1
|
Zhang H, Ren Y, Zhao D, Ma B, Zhang L, Wang J, Liu X, Li Y, Liu Q. Inflammatory factors predict infection risk during chemotherapy in leukemia patients. Microb Pathog 2024; 199:107210. [PMID: 39647540 DOI: 10.1016/j.micpath.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND This study explores the novel role of specific inflammatory factors in predicting infection risk among leukemia patients undergoing chemotherapy, providing new insights into managing leukemia-associated infections. METHODS This prospective cohort study included 244 leukemia patients suspected of infection, divided into the infected group (n = 194) and the uninfected group (n = 50) based on etiological testing. The infected group was further categorized into bacterial (n = 123), fungal (n = 22), and viral (n = 49) infection subgroups. Inflammatory cytokines including IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, TNF-α, IFN-γ, IL-17A, IL-127P0, and IFN-α were measured using ELISA kits. Additional markers such as hs-CRP, SAA, and PCT were also assessed for the infected group. RESULTS The levels of IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ, IL-12p70, and IFN-α significantly differed between the infected and uninfected groups (P < 0.05). IL-1β, IL-4, IL-6, and IL-10 were significantly higher in the infected group compared to the uninfected group. Significant differences in PCT, IL-2, IL-4, IL-5, and IL-10 levels were observed among patients with bacterial, fungal, and viral infections (P < 0.05). However, none of these inflammatory factors were predictive of infection type. CONCLUSION IL-4, IL-6, IL-8, and IL-10 were identified as independent predictors of infection risk. However, no inflammatory factors could be used to distinguish between different types of infections.
Collapse
Affiliation(s)
- Huimin Zhang
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China.
| | - Yihang Ren
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Dan Zhao
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Bing Ma
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Lihong Zhang
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Jianying Wang
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Xinying Liu
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Yuexian Li
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| | - Qingchi Liu
- Hematology Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050030, China
| |
Collapse
|
2
|
Fakhar F, Mohammadian K, Keramat S, Stanek A. The Potential Role of Dietary Polyphenols in the Prevention and Treatment of Acute Leukemia. Nutrients 2024; 16:4100. [PMID: 39683494 DOI: 10.3390/nu16234100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Acute leukemia is a prevalent cancer worldwide and is classified into two distinct forms. Currently, various therapies have been developed for this disease; however, the issues of recurrence, resistance to treatment, and adverse effects require the exploration of novel treatments. Polyphenols, classified into four categories, are secondary metabolites originating from plants that demonstrate diverse metabolic features such as anticancer, anti-inflammatory, and antioxidant activities. Consequently, they have attracted attention for therapeutic and preventive measures. Research indicates that dietary polyphenols can mitigate the disease burden of acute leukemias by influencing the molecular pathways associated with the disease and its inflammatory processes. Furthermore, owing to their antioxidant properties, they can reduce the amounts of reactive oxygen species generated from the disrupted molecular pathways in these malignancies. The therapeutic actions of polyphenols can facilitate disease recovery by interrupting the cell cycle and causing apoptosis by activating pro-apoptotic genes. In conclusion, the intake of dietary polyphenols, due to their convenience and availability, coupled with the positive outcomes associated with their use in conjunction with conventional therapies, may function as an efficient therapeutic and preventive measure for acute leukemia.
Collapse
Affiliation(s)
- Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy
- Support Association of Patients of Buerger's Disease, Buerger's Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy
- Department of Internal Medicine, Metabolic Diseases and Angiology, Faculty of Health Sciences in Katowice, Medical University of Silesia, Upper Silesian Medical Center, Ziołowa 45/47 St., 40-055 Katowice, Poland
| |
Collapse
|
3
|
Shi Y, Zhang W, Jia Q, Zhong X, Iyer P, Wu H, Yuan YC, Zhao Y, Zhang L, Wang L, Jia Z, Kuo YH, Sun Z. Cancer-associated SF3B1-K700E mutation controls immune responses by regulating T reg function via aberrant Anapc13 splicing. SCIENCE ADVANCES 2024; 10:eado4274. [PMID: 39303038 PMCID: PMC11414738 DOI: 10.1126/sciadv.ado4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Recurrent somatic mutations in spliceosome factor 3b subunit 1 (SF3B1) are identified in hematopoietic malignancies, with SF3B1-K700E being the most common one. Here, we show that regulatory T cell (Treg)-specific expression of SF3B1-K700E (Sf3b1K700Efl/+/Foxp3YFP-Cre) results in spontaneous autoimmune phenotypes. CD4+ T cells from Sf3b1K700Efl/+/Foxp3YFP-Cre mice display defective Treg differentiation and inhibitory function, which is demonstrated by failed prevention of adoptive transfer colitis by Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs. Mechanically, SF3B1-K700E induces an aberrant splicing event that results in reduced expression of a cell proliferation regulator Anapc13 due to the insertion of a 231-base pair DNA fragment to the 5' untranslated region. Forced expression of the Anapc13 gene restores the differentiation and ability of Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs to prevent adoptive transfer colitis. In addition, acute myeloid leukemia grows faster in aged, but not young, Sf3b1K700Efl/+/Foxp3YFP-Cre mice compared to Foxp3YFP-Cre mice. Our results highlight the impact of cancer-associated SF3B1 mutation on immune responses, which affect cancer development.
Collapse
Affiliation(s)
- Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Qiong Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Prajish Iyer
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Translational Bioinformatics, Department of Computational Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yuqi Zhao
- Integrated Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lili Wang
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhenyu Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Alkhulaifi FM, Alonaizan R, rady A, Alomar S. Study of gene polymorphisms in Toll-like receptor 2 in patients with acute lymphoblastic leukemia. Heliyon 2024; 10:e33754. [PMID: 39040297 PMCID: PMC11261853 DOI: 10.1016/j.heliyon.2024.e33754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives Acute Lymphoblastic Leukemia (ALL) is a multifactorial disease that results from the interaction between multiple genetic factors. ALL is characterized by uncontrolled production of hematopoietic precursor cells of the lymphoid progenitors within the bone marrow. The development of hematological malignancies has been associated with malignant-like cells that express low levels of immunogenic surface molecules, thus, facilitating their escape from cellular antineoplastic immune responses. This risk may be partly influenced by variations in polymorphic genes that control immune function and regulation. Toll-like receptors (TLRs) are well known pattern recognition receptors playing key role in innate immune response. Abnormal expression and dysregulation of TLRs will provide an opportunity for cancer cells to escape from the immune system and enhance their proliferation and angiogenesis. Toll-like receptor 2 (TLR2) play an essential role in innate immunity. Single nucleotide polymorphisms (SNPs) are present in a number of TLR genes and have been associated with various disorders. Methods In this study, 265 subjects have been divided into two groups included 150 patients with ALL and115 healthy volunteers. All subjects were genotyped using TaqMan PCR techniques. In total, Five SNPs were statistically evaluated in the TLR2 (rs1898830 A/G, rs3804099 T/C, rs3804100 T/C, rs1339 T/C, and rs1337 C/G), which may influence the susceptibility of ALL. Minor allele frequency and genotype distribution were compared across the study groups, and the relative risk and differences between patients and controls were estimated. Moreover, the mRNA expression level was evaluated in patients with ALL and the matched healthy individuals by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Results TLR2 rs1898830 A/G; rs3804099 T/C; rs3804100 T/C; rs1339 T/C, were significantly decrease the risk in our population, overall and for certain subtypes and ALL samples exhibited significant increase in the mRNA levels of TLR2. Conclusions This study shows that TLR2 could be an independent prognostic factor of ALL risks in the Saudi population. Suggesting that genetic variation in genes associated with an immune response may be important in the etiology of ALL. In addition, the results herein revealed that TLR2 overexpression is associated with ALL and has diverse biological significance in the context of the complex relationship between inflammation and cancer development. Therefore, these data could open further studies to explore the possible clinical relevance of TLRs as pathological markers for Leukemia and enhance the strategies regarding hematological malignancies prevention based on their gene expression.
Collapse
Affiliation(s)
- Fadwa M. Alkhulaifi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed rady
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Barreyro L, Sampson AM, Hueneman K, Choi K, Christie S, Ramesh V, Wyder M, Wang D, Pujato M, Greis KD, Huang G, Starczynowski DT. Dysregulated innate immune signaling cooperates with RUNX1 mutations to transform an MDS-like disease to AML. iScience 2024; 27:109809. [PMID: 38784013 PMCID: PMC11112336 DOI: 10.1016/j.isci.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulated innate immune signaling is linked to preleukemic conditions and myeloid malignancies. However, it is unknown whether sustained innate immune signaling contributes to malignant transformation. Here we show that cell-intrinsic innate immune signaling driven by miR-146a deletion (miR-146aKO), a commonly deleted gene in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), cooperates with mutant RUNX1 (RUNX1mut) to initially induce marrow failure and features of MDS. However, miR-146aKO hematopoietic stem and/or progenitor cells (HSPCs) expressing RUNX1mut eventually progress to a fatal AML. miR-146aKO HSPCs exhaust during serial transplantation, while expression of RUNX1mut restored their hematopoietic cell function. Thus, HSPCs exhibiting dysregulated innate immune signaling require a second hit to develop AML. Inhibiting the dysregulated innate immune pathways with a TRAF6-UBE2N inhibitor suppressed leukemic miR-146aKO/RUNX1mut HSPCs, highlighting the necessity of TRAF6-dependent cell-intrinsic innate immune signaling in initiating and maintaining AML. These findings underscore the critical role of dysregulated cell-intrinsic innate immune signaling in driving preleukemic cells toward AML progression.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Avery M. Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Dehua Wang
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Mario Pujato
- Life Sciences Computational Services, LLC, Huntingdon Valley, PA, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Department of Pathology & Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Soltani M, Sharifi MJ, Khalilian P, Sharifi M, Nematollahi P, Shapourian H, Ganjalikhani Hakemi M. Potential Diagnostic Value of Abnormal Pyroptosis Genes Expression in Myelodysplastic Syndromes (MDS): A Primary Observational Cohort Study. Int J Hematol Oncol Stem Cell Res 2024; 18:156-164. [PMID: 38868810 PMCID: PMC11166493 DOI: 10.18502/ijhoscr.v18i2.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/06/2023] [Indexed: 06/14/2024] Open
Abstract
Background: Myelodysplastic syndromes (MDS) are determined by ineffective hematopoiesis and bone marrow cytological dysplasia with somatic gene mutations and chromosomal abnormalities. Accumulating evidence has revealed the pivotal role of NLRP3 inflammasome activation and pyroptotic cell death in the pathogenesis of MDS. Although MDS can be diagnosed with a variety of morphologic and cytogenetic tests, most of these tests have limitations or problems in practice. Materials and Methods: In the present study, we evaluated the expression of genes that form the inflammasome (NLRP3, ASC, and CASP1) in bone marrow specimens of MDS patients and compared the results with those of other leukemias to evaluate their diagnostic value for MDS. Primary samples of this observational cohort study were collected from aspiration samples of patients with myelodysplastic syndromes (27 cases) and patients with non-myelodysplastic syndrome hematological cancers (45 cases). After RNA extraction and c.DNA synthesis, candidate transcripts and housekeeping transcripts were measured by real-time PCR method (SYBER Green assay). Using Kruskal-Wallis the relative gene expressions were compared and differences with p value less than 0.05 were considered as significant. Discrimination capability, cut-off, and area under curve (AUC) of all markers were analyzed with recessive operation curve (ROC) analysis. Results: We found that Caspase-1 and ASC genes expressed at more levels in MDS specimens compared to non-MDS hematological malignancies. A relative average expression of 10.22 with a p-value of 0.001 and 1.86 with p=0.019 was detected for Caspase-1 and ASC, respectively. ROC curve analysis shows an AUC of 0.739 with p=0.0001 for Caspase-1 and an AUC of 0.665 with p=0.0139 for ASC to MDS discrimination. Conclusion: Our results show that Caspase-1 and ASC gene expression levels can be used as potential biomarkers for MDS diagnosis. Prospective studies with large sample numbers are suggested.
Collapse
Affiliation(s)
- Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
8
|
Tezcanli Kaymaz B, Gumus N, Celik B, Alcitepe İ, Biray Avci C, Aktan C. Ponatinib and STAT5 Inhibitor Pimozide Combined Synergistic Treatment Applications Potentially Overcome Drug Resistance via Regulating the Cytokine Expressional Network in Chronic Myeloid Leukemia Cells. J Interferon Cytokine Res 2024; 44:178-189. [PMID: 38579140 DOI: 10.1089/jir.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative hematological disease characterized by the chimeric breakpoint-cluster region/Abelson kinase1 (BCR::ABL1) oncoprotein; playing a pivotal role in CML molecular pathology, diagnosis, treatment, and possible resistance arising from the success and tolerance of tyrosine kinase inhibitor (TKI)-based therapy. The transcription factor STAT5 constitutive signaling, which is influenced by the cytokine signaling network, triggers BCR::ABL1-based CML pathogenesis and is also relevant to acquired TKI resistance. The unsuccessful therapeutic approaches targeting BCR::ABL1, in particular third-line therapy with ponatinib, still need to be further developed with alternative combination strategies to overcome drug resistance. As treatment with the STAT5 inhibitor pimozide in combination with ponatinib resulted in an efficient and synergistic therapeutic approach in TKI-resistant CML cells, this study focused on identifying the underlying amplification of ponatinib response mechanisms by determining different cytokine expression profiles in parental and ponatinib-resistant CML cells, in vitro. The results showed that expression of interleukin (IL) 1B, IL9, and IL12A-B was increased by 2-fold, while IL18 was downregulated by 2-fold in the ponatinib-resistant cells compared to sensitive ones. Importantly, ponatinib treatment upregulated the expression of 21 of the 23 interferon and IL genes in the ponatinib-resistant cells, while treatment with pimozide or a combination dose resulted in a reduction in the expression of 19 different cytokine genes, such as for example, inflammatory cytokines, IL1A-B and IL6 or cytokine genes associated with supporting tumor progression, leukemia stem cell growth or poor survival, such as IL3, IL8, IL9, IL10, IL12, or IL15. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that the genes were mainly enriched in the regulation of receptor signaling through the Janus kinase/signal transducer and activator of transcription pathway, cytokine-cytokine receptor interaction, and hematopoietic cell lineage. Protein-protein interaction analysis showed that IL2, IL6, IL15, IFNG, and others appeared in the top lists of pathways, indicating their high centrality and importance in the network. Therefore, pimozide could be a promising agent to support TKI therapies in ponatinib resistance. This research would help to clarify the role of cytokines in ponatinib resistance and advance the development of new therapeutics to utilize the STAT5 inhibitor pimozide in combination with TKIs.
Collapse
MESH Headings
- Humans
- Pimozide/pharmacology
- Pimozide/therapeutic use
- Cytokines/metabolism
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Interleukin-15/metabolism
- Interleukin-15/therapeutic use
- Interleukin-6/metabolism
- Interleukin-9/metabolism
- Interleukin-9/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Imidazoles
- Pyridazines
Collapse
Affiliation(s)
| | - Nurcan Gumus
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Besne Celik
- Department of Medical Biology, Ege University Medical School, Izmir, Turkiye
| | - İlayda Alcitepe
- Department of Medical Biology, Ege University Medical School, Izmir, Turkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkiye
| | - Cagdas Aktan
- Department of Medical Biology, Beykent University Medical School, Istanbul, Turkiye
- Department of Medical Biology, Bandirma Onyedi Eylul University Medical School, Balikesir, Turkiye
| |
Collapse
|
9
|
Knudsen AD, Eskelund CW, Benfield T, Zhao Y, Gelpi M, Køber L, Trøseid M, Kofoed KF, Ostrowski SR, Reilly C, Borges ÁH, Grønbæk K, Nielsen SD. Clonal hematopoiesis of indeterminate potential in persons with HIV. AIDS 2024; 38:487-495. [PMID: 37976039 DOI: 10.1097/qad.0000000000003788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with older age, inflammation and with risk of coronary artery disease (CAD). We aimed to characterize the burden of CHIP, and to explore the association between CHIP, inflammatory markers, and CAD in older persons with HIV (PWH). METHODS From the Copenhagen Comorbidity in HIV Infection (COCOMO) study, we included 190 individuals older than 55 years of age. We defined CHIP as variant allele fraction at least 2%. CAD was categorized according to the most severe coronary artery lesion on coronary computed tomography (CT) angiography as no coronary atherosclerosis; any atherosclerosis defined as at least 1% stenosis and obstructive CAD defined as at least 50% stenosis. RESULTS In the entire population (median age 66 years, 87% men), we identified a total of 62 mutations distributed among 49 (26%) participants. The three most mutated genes were DNMT3A , TET2 , and ASXL1 , accounting for 49, 25, and 16% of mutations, respectively. Age and sex were the only variables associated with CHIP. IL-1β, IL-1Ra, IL-2, IL-6, IL-10, soluble CD14, soluble CD163 and TNF-α were not associated with CHIP, and CHIP was not associated with any atherosclerosis or with obstructive CAD in adjusted analyses. CONCLUSION In older, well treated, Scandinavian PWH, more than one in four had at least one CHIP mutation. We did not find evidence of an association between CHIP and inflammatory markers or between CHIP and CAD. CHIP is an unlikely underlying mechanism to explain the association between inflammation and CAD in treated HIV disease.
Collapse
Affiliation(s)
- Andreas D Knudsen
- Department of Infectious Diseases 8632
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
| | | | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre
| | | | | | - Lars Køber
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
| | - Marius Trøseid
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
- Department of Radiology, Rigshospitalet, University of Copenhagen
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, MN, USA
| | - Álvaro H Borges
- Department of Infectious Disease Immunology, Statens Serum Institut
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
11
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
12
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Ramachandra N, Gupta M, Schwartz L, Todorova T, Shastri A, Will B, Steidl U, Verma A. Role of IL8 in myeloid malignancies. Leuk Lymphoma 2023; 64:1742-1751. [PMID: 37467070 DOI: 10.1080/10428194.2023.2232492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Aberrant overexpression of Interleukin-8 (IL8) has been reported in Myelodysplastic Syndromes (MDS), Acute Myeloid Leukemia (AML), Myeloproliferative Neoplasms (MPNs) and other myeloid malignancies. IL8 (CXCL8) is a CXC chemokine that is secreted by aberrant hematopoietic stem and progenitors as well as other cells in the tumor microenvironment. IL8 can bind to CXCR1/CXCR2 receptors and activate oncogenic signaling pathways, and also increase the recruitment of myeloid derived suppressor cells to the tumor microenvironment. IL8/CXCR1/2 overexpression has been associated with poorer prognosis in MDS and AML and increased bone marrow fibrosis in Myelofibrosis. Preclinical studies have demonstrated benefit of inhibiting the IL8/CXCR1/2 pathways via restricting the growth of leukemic stem cells as well as normalizing the immunosuppressive microenvironment in tumors. Targeting the IL8-CXCR1/2 pathway is a potential therapeutic strategy in myeloid neoplasms and is being evaluated with small molecule inhibitors as well as monoclonal antibodies in ongoing clinical trials. We review the role of IL8 signaling pathway in myeloid cancers and discuss future directions on therapeutic targeting of IL8 in these diseases.
Collapse
Affiliation(s)
- Nandini Ramachandra
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Malini Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Leya Schwartz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Tihomira Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
14
|
Guo C, Gao YY, Li ZL. Predicting leukemic transformation in myelodysplastic syndrome using a transcriptomic signature. Front Genet 2023; 14:1235315. [PMID: 37953918 PMCID: PMC10634373 DOI: 10.3389/fgene.2023.1235315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Background: For prediction on leukemic transformation of MDS patients, emerging model based on transcriptomic datasets, exhibited superior predictive power to traditional prognostic systems. While these models were lack of external validation by independent cohorts, and the cell origin (CD34+ sorted cells) limited their feasibility in clinical practice. Methods: Transformation associated co-expressed gene cluster was derived based on GSE58831 ('WGCNA' package, R software). Accordingly, the least absolute shrinkage and selection operator algorithm was implemented to establish a scoring system (i.e., MDS15 score), using training set (GSE58831 originated from CD34+ cells) and testing set (GSE15061 originated from unsorted cells). Results: A total of 68 gene co-expression modules were derived, and the 'brown' module was recognized to be transformation-specific (R2 = 0.23, p = 0.005, enriched in transcription regulating pathways). After 50,000-times LASSO iteration, MDS15 score was established, including the 15-gene expression signature. The predictive power (AUC and Harrison's C index) of MDS15 model was superior to that of IPSS/WPSS in both training set (AUC/C index 0.749/0.777) and testing set (AUC/C index 0.933/0.86). Conclusion: By gene co-expression analysis, the crucial gene module was discovered, and a novel prognostic system (MDS15) was established, which was validated not only by another independent cohort, but by a different cell origin.
Collapse
Affiliation(s)
| | | | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Muto T, Walker CS, Agarwal P, Vick E, Sampson A, Choi K, Niederkorn M, Ishikawa C, Hueneman K, Varney M, Starczynowski DT. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation. Haematologica 2023; 108:2715-2729. [PMID: 37102608 PMCID: PMC10542836 DOI: 10.3324/haematol.2022.282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Hematology, Chiba University Hospital, Chiba.
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric Vick
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Melinda Varney
- Department of Pharmaceutical Science and Research, Marshall University, Huntington, WV
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; UC Cancer Center, Cincinnati, OH.
| |
Collapse
|
16
|
Balandrán JC, Lasry A, Aifantis I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov 2023; 4:254-266. [PMID: 37052531 PMCID: PMC10320626 DOI: 10.1158/2643-3230.bcd-22-0176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
17
|
Navarrete-Meneses MDP, Salas-Labadía C, Juárez-Velázquez MDR, Moreno-Lorenzana D, Gómez-Chávez F, Olaya-Vargas A, Pérez-Vera P. Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci 2023; 24:6259. [PMID: 37047231 PMCID: PMC10094043 DOI: 10.3390/ijms24076259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 μM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.
Collapse
Affiliation(s)
- María del Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Consuelo Salas-Labadía
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - María del Rocío Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Dafné Moreno-Lorenzana
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| | - Fernando Gómez-Chávez
- Maestría y Doctorado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Doctorado en Ciencias en Biotecnología, Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Instituto Politécnico Nacional-ENMyH, Mexico City 07738, Mexico;
| | - Alberto Olaya-Vargas
- Unidad de Trasplante de Células Hematopoyeticas y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.); (M.d.R.J.-V.); (D.M.-L.)
| |
Collapse
|
18
|
Swaroop A, Saleiro D, Platanias LC. Interferon and myeloproliferative neoplasms: Evolving therapeutic approaches. Bioessays 2023; 45:e2200203. [PMID: 36642848 DOI: 10.1002/bies.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
Interferons (IFNs) are a diverse group of cytokines whose potent antitumor effects have piqued the interest of scientists for decades. Some of the most sustained clinical accomplishments have been in the field of myeloproliferative neoplasms (MPNs). Here, we discuss how both historical and novel breakthroughs in our understanding of IFN function may lead to more effective therapies for MPNs. The particular relevance and importance of modulating the novel IFN-regulated ULK1 pathway to optimize IFN responses is highlighted.
Collapse
Affiliation(s)
- Alok Swaroop
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Diana Saleiro
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
19
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
20
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
22
|
Ramdas B, Lakshmi Reddy P, Mali RS, Pasupuleti SK, Zhang J, Kelley MR, Paczesny S, Zhang C, Kapur R. Combined heterozygosity of FLT3 ITD, TET2, and DNMT3A results in aggressive leukemia. JCI Insight 2022; 7:e162016. [PMID: 36073548 PMCID: PMC9536269 DOI: 10.1172/jci.insight.162016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Heterozygous mutations in FLT3ITD, TET2, and DNMT3A are associated with hematologic malignancies in humans. In patients, cooccurrence of mutations in FLT3ITD combined with TET2 (TF) or FLT3ITD combined with DNMT3A (DF) are frequent. However, in some rare complex acute myeloid leukemia (AML), all 3 mutations cooccur - i.e., FLT3ITD, TET2, and DNMT3A (TFD). Whether the presence of these mutations in combination result in quantitative or qualitative differences in disease manifestation has not been investigated. We generated mice expressing heterozygous Flt3ITD and concomitant for either heterozygous loss of Tet2 (TF) or Dnmt3a (DF) or both (TFD). TF and DF mice did not induce disease early on, in spite of similar changes in gene expression; during the same time frame, an aggressive form of transplantable leukemia was observed in TFD mice, which was mostly associated with quantitative but not qualitative differences in gene expression relative to TF or DF mice. The gene expression signature of TFD mice showed remarkable similarity to the human TFD gene signature at the single-cell RNA level. Importantly, TFD-driven AML responded to a combination of drugs that target Flt3ITD, inflammation, and methylation in a mouse model, as well as in a PDX model of AML bearing 3 mutations.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Palam Lakshmi Reddy
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics
- Department of Molecular Biology and Biochemistry, and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Lyu C, Wang Q, Yin X, Li Z, Wang T, Wang Y, Cui S, Liu K, Wang Z, Gao C, Xu R. Clinical significance and potential mechanism of heat shock factor 1 in acute myeloid leukemia. Aging (Albany NY) 2022; 14:7026-7037. [PMID: 36069792 PMCID: PMC9512492 DOI: 10.18632/aging.204267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Background: Heat shock factor 1 (HSF1) is now considered to have the potential to be used as a prognostic biomarker in cancers. However, its clinical significance and potential function in acute myeloid leukemia (AML) remain underexplored. Methods: In this study, the expression pattern and clinical significance of HSF1 in AML were examined by integrating data from databases including The Cancer Genome Atlas (TCGA), The Genotype–Tissue Expression (GTEx), Vizome, Cancer Cell Line Encyclopedia (CCLE) and Gene Expression Omnibus (GEO). Linkedomics was applied to collect HSF1–related genes in AML. GeneMANIA was applied to outline HSF1–related functional networks. CancerSEA analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were performed to mine the potential mechanism of HSF1 in leukemogenesis. Single–sample Gene Set Enrichment Analysis (ssGSEA) was applied to explore the correlation between HSF1 and infiltrating immune cells in AML. Results: HSF1 expression was elevated in AML compared to healthy controls and indicate a poor overall survival. HSF1 expression was significantly correlated with patients age, associated with patient survival in subgroup of bone marrow blasts (%) >20. Functional analyses indicated that HSF1 plays a role in the metastatic status of AML, and is involved in inflammation–related pathways and biological processes. HSF1 expression was significantly correlated with the immune infiltration of nature killer cells and T cell population. Conclusion: HSF1 plays a vital role in the molecular network of AML pathogenesis, and has the potential to be a biomarker for prognosis prediction.
Collapse
Affiliation(s)
- Chunyi Lyu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Qian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xuewei Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zonghong Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Teng Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Kui Liu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhenzhen Wang
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chang Gao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ruirong Xu
- Shandong Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine of Health Commission, Institute of Hematology of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
24
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
25
|
Gao Y, Li JY, Mao JY, Zhou JF, Jiang L, Li XP. Comprehensive Analysis of CRIP1 Expression in Acute Myeloid Leukemia. Front Genet 2022; 13:923568. [PMID: 35938037 PMCID: PMC9354089 DOI: 10.3389/fgene.2022.923568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy that imposes great challenges in terms of drug resistance and relapse. Previous studies revealed heterogeneous leukemia cells and their relevant gene markers, such as CRIP1 as clinically prognostic in t (8;21) AML patients. However, the expression and role of CRIP1 in AML are poorly understood. We used the single-cell RNA sequencing and gene expression data from t (8;21) AML patients to analyze the immune and regulation networks of CRIP1. Two independent cohorts from GSE37642 and The Cancer Genome Atlas (TCGA) datasets were employed as validation cohorts. In addition, the methylation data from TCGA were used to analyze the methylation effect of the CRIP1 expression. Gene expression profile from t (8;21) AML patients showed that the CRIP1-high group exhibited an enrichment of immune-related pathways, including tumor necrosis factor (TNF)α signaling via nuclear factor kappa B (NFκB) pathways. Further studies using CIBERSORT showed that the CRIP1-high group had a significantly higher infiltration of exhausted CD8 T cells and activated mast cells. The CRIP1 expression was validated in the GSE37642-GPL96, GSE37642-GPL570, and TCGA datasets. In addition, with the methylation data, four CpG probes of CRIP1 (cg07065217, cg04411625, cg25682097, and 11763800) were identified as negatively associated with the CRIP1 gene expression in AML patients. Our data provide a comprehensive overview of the regulation of CRIP1 expression in AML patients. The evaluation of the TNFα-NFκB signaling pathway as well as the immune heterogeneity might provide new insights for exploring improvements in AML treatment.
Collapse
Affiliation(s)
- Yan Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin-Yuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Ying Mao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Fan Zhou
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lu Jiang, ; Xue-Ping Li,
| | - Xue-Ping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Lu Jiang, ; Xue-Ping Li,
| |
Collapse
|
26
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
27
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
28
|
So J, Lewis AC, Smith LK, Stanley K, Franich R, Yoannidis D, Pijpers L, Dominguez P, Hogg SJ, Vervoort SJ, Brown FC, Johnstone RW, McDonald G, Ulanet DB, Murtie J, Gruber E, Kats LM. Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia. EMBO Mol Med 2022; 14:e15203. [PMID: 35514210 PMCID: PMC9260210 DOI: 10.15252/emmm.202115203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate‐limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.
Collapse
Affiliation(s)
- Joan So
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - Lorey K Smith
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Kym Stanley
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Rheana Franich
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - David Yoannidis
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lizzy Pijpers
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Pilar Dominguez
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephin J Vervoort
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Fiona C Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | - Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
29
|
Inflammatory response mediates cross-talk with immune function and reveals clinical features in acute myeloid leukemia. Biosci Rep 2022; 42:231186. [PMID: 35441668 PMCID: PMC9093697 DOI: 10.1042/bsr20220647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulated genetic mutations are an important cause for the development of acute myeloid leukemia (AML), but abnormal changes in the inflammatory microenvironment also have regulatory effects on AML. Exploring the relationship between inflammatory response and pathological features of AML has implications for clinical diagnosis, treatment and prognosis evaluation. We analyzed the expression variation landscape of inflammatory response-related genes (IRRGs) and calculated an inflammatory response score for each sample using the gene set variation analysis (GSVA) algorithm. The differences in clinical- and immune-related characteristics between high- and low-inflammatory response groups were further analyzed. We found that most IRRGs were highly expressed in AML samples, and patients with high inflammatory response had poor prognosis and were accompanied with highly activated chemokine-, cytokine- and adhesion molecule-related signaling pathways, higher infiltration ratios of monocytes, neutrophils and M2 macrophages, high activity of type I/II interferon (IFN) response, and higher expression of immune checkpoints. We also used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the sensitivity of AML samples with different inflammatory responses to common drugs, and found that AML samples with low inflammatory response were more sensitive to cytarabine, doxorubicin and midostaurin. SubMap algorithm also demonstrated that high-inflammatory response patients are more suitable for anti-PD-1 immunotherapy. Finally, we constructed a prognostic risk score model to predict the overall survival (OS) of AML patients. Patients with higher risk score had significantly shorter OS, which was confirmed in two validation cohorts. The analysis of inflammatory response patterns can help us better understand the differences in tumor microenvironment (TME) of AML patients, and guide clinical medication and prognosis prediction.
Collapse
|
30
|
Barreyro L, Sampson AM, Ishikawa C, Hueneman KM, Choi K, Pujato MA, Chutipongtanate S, Wyder M, Haffey WD, O'Brien E, Wunderlich M, Ramesh V, Kolb EM, Meydan C, Neelamraju Y, Bolanos LC, Christie S, Smith MA, Niederkorn M, Muto T, Kesari S, Garrett-Bakelman FE, Bartholdy B, Will B, Weirauch MT, Mulloy JC, Gul Z, Medlin S, Kovall RA, Melnick AM, Perentesis JP, Greis KD, Nurmemmedov E, Seibel WL, Starczynowski DT. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci Transl Med 2022; 14:eabb7695. [PMID: 35263148 DOI: 10.1126/scitranslmed.abb7695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery M Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario A Pujato
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen M Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Molly A Smith
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Santosh Kesari
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Zartash Gul
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen Medlin
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Elmar Nurmemmedov
- Saint John's Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - William L Seibel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
31
|
Gopal A, Ibrahim R, Fuller M, Umlandt P, Parker J, Tran J, Chang L, Wegrzyn-Woltosz J, Lam J, Li J, Lu M, Karsan A. TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice. J Exp Med 2022; 219:212987. [PMID: 35089323 PMCID: PMC8932532 DOI: 10.1084/jem.20200731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammation is associated with bone marrow failure syndromes, but how specific molecules impact the bone marrow microenvironment is not well elucidated. We report a novel role for the miR-145 target, Toll/interleukin-1 receptor domain containing adaptor protein (TIRAP), in driving bone marrow failure. We show that TIRAP is overexpressed in various types of myelodysplastic syndromes (MDS) and suppresses all three major hematopoietic lineages. TIRAP expression promotes up-regulation of Ifnγ, leading to myelosuppression through Ifnγ-Ifnγr–mediated release of the alarmin, Hmgb1, which disrupts the bone marrow endothelial niche. Deletion of Ifnγ blocks Hmgb1 release and is sufficient to reverse the endothelial defect and restore myelopoiesis. Contrary to current dogma, TIRAP-activated Ifnγ-driven bone marrow suppression is independent of T cell function or pyroptosis. In the absence of Ifnγ, TIRAP drives myeloproliferation, implicating Ifnγ in suppressing the transformation of MDS to acute leukemia. These findings reveal novel, noncanonical roles of TIRAP, Hmgb1, and Ifnγ in the bone marrow microenvironment and provide insight into the pathophysiology of preleukemic syndromes.
Collapse
Affiliation(s)
- Aparna Gopal
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Rawa Ibrahim
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Megan Fuller
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Patricia Umlandt
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jeremy Parker
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jessica Tran
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Linda Chang
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanna Wegrzyn-Woltosz
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey Lam
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jenny Li
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Melody Lu
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Anti-Inflammatory Functions of Methanol Extract from Malus baccata (L.) Borkh. Leaves and Shoots by Targeting the NF-κB Pathway. PLANTS 2022; 11:plants11050646. [PMID: 35270116 PMCID: PMC8912290 DOI: 10.3390/plants11050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Malus baccata (L.) Borkh. is a widely used medical plant in Asia. Since the anti-inflammatory mechanism of this plant is not fully understood, the aim of this study was to explore the anti-inflammatory function and mechanism of Malus baccata (L.) Borkh. methanol extract (Mb-ME). For in vitro experiments, nitric oxide production assay, PCR, overexpression strategy, immunoblotting, luciferase reporter assay, and immunoprecipitation were employed to explore the molecular mechanism and the target proteins of Mb-ME. For in vivo experiments, an HCl/EtOH-induced gastritis mouse model was used to confirm the anti-inflammatory function. Mb-ME showed a strong ability to inhibit the production of nitric oxide and the expression of inflammatory genes. Mb-ME decreased NF-κB luciferase activity mediated by MyD88 and TRIF. Moreover, Mb-ME blocked the activation of Src, Syk, p85, Akt, p50, p60, IKKα/β, and IκBα in LPS-induced RAW264.7 cells. Overexpression and immunoprecipitation analyses suggested Syk and Src as the target enzymes of Mb-ME. In vitro results showed that Mb-ME could alleviate gastritis and relieve the protein expression of p-Src, p-Syk, and COX-2, as well as the gene expression of COX-2 and TNF-α. In summary, this study implied that Mb-ME performs an anti-inflammatory role by suppressing Syk and Src in the NF-κB signaling pathway, both in vivo and in vitro.
Collapse
|
33
|
Tuerxun N, Wang J, Zhao F, Qin YT, Wang H, Chen R, Hao JP. Bioinformatics analysis deciphering the transcriptomic signatures associated with signalling pathways and prognosis in the myelodysplastic syndromes. Hematology 2022; 27:214-231. [PMID: 35134316 DOI: 10.1080/16078454.2022.2029256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Several studies scatteredly identified the myelodysplastic syndromes' transcriptomic profiles (MDS). However, the exploration of transcriptional signatures, key signalling pathways, and their association with prognosis and diagnosis in the integrated multiple datasets remains lacking. METHODS We integrated the GSE4619, GSE19429, GSE30195, and GSE58831 microarray datasets of CD34 + cells for identifying the differentially expressed genes (DEGs) in the MDS. The series of bioinformatics methods are applied to identify the key hub genes, gene clusters, prognostic hub genes, and genes associated with diagnostic efficacy. Finally, we validated the expression differences of hub genes in the GSE114922 dataset. RESULTS We explored the DEGs related to gene ontology enrichment and KEGG pathways. We identified significant hub genes, including 168 upregulated hub genes (such as STAT1, IFIH1, EPRS, GRB2, RAC2, MAPK14, CASP1, and SPI1) and 52 downregulated hub genes (such as CREBBP, HIF1A, PIK3CA, EZH2, PIK3R1, MDM2, IRF4, CXCR4, PCNA, and CD19) in the MDS. In addition, we identified six significant molecular complex detection (MCODE)-derived upregulated gene clusters and one downregulated gene cluster, respectively. Moreover, we found that the higher expression level of MX2, GBP2, PXN, IFI44, FDXR, PLCB2, ASS1, ERCC4, PML, and RRAGD and the lower expression level of CD19, PAX5, TCF3, LEF1, NUSAP1, and TIMELESS hub genes are significantly correlated with shorter survival times of MDS patients. Furthermore, the area value under the ROC curve (AUC) of PXN, FDXR, PLCB2, PML, CD19, PAX5, and LEF1 prognostic genes are more than 0.80, indicating that these genes could be effectively used for the diagnostic efficacy of MDS patients. CONCLUSIONS Identifying key hub genes and their association with the prognosis and diagnostic efficacy may provide substantial clues for the treatment and diagnosis of MDS patients.
Collapse
Affiliation(s)
- Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Fang Zhao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yu-Ting Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Huan Wang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
34
|
Hematological malignancies magnify the effect of body mass index on insulin resistance in cancer survivors. Blood Adv 2022; 6:1981-1990. [PMID: 35130338 PMCID: PMC9006273 DOI: 10.1182/bloodadvances.2021006241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer survivors have disproportionately greater insulin resistance with increasing BMI compared with controls without malignancies. Our findings indicate that interventions targeting obesity will be needed to prevent the sequelae of insulin resistance in cancer survivors.
Cancer survivors are at increased risk of type 2 diabetes, which usually develops from obesity and insulin resistance. Whether diabetes susceptibility is due to shared risk factors for cancer and insulin resistance or directly related to cancer and its treatment is unknown. We investigated effect modification between malignancy and body mass index (BMI) as determinants of insulin sensitivity in patients with hematologic malignancies and controls without cancer. In a cross-sectional study of 43 individuals without diabetes (20 patients with treated hematologic malignancies; 23 controls without malignancies), we measured insulin-stimulated whole-body glucose use (M) by hyperinsulinemic euglycemic clamp. Insulin sensitivity index (ISI) was calculated by dividing M over steady-state plasma insulin. Inflammatory cytokines were measured in plasma. Controls were more obese and included more non-White individuals and women vs patients with hematologic malignancies. Patients with cancer exhibited greater insulin sensitivity (median ISI, 42.4 mg/kg/min/[μU/mL]; interquartile range [IQR], 33.9-67.2 vs 23.4 mg/kg/min/[μU/mL]; IQR, 12.9-29.2; P < .001) and higher interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) concentrations vs controls. Patients with cancer demonstrated greater reduction in ISI with increasing BMI vs controls, which remained significant after adjustment for sex and race (β = −2.6 units; 95% confidence interval, −4.8 to −0.4; P interaction = .024). This interaction also remained significant after adjusting for log IL-6 (P interaction = .048) and log MCP-1 (P interaction = .021). Cancer survivors had disproportionately greater insulin resistance with increasing BMI vs controls without malignancies. Effect modification between cancer and BMI in determining insulin sensitivity implicated cancer-specific etiologies in glucose dysregulation and could partially explain excess diabetes diagnoses among oncology patients.
Collapse
|
35
|
Bhattacharyya S, Law S. Environmental pollutant N-N'ethylnitrosourea-induced leukemic NLRP3 inflammasome activation and its amelioration by Eclipta prostrata and its active compound wedelolactone. ENVIRONMENTAL TOXICOLOGY 2022; 37:322-334. [PMID: 34726823 DOI: 10.1002/tox.23400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure of N-nitroso compounds (NOCs) from various sources like tobacco smoke, pesticides, smoked meat, and rubber manufacturing industries has been an alarming cause of carcinogenesis. Neonatal exposure to the carcinogenic N-N'ethylnitrosourea (ENU), a NOC has been established to cause leukemogenesis. Our world is constantly battling against cancer with consistent investigations of new anti-cancer therapeutics. Plant derived compounds have grasped worldwide attention of researchers for their promising anti-cancer potentials. Eclipta prostrata is one such ayurvedic herb, renowned for its anti-inflammatory properties. Currently, it has been explored in various cancer cell lines to establish its anti-cancer effect, but rarely in in-vivo cancer models. Wedelolactone (WDL), the major coumestan of E. prostrata is recognized as an inhibitor of IKK, a master regulator of the NF-kB inflammatory pathway. As persistent inflammation and activated inflammasome contribute to leukemogenesis, we tried to observe anti-leukemogenic efficacy of E. prostrata and its active compound WDL on the marrow cells of ENU induced experimental leukemic mice. Treatment groups were administered an oral gavage at a dose of 1200 mg/kg and 50 mg/kg b.w of crude extract and WDL respectively for 4 weeks. Various parameters like hemogram, survivability, cytological and histological investigations, migration assay, cell culture, flowcytometry and confocal microscopy were taken into consideration pre- and post-treatment. Interestingly, the plant concoction portrayed maximum effects in comparison to WDL alone. The study suggests E. prostrata and WDL as vital complementary adjuncts for anti-inflammasome mechanism in ENU-induced leukemia.
Collapse
Affiliation(s)
- Subhashree Bhattacharyya
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
36
|
Inflammation Regulates Haematopoietic Stem Cells and Their Niche. Int J Mol Sci 2022; 23:ijms23031125. [PMID: 35163048 PMCID: PMC8835214 DOI: 10.3390/ijms23031125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Haematopoietic stem cells (HSCs) reside in the bone marrow and are supported by the specialised microenvironment, a niche to maintain HSC quiescence. To deal with haematopoietic equilibrium disrupted during inflammation, HSCs are activated from quiescence directly and indirectly to generate more mature immune cells, especially the myeloid lineage cells. In the process of proliferation and differentiation, HSCs gradually lose their self-renewal potential. The extensive inflammation might cause HSC exhaustion/senescence and malignant transformation. Here, we summarise the current understanding of how HSC functions are maintained, damaged, or exhausted during acute, prolonged, and pathological inflammatory conditions. We also highlight the inflammation-altered HSC niche and its impact on escalating the insults on HSCs.
Collapse
|
37
|
Abnormal monocyte differentiation and function in chronic myelomonocytic leukemia. Curr Opin Hematol 2022; 29:20-26. [PMID: 34854831 DOI: 10.1097/moh.0000000000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Monocytes serve as the phagocytic defense surveillance system of the human body. Although there is comprehensive evidence regarding monocyte development, characterization and function under steady state hematopoietic continuum, the deviations and complexities in the monocyte secretome during myeloid malignancies have not been comprehensively examined and delineated. RECENT FINDINGS This review summarizes the aspects of development, functions, transcriptional and cytokine-mediated regulation of monocytes during steady state hematopoiesis and also contrasts the aberrations observed in myelomonocytic leukemias like chronic myelomonocytic leukemia (CMML). It presents the findings from the major studies highlighting the novel markers for identifying CMML monocytes, altered signaling cascades, roles in disease progression and potential therapeutic interventions to reduce the monocyte mediated inflammatory milieu for disease amelioration. SUMMARY Recent findings provide rationale for the development of therapeutic strategies aimed at disrupting the leukemic initiating cells and malignant monocyte axis.
Collapse
|
38
|
Cao L, Tong Y, Wang X, Zhang Q, Qi Y, Zhou C, Yu X, Wu Y, Miao X. Effect of Amniotic Membrane/Collagen-Based Scaffolds on the Chondrogenic Differentiation of Adipose-Derived Stem Cells and Cartilage Repair. Front Cell Dev Biol 2021; 9:647166. [PMID: 34900977 PMCID: PMC8657407 DOI: 10.3389/fcell.2021.647166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Repairing articular cartilage damage is challenging. Clinically, tissue engineering technology is used to induce stem cell differentiation and proliferation on biological scaffolds to repair defective joints. However, no ideal biological scaffolds have been identified. This study investigated the effects of amniotic membrane/collagen scaffolds on the differentiation of adipose-derived stem cells (ADSCs) and articular cartilage repair. Methods: Adipose tissue of New Zealand rabbits was excised, and ADSCs were isolated and induced for differentiation. An articular cartilage defect model was constructed to identify the effect of amniotic membrane/collagen scaffolds on cartilage repair. Cartilage formation was analyzed by imaging and toluene blue staining. Knee joint recovery in rabbits was examined using hematoxylin and eosin, toluidine, safranine, and immunohistochemistry at 12 weeks post-operation. Gene expression was examined using ELISA, RT-PCR, Western blotting, and immunofluorescence. Results: The adipose tissue was effectively differentiated into ADSCs, which further differentiated into chondrogenic, osteogenic, and lipogenic lineages after 3 weeks’ culture in vitro. Compared with platelet-rich plasmon (PRP) scaffolds, the amniotic membrane scaffolds better promoted the growth and differentiation of ADSCs. Additionally, scaffolds containing the PRP and amniotic membrane efficiently enhanced the osteogenic differentiation of ADSCs. The levels of COL1A1, COL2A1, COL10A1, SOX9, and ACAN in ADSCs + amniotic membrane + PRP group were significantly higher than the other groups both in vitro and in vivo. The Wakitani scores of the ADSC + amniotic membrane + PRP group were lower than that in ADSC + PRP (4.4 ± 0.44**), ADSC + amniotic membrane (2.63 ± 0.38**), and control groups (6.733 ± 0.21) at week 12 post-operation. Osteogenesis in rabbits of the ADSC + amniotic membrane + PRP group was significantly upregulated when compared with other groups. Amniotic membranes significantly promoted the expression of cartilage regeneration-related factors (SOX6, SOX9, RUNX2, NKX3-2, MEF2C, and GATA4). The ADSC + PRP + amniotic membrane group exhibited the highest levels of TGF-β, PDGF, and FGF while exhibiting the lowest level of IL-1β, IL6, and TNF-α in articular cavity. Conclusion: Amniotic membrane/collagen combination-based scaffolds promoted the proliferation and cartilage differentiation of ADSCs, and may provide a new treatment paradigm for patients with cartilage injury.
Collapse
Affiliation(s)
- Le Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yuling Tong
- Department of General Practice, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wang
- Shaoxing Shangyu Hospital of Traditional Chinese medicine, Shaoxing, China
| | - Qiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yongping Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xudong Miao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
39
|
Innate Immune Mechanisms and Immunotherapy of Myeloid Malignancies. Biomedicines 2021; 9:biomedicines9111631. [PMID: 34829860 PMCID: PMC8615731 DOI: 10.3390/biomedicines9111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Similar to other cancers, myeloid malignancies are thought to subvert the immune system during their development. This subversion occurs via both malignant cell-autonomous and non-autonomous mechanisms and involves manipulation of the innate and adaptive immune systems. Multiple strategies are being studied to rejuvenate, redirect, or re-enforce the immune system in order to fight off myeloid malignancies. So far, the most successful strategies include interferon treatment and antibody-based therapies, though chimeric antigen receptor (CAR) cells and immune checkpoint inhibitors are also promising therapies. In this review, we discuss the inherent immune mechanisms of defense against myeloid malignancies, currently-approved agents, and agents under investigation. Overall, we evaluate the efficacy and potential of immuno-oncology in the treatment of myeloid malignancies.
Collapse
|
40
|
Yang C, Yamashita M, Suda T. A Novel Function of Sphingolipid Signaling via S1PR3 in Hematopoietic and Leukemic Stem Cells. Blood Cancer Discov 2021; 2:3-5. [PMID: 34661148 DOI: 10.1158/2643-3230.bcd-20-0200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this issue of Blood Cancer Discovery, Xie and colleagues describe a novel function of sphingosine-1-phosphate receptor 3 (S1PR3) to regulate myeloid differentiation and activate inflammatory programs in both human hematopoietic stem cells and leukemic stem cells. They propose S1PR3 as a major downstream signaling pathway of a TNFα-NF-κB axis in this study and unlock potential therapeutic opportunities to improve outcomes of patients with acute myeloid leukemia by modulating sphingolipid signaling via S1PR3. See related article by Xie et al., p. 32.
Collapse
Affiliation(s)
- Chong Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| |
Collapse
|
41
|
Wheat JC, Steidl U. Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood 2021; 138:625-636. [PMID: 34436525 PMCID: PMC8394909 DOI: 10.1182/blood.2019004261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.
Collapse
Affiliation(s)
- Justin C Wheat
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| |
Collapse
|
42
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
43
|
Kull T, Schroeder T. Analyzing signaling activity and function in hematopoietic cells. J Exp Med 2021; 218:e20201546. [PMID: 34129015 PMCID: PMC8210623 DOI: 10.1084/jem.20201546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.
Collapse
Affiliation(s)
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| |
Collapse
|
44
|
Zhang TY, Dutta R, Benard B, Zhao F, Yin R, Majeti R. IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. Sci Transl Med 2021; 12:12/538/eaax5104. [PMID: 32269167 DOI: 10.1126/scitranslmed.aax5104] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/04/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022]
Abstract
Most patients with acute myeloid leukemia (AML) die from complications arising from cytopenias resulting from bone marrow (BM) failure. The common presumption among physicians is that AML-induced BM failure is primarily due to overcrowding, yet BM failure is observed even with low burden of disease. Here, we use large clinical datasets to show the lack of correlation between BM blast burden and degree of cytopenias at the time of diagnosis. We develop a splenectomized xenograft model to demonstrate that transplantation of human primary AML into immunocompromised mice recapitulates the human disease course by induction of BM failure via depletion of mouse hematopoietic stem and progenitor populations. Using unbiased approaches, we show that AML-elaborated IL-6 acts to block erythroid differentiation at the proerythroblast stage and that blocking antibodies against human IL-6 can improve AML-induced anemia and prolong overall survival, suggesting a potential therapeutic approach.
Collapse
Affiliation(s)
- Tian Yi Zhang
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Stanford School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ritika Dutta
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Stanford School of Medicine, Stanford, CA 94305, USA
| | - Brooks Benard
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feifei Zhao
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Stanford School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Raymond Yin
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Stanford School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. .,Stanford School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Tu H, Tang Y, Zhang J, Cheng L, Joo D, Zhao X, Lin X. Linear Ubiquitination of RIPK1 on Lys 612 Regulates Systemic Inflammation via Preventing Cell Death. THE JOURNAL OF IMMUNOLOGY 2021; 207:602-612. [PMID: 34162724 DOI: 10.4049/jimmunol.2100299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
Receptor-interacting protein kinase-1 (RIPK1) is a master regulator of the TNF-α-induced cell death program. The function of RIPK1 is tightly controlled by posttranslational modifications, including linear ubiquitin chain assembly complex-mediated linear ubiquitination. However, the physiological function and molecular mechanism by which linear ubiquitination of RIPK1 regulates TNF-α-induced intracellular signaling remain unclear. In this article, we identified Lys627 residue as a major linear ubiquitination site in human RIPK1 (or Lys612 in murine RIPK1) and generated Ripk1K612R/K612R mice, which spontaneously develop systemic inflammation triggered by sustained emergency hematopoiesis. Mechanistically, without affecting NF-κB activation, Ripk1K612R/K612R mutation enhances apoptosis and necroptosis activation and promotes TNF-α-induced cell death. The systemic inflammation and hematopoietic disorders in Ripk1K612R/K612R mice are completely abolished by deleting TNF receptor 1 or both RIPK3 and Caspase-8. These data suggest the critical role of TNF-α-induced cell death in the resulting phenotype in Ripk1K612R/K612R mice. Together, our results demonstrate that linear ubiquitination of RIPK1 on K612 is essential for limiting TNF-α-induced cell death to further prevent systemic inflammation.
Collapse
Affiliation(s)
- Hailin Tu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ; and
| | - Jie Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Liqing Cheng
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Donghyun Joo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xueqiang Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China;
| |
Collapse
|
46
|
Secondary CNL after SAA reveals insights in leukemic transformation of bone marrow failure syndromes. Blood Adv 2021; 4:5540-5546. [PMID: 33166403 DOI: 10.1182/bloodadvances.2020001541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Acquired aplastic anemia and severe congenital neutropenia (SCN) are bone marrow (BM) failure syndromes of different origin, however, they share a common risk for secondary leukemic transformation. Here, we present a patient with severe aplastic anemia (SAA) evolving to secondary chronic neutrophilic leukemia (CNL; SAA-CNL). We show that SAA-CNL shares multiple somatic driver mutations in CSF3R, RUNX1, and EZH2/SUZ12 with cases of SCN that transformed to myelodysplastic syndrome or acute myeloid leukemia (AML). This molecular connection between SAA-CNL and SCN progressing to AML (SCN-AML) prompted us to perform a comparative transcriptome analysis on nonleukemic CD34high hematopoietic stem and progenitor cells, which showed transcriptional profiles that resemble indicative of interferon-driven proinflammatory responses. These findings provide further insights in the mechanisms underlying leukemic transformation in BM failure syndromes.
Collapse
|
47
|
Depreter B, De Moerloose B, Vandepoele K, Uyttebroeck A, Van Damme A, Terras E, Denys B, Dedeken L, Dresse MF, Van der Werff Ten Bosch J, Hofmans M, Philippé J, Lammens T. Deciphering molecular heterogeneity in pediatric AML using a cancer vs. normal transcriptomic approach. Pediatr Res 2021; 89:1695-1705. [PMID: 33069162 DOI: 10.1038/s41390-020-01199-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Still 30-40% of pediatric acute myeloid leukemia (pedAML) patients relapse. Delineation of the transcriptomic profile of leukemic subpopulations could aid in a better understanding of molecular biology and provide novel biomarkers. METHODS Using microarray profiling and quantitative PCR validation, transcript expression was measured in leukemic stem cells (LSC, n = 24) and leukemic blasts (L-blast, n = 25) from pedAML patients in comparison to hematopoietic stem cells (HSCs, n = 19) and control myeloblasts (C-blast, n = 20) sorted from healthy subjects. Gene set enrichment analysis was performed to identify relevant gene set enrichment signatures, and functional protein associations were identified by STRING analysis. RESULTS Highly significantly overexpressed genes in LSC and L-blast were identified with a vast majority not studied in AML. CDKN1A, CFP, and CFD (LSC) and HOMER3, CTSA, and GADD45B (L-blast) represent potentially interesting biomarkers and therapeutic targets. Eleven LSC downregulated targets were identified that potentially qualify as tumor suppressor genes, with MYCT1, PBX1, and PTPRD of highest interest. Inflammatory and immune dysregulation appeared to be perturbed biological networks in LSC, whereas dysregulated metabolic profiles were observed in L-blast. CONCLUSION Our study illustrates the power of taking into account cell population heterogeneity and reveals novel targets eligible for functional evaluation and therapy in pedAML. IMPACT Novel transcriptional targets were discovered showing a significant differential expression in LSCs and blasts from pedAML patients compared to their normal counterparts from healthy controls. Deregulated pathways, including immune and metabolic dysregulation, were addressed for the first time in children, offering a deeper understanding of the molecular pathogenesis. These novel targets have the potential of acting as biomarkers for risk stratification, follow-up, and targeted therapy. Multiple LSC-downregulated targets endow tumor suppressor roles in other cancer entities, and further investigation whether hypomethylating therapy could result into LSC eradication in pedAML is warranted.
Collapse
Affiliation(s)
- Barbara Depreter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Karl Vandepoele
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, Brussels, Belgium
| | - Eva Terras
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara Denys
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | | | | | - Mattias Hofmans
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
48
|
Childhood Acute Leukemias in Developing Nations: Successes and Challenges. Curr Oncol Rep 2021; 23:56. [PMID: 33755790 DOI: 10.1007/s11912-021-01043-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Acute leukemias represent a tremendous threat to public health around the globe and the main cause of death due to disease in scholar age children from developing nations. Here, we review their current status in Mexico, as a paradigm of study, and the major challenges to control systemic diseases like childhood cancer. RECENT FINDINGS A unique molecular epidemiology, late/low precision diagnosis, limited access to treatment, toxicity associated with therapy, continuous exposure to environmental risk factors, and the high frequency of early relapses are some of the factors cooperating to low rates of survival in low-to-medium-income countries. Deliberative dialogues and exhaustive programs have emerged as promising means of advancing evidence-informed policy, by providing a structured forum for key stakeholders to integrate scientific and pragmatic knowledge about complex health concerns. A system-wide strategy based on the comprehensive leukemia identity is essential for a meaningful decline in early childhood mortality.
Collapse
|
49
|
Solorzano S, Kim J, Chen J, Feng X, Young NS. Minimal role of interleukin 6 and toll-like receptor 2 and 4 in murine models of immune-mediated bone marrow failure. PLoS One 2021; 16:e0248343. [PMID: 33711076 PMCID: PMC7954294 DOI: 10.1371/journal.pone.0248343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Immune aplastic anemia (AA) results from T cell attack on hematopoietic cells, resulting in bone marrow hypocellularity and pancytopenia. Animal models have been successfully developed to study pathophysiological mechanisms in AA. While we have systemically defined the critical components of the adaptive immune response in the pathogenesis of immune marrow failure using this model, the role of innate immunity has not been fully investigated. Here, we demonstrate that lymph node (LN) cells from B6-based donor mice carrying IL-6, TLR2, or TLR4 gene deletions were fully functional in inducing severe pancytopenia and bone marrow failure (BMF) when infused into MHC-mismatched CByB6F1 recipients. Conversely, B6-based recipient mice with IL-6, TLR2, and TLR4 deletion backgrounds were all susceptible to immune-mediated BMF relative to wild-type B6 recipients following infusion of MHC-mismatched LN cells from FVB donors, but the disease appeared more severe in IL-6 deficient mice. We conclude that IL-6, TLR2, and TLR4, molecular elements important in maintenance of normal innate immunity, have limited roles in a murine model of immune-mediated BMF. Rather, adaptive immunity appears to be the major contributor to the animal disease.
Collapse
Affiliation(s)
- Sabrina Solorzano
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington DC, United States of America
| | - Jisoo Kim
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
50
|
Kordella C, Lamprianidou E, Kotsianidis I. Mechanisms of Action of Hypomethylating Agents: Endogenous Retroelements at the Epicenter. Front Oncol 2021; 11:650473. [PMID: 33768008 PMCID: PMC7985079 DOI: 10.3389/fonc.2021.650473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Abnormal DNA methylation patterns are thought to drive the pathobiology of high-risk myelodysplastic syndromes (HR-MDS) and acute myeloid leukemia (AML). Sixteen years after their initial approval, the hypomethylating agents (HMAs), 5-azacytidine (AZA) and 5-aza-2′-deoxycytidine, remain the mainstay of treatment for HR-MDS and AML. However, a connection of the hypomethylating or additional effects of HMAs with clinical responses remains yet to be shown, and the mode of action of HMAs remains obscure. Given the relatively short-lived responses and the inevitable development of resistance in HMAs, a thorough understanding of the antineoplastic mechanisms employed by HMAs holds critical importance. Recent data in cancer cell lines demonstrate that reactivation of endogenous retroelements (EREs) and induction of a cell-intrinsic antiviral response triggered by RNA neotranscripts may underlie the antitumor activity of HMAs. However, data on primary CD34+ cells derived from patients with HR-MDS failed to confirm a link between HMA-mediated ERE modulation and clinical response. Though difficult to reconcile the apparent discrepancy, it is possible that HMAs mediate their effects in more advanced levels of differentiation where cells become responsive to interferon, whereas, inter-individual variations in the process of RNA editing and, in particular, in the ADAR1/OAS/RNase L pathway may also confound the associations of clinical response with the induction of viral mimicry. Further ex vivo studies along with clinical correlations in well-annotated patient cohorts are warranted to decipher the role of ERE derepression in the antineoplastic mechanisms of HMAs.
Collapse
Affiliation(s)
- Chryssoula Kordella
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|