential therapeutic targets is discussed.
Collapse
Affiliation(s)
- Máire-Caitlín Casey
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Karl J Sweeney
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | | | - Michael J Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
47
|
Wang J, Chen J, Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol 2016; 231:25-30. [PMID: 26031493 DOI: 10.1002/jcp.25056] [Citation(s) in RCA: 531] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that are involved in regulating a range of developmental and physiological processes; their dysregulation has been associated with development of diseases including cancer. Circulating miRNAs and exosomal miRNAs have also been proposed as being useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, miRNAs are discussed as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics and provide some general perspectives on their use in clinical situations. The analytical challenges in using miRNAs in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics.
Collapse
Affiliation(s)
- Jin Wang
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinyun Chen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Program in Human and Molecular Genetics, The University of Texas Graduate school of Biomedical Sciences, Houston, Texas
| |
Collapse
|
48
|
Cătană CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in Aging and Breast Cancer: Are They Reliable Players? Front Med (Lausanne) 2015; 2:85. [PMID: 26697428 PMCID: PMC4678211 DOI: 10.3389/fmed.2015.00085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Human aging is characterized by chronic low-grade inflammation known as “inflammaging.” Persistent low-level inflammation also plays a key role in all stages of breast cancer since “inflammaging” is the potential link between cancer and aging through NF-kB pathways highly influenced by specific miRs. Micro-RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at a posttranscriptional level. Inflamma-miRs have been implicated in the regulation of immune and inflammatory responses. Their abnormal expression contributes to the chronic pro-inflammatory status documented in normal aging and major age-related diseases (ARDs), inflammaging being a significant mortality risk factor in both cases. Nevertheless, the correct diagnosis of inflammaging is difficult to make and its hidden contribution to negative health outcomes remains unknown. This methodological work flow was aimed at defining crucial unanswered questions about inflammaging that can be used to clarify aging-related miRNAs in serum and cell lines as well as their targets, thus confirming their role in aging and breast cancer tumorigenesis. Moreover, we aim to highlight the links between the pro-inflammatory mechanism underlying the cancer and aging processes and the precise function of certain miRNAs in cellular senescence (CS). In addition, miRNAs and cancer genes represent the basis for new therapeutic findings indicating that both cancer and ARDs genes are possible candidates involved in CS and vice versa. Our goal is to obtain a focused review that could facilitate future approaches in the investigation of the mechanisms by which miRNAs control the aging process by acting as efficient ARDs inflammatory biomarkers. An understanding of the sources and modulation of inflamma-miRs along with the identification of their specific target genes could enhance their therapeutic potential.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Non-Coding RNA Center, MD Anderson Cancer Center, University of Texas , Houston, TX , USA
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas , Houston, TX , USA ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania ; Department of Experimental Pathology, Ion Chiricuta Institute of Oncology , Cluj Napoca , Romania
| |
Collapse
|
49
|
MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1. Gene 2015; 574:330-6. [DOI: 10.1016/j.gene.2015.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
|
50
|
Zhang Y, Guo X, Li Z, Li B, Li Z, Li R, Guo Q, Xiong L, Yu L, Zhao J, Lin N. A systematic investigation based on microRNA-mediated gene regulatory network reveals that dysregulation of microRNA-19a/Cyclin D1 axis confers an oncogenic potential and a worse prognosis in human hepatocellular carcinoma. RNA Biol 2015; 12:643-57. [PMID: 25985117 DOI: 10.1080/15476286.2015.1022702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to a wide variety of human diseases by regulating gene expression, leading to imbalances in gene regulatory networks. To discover novel hepatocellular carcinoma (HCC)-related miRNA-target axes and to elucidate their functions, we here performed a systematic investigation combining biological data acquisition and integration, miRNA-target prediction, network construction, functional assay and clinical validation. As a result, a total of 117 HCC differentially expressed miRNAs were identified, and 728 high confident target genes of these miRNAs were collected. Then, the interaction network of target genes was constructed and 221 key nodes with topological importance in the network were identified according to their topological features including degree, node-betweenness, closeness and K-coreness. Among these key nodes, Cyclin D1 had the highest node-betweenness, implying its bottleneck role in the network. Luciferase reporter assay confirmed that miRNA-19a, which was one of HCC downregulated miRNAs, directly targeted Cyclin D1 in HCC cells. Moreover, miR-19a might play inhibitory roles in HCC malignancy via regulating Cyclin D1 expression. Further clinical evidence also highlighted the prognostic potential of miR-19a/Cyclin D1 axis in HCC. In conclusion, this systematic investigation provides a framework to identify featured miRNAs and their target genes which are potent effectors in the occurrence and development of HCC. More importantly, miR-19a/Cyclin D1 axis might have promising applications as a therapeutic target and a prognostic marker for patients with HCC.
Collapse
Affiliation(s)
- Yanqiong Zhang
- a Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|