1
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
2
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Kwon YS, Cho YE, Kim Y, Koh M, Hwang S. Dimethyloxalylglycine Suppresses SREBP1c and Lipogenic Gene Expressions in Hepatocytes Independently of HIF1A. Curr Issues Mol Biol 2024; 46:2386-2397. [PMID: 38534767 DOI: 10.3390/cimb46030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Dimethyloxalylglycine (DMOG) is a representative inhibitor of the prolyl hydroxylase domain (PHD), which mediates the degradation of hypoxia-inducible factor-1-alpha (HIF1A). DMOG exerts its pharmacological effects via the canonical pathway that involves PHD inhibition; however, it remains unclear whether DMOG affects lipogenic gene expression in hepatocytes. We aimed to elucidate the effects of DMOG on sterol regulatory element-binding protein-1c (SREBP1c), a master regulator of fatty acid synthesis in hepatocytes. DMOG treatment inhibited SREBP1c mRNA and protein expression in HepG2 and AML12 hepatocytes and reduced the transcript levels of SREBP1c-regulated lipogenic genes. A luciferase reporter assay revealed that DMOG inhibited the transcriptional activity of SREBP1c. Moreover, DMOG suppressed SREBP1c expression in mice liver. Mechanistically, treatment with DMOG enhanced the expression of HIF1A and insulin-induced gene 2 (INSIG2), which inhibits the activation of SREBP1c. However, HIF1A or INSIG2 knockdown failed to reverse the inhibitory effect of DMOG on SREBP1c expression, suggesting a redundant role of HIF1A and INSIG2 in terms of repressing SREBP1c. DMOG did not function through the canonical pathway involving inhibition of SREBP1c by PHD, highlighting the presence of non-canonical pathways that mediate its anti-lipogenic effect.
Collapse
Affiliation(s)
- Yong Seong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
5
|
Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol 2024; 61:51-60. [PMID: 38431463 PMCID: PMC10978279 DOI: 10.1053/j.seminhematol.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
6
|
Shi S, Wang K, Ugai T, Giannakis M, Cazaubiel J, Chan AT, Giovannucci EL, Nowak JA, Meyerhardt JA, Ogino S, Song M. Vitamin C intake and colorectal cancer survival according to KRAS and BRAF mutation: a prospective study in two US cohorts. Br J Cancer 2023; 129:1793-1800. [PMID: 37775523 PMCID: PMC10667518 DOI: 10.1038/s41416-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The associations of vitamin C intake with colorectal cancer (CRC) survival according to tumour KRAS or BRAF mutation status remain unclear. METHODS We used the inverse probability weighted multivariable Cox proportional hazards regression model to calculate the hazard ratio (HR) of mortality, and spline analysis to evaluate the dose-response relationship in the Nurses' Health Study and Health Professionals Follow-up Study. We also assessed SLC2A1 mRNA expression according to KRAS or BRAF mutation in the TCGA database. RESULTS During an average of 12.0 years of follow-up, we documented 2,096 CRC cases, of which 703 cases had KRAS and BRAF mutation data. The association between total vitamin C intake and CRC-specific mortality suggestively differed according to KRAS or BRAF mutation status (Pinteraction = 0.04), with the multivariable HR (95% CI) per 400 mg/day increase in vitamin C intake for CRC-specific mortality of 1.07 (0.87-1.32, Ptrend = 0.52) in cases with both wild type and 0.74 (0.55-1.00, Ptrend < 0.05) in cases with either KRAS or BRAF mutant type. TCGA analysis showed a higher mRNA SLC2A1 expression in KRAS or BRAF-mutated tumours than in wild-type tumours (P = 0.02). CONCLUSION Our findings support the laboratory evidence for a potential benefit of vitamin C for CRC patients with KRAS or BRAF mutated tumours.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jules Cazaubiel
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
7
|
Kazemi M, Montazersaheb S, Noroozpour M, Farajnia S, Nozad Charoudeh H. Modulatory Effect of Vitamin C on Hypoxia Induced Breast Cancer Stem Cells. Adv Pharm Bull 2023; 13:792-798. [PMID: 38022819 PMCID: PMC10676544 DOI: 10.34172/apb.2023.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/13/2022] [Accepted: 02/19/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Eliminating cancer stem cells (CSCs) is a challenge because of their enhanced resistance to anti-cancer drugs. Vitamin C, which is insufficient in patients with higher stages of cancer, has been gaining attention as a potential treatment for human malignancies. Hence this study aimed to analyze the effect of high-dose vitamin C treatment on the gene expression level of HIF-1α, NF-κB1, BAX, and DNMT1 in the MCF7 cells undergoing hypoxia, as an inducer of CSCs characteristics. As a result, vitamin C could be possibly used as a promising therapeutic adjuvant. Methods Here we first analyzed the breast CSC population alteration in MCF7 cells following hypoxia induction. Then, we evaluated the impact of vitamin C treatment on the gene expression level of four stemness-related genes in hypoxic MCF7 cells. Results Our results indicate that vitamin C could reduce proliferation and stemness states in CSCs possibly by induction of apoptotic markers such as BAX, along with attenuating stemness markers, including NF-κB1, and DNMT1 gene expressions. Conclusion According to our findings, vitamin C administration would become a new approach to avoiding the stimulation of CSCs during cancer therapies.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Noroozpour
- Faculty of Materials Science and Engineering, Sahand University of Technology, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Carr AC, Lunt H, Wareham NJ, Myint PK. Estimating Vitamin C Intake Requirements in Diabetes Mellitus: Analysis of NHANES 2017-2018 and EPIC-Norfolk Cohorts. Antioxidants (Basel) 2023; 12:1863. [PMID: 37891943 PMCID: PMC10604478 DOI: 10.3390/antiox12101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Vitamin C is an essential enzyme cofactor and antioxidant with pleiotropic roles in human physiology. Circulating vitamin C concentrations are lower in people with diabetes mellitus, suggesting a higher dietary requirement for the vitamin. We interrogated the NHANES 2017-2018 and EPIC-Norfolk datasets to compare vitamin C requirements between those with and without diabetes mellitus using dose-concentration relationships fitted with sigmoidal (four-parameter logistic) curves. The NHANES cohort (n = 2828 non-supplementing adults) comprised 488 (17%) participants with diabetes (self-reported or HbA1c ≥ 6.5%). The participants with diabetes had a lower vitamin C status (median [IQR]) than those without (38 [17, 52] µmol/L vs. 44 [25, 61] µmol/L, p < 0.0001), despite comparable dietary intakes between the two groups (51 [26, 93] mg/d vs. 53 [24, 104] mg/d, p = 0.5). Dose-concentration relationships indicated that the group without diabetes reached adequate vitamin C concentrations (50 µmol/L) with an intake of 81 (72, 93) mg/d, whilst those with diabetes required an intake of 166 (126, NA) mg/d. In the EPIC-Norfolk cohort, comprising 20692 non-supplementing adults, 475 (2.3%) had self-reported diabetes at baseline. The EPIC cohort had a lower BMI than the NHANES cohort (26 [24, 28] kg/m2 vs. 29 [25, 34] kg/m2, p < 0.0001). Correspondingly, the EPIC participants without diabetes required a lower vitamin C intake of 64 (63, 65) mg/d while those with diabetes required 129 (104, NA) mg/d to reach adequate circulating vitamin C status. C-reactive protein concentrations were strongly correlated with body weight and BMI and provided a surrogate biomarker for vitamin C requirements. In conclusion, people with diabetes had 1.4 to 1.6 fold higher requirements for vitamin C than those without diabetes. This corresponds to additional daily vitamin C intake requirements of ~30-40 mg for people with diabetes, equating to a total daily intake of at least 125 mg/d.
Collapse
Affiliation(s)
- Anitra C. Carr
- Nutrition in Medicine Research Group, University of Otago, Christchurch 8011, New Zealand
| | - Helen Lunt
- Diabetes Outpatients, Health New Zealand Waitaha Canterbury, Christchurch 8011, New Zealand;
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Phyo K. Myint
- Ageing Clinical & Experimental Research (ACER) Team, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
9
|
Ghahremani-Nasab M, Del Bakhshayesh AR, Akbari-Gharalari N, Mehdipour A. Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor. J Biol Eng 2023; 17:62. [PMID: 37784137 PMCID: PMC10546749 DOI: 10.1186/s13036-023-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
The skin serves as a barrier to protect the body from environmental microorganisms and is the largest tissue of the body and any damage must be quickly and effectively repaired. The fundamental purpose of dermal fibroblasts is to produce and secrete extracellular matrix, which is crucial for healing wounds. The production of collagen by dermal fibroblasts requires the cofactor ascorbic acid, a free radical scavenger. In skin wounds, the presence of Ascorbic acid (AA) decreases the expression of pro-inflammatory factors and increases the expression of wound-healing factors. In addition, AA plays an important role in all three phases of wound healing, including inflammation, proliferation, and regeneration. On the other hand, growing evidence indicates that hypoxia improves the wound healing performance of mesenchymal stem cell-conditioned medium compared to the normoxic-conditioned medium. In a hypoxic-conditioned medium, the proliferation and migration of endothelial cells, fibroblasts, and keratinocytes (important cells in accelerating skin wound healing) increase. In this review, the role of AA, hypoxia, and their interactions on wound healing will be discussed and summarized by the in vitro and in vivo studies conducted to date.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Salazar K, Jara N, Ramírez E, de Lima I, Smith-Ghigliotto J, Muñoz V, Ferrada L, Nualart F. Role of vitamin C and SVCT2 in neurogenesis. Front Neurosci 2023; 17:1155758. [PMID: 37424994 PMCID: PMC10324519 DOI: 10.3389/fnins.2023.1155758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Different studies have established the fundamental role of vitamin C in proliferation, differentiation, and neurogenesis in embryonic and adult brains, as well as in in vitro cell models. To fulfill these functions, the cells of the nervous system regulate the expression and sorting of sodium-dependent vitamin C transporter 2 (SVCT2), as well as the recycling of vitamin C between ascorbic acid (AA) and dehydroascorbic acid (DHA) via a bystander effect. SVCT2 is a transporter preferentially expressed in neurons and in neural precursor cells. In developmental stages, it is concentrated in the apical region of the radial glia, and in adult life, it is expressed preferentially in motor neurons of the cerebral cortex, starting on postnatal day 1. In neurogenic niches, SVCT2 is preferentially expressed in precursors with intermediate proliferation, where a scorbutic condition reduces neuronal differentiation. Vitamin C is a potent epigenetic regulator in stem cells; thus, it can induce the demethylation of DNA and histone H3K27m3 in the promoter region of genes involved in neurogenesis and differentiation, an effect mediated by Tet1 and Jmjd3 demethylases, respectively. In parallel, it has been shown that vitamin C induces the expression of stem cell-specific microRNA, including the Dlk1-Dio3 imprinting region and miR-143, which promotes stem cell self-renewal and suppresses de novo expression of the methyltransferase gene Dnmt3a. The epigenetic action of vitamin C has also been evaluated during gene reprogramming of human fibroblasts to induced pluripotent cells, where it has been shown that vitamin C substantially improves the efficiency and quality of reprogrammed cells. Thus, for a proper effect of vitamin C on neurogenesis and differentiation, its function as an enzymatic cofactor, modulator of gene expression and antioxidant is essential, as is proper recycling from DHA to AA by various supporting cells in the CNS.
Collapse
Affiliation(s)
- Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Isabelle de Lima
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Javiera Smith-Ghigliotto
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Valentina Muñoz
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
11
|
Jones R, Shafiq L, Idowu B, Radhakrishnan NS, Fromm J. Abdominal Ecchymosis: Emergency, or Urgen-C? Cureus 2023; 15:e38091. [PMID: 37252579 PMCID: PMC10209748 DOI: 10.7759/cureus.38091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Scurvy is a multisystem disease caused by vitamin C deficiency, historically associated with lethargy, gingivitis, ecchymosis, edema, and death if left untreated. Contemporary socioeconomic risk factors for scurvy include smoking, alcohol abuse, fad diets, mental health conditions, social isolation, and economic marginalization. Food insecurity is also a risk factor. This report describes a case of a man in his 70s who presented with unexplained dyspnea, abdominal pain, and abdominal ecchymosis. His plasma vitamin C level was undetectable, and he improved with vitamin C supplementation. This case highlights the significance of awareness of these risk factors and emphasizes the need for a comprehensive social and dietary history to enable the timely treatment of this rare but potentially fatal disease.
Collapse
Affiliation(s)
- Riley Jones
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Leila Shafiq
- Medicine, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Benmichael Idowu
- Medicine, University of Florida College of Medicine, Gainesville, USA
| | | | - Jason Fromm
- Medicine, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
12
|
Fu Y, Liu X, Xia Y, Guo X, Guo J, Zhang J, Zhao W, Wu Y, Wang J, Zhong F. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Huang WZ, Liu TM, Liu ST, Chen SY, Huang SM, Chen GS. Oxidative Status Determines the Cytotoxicity of Ascorbic Acid in Human Oral Normal and Cancer Cells. Int J Mol Sci 2023; 24:ijms24054851. [PMID: 36902281 PMCID: PMC10002971 DOI: 10.3390/ijms24054851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) can arise anywhere in the oral cavity. OSCC's molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Platinum-based drugs are the first-line treatment for OSCC; however, severe side-effects and resistance are challenging issues. Thus, there is an urgent clinical need to develop novel and/or combinatory therapeutics. In this study, we investigated the cytotoxic effects of pharmacological concentrations of ascorbate on two human oral cell lines, the oral epidermoid carcinoma meng-1 (OECM-1) cell and the Smulow-Glickman (SG) human normal gingival epithelial cell. Our study examined the potential functional impact of pharmacological concentrations of ascorbates on the cell-cycle profiles, mitochondrial-membrane potential, oxidative response, the synergistic effect of cisplatin, and the differential responsiveness between OECM-1 and SG cells. Two forms of ascorbate, free and sodium forms, were applied to examine the cytotoxic effect and it was found that both forms had a similar higher sensitivity to OECM-1 cells than to SG cells. In addition, our study data suggest that the determinant factor of cell density is important for ascorbate-induced cytotoxicity in OECM-1 and SG cells. Our findings further revealed that the cytotoxic effect might be mediated through the induction of mitochondrial reactive oxygen species (ROS) generation and the reduction in cytosolic ROS generation. The combination index supported the agonistic effect between sodium ascorbate and cisplatin in OECM-1 cells, but not in SG cells. In summary, our current findings provide supporting evidence for ascorbate to serve as a sensitizer for platinum-based treatment of OSCC. Hence, our work provides not only repurposing of the drug, ascorbate, but also an opportunity to decrease the side-effects of, and risk of resistance to, platinum-based treatment for OSCC.
Collapse
Affiliation(s)
- Wei-Zhi Huang
- School of Dentistry, Department of Dentistry of Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Orthodontics, Pediatric Dentistry and Pediatric for Special Need, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ting-Ming Liu
- Department of Cardiovascular Surgery, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ssu-Yu Chen
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Gunng-Shinng Chen
- School of Dentistry, Department of Dentistry of Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Orthodontics, Pediatric Dentistry and Pediatric for Special Need, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: or
| |
Collapse
|
14
|
Hoekstra M, Ridgeway NH, Biggar KK. Characterization of KDM5 lysine demethylase family substrate preference and identification of novel substrates. J Biochem 2022; 173:31-42. [PMID: 36205465 DOI: 10.1093/jb/mvac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
The KDM5/JARID1 sub-family are 2-oxoglutarate and Fe(II)-dependent lysine-specific histone demethylases that are characterized by their Jumonji catalytic domains. The KDM5 family is known to remove tri-/di-methyl modifications from lysine-4 of histone H3 (i.e. H3-K4me2/3), a mark associated with active gene expression. As a result, studies to date have revolved around the influence of KDM5 on disease through their ability to regulate H3-K4me2/3. Recent evidence demonstrates that KDM5 may influence disease beyond H3-K4 demethylation, making it critical to further investigate KDM5-mediated demethylation of non-histone proteins. To help identify potential non-histone substrates for the KDM5 family, we developed a library of 180 permutated peptide substrates, with sequences that are systematically altered from the wild-type H3-K4me3 substrate. From this library, we characterized recombinant KDM5A/B/C/D substrate preference and developed recognition motifs for each KDM5 demethylase. The recognition motifs developed were used to predict potential substrates for KDM5A/B/C/D and profiled to generate a list of high-ranking and medium/low-ranking substrates for further in vitro validation. Through this approach, we identified 66 high-ranking substrates in which KDM5 demethylases displayed significant in vitro activity towards.
Collapse
Affiliation(s)
- Matthew Hoekstra
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Nashira H Ridgeway
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
15
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
16
|
Identification of Agents That Ameliorate Hyperphosphatemia-Suppressed Myogenin Expression Involved in the Nrf2/p62 Pathway in C2C12 Skeletal Muscle Cells. Int J Mol Sci 2022; 23:ijms232315324. [PMID: 36499650 PMCID: PMC9736935 DOI: 10.3390/ijms232315324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphatemia can occur as a result of reduced phosphate (Pi) excretion in cases of kidney dysfunction, which can induce muscle wasting and suppress myogenic differentiation. Higher Pi suppresses myogenic differentiation and promotes muscle atrophy through canonical (oxidative stress-mediated) and noncanonical (p62-mediated) activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. However, the crosstalk between myogenin and Nrf2/p62 and potential drug(s) for the regulation of myogenin expression needed to be addressed. In this study, we further identified that myogenin may negatively regulate Nrf2 and p62 protein levels in the mouse C2C12 muscle cell line. In the drug screening analysis, we identified N-acetylcysteine, metformin, phenformin, berberine, 4-chloro-3-ethylphenol, cilostazol, and cilomilast as ameliorating the induction of Nrf2 and p62 expression and reduction in myogenin expression that occur due to high Pi. We further elucidated that doxorubicin and hydrogen peroxide reduced the amount of myogenin protein mediated through the Kelch-like ECH-associated protein 1/Nrf2 pathway, differently from the mechanism of high Pi. The dual functional roles of L-ascorbic acid (L-AA) were found to be dependent on the working concentration, where concentrations below 1 mM L-AA reversed the effect of high Pi on myogenin and those above 1 mM L-AA had a similar effect of high Pi on myogenin when used alone. L-AA exacerbated the effect of hydrogen peroxide on myogenin protein and had no further effect of doxorubicin on myogenin protein. In summary, our results further our understanding of the crosstalk between myogenin and Nrf2, with the identification and verification of several potential drugs that can be applied in rescuing the decline of myogenin due to high Pi in muscle cells.
Collapse
|
17
|
Tzounakas VL, Anastasiadi AT, Arvaniti VZ, Lelli V, Fanelli G, Paronis EC, Apostolidou AC, Balafas EG, Kostomitsopoulos NG, Papageorgiou EG, Papassideri IS, Stamoulis K, Kriebardis AG, Rinalducci S, Antonelou MH. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol 2022; 57:102477. [PMID: 36155342 PMCID: PMC9513173 DOI: 10.1016/j.redox.2022.102477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Efthymios C Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Anastasia C Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Evangelos G Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
18
|
Thaler R, Khani F, Sturmlechner I, Dehghani SS, Denbeigh JM, Zhou X, Pichurin O, Dudakovic A, Jerez SS, Zhong J, Lee JH, Natarajan R, Kalajzic I, Jiang YH, Deyle DR, Paschalis EP, Misof BM, Ordog T, van Wijnen AJ. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat Commun 2022; 13:5883. [PMID: 36202795 PMCID: PMC9537512 DOI: 10.1038/s41467-022-32915-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Vitamin C deficiency disrupts the integrity of connective tissues including bone. For decades this function has been primarily attributed to Vitamin C as a cofactor for collagen maturation. Here, we demonstrate that Vitamin C epigenetically orchestrates osteogenic differentiation and function by modulating chromatin accessibility and priming transcriptional activity. Vitamin C regulates histone demethylation (H3K9me3 and H3K27me3) and promotes TET-mediated 5hmC DNA hydroxymethylation at promoters, enhancers and super-enhancers near bone-specific genes. This epigenetic circuit licenses osteoblastogenesis by permitting the expression of all major pro-osteogenic genes. Osteogenic cell differentiation is strictly and continuously dependent on Vitamin C, whereas Vitamin C is dispensable for adipogenesis. Importantly, deletion of 5hmC-writers, Tet1 and Tet2, in Vitamin C-sufficient murine bone causes severe skeletal defects which mimic bone phenotypes of Vitamin C-insufficient Gulo knockout mice, a model of Vitamin C deficiency and scurvy. Thus, Vitamin C's epigenetic functions are central to osteoblastogenesis and bone formation and may be leveraged to prevent common bone-degenerating conditions.
Collapse
Affiliation(s)
- Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ines Sturmlechner
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Xianhu Zhou
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sofia S Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jian Zhong
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramesh Natarajan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Song YS, Annalora AJ, Marcus CB, Jefcoate CR, Sorenson CM, Sheibani N. Cytochrome P450 1B1: A Key Regulator of Ocular Iron Homeostasis and Oxidative Stress. Cells 2022; 11:2930. [PMID: 36230892 PMCID: PMC9563809 DOI: 10.3390/cells11192930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (CYP) 1B1 belongs to the superfamily of heme-containing monooxygenases. Unlike other CYP enzymes, which are highly expressed in the liver, CYP1B1 is predominantly found in extrahepatic tissues, such as the brain, and ocular tissues including retina and trabecular meshwork. CYP1B1 metabolizes exogenous chemicals such as polycyclic aromatic hydrocarbons. CYP1B1 also metabolizes endogenous bioactive compounds including estradiol and arachidonic acid. These metabolites impact various cellular and physiological processes during development and pathological processes. We previously showed that CYP1B1 deficiency mitigates ischemia-mediated retinal neovascularization and drives the trabecular meshwork dysgenesis through increased levels of oxidative stress. However, the underlying mechanisms responsible for CYP1B1-deficiency-mediated increased oxidative stress remain largely unresolved. Iron is an essential element and utilized as a cofactor in a variety of enzymes. However, excess iron promotes the production of hydroxyl radicals, lipid peroxidation, increased oxidative stress, and cell damage. The retinal endothelium is recognized as a major component of the blood-retinal barrier, which controls ocular iron levels through the modulation of proteins involved in iron regulation present in retinal endothelial cells, as well as other ocular cell types including trabecular meshwork cells. We previously showed increased levels of reactive oxygen species and lipid peroxidation in the absence of CYP1B1, and in the retinal vasculature and trabecular meshwork, which was reversed by administration of antioxidant N-acetylcysteine. Here, we review the important role CYP1B1 expression and activity play in maintaining retinal redox homeostasis through the modulation of iron levels by retinal endothelial cells. The relationship between CYP1B1 expression and activity and iron levels has not been previously delineated. We review the potential significance of CYP1B1 expression, estrogen metabolism, and hepcidin-ferroportin regulatory axis in the local regulation of ocular iron levels.
Collapse
Affiliation(s)
- Yong-Seok Song
- Departments of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Organ State University, Corvallis, OR 97331, USA
| | - Craig B. Marcus
- Department of Environmental and Molecular Toxicology, Organ State University, Corvallis, OR 97331, USA
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christine M. Sorenson
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
20
|
Ramírez E, Jara N, Ferrada L, Salazar K, Martínez F, Oviedo MJ, Tereszczuk J, Ramírez-Carbonell S, Vollmann-Zwerenz A, Hau P, Nualart F. Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxid Redox Signal 2022; 37:538-559. [PMID: 35166128 DOI: 10.1089/ars.2021.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.
Collapse
Affiliation(s)
- Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Joanna Tereszczuk
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Sebastián Ramírez-Carbonell
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
21
|
Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants (Basel) 2022; 11:antiox11091663. [PMID: 36139737 PMCID: PMC9495646 DOI: 10.3390/antiox11091663] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ascorbic acid (AA) is an essential nutrient and has great potential as a cosmeceutical that protects the health and beauty of the skin. AA is expected to attenuate photoaging and the natural aging of the skin by reducing oxidative stress caused by external and internal factors and by promoting collagen gene expression and maturation. In this review, the biochemical basis of AA associated with collagen metabolism and clinical evidence of AA in increasing dermal collagen and inhibiting skin aging were discussed. In addition, we reviewed emerging strategies that have been developed to overcome the shortcomings of AA as a cosmeceutical and achieve maximum efficacy. Because extracellular matrix proteins, such as collagen, have unique amino acid compositions, their production in cells is influenced by the availability of specific amino acids. For example, glycine residues occupy 1/3 of amino acid residues in collagen protein, and the supply of glycine can be a limiting factor for collagen synthesis. Experiments showed that glycinamide was the most effective among the various amino acids and amidated amino acids in stimulating collagen production in human dermal fibroblasts. Thus, it is possible to synergistically improve collagen synthesis by combining AA analogs and amino acid analogs that act at different stages of the collagen production process. This combination therapy would be useful for skin antiaging that requires enhanced collagen production.
Collapse
|
22
|
Firouzi S, Pahlavani N, Navashenaq JG, Clayton ZS, Beigmohammadi MT, Malekahmadi M. The effect of Vitamin C and Zn supplementation on the immune system and clinical outcomes in COVID-19 patients. CLINICAL NUTRITION OPEN SCIENCE 2022; 44:144-154. [PMID: 35783349 PMCID: PMC9233349 DOI: 10.1016/j.nutos.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) is the most dangerous form of the coronavirus, which causes COVID-19. In patients with severe COVID-19, the immune system becomes markedly overactive. There is evidence that supplementation with select micronutrients may play a role in maintaining immune system function in this patient population. Throughout the COVID-19 pandemic, significant emphasis has been placed on the importance of supplementing critical micronutrients such as Vitamin C and Zinc (Zn) due to their immunomodulatory effects. Viral infections, like COVID-19, increase physiological demand for these micronutrients. Therefore, the purpose of this review was to provide comprehensive information regarding the potential effectiveness of Vitamin C and Zn supplementation during viral infection and specifically COVID-19. This review demonstrated a relation between Vitamin C and Zn deficiency and a reduction in the innate immune response, which can ultimately make patients with COVID-19 more vulnerable to viral infection. As such, adequate intake of Vitamin C and Zn, as an adjunctive therapeutic approach with any necessary pharmacological treatment(s), may be necessary to mitigate the adverse physiological effects of COVID-19. To truly clarify the role of Vitamin C and Zn supplementation in the management of COVID-19, we must wait for the results of ongoing randomized controlled trials. The toxicity of Vitamin C and Zn should also be considered to prevent over-supplementation. Over-supplementation of Vitamin C can lead to oxalate toxicity, while increased Zn intake can reduce immune system function. In summary, Vitamin C and Zn supplementation may be useful in mitigating COVID-19 symptomology.
Collapse
Key Words
- COVID-19
- Dietary supplement
- HIF-1α, Hypoxia-inducible factor-1α
- IFN-α, Intererferon alfa
- INF-β, Interferon beta
- Immune system
- NK, Natural killer
- PUFAs, Polyunsaturated fatty acids
- RCTs, Randomized controlled trials
- RDA, Recommended Dietary Allowance
- SARS-CoV-2, Severe Acute Respiratory Syndrome-Coronavirus-2
- TNF-α, Tumor necrosis factor alpha
- Vitamin C
- Zn
- Zn, Zinc
Collapse
Affiliation(s)
- Safieh Firouzi
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | | | - Mohammad Taghi Beigmohammadi
- Anesthesiology and Intensive Care Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author
| | - Mahsa Malekahmadi
- Anesthesiology and Intensive Care Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author. Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
24
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
25
|
Savvateeva M, Kudryavtseva A, Lukyanova E, Kobelyatskaya A, Pavlov V, Fedorova M, Pudova E, Guvatova Z, Kalinin D, Golovyuk A, Bulavkina E, Katunina I, Krasnov G, Snezhkina A. Somatic Mutation Profiling in Head and Neck Paragangliomas. J Clin Endocrinol Metab 2022; 107:1833-1842. [PMID: 35460558 PMCID: PMC9202733 DOI: 10.1210/clinem/dgac250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Head and neck paragangliomas (HNPGLs) are rare neoplasms with a high degree of heritability. Paragangliomas present as polygenic diseases caused by combined alterations in multiple genes; however, many driver changes remain unknown. OBJECTIVE The objective of the study was to analyze somatic mutation profiles in HNPGLs. METHODS Whole-exome sequencing of 42 tumors and matched normal tissues obtained from Russian patients with HNPGLs was carried out. Somatic mutation profiling included variant calling and utilizing MutSig and SigProfiler packages. RESULTS 57% of patients harbored germline and somatic variants in paraganglioma (PGL) susceptibility genes or potentially related genes. Somatic variants in novel genes were found in 17% of patients without mutations in any known PGL-related genes. The studied cohort was characterized by 6 significantly mutated genes: SDHD, BCAS4, SLC25A14, RBM3, TP53, and ASCC1, as well as 4 COSMIC single base substitutions (SBS)-96 mutational signatures (SBS5, SBS29, SBS1, and SBS7b). Tumors with germline variants specifically displayed SBS11 and SBS19, when an SBS33-specific mutational signature was identified for cases without those. Beta allele frequency analysis of copy number variations revealed loss of heterozygosity of the wild-type allele in 1 patient with germline mutation c.287-2A>G in the SDHB gene. In patients with germline mutation c.A305G in the SDHD gene, frequent potential loss of chromosome 11 was observed. CONCLUSION These results give an understanding of somatic changes and the mutational landscape associated with HNPGLs and are important for the identification of molecular mechanisms involved in tumor development.
Collapse
Affiliation(s)
- Maria Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Alexander Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elizaveta Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
26
|
Fan HL, Liu ST, Chang YL, Chiu YL, Huang SM, Chen TW. In Vitro Cell Density Determines the Sensitivity of Hepatocarcinoma Cells to Ascorbate. Front Oncol 2022; 12:843742. [PMID: 35677156 PMCID: PMC9169715 DOI: 10.3389/fonc.2022.843742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary histological subtype of liver cancer, and its incidence rates increase with age. Recently, systemic therapies, such as immune checkpoint inhibitors, monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been more beneficial than conventional therapies for treating HCC. Nonetheless, the prognosis of late-stage HCC remains dismal because of its high recurrence rates, even with substantial advances in current therapeutic strategies. A new treatment, such as a combination of current systemic therapies, is urgently required. Therefore, we adopted a repurposing strategy and tried to combine ascorbate with TKIs, including lenvatinib and regorafenib, in HepG2 and Hep3B cells. We investigated the potential functional impact of pharmacological concentrations of ascorbate on the cell-cycle profiles, mitochondrial membrane potential, oxidative response, synergistic effects of lenvatinib or regorafenib, and differential responsiveness between HepG2 and Hep3B cells. Our data suggest that the relative level of cell density is an important determinant for ascorbate cytotoxicity in HCC. Furthermore, the data also revealed that the cytotoxic effect of pharmacological concentrations of ascorbate might not be mediated via our proposed elevation of ROS generation. Ascorbate might be involved in redox homeostasis to enhance the efficacy of TKIs in HepG2 and Hep3B cells. The synergistic effects of ascorbate with TKIs (lenvatinib and regorafenib) support their potential as an adjuvant for HCC targeted TKI therapy. This research provides a cheap and new combinatory therapy for HCC treatment.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
27
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
28
|
Soares DM, Gonçalves LP, Machado CO, Esteves LC, Stevani CV, Oliveira CC, Dörr FA, Pinto E, Adachi FM, Hotta CT, Bastos EL. Reannotation of Fly Amanita l-DOPA Dioxygenase Gene Enables Its Cloning and Heterologous Expression. ACS OMEGA 2022; 7:16070-16079. [PMID: 35571802 PMCID: PMC9097196 DOI: 10.1021/acsomega.2c01365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The l-DOPA dioxygenase of Amanita muscaria (AmDODA) participates in the biosynthesis of betalain- and hygroaurin-type natural pigments. AmDODA is encoded by the dodA gene, whose DNA sequence was inferred from cDNA and gDNA libraries almost 30 years ago. However, reports on its heterologous expression rely on either the original 5'-truncated cDNA plasmid or artificial gene synthesis. We provide unequivocal evidence that the heterologous expression of AmDODA from A. muscaria specimens is not possible by using the coding sequence previously inferred for dodA. Here, we rectify and reannotate the full-length coding sequence for AmDODA and express a 205-aa His-tagged active enzyme, which was used to produce the l-DOPA hygroaurin, a rare fungal pigment. Moreover, AmDODA and other isozymes from bacteria were submitted to de novo folding using deep learning algorithms, and their putative active sites were inferred and compared. The wide catalytic pocket of AmDODA and the presence of the His-His-His and His-His-Asp motifs can provide insight into the dual cleavage of l-DOPA at positions 2,3 and 4,5 as per the mechanism proposed for nonheme dioxygenases.
Collapse
Affiliation(s)
- Douglas
M. M. Soares
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Letícia
C. P. Gonçalves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Caroline O. Machado
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Larissa C. Esteves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Cassius V. Stevani
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Carla C. Oliveira
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Felipe A. Dörr
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Ernani Pinto
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
- Centro
de Energia Nuclear na Agricultura, Universidade
de São Paulo, 13400-970 Piracicaba, São Paulo Brazil
| | - Flávia M.
M. Adachi
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Carlos T. Hotta
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Erick L. Bastos
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| |
Collapse
|
29
|
Vu KT, Kim JE, Cho IH, Park NH, Kim JK, Chun YS, Koo YT, Lee SH, Paik DH, Shim SM. A pilot study on the effect of formulation and individual muscle mass on vitamin C absorption in randomized clinical study. J Food Sci 2022; 87:2757-2765. [PMID: 35534091 DOI: 10.1111/1750-3841.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The current study investigated that the vitamin C absorption in plasma depends on the individual muscle mass and the formulation including drinks (Vita 500), capsules, and tablets by using a randomized and double-blind clinical study. The volunteers were divided into two groups that depended on their muscle mass, including those whose muscle mass was greater than 40% ( ≥ $ \ge $ 40%) and less than 40% muscle mass (<40%). Levels of vitamin C in blood plasma was analyzed by high-performance liquid chromatography by ultraviolet detection (HPLC-UV). The existing HPLC method was modified according to lab conditions but maintained a constantly low pH sample reduction procedure. The analytical method validated stability, linearity, recovery, reliability, and accuracy. The vitamin C absorption was the highest at 120 min after ingesting Vita 500 (21.47 ± 15.99 µmol/L). It was higher in the group that has more than 40% muscle mass compared to other formulations, such as tablets and capsules. The results from the current study indicate that vitamin C formulations differently affect the vitamin C absorption, and its effect depends on the muscle mass. As the results, liquid type vitamin C formulations could enhance vitamin C absorption, which resulted in an improvement of vitamin C absorption according to muscle mass. PRACTICAL APPLICATION: The results of this study may recommend using vitamin C supplementation as liquid type. It may also provide evidence that people with higher muscle mass can absorb vitamin C more efficiently.
Collapse
Affiliation(s)
- Kiet Tan Vu
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Jeong-Eun Kim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - In-Ho Cho
- Human Performance Lab, Korea National Sport University, 1239, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Noh-Hwan Park
- Human Performance Lab, Korea National Sport University, 1239, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Jong-Kyu Kim
- Yongin Techno Valley, Aribio H&B Co., Ltd., Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16914, Republic of Korea
| | - Yoon-Seok Chun
- Yongin Techno Valley, Aribio H&B Co., Ltd., Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16914, Republic of Korea
| | - Young-Tae Koo
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul, 06650, Republic of Korea
| | - Sang-Hun Lee
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul, 06650, Republic of Korea
| | - Dong-Hyun Paik
- Kwang-Dong Pharmaceutical Co., Ltd., Seoul, 06650, Republic of Korea
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| |
Collapse
|
30
|
Carr AC, Block G, Lykkesfeldt J. Estimation of Vitamin C Intake Requirements Based on Body Weight: Implications for Obesity. Nutrients 2022; 14:nu14071460. [PMID: 35406073 PMCID: PMC9003354 DOI: 10.3390/nu14071460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/07/2022] Open
Abstract
Higher body weight is known to negatively impact plasma vitamin C status. However, despite this well-documented inverse association, recommendations on daily vitamin C intakes by health authorities worldwide do not include particular reference values for people of higher body weight. This suggests that people of higher body weight and people with obesity may be receiving insufficient vitamin C in spite of ingesting the amounts recommended by their health authorities. The current preliminary investigation sought to estimate how much additional vitamin C people with higher body weights would need to consume in order to attain a comparable vitamin C status to that of a lower weight person consuming an average Western vitamin C intake. Data from two published vitamin C dose-concentration studies were used to generate the relationship: a detailed pharmacokinetic study with seven healthy non-smoking men and a multiple depletion–repletion study with 68 healthy non-smoking men of varying body weights. Our estimates suggest that an additional intake of 10 mg vitamin C/day is required for every 10 kg increase in body weight to attain a comparable plasma concentration to a 60 kg individual with a vitamin C intake of ~110 mg/day, which is the daily intake recommended by the European Food Safety Authority (EFSA). Thus, individuals weighing e.g., 80 and 90 kg will need to consume ~130 and 140 mg vitamin C/day, respectively. People with obesity will likely need even higher vitamin C intakes. As poor vitamin C status is associated with increased risk of several chronic diseases including cardiovascular disease, these findings may have important public health implications. As such, dose-finding studies are required to determine optimal vitamin C intakes for overweight and obese people.
Collapse
Affiliation(s)
- Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand
- Correspondence: ; Tel.: +643-364-0649
| | - Gladys Block
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720-7360, USA;
| | - Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark;
| |
Collapse
|
31
|
Wolf D, Muralidharan A, Mohan S. Role of prolyl hydroxylase domain proteins in bone metabolism. Osteoporos Sarcopenia 2022; 8:1-10. [PMID: 35415275 PMCID: PMC8987327 DOI: 10.1016/j.afos.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022] Open
Abstract
Cellular metabolism requires dissolved oxygen gas. Because evolutionary refinements have constrained mammalian dissolved oxygen levels, intracellular oxygen sensors are vital for optimizing the bioenergetic and biosynthetic use of dissolved oxygen. Prolyl hydroxylase domain (PHD) homologs 1-3 (PHD1/2/3) are molecular oxygen dependent non-heme dioxygenases whose enzymatic activity is regulated by the concentration of dissolved oxygen. PHD oxygen dependency has evolved into an important intracellular oxygen sensor. The most well studied mechanism of PHD oxygen-sensing is its regulation of the hypoxia-inducible factor (HIF) hypoxia signaling pathway. Heterodimeric HIF transcription factor activity is regulated post-translationally by selective PHD proline hydroxylation of its HIF1α subunit, accelerating HIF1α ubiquitination and proteasomal degradation, preventing HIF heterodimer assembly, nuclear accumulation, and activation of its target oxygen homeostasis genes. Phd2 has been shown to be the key isoform responsible for HIF1α subunit regulation in many cell types and accordingly disruption of the Phd2 gene results in embryonic lethality. In bone cells Phd2 is expressed in high abundance and tightly regulated. Conditional disruption of the Phd1, Phd2 and/or Phd3 gene in various bone cell types using different Cre drivers reveals a major role for PHD2 in skeletal growth and development. In this review, we will summarize the state of current knowledge on the role and mechanism of action of PHD2 as oxygen sensor in regulating bone metabolism.
Collapse
Affiliation(s)
- David Wolf
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department Biochemistry and Orthopedic Surgery, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
32
|
Armstrong N, Storey CM, Noll SE, Margulis K, Soe MH, Xu H, Yeh B, Fishbein L, Kebebew E, Howitt BE, Zare RN, Sage J, Annes JP. SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Rep 2022; 38:110453. [PMID: 35235785 PMCID: PMC8939053 DOI: 10.1016/j.celrep.2022.110453] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.
Collapse
Affiliation(s)
- Neali Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Claire M Storey
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Myat Han Soe
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | | | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA; Endocrine Oncology Program, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Włodarczyk M, Nowicka G, Ciebiera M, Ali M, Yang Q, Al-Hendy A. Epigenetic Regulation in Uterine Fibroids-The Role of Ten-Eleven Translocation Enzymes and Their Potential Therapeutic Application. Int J Mol Sci 2022; 23:2720. [PMID: 35269864 PMCID: PMC8910916 DOI: 10.3390/ijms23052720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Uterine fibroids (UFs) are monoclonal, benign tumors that contain abnormal smooth muscle cells and the accumulation of extracellular matrix (ECM). Although benign, UFs are a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. Many risk factors are involved in the pathogenesis of UFs via genetic and epigenetic mechanisms. The latter involving DNA methylation and demethylation reactions provide specific DNA methylation patterns that regulate gene expression. Active DNA demethylation reactions mediated by ten-eleven translocation proteins (TETs) and elevated levels of 5-hydroxymethylcytosine have been suggested to be involved in UF formation. This review paper summarizes the main findings regarding the function of TET enzymes and their activity dysregulation that may trigger the development of UFs. Understanding the role that epigenetics plays in the pathogenesis of UFs may possibly lead to a new type of pharmacological fertility-sparing treatment method.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- The Center of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| |
Collapse
|
34
|
Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The Epigenetic Role of Vitamin C in Neurodevelopment. Int J Mol Sci 2022; 23:ijms23031208. [PMID: 35163133 PMCID: PMC8836017 DOI: 10.3390/ijms23031208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics.
Collapse
Affiliation(s)
- Sharna J. Coker
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Carlos C. Smith-Díaz
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Rebecca M. Dyson
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
- Correspondence: (M.C.M.V.); (M.J.B.)
| | - Mary J. Berry
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
- Correspondence: (M.C.M.V.); (M.J.B.)
| |
Collapse
|
35
|
Raghavan PR. Metadichol®: A Novel Nanolipid Formulation That Inhibits SARS-CoV-2 and a Multitude of Pathological Viruses In Vitro. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1558860. [PMID: 35039793 PMCID: PMC8760534 DOI: 10.1155/2022/1558860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 μg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 μg/mL. Moreover, Metadichol® had an EC90 of 0.00037 μM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 μM) and chloroquine (EC50 = 1.14 μM), respectively.
Collapse
|
36
|
Kouakanou L, Peters C, Brown CE, Kabelitz D, Wang LD. Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol 2021; 12:765906. [PMID: 34899716 PMCID: PMC8663797 DOI: 10.3389/fimmu.2021.765906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Department of Pediatrics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
37
|
Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021; 13:3732. [PMID: 34835988 PMCID: PMC8619077 DOI: 10.3390/nu13113732] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anemia is very common in patients with inflammatory disorders. Its prevalence is associated with severity of the underlying disease, and it negatively affects quality of life and cardio-vascular performance of patients. Anemia of inflammation (AI) is caused by disturbances of iron metabolism resulting in iron retention within macrophages, a reduced erythrocyte half-life, and cytokine mediated inhibition of erythropoietin function and erythroid progenitor cell differentiation. AI is mostly mild to moderate, normochromic and normocytic, and characterized by low circulating iron, but normal and increased levels of the storage protein ferritin and the iron hormone hepcidin. The primary therapeutic approach for AI is treatment of the underlying inflammatory disease which mostly results in normalization of hemoglobin levels over time unless other pathologies such as vitamin deficiencies, true iron deficiency on the basis of bleeding episodes, or renal insufficiency are present. If the underlying disease and/or anemia are not resolved, iron supplementation therapy and/or treatment with erythropoietin stimulating agents may be considered whereas blood transfusions are an emergency treatment for life-threatening anemia. New treatments with hepcidin-modifying strategies and stabilizers of hypoxia inducible factors emerge but their therapeutic efficacy for treatment of AI in ill patients needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Smith-Díaz CC, Magon NJ, McKenzie JL, Hampton MB, Vissers MCM, Das AB. Ascorbate Inhibits Proliferation and Promotes Myeloid Differentiation in TP53-Mutant Leukemia. Front Oncol 2021; 11:709543. [PMID: 34497762 PMCID: PMC8419345 DOI: 10.3389/fonc.2021.709543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Loss-of-function mutations in the DNA demethylase TET2 are associated with the dysregulation of hematopoietic stem cell differentiation and arise in approximately 10% of de novo acute myeloid leukemia (AML). TET2 mutations coexist with other mutations in AML, including TP53 mutations, which can indicate a particularly poor prognosis. Ascorbate can function as an epigenetic therapeutic in pathological contexts involving heterozygous TET2 mutations by restoring TET2 activity. How this response is affected when myeloid leukemia cells harbor mutations in both TET2 and TP53 is unknown. Therefore, we examined the effects of ascorbate on the SKM-1 AML cell line that has mutated TET2 and TP53. Sustained treatment with ascorbate inhibited proliferation and promoted the differentiation of these cells. Furthermore, ascorbate treatment significantly increased 5-hydroxymethylcytosine, suggesting increased TET activity as the likely mechanism. We also investigated whether ascorbate affected the cytotoxicity of Prima-1Met, a drug that reactivates some p53 mutants and is currently in clinical trials for AML. We found that the addition of ascorbate had a minimal effect on Prima-1Met–induced cytotoxicity, with small increases or decreases in cytotoxicity being observed depending on the timing of treatment. Collectively, these data suggest that ascorbate could exert a beneficial anti-proliferative effect on AML cells harboring both TET2 and TP53 mutations whilst not interfering with targeted cytotoxic therapies such as Prima-1Met.
Collapse
Affiliation(s)
- Carlos C Smith-Díaz
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Judith L McKenzie
- Haematology Research Group, Christchurch Hospital and Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
39
|
Mumtaz S, Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Mughal TA, Younas M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. BRAZ J BIOL 2021; 83:e247165. [PMID: 34468525 DOI: 10.1590/1519-6984.247165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Now a day's multidrug resistance phenomenon has become the main cause for concern and there has been an inadequate achievement in the development of novel antibiotics to treat the bacterial infections. Therefore, there is an unmet need to search for novel adjuvant. Vitamin C is one such promising adjuvant. The present study was aimed to elucidate the antibacterial effect of vitamin C at various temperatures (4°C, 37°C and 50°C) and pH (3, 8, and 11), against Gram-positive and Gram-negative bacteria at various concentrations (5-20 mg/ml) through agar well diffusion method. Growth inhibition of all bacterial strains by vitamin C was concentration-dependent. Vitamin C significantly inhibited the growth of Gram-positive bacteria: Bacillus licheniformis (25.3 ± 0.9 mm), Staphylococcus aureus (22.0 ± 0.6 mm), Bacillus subtilis (19.3 ± 0.3 mm) and Gram-negative bacteria: Proteus mirabilis (27.67 ± 0.882 mm), Klebsiella pneumoniae (21.33±0.9 mm), Pseudomonas aeruginosa (18.0 ± 1.5 mm) and Escherichia coli (18.3 ± 0.3 mm). The stability of vitamin C was observed at various pH values and various temperatures. Vitamin C showed significant antibacterial activity at acidic pH against all bacterial strains. Vitamin C remained the stable at different temperatures. It was concluded that vitamin C is an effective and safe antibacterial agent that can be used in the future as an adjunct treatment option to combat infections in humans.
Collapse
Affiliation(s)
- S Mumtaz
- Government College University, Department of Zoology, Applied Entomology and Medical Toxicology Laboratory, Lahore, Pakistan
| | - S Mumtaz
- Government College University, Department of Zoology, Applied Entomology and Medical Toxicology Laboratory, Lahore, Pakistan
| | - S Ali
- Government College University, Department of Zoology, Applied Entomology and Medical Toxicology Laboratory, Lahore, Pakistan
| | - H M Tahir
- Government College University, Department of Zoology, Applied Entomology and Medical Toxicology Laboratory, Lahore, Pakistan
| | - S A R Kazmi
- Government College University, Department of Chemistry, Lahore, Pakistan
| | - T A Mughal
- Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - M Younas
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| |
Collapse
|
40
|
TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2021; 118:2110758118. [PMID: 34413196 PMCID: PMC8403940 DOI: 10.1073/pnas.2110758118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in need of novel targeted therapies to prevent relapse and lessen treatment toxicity. We reveal frequent (∼88%) transcriptional silencing or repression of the tumor suppressor TET2 in T-ALL. We show that loss of TET2 in T-ALL is correlated with hypermethylation of the TET2 promoter and that TET2 expression can be rescued by treatment with the DNA demethylating agent, 5-azacytidine (5-aza). We further reveal that the TET2 cofactor vitamin C exerts a strong synergistic effect on global transcriptional changes when added to 5-aza treatment. Importantly, 5-aza treatment results in increased cell death, specifically in T-ALL cells lacking TET2. Thus, we clearly identify 5-aza as a potentially targeted therapy for TET2-silenced T-ALL. Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methylation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improving prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respectively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Importantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous retroviruses (HERVs), which was further enhanced by the addition of physiological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.
Collapse
|
41
|
Liu X, Khan A, Li H, Wang S, Chen X, Huang H. Ascorbic acid in epigenetic reprogramming. Curr Stem Cell Res Ther 2021; 17:13-25. [PMID: 34264189 DOI: 10.2174/1574888x16666210714152730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that ascorbic acid (vitamin C) enhances the reprogramming process by multiple mechanisms. This is primarily due to its cofactor role in Fe(II) and 2-oxoglutarate-dependent dioxygenases, including the DNA demethylases Ten Eleven Translocase (TET) and histone demethylases. Epigenetic variations have been shown to play a critical role in somatic cell reprogramming. DNA methylation and histone methylation are extensively recognized as barriers to somatic cell reprogramming. N6-methyladenosine (m6A), known as RNA methylation, is an epigenetic modification of mRNAs and has also been shown to play a role in regulating cellular reprogramming. Multiple cofactors are reported to promote the activity of demethylases, including vitamin C. This review focuses on examining the evidence and mechanism of vitamin C in DNA and histone demethylation and highlights its potential involvement in regulating m6A demethylation. It also shows the significant contribution of vitamin C in epigenetic regulation and the affiliation of demethylases with vitamin C-facilitated epigenetic reprogramming.
Collapse
Affiliation(s)
- Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Aamir Khan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Huan Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
42
|
Manuelli V, Pecorari C, Filomeni G, Zito E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. FEBS J 2021; 289:5413-5425. [PMID: 34228878 DOI: 10.1111/febs.16110] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Angiogenesis is the process of blood vessel growth. The angiogenic switch consists of new blood vessel formation that, in carcinogenesis, can lead to the transition from a harmless cluster of dormant cells to a large tumorigenic mass with metastatic potential. Hypoxia, that is, the scarcity of oxygen, is a hallmark of solid tumors to which they adapt by activating hypoxia-inducible factor-1 (HIF-1), a transcription factor triggering de novo angiogenesis. HIF-1 and the angiogenic molecules that are expressed upon its activation are modulated by redox status. Modulations of the redox environment can influence the angiogenesis signaling at different levels, thereby impinging on the angiogenic switch. This review provides a molecular overview of the redox-sensitive steps in angiogenic signaling, the main molecular players involved, and their crosstalk with the unfolded protein response. New classes of inhibitors of these modulators which might act as antiangiogenic drugs in cancer are also discussed.
Collapse
Affiliation(s)
- Valeria Manuelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Pecorari
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Copenhagen University, Denmark.,Department of Biology, Tor Vergata University, Rome, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy
| |
Collapse
|
43
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
44
|
Goncalves J, Moog S, Morin A, Gentric G, Müller S, Morrell AP, Kluckova K, Stewart TJ, Andoniadou CL, Lussey-Lepoutre C, Bénit P, Thakker A, Vettore L, Roberts J, Rodriguez R, Mechta-Grigoriou F, Gimenez-Roqueplo AP, Letouzé E, Tennant DA, Favier J. Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Res 2021; 81:3480-3494. [PMID: 34127497 DOI: 10.1158/0008-5472.can-20-2936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.
Collapse
Affiliation(s)
- Judith Goncalves
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Sophie Moog
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Aurélie Morin
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Géraldine Gentric
- Stress and Cancer Laboratory, Institut Curie, Equipe Labellisée par la Ligue Nationale contre le Cancer, Inserm U830, PSL Research University, Paris France
| | - Sebastian Müller
- Chemical Biology of Cancer Team, Equipe Labellisée par la Ligue Contre le Cancer, PSL Research University, CNRS UMR3666 -INSERM U1143, Institut Curie, Paris, France
| | - Alexander P Morrell
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Theodora J Stewart
- London Metallomics Facility, King's College London and Imperial College London, London, United Kingdom
| | - Cynthia L Andoniadou
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London
| | - Charlotte Lussey-Lepoutre
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Sorbonne Université, Pitie-Salpêtrière Hospital, Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Paule Bénit
- Université de Paris, INSERM, UMR 1141, Hôpital Robert Debré, Paris, France
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Lisa Vettore
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Team, Equipe Labellisée par la Ligue Contre le Cancer, PSL Research University, CNRS UMR3666 -INSERM U1143, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, Equipe Labellisée par la Ligue Nationale contre le Cancer, Inserm U830, PSL Research University, Paris France
| | - Anne-Paule Gimenez-Roqueplo
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris France
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Judith Favier
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France.
- Université de Paris, Paris, France
| |
Collapse
|
45
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
46
|
Hemilä H, Carr A. Comment on "Therapeutic target and molecular mechanism of vitamin C-treated pneumonia: a systematic study of network pharmacology" by R. Li, C. Guo, Y. Li, X. Liang, L. Yang and W. Huang, Food Funct., 2020, 11, 4765. Food Funct 2021; 12:1371-1372. [PMID: 33449981 DOI: 10.1039/d0fo02189j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Comment raises concerns about the article "Therapeutic target and molecular mechanism of vitamin C-treated pneumonia: a systematic study of network pharmacology".
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, Helsinki, Finland.
| | - Anitra Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
47
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
48
|
Evers MS, Roullier-Gall C, Morge C, Sparrow C, Gobert A, Alexandre H. Vitamins in wine: Which, what for, and how much? Compr Rev Food Sci Food Saf 2021; 20:2991-3035. [PMID: 33884746 DOI: 10.1111/1541-4337.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
Vitamins are essential compounds to yeasts, and notably in winemaking contexts. Vitamins are involved in numerous yeast metabolic pathways, including those of amino acids, fatty acids, and alcohols, which suggests their notable implication in fermentation courses, as well as in the development of aromatic compounds in wines. Although they are major components in the course of those microbial processes, their significance and impact have not been extensively studied in the context of winemaking and wine products, as most of the studies focusing on the subject in the past decades have relied on relatively insensitive and imprecise analytical methods. Therefore, this review provides an extensive overview of the current knowledge regarding the impacts of vitamins on grape must fermentations, wine-related yeast metabolisms, and requirements, as well as on the profile of wine sensory characteristics. We also highlight the methodologies and techniques developed over time to perform vitamin analysis in wines, and assess the importance of precisely defining the role played by vitamins in winemaking processes, to ensure finer control of the fermentation courses and product characteristics in a highly complex matrix.
Collapse
Affiliation(s)
- Marie Sarah Evers
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.,SAS Sofralab, Magenta, France
| | - Chloé Roullier-Gall
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | | | - Hervé Alexandre
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
49
|
Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene 2021; 40:3351-3363. [PMID: 33864000 DOI: 10.1038/s41388-020-01639-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
The tricarboxylic acid cycle (TCA cycle) has been known for decades as a hub for generating cellular energy and precursors for biosynthetic pathways. Several cancers harbor mutations that affect the integrity of this cycle, mostly at the levels of isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH). This results in dysregulation in the production of TCA cycle metabolites and is probably implicated in cancer initiation. By modulating cellular activities, including metabolism and signaling, TCA cycle intermediates are able to impact the processes of cancer development and progression. In this review, we discuss the functional roles of the TCA cycle intermediates in suppressing or promoting the progression of cancers. A further understanding of TCA metabolites' roles and molecular mechanisms in oncogenesis would prompt developing novel metabolite-based cancer therapy in the future.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
50
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|