1
|
Morrell ED, Holton SE, Wiedeman A, Kosamo S, Mitchem MA, Dmyterko V, Franklin Z, Garay A, Stanaway IB, Liu T, Sathe NA, Mabrey FL, Stapleton RD, Malhotra U, Speake C, Hamerman JA, Pipavath S, Evans L, Bhatraju PK, Long SA, Wurfel MM, Mikacenic C. PD-L1 and PD-1 Are Associated with Clinical Outcomes and Alveolar Immune Cell Activation in Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2024; 71:534-545. [PMID: 38950166 DOI: 10.1165/rcmb.2024-0201oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
The relationship between the PD-L1 (Programmed Death-Ligand 1)/PD-1 pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 [n = 59] and ARDS2 [n = 78]) or plasma samples alone (ARDS3 [n = 149]) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from BAL fluid (n = 18) and blood (n = 16) from critically ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma concentrations of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher concentrations of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining than PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells than subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar versus blood compartments, given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1 or PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.
Collapse
Affiliation(s)
- Eric D Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine
- Hospital and Specialty Service, VA Puget Sound Health Care System, Seattle, Washington
| | - Sarah E Holton
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | | - Susanna Kosamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | | | - Ashley Garay
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Ian B Stanaway
- Division of Pulmonary, Critical Care, and Sleep Medicine
- Kidney Research Institute, Division of Nephrology, Department of Medicine
- Hospital and Specialty Service, VA Puget Sound Health Care System, Seattle, Washington
| | - Ted Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Neha A Sathe
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | | - Renee D Stapleton
- Department of Medicine, University of Vermont, Burlington, Vermont; and
| | - Uma Malhotra
- Division of Allergy and Infectious Diseases, and
- Section of Infectious Diseases, Virginia Mason Franciscan Health, Seattle, Washington
| | - Cate Speake
- Benaroya Research Institute, Seattle, Washington
| | | | - Sudhakar Pipavath
- Department of Radiology, University of Washington, Seattle, Washington
| | - Laura Evans
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | | - S Alice Long
- Benaroya Research Institute, Seattle, Washington
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | |
Collapse
|
2
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
3
|
Amira Khairil Anwar N, Najmi Mohd Nazri M, Rosliza Mohd Adzemi E, Amilda Anthony A, Mohd Azlan M, Balakrishnan V, Mohd Fadzli Mustaffa K, Mazuwin Yahya M, Haron J, Ahmad Damitri Al-Astani Tengku Din T, Soon Lai L, Aizuddin Kamaruddin M, Fatmawati Mokhtar N. Elevated serum soluble programmed death ligand 1 (sPD-L1) level correlate with clinical characteristics in breast cancer patients: A study at Hospital Universiti Sains Malaysia. Cytokine 2024; 182:156698. [PMID: 39042994 DOI: 10.1016/j.cyto.2024.156698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Elevated serum levels of soluble PD-L1 (sPD-L1) have been reported in many cancers; however, there is limited data of sPD-L1 in breast cancer, especially those representing Asian (Malay) women. The purpose of this study was to evaluate sPD-L1 serum levels and analyze its correlation with clinical characteristics in breast cancer patients at Hospital Universiti Sains Malaysia (HUSM). METHODS Blood specimens were obtained from 92 malignant, 16 benign breast cancer patients and 23 healthy controls. The serum concentrations of sPD-L1 were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The median serum sPD-L1 concentration of malignant and benign breast cancer patients was significantly elevated compared to the healthy cohorts (12.50 ng/mL vs 13.97 ng/mL vs 8.75 ng/mL, p < 0.05). Optimal cut-off value of serum sPD-L1 for predicting disease progression was 8.84 ng/mL. Elevated serum sPD-L1 levels were significantly associated with menarche age, ethnicity, birth control usage, comorbidity and HER2 status (p < 0.05). Multivariate analysis showed the menarche age and birth control were the independent factors affecting sPD-L1 expression. CONCLUSION Elevated serum levels of sPD-L1 were significantly associated with several clinical characteristics and warrant further investigation in evaluating patients pre-diagnosed with breast cancer.
Collapse
Affiliation(s)
- Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Elis Rosliza Mohd Adzemi
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Amy Amilda Anthony
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mawaddah Mohd Azlan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maya Mazuwin Yahya
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kampus Kesihatan, Jalan Raja Perempuan Zainab 2, 16150 Kota Bharu, Kelantan, Malaysia
| | - Juhara Haron
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kampus Kesihatan, Jalan Raja Perempuan Zainab 2, 16150 Kota Bharu, Kelantan, Malaysia
| | - Tengku Ahmad Damitri Al-Astani Tengku Din
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kampus Kesihatan, Jalan Raja Perempuan Zainab 2, 16150 Kota Bharu, Kelantan, Malaysia
| | - Lip Soon Lai
- Agilent Technologies LDA Malaysia Sdn. Bhd., Bayan Lepas, 11900 Bayan Lepas, Penang, Malaysia
| | | | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
4
|
Li K, Cardenas-Lizana P, Lyu J, Kellner AV, Li M, Cong P, Watson VE, Yuan Z, Ahn E, Doudy L, Li Z, Salaita K, Ahmed R, Zhu C. Mechanical force regulates ligand binding and function of PD-1. Nat Commun 2024; 15:8339. [PMID: 39333505 PMCID: PMC11437077 DOI: 10.1038/s41467-024-52565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Despite the success of PD-1 blockade in cancer therapy, how PD-1 initiates signaling remains unclear. Soluble PD-L1 is found in patient sera and can bind PD-1 but fails to suppress T cell function. Here, we show that PD-1 function is reduced when mechanical support on ligand is removed. Mechanistically, cells exert forces to PD-1 and prolong bond lifetime at forces <7 pN (catch bond) while accelerate dissociation at forces >8pN (slip bond). Molecular dynamics of PD-1-PD-L2 complex suggests force may cause relative rotation and translation between the two molecules yielding distinct atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced distinct interactions maintain the same binding affinity but suppressed/eliminated catch bond, lowered rupture force, and reduced inhibitory function. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 signaling.
Collapse
Affiliation(s)
- Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- Shennon Biotechnologies, San Francisco, CA, USA
| | - Paul Cardenas-Lizana
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- Department of Bioengineering and Chemical Engineering, University of Engineering and Technology-UTEC, Lima, Peru
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- L.E.K. consulting, Boston, MA, USA
| | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Elephas, Madison, WI, USA
| | - Menglan Li
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Peiwen Cong
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Valencia E Watson
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Zhou Yuan
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eunseon Ahn
- Emory Vaccine Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Merck, South San Francisco, CA, USA
| | - Larissa Doudy
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Sun Y, Yang J, Chen Y, Guo Y, Xiong J, Guo X, Zhang Y, Gu L, Tong M, Wang W, Sun J. PD-L2 Expression in Breast Cancer Promotes Tumor Development and Progression. J Immunol Res 2024; 2024:3145695. [PMID: 38983273 PMCID: PMC11233179 DOI: 10.1155/2024/3145695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Background This work focused on investigating the role of programmed death ligand 2 (PD-L2) in the progression of breast cancer by utilizing breast cancer specimens and cells. Materials and Methods The serum levels of soluble PD-L2 (sPD-L2) in breast cancer patients and healthy individuals were analyzed by means of the enzyme-linked immunosorbent assay, and the PD-L2 levels within 416 resected breast cancer specimens were assessed through immunohistochemistry. Concurrently, in vitro cell experiments and in vivo animal experiments were carried out to analyze the relationship between PD-L2 and the invasion and migration of breast cancer. Results The concentration of sPD-L2 in breast cancer patients significantly increased compared to that in the control groups. Additionally, breast cancer patients with high concentrations of sPD-L2 had higher Ki67 values (≥30%) and tumor grades. PD-L2 was expressed in 79.09% of the cancer samples, which exhibited a positive correlation with the progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Furthermore, we discovered that knockdown of PD-L2 inhibited the migratory and invasive abilities of both MCF-7 and MDA-MB231 cells. Conclusion Our findings demonstrated that knockdown of PD-L2 suppressed tumor growth, providing novel insights into important biological functions.
Collapse
Affiliation(s)
- Yuling Sun
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Jie Yang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Yachun Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Yundi Guo
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Jian Xiong
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Xuqin Guo
- Center for Drug Metabolism and PharmacokineticsCollege of Pharmaceutical SciencesSoochow University, Suzhou 215123, China
| | - Yawen Zhang
- Center for Drug Metabolism and PharmacokineticsCollege of Pharmaceutical SciencesSoochow University, Suzhou 215123, China
| | - Li Gu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Min Tong
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Weipeng Wang
- Center for Drug Metabolism and PharmacokineticsCollege of Pharmaceutical SciencesSoochow University, Suzhou 215123, China
| | - Jing Sun
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| |
Collapse
|
6
|
da Silva LM, Martins MR, Dos Santos RL, Da Silva JPA, Lima CAC, Forones NM, Torres LC. Evaluation of soluble co-inhibitors and co-stimulators levels of the immune response in gastric cancer. J Surg Oncol 2024. [PMID: 38946193 DOI: 10.1002/jso.27747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Co-inhibitor and co-stimulator mediators trigger actions that result in immunological homeostasis and are being evaluated as potential therapeutic targets in gastric cancer (GC). OBJECTIVE To evaluate the soluble levels of sPD-1, sPD-L1, sPD-L2, sTIM-3, sGal9, sGITR, and sGITRL in GC patients. METHODS The cross-sectional study was carried out at the Hospital de Cancer de Pernambuco, Brazil between 2017 and 2018. A total of 74 GC patients and 30 healthy controls were included. RESULTS Low levels of sPD1 (p = 0.0179), sPDL2 (p = 0.0003), and sGal9 (p < 0.0001), and higher levels of sPDL1 (p = 0.004), sTIM-3 (p = 0.0072), sGITR (p = 0.0179), and sGITRL (p = 0.0055) compared to the control group. High sPD-1, sTIM-3, and sGal9 levels in stage IV compared I/II and III (p < 0.05). High sPDL1, sGal9, and sGITRL levels in esophagogastric junction compared to body and Pylorus/Antrum groups (p < 0.05). No significant differences were observed in sPD1, sPDL1, sPDL2, sTIM3, sGal9, sGITR, and sGITRL levels between the intestinal, diffuse, and mixed GC groups. Low sGITR levels in GC patients who died within the first 24 months compared to the who survived (p = 0.0332). CONCLUSIONS There is an association of sPD1, sTIM-3, and sGal9 with disease progression and sGITR with death, these mediators may be potential prognostic biomarkers in GC.
Collapse
Affiliation(s)
- Luciana Mata da Silva
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
- Department of Medicine, Postgraduate Program in Translational Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mário Rino Martins
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
- Department of Medicine, Postgraduate Program in Translational Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rogerio Luiz Dos Santos
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
| | - Jeronimo Paulo Assis Da Silva
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
- Department of Medicine, Postgraduate Program in Translational Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Cecilia Araujo Carneiro Lima
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
- Department of Medicine, Postgraduate Program in Translational Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nora Manoukian Forones
- Department of Digestive Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Leuridan Cavalcante Torres
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
- Department of Medicine, Postgraduate Program in Translational Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Pitts SC, Schlom J, Donahue RN. Soluble immune checkpoints: implications for cancer prognosis and response to immune checkpoint therapy and conventional therapies. J Exp Clin Cancer Res 2024; 43:155. [PMID: 38822401 PMCID: PMC11141022 DOI: 10.1186/s13046-024-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Longitudinal sampling of tumor tissue from patients with solid cancers, aside from melanoma and a few other cases, is often unfeasible, and thus may not capture the plasticity of interactions between the tumor and immune system under selective pressure of a given therapy. Peripheral blood analyses provide salient information about the human peripheral immunome while offering technical and practical advantages over traditional tumor biopsies, and should be utilized where possible alongside interrogation of the tumor. Some common blood-based biomarkers used to study the immune response include immune cell subsets, circulating tumor DNA, and protein analytes such as cytokines. With the recent explosion of immune checkpoint inhibitors (ICI) as a modality of treatment in multiple cancer types, soluble immune checkpoints have become a relevant area of investigation for peripheral immune-based biomarkers. However, the exact functions of soluble immune checkpoints and their roles in cancer for the most part remain unclear. This review discusses current literature on the production, function, and expression of nine soluble immune checkpoints - sPD-L1, sPD-1, sCTLA4, sCD80, sTIM3, sLAG3, sB7-H3, sBTLA, and sHVEM - in patients with solid tumors, and explores their role as biomarkers of response to ICI as well as to conventional therapies (chemotherapy, radiotherapy, targeted therapy, and surgery) in cancer patients.
Collapse
Affiliation(s)
- Stephanie C Pitts
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Wang XP, Guo W, Chen YF, Hong C, Ji J, Zhang XY, Dong YF, Sun XL. PD-1/PD-L1 axis is involved in the interaction between microglial polarization and glioma. Int Immunopharmacol 2024; 133:112074. [PMID: 38615383 DOI: 10.1016/j.intimp.2024.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.
Collapse
Affiliation(s)
- Xi-Peng Wang
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Wei Guo
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ye-Fan Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Chen Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiu-Lan Sun
- Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Han S, Zhang Y, Yuan J, Wu Y, Zhou Y, Zhou Y, Li X, Zhou S. sPD-L1 and sPD-L2 in plasma of patients with lung cancer and their clinical significance. Cytokine 2024; 176:156532. [PMID: 38330638 DOI: 10.1016/j.cyto.2024.156532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/24/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer death worldwide. We aim here to determine the soluble programmed death ligand-1 (sPD-L1) and soluble programmed death ligand-2 (sPD-L2) levels in the plasma of patients with lung cancer and evaluate the clinical significance. METHODS Plasma samples from 95 lung cancer patients and 55 healthy donors were collected, and the sPD-L1 and sPD-L2 levels were measured using the enzyme-linked immunosorbent assay. The correlations of the plasma sPD-L1 and sPD-L2 levels with clinicopathological status and survival of the patients were analyzed. RESULTS The sPD-L1 and sPD-L2 levels in plasma of lung cancer patients were 713.8 (240.6-3815) pg/ mL and 3233(1122-13955) pg/ mL, respectively, which were significantly higher than those of the health donors 618.6 (189.1-1149) pg/ mL and 2182 (1133-3471) pg/ mL, and the plasma levels of sPD-L1 are correlated with sPD-L2. ROC results showed that both sPD-L1 and sPD-L2 were potential biomarker for lung cancer, and with a higher accuracy level when combined with CEA. Patients with Higher plasma sPD-L1 level (>713.75 pg/ mL) are associated with poor overall survival in advanced lung cancer patients (197 days vs 643 days). CONCLUSIONS The combination of sPD-L1 and sPD-L2 could be used as adjunctive diagnostic, High level of plasma sPD-L1 rather than sPD-L2 is associated with poor prognosis in lung cancer patients.
Collapse
Affiliation(s)
- Shiyang Han
- The Aoyang Cancer Institute, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yan Zhang
- The Aoyang Cancer Institute, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Jingzhi Yuan
- Department of Laboratory Medicine, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yi Wu
- Department of Radiotherapy, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yun Zhou
- Department of Radiotherapy, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yan Zhou
- Department of Oncology, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Xiaowei Li
- Department of Breast and Thyroid Surgery, Jiangsu Shengze Hospital, Suzhou, 215200, Jiangsu, China.
| | - Shuru Zhou
- The Aoyang Cancer Institute, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China.
| |
Collapse
|
10
|
Wilczyński J, Paradowska E, Wilczyńska J, Wilczyński M. Prediction of Chemoresistance-How Preclinical Data Could Help to Modify Therapeutic Strategy in High-Grade Serous Ovarian Cancer. Curr Oncol 2023; 31:229-249. [PMID: 38248100 PMCID: PMC10814576 DOI: 10.3390/curroncol31010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most lethal tumors generally and the most fatal cancer of the female genital tract. The approved standard therapy consists of surgical cytoreduction and platinum/taxane-based chemotherapy, and of targeted therapy in selected patients. The main therapeutic problem is chemoresistance of recurrent and metastatic HGSOC tumors which results in low survival in the group of FIGO III/IV. Therefore, the prediction and monitoring of chemoresistance seems to be of utmost importance for the improvement of HGSOC management. This type of cancer has genetic heterogeneity with several subtypes being characterized by diverse gene signatures and disturbed peculiar epigenetic regulation. HGSOC develops and metastasizes preferentially in the specific intraperitoneal environment composed mainly of fibroblasts, adipocytes, and immune cells. Different HGSOC subtypes could be sensitive to distinct sets of drugs. Moreover, primary, metastatic, and recurrent tumors are characterized by an individual biology, and thus diverse drug responsibility. Without a precise identification of the tumor and its microenvironment, effective treatment seems to be elusive. This paper reviews tumor-derived genomic, mutational, cellular, and epigenetic biomarkers of HGSOC drug resistance, as well as tumor microenvironment-derived biomarkers of chemoresistance, and discusses their possible use in the novel complex approach to ovarian cancer therapy and monitoring.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Justyna Wilczyńska
- Department of Tele-Radiotherapy, Mikolaj Kopernik Provincial Multi-Specialized Oncology and Traumatology Center, 62 Pabianicka Str., 93-513 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
11
|
Li Q, Chen C, Wu J, Poon LC, Wang CC, Li TC, Zhang T, Guo X, Song L, Wang X, Zhang Q, Ye Z, Yang Y, Lu J, Yao J, Ye D, Wang Y. Decreased serum soluble programmed cell death ligand-1 level as a potential biomarker for missed miscarriage. Hum Reprod 2023; 38:2128-2136. [PMID: 37671597 DOI: 10.1093/humrep/dead178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
STUDY QUESTION Can maternal serum levels of soluble programmed cell death-1 (sPD-1) and its ligand (sPD-L1) serve as biomarkers for missed miscarriage (MM)? SUMMARY ANSWER Serum sPD-L1 levels are significantly decreased in MM patients and may serve as a potential predictive biomarker for miscarriage. WHAT IS KNOWN ALREADY Programmed cell death-1 (PD-1) and its ligand (PD-L1) comprise important immune inhibitory checkpoint signaling to maintain pregnancy. Their soluble forms are detectable in human circulation and are associated with immunosuppression. STUDY DESIGN, SIZE, DURATION Three independent cohorts attending tertiary referral hospitals were studied. The first (discovery) cohort was cross-sectional and included MM patients and healthy pregnant (HP) women matched on BMI. The second validation cohort contained MM patients and women with legally induced abortion (IA). The third prospective observational study recruited subjects requiring IVF treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS In the discovery cohort, we enrolled 108 MM patients and 115 HP women who had a full-term pregnancy at 6-14 weeks of gestation. In the validation cohort, we recruited 25 MM patients and 25 women with IA. Blood samples were collected at the first prenatal visit for HP women or on the day of dilatation and curettage surgery (D&C) for MM and IA subjects to determine serum sPD-1 and sPD-L1 levels. Placenta samples were harvested during the D&C within the validation cohort to measure gene and protein expression. The prospective cohort collected serial blood samples weekly from 75 volunteers with embryo transfer (ET) after IVF. MAIN RESULTS AND THE ROLE OF CHANCE Circulating sPD-L1 levels were reduced by 50% in patients with MM (55.7 ± 16.04 pg/ml) compared to HP controls (106.7 ± 58.46 pg/ml, P < 0.001) and the difference remained significant after adjusting for maternal age and gestational age, whereas no significant differences in sPD-1 level were observed. Likewise, serum sPD-L1 was lower in MM patients than in IA subjects and accompanied by downregulated PD-L1-related gene expression levels in the placenta. In the IVF cohort, applying the changing rate of sPD-L1 level after ET achieved a predictive performance for miscarriage with receiver operating characteristics = 0.73 (95% CI: 0.57-0.88, P < 0.01). LIMITATIONS, REASONS FOR CAUTION The study was mainly confined to East Asian pregnant women. Further large prospective pregnancy cohorts are required to validate the predictive performance of sPD-L1 on miscarriage. WIDER IMPLICATIONS OF THE FINDINGS Reduced circulating sPD-L1 level and downregulated placental PD-L1 expression in miscarriage indicate that dysfunction in PD-L1 signals is a potential underlying mechanism for pregnancy loss. Our findings further extend the importance of the PD-L1 axis in pregnancy maintenance in early pregnancy. STUDY FUNDING/COMPETING INTEREST(S) This study was financially supported by grants from the Subject Innovation Team of Shaanxi University of Chinese Medicine (2019-Y502), General Research Fund (14122021), and Key Laboratory of Model Animal Phenotyping and Basic Research in Metabolic Diseases (2018KSYS003). The authors declare that they have no competing interests to be disclosed. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qin Li
- The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Cuishan Chen
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaming Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Liona C Poon
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianghao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang Song
- The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xia Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ziying Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongkang Yang
- The Second School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yao Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Sun J, Hu S, Li X. Meta-analysis of the prognostic value of soluble programmed death ligand-1 (sPD-L1) in cancers. Biomarkers 2023; 28:477-485. [PMID: 37017446 DOI: 10.1080/1354750x.2023.2198168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/26/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The soluble programmed death ligand-1 (sPD-L1) and its prognostic role in cancers have been investigated in numerous studies. However, due to the inconsistency on some findings, this meta-analysis was performed to assess the prognostic value of sPD-L1 in patients with cancer. METHODS We searched the PubMed, Web of Science, MEDLINE, Wiley Online Library and ScienceDirect, and screened the studies for eligibility. Recurrence-free survival (RFS), progression-free survival (PFS) and disease-free survival (DFS) were for short term survival. The overall survival (OS) was for long term survival. RESULTS Forty studies with 4441 patients were included in this meta-analysis. Elevated sPD-L1 was associated with short OS [HR = 2.44 (2.03-2.94), p = 0.000]. Moreover, a high sPD-L1 was predictive of worse DFS/RFS/PFS [HR = 2.52 (1.83-3.44), p = 0.000]. In addition, high sPD-L1 was consistently correlated with poor OS in irrespective of study type, univariate and multivariate analysis, ethnicity, cut-off value of sPD-L1, sample and treatment. In the subgroup analysis, high sPD-L1 was correlated with poor OS in gastrointestinal cancer, lung cancer, hepatic cancer, oesophageal cancer and clear cell renal cell carcinoma. CONCLUSIONS The present meta-analysis showed that a high level of sPD-L1 was associated with worse prognosis in some types of cancer.
Collapse
Affiliation(s)
- Jinfan Sun
- Sinopharm Kunming Plasma-derived Biotherapies Co., Ltd, Kunming, China
| | - Shuenqin Hu
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiuying Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Li K, Cardenas-Lizana P, Kellner AV, Yuan Z, Ahn E, Lyu J, Li Z, Salaita K, Ahmed R, Zhu C. Mechanical force regulates ligand binding and function of PD-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553152. [PMID: 37645980 PMCID: PMC10462004 DOI: 10.1101/2023.08.13.553152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade targeting PD-1 shows great success in cancer therapy. However, the mechanism of how ligand binding initiates PD-1 signaling remains unclear. As prognosis markers of multiple cancers, soluble PD-L1 is found in patient sera and can bind PD-1, but fails to suppress T cell function. This and our previous observations that T cells exert endogenous forces on PD-1-PD-L2 bonds prompt the hypothesis that mechanical force might be critical to PD-1 triggering, which is missing in the soluble ligand case due to the lack of mechanical support afforded by surface-anchored ligand. Here we show that PD-1 function is eliminated or reduced when mechanical support on ligand is removed or dampened, respectively. Force spectroscopic analysis reveals that PD-1 forms catch bonds with both PD-Ligands <7 pN where force prolongs bond lifetime, but slip bonds >8 pN where force accelerates dissociation. Steered molecular dynamics finds PD-1-PD-L2 complex very sensitive to force due to the two molecules' "side-to-side" binding via β sheets. Pulling causes relative rotation and translation between the two molecules by stretching and aligning the complex along the force direction, yielding new atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced new interactions maintain the same binding affinity but display lower rupture force, shorter bond lifetime, reduced tension, and most importantly, impaired capacity to suppress T cell activation. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 triggering.
Collapse
Affiliation(s)
- Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Paul Cardenas-Lizana
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anna V. Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhou Yuan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eunseon Ahn
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhenhai Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
14
|
Bruss C, Kellner K, Albert V, Hutchinson JA, Seitz S, Ortmann O, Brockhoff G, Wege AK. Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion. Cancers (Basel) 2023; 15:cancers15092615. [PMID: 37174080 PMCID: PMC10177290 DOI: 10.3390/cancers15092615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Checkpoint blockade is particularly based on PD-1/PD-L1-inhibiting antibodies. However, an efficient immunological tumor defense can be blocked not only by PD-(L)1 but also by the presence of additional immune checkpoint molecules. Here, we investigated the co-expression of several immune checkpoint proteins and the soluble forms thereof (e.g., PD-1, TIM-3, LAG-3, PD-L1, PD-L2 and others) in humanized tumor mice (HTM) simultaneously harboring cell line-derived (JIMT-1, MDA-MB-231, MCF-7) or patient-derived breast cancer and a functional human immune system. We identified tumor-infiltrating T cells with a triple-positive PD-1, LAG-3 and TIM-3 phenotype. While PD-1 expression was increased in both the CD4 and CD8 T cells, TIM-3 was found to be upregulated particularly in the cytotoxic T cells in the MDA-MB-231-based HTM model. High levels of soluble TIM-3 and galectin-9 (a TIM-3 ligand) were detected in the serum. Surprisingly, soluble PD-L2, but only low levels of sPD-L1, were found in mice harboring PD-L1-positive tumors. Analysis of a dataset containing 3039 primary breast cancer samples on the R2 Genomics Analysis Platform revealed increased TIM-3, galectin-9 and LAG-3 expression, not only in triple-negative breast cancer but also in the HER2+ and hormone receptor-positive breast cancer subtypes. These data indicate that LAG-3 and TIM-3 represent additional key molecules within the breast cancer anti-immunity landscape.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
He H, He X, Zhou M, Tang Y, Dai L, Xie Z, Wang Y, Xie C. Role of sPD-1 and sPD-Ls in the pathogenesis of connective tissue disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:444-454. [PMID: 37164928 PMCID: PMC10930081 DOI: 10.11817/j.issn.1672-7347.2023.220263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 05/12/2023]
Abstract
Membrane-bound programmed cell death-1 (mPD-1) and membrane-bound programmed cell death-ligands (mPD-Ls) have soluble forms, which are soluble programmed cell death-1 (sPD-1) and soluble programmed cell death-ligands (sPD-Ls) [including soluble programmed cell death-ligand 1 (sPD-L1) and soluble programmed cell death-ligand 2 (sPD-L2)]. sPD-1 and sPD-L2 are mainly produced by alternative splicing isoforms of PD-1 mRNA, while sPD-L1 is produced by matrix metalloproteinases (MMPs) cutting membrane-bound programmed cell death-ligand 1 (mPD-L1). sPD-1 and sPD-Ls play an important role in autoimmune regulation via blocking the mPD-1 /mPD-L1 pathway, while connective tissue disease (CTD) is a kind of disease caused by autoimmune reaction, and abnormal function of mPD-1/mPD-L1 can occur in the occurrence and development of many autoimmune diseases. Therefore, sPD-1 and sPD-Ls play an important role in the pathogenesis of CTD caused by autoimmune reaction via blocking the mPD-1 /mPD-L1 pathway. It is of great practical significance to understand clinical value of sPD-1 and sPD-Ls in various CTDs for improving the quality of life of patients and the underlying mechanism.
Collapse
Affiliation(s)
- Haohua He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099.
| | - Xiaoyu He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099
| | - Mingjun Zhou
- Department of Clinical Medicine, Bengbu Medical College, Bengbu Anbui 233030
| | - Yingkai Tang
- Department of Human Anatomy, Bengbu Medical College, Bengbu Anbui 233030
| | - Li Dai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099
| | - Zhuobei Xie
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099
| | - Yuanyuan Wang
- Department of Histology and Embryology, Bengbu Medical College, Bengbu Anbui 233030.
- Micromorphology Experiment Center, Bengbu Medical College, Bengbu Anbui 233030.
| | - Changhao Xie
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anbui 233099.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu Anbui 233030, China.
| |
Collapse
|
16
|
Hoffmann O, Wormland S, Bittner AK, Collenburg M, Horn PA, Kimmig R, Kasimir-Bauer S, Rebmann V. Programmed death receptor ligand-2 (PD-L2) bearing extracellular vesicles as a new biomarker to identify early triple-negative breast cancer patients at high risk for relapse. J Cancer Res Clin Oncol 2023; 149:1159-1174. [PMID: 35366112 PMCID: PMC9984327 DOI: 10.1007/s00432-022-03980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Based on the tumor-promoting features of extracellular vesicles (EV) and PD-L1/2-bearing EV subpopulations (PD-L1/2EV), we evaluated their potential as surrogate markers for disease progression or eligibility criteria for PD-1 immune checkpoint inhibition (ICI) approaches in early triple-negative breast cancer (TNBC). METHODS After enrichment of EV from plasma samples of 56 patients before and 50 after chemotherapy (CT), we determined levels of EV particle number and PD-L1/2EV by nanoparticle tracking analysis or ELISA and associated the results with clinical status/outcome and the presence of distinct circulating tumor cells (CTC) subpopulations. RESULTS Compared to healthy controls, patients had a tenfold higher EV concentration and significantly elevated PD L2EV but not PD L1EV levels. The most important clinical implications were found for PD-L2EV. High PD-L2EV levels were associated with a significantly reduced 3-year progression-free and overall survival (PFS and OS). A loss of PD-L2EV after CT was significantly more prominent in patients achieving pathological complete response (pCR). Increased pre-CT PD-L2EV levels were found in patients having NOTCH1-positive or ERBB3-positive CTC. The presence of ERBB3-positive CTC combined with high pre-CT PD-L2EV resulted in a shorter PFS. CONCLUSION This study highlights PD L2EV as a promising biomarker for risk assessment of TNBC patients and represents the basic for additional studies introducing PD-L2EV as an eligibility criterion for PD-1 ICI approaches.
Collapse
Affiliation(s)
- Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | - Sebastian Wormland
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Monika Collenburg
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
17
|
Oertel M, Borrmann K, Baehr A, Eich HT, Greve B. Characterization and dynamics of the soluble immunological microenvironment in melanoma patients undergoing radiotherapy. Radiat Oncol 2022; 17:194. [PMID: 36443849 PMCID: PMC9703679 DOI: 10.1186/s13014-022-02167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Malignant melanoma constitutes an aggressive tumor of the skin, the pathogenesis of which is influenced by immunological processes. In this context, the influence of radiotherapy (RT) on inflammatory markers has not been studied in detail, yet. MATERIALS AND METHODS In this prospective analysis, 28 patients were recruited, 24 of these could be included for further analysis. According to protocol, patients underwent three blood-draws: before, after half of RT-fractions and after completion of RT. Serum levels of programmed death-ligand (PD-L) 1 and 2, interleukin 6 and cytotoxic t-lymphocyte-associated protein 4 were assessed via enzyme-linked immunosorbent assay and compared to healthy volunteers. Correlation with clinical data was attempted. RESULTS Comparing patients with healthy volunteers, a significant difference in the mean baseline serum-level of PD-L1 (90.1 pg/ml vs. 76.7 pg/ml for patients vs. control, respectively; p = 0.024) and PD-L2 (4.4 ng/ml vs. 8.7 ng/ml; p = 0.04) could be found. Increased levels of PD-L1 were only found in patients with prior immunotherapy. There was a tendency for higher interleukin 6 levels in the patients (8.5 pg/ml vs. 0.6 pg/ml; p = 0.052). No significant differences in serum levels could be found between the three time points. CONCLUSION The present study reveals a characteristic immunological pattern for melanoma patients in comparison to healthy controls. Future studies will have to focus on a putative correlation between immunological markers and clinical outcome parameters.
Collapse
Affiliation(s)
- Michael Oertel
- grid.16149.3b0000 0004 0551 4246Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| | - Katrin Borrmann
- grid.16149.3b0000 0004 0551 4246Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| | - Andrea Baehr
- grid.13648.380000 0001 2180 3484Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Theodor Eich
- grid.16149.3b0000 0004 0551 4246Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| | - Burkhard Greve
- grid.16149.3b0000 0004 0551 4246Department of Radiation Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| |
Collapse
|
18
|
Jiang VC, Hao D, Jain P, Li Y, Cai Q, Yao Y, Nie L, Liu Y, Jin J, Wang W, Lee HH, Che Y, Dai E, Han G, Wang R, Rai K, Futreal A, Flowers C, Wang L, Wang M. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer 2022; 21:185. [PMID: 36163179 PMCID: PMC9513944 DOI: 10.1186/s12943-022-01655-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy using brexucabtagene autoleucel (BA) induces remission in many patients with mantle cell lymphoma (MCL), and BA is the only CAR T-cell therapy approved by the FDA for MCL. However, development of relapses to BA is recognized with poor patient outcomes. Multiple CAR T-cell therapies have been approved for other lymphomas and the resistance mechanisms have been investigated. However, the mechanisms underlying BA relapse in MCL have not been investigated and whether any previously reported resistance mechanisms apply to BA-relapsed patients with MCL is unknown. METHODS To interrogate BA resistance mechanisms in MCL, we performed single-cell RNA sequencing on 39 longitudinally collected samples from 15 BA-treated patients, and multiplex cytokine profiling on 80 serial samples from 20 patients. RESULTS We demonstrate that after BA relapse, the proportion of T cells, especially cytotoxic T cells (CTLs), decreased among non-tumor cells, while the proportion of myeloid cells correspondingly increased. TIGIT, LAG3, and CD96 were the predominant checkpoint molecules expressed on exhausted T cells and CTLs; only TIGIT was significantly increased after relapse. CTLs expanded during remission, and then contracted during relapse with upregulated TIGIT expression. Tumor cells also acquired TIGIT expression after relapse, leading to the enhanced interaction of tumor cell TIGIT with monocyte CD155/PVR. In myeloid cells, post-relapse HLA-II expression was reduced relative to pretreatment and during remission. Myeloid-derived suppressor cells (MDSCs) were enriched after relapse with elevated expression of activation markers, including CLU (clusterin) and VCAN (versican). Extracellular chemokines (CCL4, CXCL9, CXCL13), soluble checkpoint inhibitors (sPD-L1, sTIM3, s4-1BB), and soluble receptors (sIL-2R, sTNFRII) were decreased during remission but elevated after relapse. CONCLUSIONS Our data demonstrate that multiple tumor-intrinsic and -extrinsic factors are associated with T-cell suppression and BA relapse. Among these, TIGIT appears to be the central player given its elevated expression after BA relapse in not only CTLs but also MCL cells. The acquisition of TIGIT expression on tumor cells is MCL-specific and has not been reported in other CAR T-treated diseases. Together, our data suggest that co-targeting TIGIT may prevent CAR T relapses and thus promote long-term progression-free survival in MCL patients.
Collapse
Affiliation(s)
- Vivian Changying Jiang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dapeng Hao
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yijing Li
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Nie
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jingling Jin
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kunal Rai
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Flowers
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Wang Q, He Y, Li W, Xu X, Hu Q, Bian Z, Xu A, Tu H, Wu M, Wu X. Soluble Immune Checkpoint-Related Proteins in Blood Are Associated With Invasion and Progression in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:887916. [PMID: 35874720 PMCID: PMC9296827 DOI: 10.3389/fimmu.2022.887916] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundImmune checkpoint inhibition therapy has been achieved significant success in the treatment of non-small cell lung cancer (NSCLC). However, the role of soluble immune checkpoint- related proteins in NSCLC remains obscure.MethodsWe evaluated the circulating levels of 14 immune checkpoint-related proteins panel (BTLA, LAG-3, GITR, IDO, PD-L2, PD-L1, PD-1, HVEM, Tim-3, CD28, CD27, CD80, CD137 and CTLA-4) and their associations with the risk of invasive disease and the risk of NSCLC in 43 pre-invasive (AIS), 81 invasive NSCLC (IAC) patients and matched 35 healthy donors using a multiplex Luminex assay. Gene expression in tumors from TCGA were analyzed to elucidate potential mechanisms. The multivariate logistic regression model was applied in the study. ROC(receiver operator characteristic) curve and calibration curve were used in the performance evaluation.ResultsWe found that sCD27, sCD80, CD137 and sPDL2 levels were significantly increased in IAC cases compared to AIS cases (P= 1.05E-06, 4.44E-05, 2.30E-05 and 1.16E-06, respectively), whereas sPDL1 and sPDL2 levels were significantly increased in NSCLC cases compared to healthy controls (P=3.25E-05 and 1.49E-05, respectively). Unconditional univariate logistic regression analysis indicated that increased sCD27, sCD80, sCD137, and sPDL2 were significantly correlated with the risk of invasive diseases. The model with clinical variables, sCD27 and sPDL2 demonstrated the best performance (AUC=0.845) in predicting the risk of IAC. CD27 and PDCD1LG2 (PDL2) showed significant association with cancer invasion signature in TCGA dataset.ConclusionOur study provides evidence that soluble immune checkpoint-related proteins may associate with the risk of IAC, and we further established an optimized multivariate predictive model, which highlights their potential application in the treatment of NSCLC patients. Future studies may apply these biomarkers to test their predictive value of survival and treatment outcome during immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Qinchuan Wang
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Yue He
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Wanlu Li
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Xiaohang Xu
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Qingfeng Hu
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Zilong Bian
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Andi Xu
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Huakang Tu
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xifeng Wu, ; Ming Wu,
| | - Xifeng Wu
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
- *Correspondence: Xifeng Wu, ; Ming Wu,
| |
Collapse
|
20
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
21
|
Karczmarczyk A, Korpysz M, Bilska S, Purkot J, Hus M, Giannopoulos K. Programmed Cell Death-1 and Its Ligands as Targets for Therapy of Multiple Myeloma Patients. Cancer Manag Res 2022; 14:1267-1281. [PMID: 35370422 PMCID: PMC8974248 DOI: 10.2147/cmar.s351383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Among hematological malignancies, the expression profile of programmed cell death-1 (PD-1) and its ligands in multiple myeloma (MM) is still debated by numerous research groups. In current study, we characterized the expression of PD-1 and its ligands both on RNA and protein levels in MM patients. We have also attempted to analyze whether daratumumab therapy might overcome CD38-mediated immunosuppression that inhibits in particular CD8+ T-cell function. Patients and Methods This study included 149 newly diagnosed MM patients and 15 relapsed/refractory MM patients before and after daratumumab treatment. The mRNA levels of PDCD1, PDCD1LG1, PDCD1LG2 and their splicing variants was assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Flow cytometry was used to characterize the surface expression of PD-1 and its ligands on plasma cells, B and T cells. The surface expression of PD-1 on T cells was assessed by flow cytometry before and after daratumumab treatment. Results The mRNA expression of PDCD1LG1, PDCD1LG2 and their splicing variants were higher in plasma cells as compared to bone marrow mononuclear cells (BMMCs). Our results show that the percentage of plasma cells expressing PD-L1 was significantly higher than plasma cells expressing PD-L2 (p<0.0001) in bone marrow (BM) of MM patients. There was no significant difference between the percentage of plasma cells expressing PD-1 and B cells expressing PD-1 in BM of MM patients (11.19% vs 8.91%). We also found that the percentage of CD8+PD-1+ T cells was significantly higher than CD4+PD-1+T cells in BM (p<0.0001) of MM patients. Here, we observed no change in PD-1 expression on CD4+ and CD8+ T cells after the daratumumab treatment. Conclusion The PD-1 and its ligands might represent an interesting target for MM immunotherapy, as one would target both malignant plasma cells as well as the immune cells that play a key role in tumor escape mechanisms.
Collapse
Affiliation(s)
| | - Maciej Korpysz
- Department of Biochemical Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Sylwia Bilska
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Joanna Purkot
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Centre, Lublin, Poland
- Correspondence: Krzysztof Giannopoulos, Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland, Tel + 48 81448 6632, Fax + 48 81448 6634, Email
| |
Collapse
|
22
|
Jou HJ, Ling PY, Hsu HT. Circulating tumor cells as a "real-time liquid biopsy": Recent advances and the application in ovarian cancer. Taiwan J Obstet Gynecol 2022; 61:34-39. [PMID: 35181043 DOI: 10.1016/j.tjog.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 10/19/2022] Open
Abstract
Even with the latest advances in technology, the treatment of ovarian cancer remains a big challenge because it is typically diagnosed at advanced stage, is prone to early relapse in spite of aggressive treatment and has an extremely poor prognosis. Circulating tumor cells (CTCs) can be used as a non-invasive "real-time liquid biopsy", which has shown the value of diagnosis, assessment of prognosis and chemoresistance, and detection of small residual tumors on ovarian cancer. This review article provides an overview on recent research on CTCs in ovarian cancer, with special focus on the clinical application of CTC tests.
Collapse
Affiliation(s)
- Hei-Jen Jou
- Department of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; School of Nursing, National Taipei University of Nursing and Health Science, Taipei, Taiwan.
| | - Pei-Ying Ling
- Department of Obstetrics and Gynecology, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Heng-Tung Hsu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Genes Involved in Immune Reinduction May Constitute Biomarkers of Response for Metastatic Melanoma Patients Treated with Targeted Therapy. Biomedicines 2022; 10:biomedicines10020284. [PMID: 35203494 PMCID: PMC8869294 DOI: 10.3390/biomedicines10020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022] Open
Abstract
Targeted therapy in metastatic melanoma often achieves a major tumour regression response and significant long-term survival via the release of antigens that reinduce immunocompetence. The biomarkers thus activated may guide the prediction of response, but this association and its mechanism have yet to be established. Blood samples were collected from nineteen consecutive patients with metastatic melanoma before, during, and after treatment with targeted therapy. Differential gene expression analysis was performed, which identified the genes involved in the treatment, both in the first evaluation of response and during progression. Although clinical characteristics of the patients were poorer than those obtained in pivotal studies, radiological responses were similar to those reported previously (objective response rate: 73.7%). In the first tumour assessment, the expression of some genes increased (CXCL-10, SERPING1, PDL1, and PDL2), while that of others decreased (ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163, and S100A12). The analysis of gene expression in blood shows that some are activated and others inhibited by targeted therapy. This response pattern may provide biomarkers of the immune reinduction response, which could be used to study potential combination treatments. Nevertheless, further studies are needed to validate these results.
Collapse
|
24
|
Świderska J, Kozłowski M, Nowak K, Rychlicka M, Branecka-Woźniak D, Kwiatkowski S, Pius-Sadowska E, Machaliński B, Cymbaluk-Płoska A. Clinical Relevance of Soluble Forms of Immune Checkpoint Molecules sPD-1, sPD-L1, and sCTLA-4 in the Diagnosis and Prognosis of Ovarian Cancer. Diagnostics (Basel) 2022; 12:diagnostics12010189. [PMID: 35054356 PMCID: PMC8774466 DOI: 10.3390/diagnostics12010189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is crucial to find new diagnostic and prognostic biomarkers. A total of 80 patients were enrolled in the study. The study group consisted of 37 patients with epithelial ovarian cancer, and the control group consisted of 43 patients with benign ovarian cystic lesions. Three proteins involved in the immune response were studied: PD-1, PD-L1, and CTLA-4. The study material was serum and peritoneal fluid. The ROC curve was plotted, and the area under the curve was calculated to characterize the sensitivity and specificity of the studied parameters. Univariate and multivariate analyses were performed simultaneously using the Cox regression model. The cut-off level of CTLA-4 was 0.595 pg/mL, with the sensitivity and specificity of 70.3% and 90.7% (p = 0.000004). Unfavorable prognostic factors determined in serum were: PD-L1 (for PFS: HR 1.18, 95% CI 1.11–1.21, p = 0.016; for OS: HR 1.17, 95% CI 1.14–1.19, p = 0.048) and PD-1 (for PFS: HR 1.01, 95% CI 0.91–1.06, p = 0.035). Unfavorable prognostic factors determined in peritoneal fluid were: PD-L1 (for PFS: HR 1.08, 95% CI 1.01–1.11, p = 0.049; for OS: HR 1.14, 95% CI 1.10–1.17, p = 0.045) and PD-1 (for PFS: HR 1.21, 95% CI 1.19–1.26, p = 0.044). We conclude that CTLA-4 should be considered as a potential biomarker in the diagnosis of ovarian cancer. PD-L1 and PD-1 concentrations are unfavorable prognostic factors for ovarian cancer.
Collapse
Affiliation(s)
- Janina Świderska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.Ś.); (K.N.); (A.C.-P.)
| | - Mateusz Kozłowski
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.Ś.); (K.N.); (A.C.-P.)
- Correspondence:
| | - Katarzyna Nowak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.Ś.); (K.N.); (A.C.-P.)
| | | | - Dorota Branecka-Woźniak
- Department of Gynecology and Reproductive Health, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.P.-S.); (B.M.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.P.-S.); (B.M.)
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.Ś.); (K.N.); (A.C.-P.)
| |
Collapse
|
25
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
26
|
Rasihashemi SZ, Rezazadeh Gavgani E, Majidazar R, Seraji P, Oladghaffari M, Kazemi T, Lotfinejad P. Tumor-derived exosomal PD-L1 in progression of cancer and immunotherapy. J Cell Physiol 2021; 237:1648-1660. [PMID: 34825383 DOI: 10.1002/jcp.30645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a gravely important health issue all over the world and has been spreading fast. In recent years immune checkpoint treatment options have been used extensively as a primary line of treatment for different cancer types. PD-1 and its ligand, PD-L1, are members of the immune-checkpoints superfamily. Anti-PD-L1 and anti-PD-1 antibodies have shown efficacy against different cancer types, but fewer than 30% of patients have shown robust therapeutic responses and, therefore, it is hypothesized that exosomal PD-L1 is the mechanism to blame for failure in primary immune checkpoint therapy. The identical membrane topology of exosomal PD-L1 with tumor cell membrane-type provides the possibility to mimic immunosuppressive effects of tumor cell membrane PD-L1. In this review, it is discussed whether exosomal PD-L1 binds to antibodies and hence resistance to immunotherapy will be developed, and targeting exosome biogenesis inhibition can provide a new strategy to overcome tumor resistance to anti-PD-L1 therapy. Diagnostic and prognostic values of exosomal PD-L1 in different cancer types are discussed. Multiple clinical studies conclude that the level of tumor-derived exosomes (TEXs) as a biomarker for diagnosis could distinguish cancer patients from healthy controls. Elevated exosomal PD-L1 levels may be predictive of advanced disease stages, cancer metastasis, lower response to anti-PD-1/PD-L1 therapy, lower overall survival rates, and poor tumor prognosis. These novel findings of TEXs serve as promising therapeutic targets for early diagnosis and prevention of cancer progression.
Collapse
Affiliation(s)
- Seyed Z Rasihashemi
- Department of Cardiothoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Seraji
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Oladghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Yang J, Cheng S, Zhang N, Jin Y, Wang Y. Liquid biopsy for ovarian cancer using circulating tumor cells: Recent advances on the path to precision medicine. Biochim Biophys Acta Rev Cancer 2021; 1877:188660. [PMID: 34800546 DOI: 10.1016/j.bbcan.2021.188660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/30/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignance worldwide. Considering its metastasis nature, oncologists shift focus towards circulating tumor cells (CTCs), a progenitor that originates from primary tumor and undergoes morphologic/genetic alterations to enter bloodstream and invade nearby tissues. Mountains of evidence suggested that CTCs could provide deep insights into genomic, transcriptomic, and proteomic profiling of OC metastatic cascades. To pave the way for precision medicine, researchers exert great efforts to develop isolation/detection methodologies and construct CTCs-derived propagation platforms, including traditional cell cultures, patient-derived xenografts (PDXs), and organoids. From bench to bedside, CTCs provide minimally-invasive means to inform early diagnosis, predict prognosis, and guide treatment decisions. This review shined a spotlight on biology, detection technologies, and propagation platforms for CTCs. Of note, we also reviewed clinical applications of CTCs in liquid biopsy-based personalized cancer treatment and critically appraised limitations in routine clinical practice on the path to precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
28
|
Mach P, Kimmig R, Kasimir-Bauer S, Buderath P. Association of Soluble B7-H4 and Circulating Tumor Cells in Blood of Advanced Epithelial Ovarian Cancer Patients. Front Oncol 2021; 11:721067. [PMID: 34778036 PMCID: PMC8586654 DOI: 10.3389/fonc.2021.721067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Epithelial ovarian cancer (EOC) is the deadliest gynecologic malignancy worldwide. Reliable predictive biomarkers are urgently needed to estimate the risk of relapse and to improve treatment management. Soluble immune-checkpoints in EOC are promising molecules serving as prognostic biomarkers accessible via liquid biopsy. We thus, aimed at elucidating the role of sB7-H4 in EOC. Material and Methods We analyzed soluble serum B7-H4 (sB7-H4) using ELISA and circulating tumor cells (CTCs) in blood applying the AdnaTest OvarianCancer in 85 patients suffering from advanced EOC. Findings were correlated with clinical parameters as well as survival data. Results sB7-H4 was detectable in 14.1% patients, CTCs in 32.9% patients and simultaneous presence of CTCs and sB7-H4 was found in 7% patients, respectively. Although no association between sB7-H4 and CTC could be documented, each of them served as independent predictive factors for overall survival (OS). Conclusion sB7-H4 and CTCs are independent prognostic biomarkers for impaired survival in EOC. As they are easily accessible via liquid biopsy, they may be of potential benefit for the prediction of therapy response and survival for EOC patients.
Collapse
Affiliation(s)
- Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
29
|
Pawłowska A, Kwiatkowska A, Suszczyk D, Chudzik A, Tarkowski R, Barczyński B, Kotarski J, Wertel I. Clinical and Prognostic Value of Antigen-Presenting Cells with PD-L1/PD-L2 Expression in Ovarian Cancer Patients. Int J Mol Sci 2021; 22:11563. [PMID: 34768993 PMCID: PMC8583913 DOI: 10.3390/ijms222111563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
The latest literature demonstrates the predominant role of the programmed cell death axis (PD-1/PD-L1/PD-L2) in ovarian cancer (OC) pathogenesis. However, data concerning this issue is ambiguous. Our research aimed to evaluate the clinical importance of PD-L1/PD-L2 expression in OC environments. We evaluated the role of PD-L1/PD-L2 in OC patients (n = 53). The analysis was performed via flow cytometry on myeloid (mDCs) and plasmacytoid dendritic cells (pDCs) and monocytes/macrophages (MO/MA) in peripheral blood, peritoneal fluid (PF), and tumor tissue (TT). The data were correlated with clinicopathological characteristics and prognosis of OC patients. The concentration of soluble PD-L1 (sPD-L1) and PD-1 in the plasma and PF were determined by ELISA. We established an accumulation of PD-L1+/PD-L2+ mDCs, pDCs, and MA in the tumor microenvironment. We showed an elevated level of sPD-L1 in the PF of OC patients in comparison to plasma and healthy subjects. sPD-L1 levels in PF showed a positive relationship with Ca125 concentration. Moreover, we established an association between higher sPD-L1 levels in PF and shorter survival of OC patients. An accumulation of PD-L1+/PD-L2+ mDCs, pDCs, and MA in the TT and high sPD-L1 levels in PF could represent the hallmark of immune regulation in OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Agnieszka Kwiatkowska
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Agata Chudzik
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Rafał Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland; (R.T.); (B.B.); (J.K.)
| | - Bartłomiej Barczyński
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland; (R.T.); (B.B.); (J.K.)
| | - Jan Kotarski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland; (R.T.); (B.B.); (J.K.)
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| |
Collapse
|
30
|
Khan M, Arooj S, Wang H. Soluble B7-CD28 Family Inhibitory Immune Checkpoint Proteins and Anti-Cancer Immunotherapy. Front Immunol 2021; 12:651634. [PMID: 34531847 PMCID: PMC8438243 DOI: 10.3389/fimmu.2021.651634] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Co-inhibitory B7-CD28 family member proteins negatively regulate T cell responses and are extensively involved in tumor immune evasion. Blockade of classical CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) and PD-1 (programmed cell death protein-1) checkpoint pathways have become the cornerstone of anti-cancer immunotherapy. New inhibitory checkpoint proteins such as B7-H3, B7-H4, and BTLA (B and T lymphocyte attenuator) are being discovered and investigated for their potential in anti-cancer immunotherapy. In addition, soluble forms of these molecules also exist in sera of healthy individuals and elevated levels are found in chronic infections, autoimmune diseases, and cancers. Soluble forms are generated by proteolytic shedding or alternative splicing. Elevated circulating levels of these inhibitory soluble checkpoint molecules in cancer have been correlated with advance stage, metastatic status, and prognosis which underscore their broader involvement in immune regulation. In addition to their potential as biomarker, understanding their mechanism of production, biological activity, and pathological interactions may also pave the way for their clinical use as a therapeutic target. Here we review these aspects of soluble checkpoint molecules and elucidate on their potential for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADAA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021; 53:961-978. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Aggressive tissue biopsy is commonly unavoidable in the management of most suspected tumor cases to conclusively verify the presence of cancerous cells through histological assessment. The extracted tissue is also immunostained for detection of antigens (tissue tumor markers) of potential prognostic or therapeutic importance to assist in treatment decision. Although liquid biopsies can be a powerful tool for monitoring treatment response, they are still excluded from standard cancer diagnostics, and their utility is still being debated in the scientific community. With a myriad of soluble tissue tumor markers now being discovered, liquid biopsies could completely change the current paradigms of cancer management. Recently, soluble programmed cell death ligand-1 (sPD-L1), which is found in the peripheral blood, i.e. serum and plasma, has shown potential as a pre-therapeutic predictive marker as well as a prognostic biomarker to monitor treatment efficacy. Thus, this review focuses on the emergence of sPD-L1 and promising technologies for its detection in order to support liquid biopsies for future cancer management.
Collapse
Affiliation(s)
- Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ahmad Hafiz Murtadha
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Elis Rosliza Mohd Adzemi
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Maya Mazuwin Yahya
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Juhara Haron
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokshtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
32
|
Rzhevskiy A, Kapitannikova A, Malinina P, Volovetsky A, Aboulkheyr Es H, Kulasinghe A, Thiery JP, Maslennikova A, Zvyagin AV, Ebrahimi Warkiani M. Emerging role of circulating tumor cells in immunotherapy. Theranostics 2021; 11:8057-8075. [PMID: 34335980 PMCID: PMC8315079 DOI: 10.7150/thno.59677] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Over the last few years, immunotherapy, in particular, immune checkpoint inhibitor therapy, has revolutionized the treatment of several types of cancer. At the same time, the uptake in clinical oncology has been slow owing to the high cost of treatment, associated toxicity profiles and variability of the response to treatment between patients. In response, personalized approaches based on predictive biomarkers have emerged as new tools for patient stratification to achieve effective immunotherapy. Recently, the enumeration and molecular analysis of circulating tumor cells (CTCs) have been highlighted as prognostic biomarkers for the management of cancer patients during chemotherapy and for targeted therapy in a personalized manner. The expression of immune checkpoints on CTCs has been reported in a number of solid tumor types and has provided new insight into cancer immunotherapy management. In this review, we discuss recent advances in the identification of immune checkpoints using CTCs and shed light on the potential applications of CTCs towards the identification of predictive biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Alexey Rzhevskiy
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Alina Kapitannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Polina Malinina
- Privolzhsky Research Medical University, 10/1, Minini Pozharsky Square, Nizhny Novgorod 603005, Russia
| | - Arthur Volovetsky
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
| | | | - Arutha Kulasinghe
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Woolloongabba, QLD 4102, Australia
- Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Jean Paul Thiery
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Guangzhou Institutes of Biomedicine and Health, Guangzhou, People's Republic of China
| | - Anna Maslennikova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
- The Chair of Cancer, Radiotherapy and Radiologic Diagnostics, Privolzhsky Research Medical University, Nizhniy Novgorod. Russia 603005
| | - Andrei V. Zvyagin
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- IBCh - Shemyakin Ovchinnikov Institute of BioOrganic Chemistry of the Russian Academy of Sciences, Miklukho Maklai Street, 16, Moscow, Russia
| | - Majid Ebrahimi Warkiani
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- School of Biomedical Engineering, University of Technology Sydney, 2007 Sydney, Australia
| |
Collapse
|
33
|
Ying H, Zhang X, Duan Y, Lao M, Xu J, Yang H, Liang T, Bai X. Non-cytomembrane PD-L1: An atypical target for cancer. Pharmacol Res 2021; 170:105741. [PMID: 34174446 DOI: 10.1016/j.phrs.2021.105741] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Programmed death ligand 1 (PD-L1) has conventionally been considered as a type I transmembrane protein that can interact with its receptor, programmed cell death 1 (PD-1), thus inducing T cell deactivation and immune escape. However, targeting the PD-1/PD-L1 axis has achieved adequate clinical responses in very few specific malignancies. Recent studies have explored the extracellularly and subcellularly located PD-L1, namely, nuclear PD-L1 (nPD-L1), cytoplasmic PD-L1 (cPD-L1), soluble PD-L1 (sPD-L1), and extracellular vesicle PD-L1 (EV PD-L1), which might shed light on the resistance to anti-PD1/PDL1 therapy. In this review, we summarize the four atypical localizations of PD-L1 with a focus on their novel functions, such as gene transcription regulation, therapeutic efficacy prediction, and resistance to various cancer therapies. Additionally, we highlight that non-cytomembrane PD-L1s are of significant cancer diagnostic value and are promising therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China.
| |
Collapse
|
34
|
Bailly C, Thuru X, Quesnel B. Soluble Programmed Death Ligand-1 (sPD-L1): A Pool of Circulating Proteins Implicated in Health and Diseases. Cancers (Basel) 2021; 13:3034. [PMID: 34204509 PMCID: PMC8233757 DOI: 10.3390/cancers13123034] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Upon T-cell receptor stimulation, the Programmed cell Death-1 receptor (PD-1) expressed on T-cells can interact with its ligand PD-L1 expressed at the surface of cancer cells or antigen-presenting cells. Monoclonal antibodies targeting PD-1 or PD-L1 are routinely used for the treatment of cancers, but their clinical efficacy varies largely across the variety of tumor types. A part of the variability is linked to the existence of several forms of PD-L1, either expressed on the plasma membrane (mPD-L1), at the surface of secreted cellular exosomes (exoPD-L1), in cell nuclei (nPD-L1), or as a circulating, soluble protein (sPD-L1). Here, we have reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein. sPD-L1 isoforms can be generated essentially by two non-exclusive processes: (i) proteolysis of m/exoPD-L1 by metalloproteases, such as metalloproteinases (MMP) and A disintegrin and metalloproteases (ADAM), which are capable of shedding membrane PD-L1 to release an active soluble form, and (ii) the alternative splicing of PD-L1 pre-mRNA, leading in some cases to the release of sPD-L1 protein isoforms lacking the transmembrane domain. The expression and secretion of sPD-L1 have been observed in a large variety of pathologies, well beyond cancer, notably in different pulmonary diseases, chronic inflammatory and autoimmune disorders, and viral diseases. The expression and role of sPD-L1 during pregnancy are also evoked. The structural heterogeneity of sPD-L1 proteins, and associated functional/cellular plurality, should be kept in mind when considering sPD-L1 as a biomarker or as a drug target. The membrane, exosomal and soluble forms of PD-L1 are all integral parts of the highly dynamic PD-1/PD-L1 signaling pathway, essential for immune-tolerance or immune-escape.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
35
|
Lei Y, Wang X, Sun H, Fu Y, Tian Y, Yang L, Wang J, Xia F. Association of Preoperative NANOG-Positive Circulating Tumor Cell Levels With Recurrence of Hepatocellular Carcinoma. Front Oncol 2021; 11:601668. [PMID: 34123777 PMCID: PMC8190394 DOI: 10.3389/fonc.2021.601668] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) and Circulating tumor cells (CTCs) have been proposed as fundamental causes for the recurrence of hepatocellular carcinoma (HCC). CTCs isolated from patients with HCC illustrate a unique Nanog expression profile analysis. The aim of this study was to enhance the prediction of recurrence and prognosis of the CTC phenotype in patients with HCC by combining Nanog expression into a combined forecasting model. SUBJECTS MATERIALS AND METHODS We collected 320 blood samples from 160 patients with HCC cancer before surgery and used CanPatrol™ CTC enrichment technology and in situ hybridization (ISH) to enrich and detect CTCs and CSCs. Nanog expression in all CTCs was also determined. In addition, RT-PCR and immunohistochemistry were used to study the expression of Nanog, E-Cadherin, and N-Cadherin in liver cancer tissues and to conduct clinical correlation studies. RESULTS The numbers of EpCAM mRNA+ CTCs and Nanog mRNA+ CTCs were strongly correlated with postoperative HCC recurrence (CTC number (P = 0.03), the total number of mixed CTCS (P = 0.02), and Nanog> 6.7 (P = 0.001), with Nanog > 6.7 (P = 0.0003, HR = 2.33) being the most crucial marker. There are significant differences in the expression of Nanog on different types of CTC: most Epithelial CTCs do not express Nanog, while most of Mixed CTC and Mesenchymal CTC express Nanog, and their positive rates are 38.7%, 66.7%, and 88.7%, respectively, (P=0.0001). Moreover, both CTC (≤/> 13.3) and Nanog (≤/>6.7) expression were significantly correlated with BCLC stage, vascular invasion, tumor size, and Hbv-DNA (all P < 0.05). In the young group and the old group, patients with higher Nanog expression had a higher recurrence rate. (P < 0.001). CONCLUSIONS The number of Nanog-positive cells showed positive correlation with the poor prognosis of HCC patients. The detection and analysis of CTC markers (EpCAM and CK8, 18, CD45 Vimentin,Twist and 19) and CSCs markers (NANOG) are of great value in the evaluation of tumor progression.
Collapse
Affiliation(s)
- Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xishu Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ludi Yang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| |
Collapse
|
36
|
The clinical implication of soluble PD-L1 (sPD-L1) in patients with breast cancer and its biological function in regulating the function of T lymphocyte. Cancer Immunol Immunother 2021; 70:2893-2909. [PMID: 33688997 PMCID: PMC8423647 DOI: 10.1007/s00262-021-02898-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
This work investigated the clinical prognostic implications and biological function of plasma soluble programmed cell death ligand 1 in breast cancer patients. Plasma sPD-L1 levels of recurrent/metastatic breast cancer patients were determined, and the association of sPD-L1 levels and metastatic progression-free survival and metastatic overall survival was assessed. The PD-L1 expression on breast cancer cells was analyzed by flow cytometry, and the level of sPD-L1 in the supernatant of breast cancer cells was determined by enzyme-linked immunosorbent assay. Furthermore, the effect of sPD-L1 on the proliferation and apoptosis of T lymphocytes was detected by WST-1 assay and flow cytometry. The plasma sPD-L1 levels in 208 patients with recurrent/metastatic breast cancer before receiving first-line rescue therapy were measured. The optimal cutoff value of plasma sPD-L1 for predicting disease progression was 8.774 ng/ml. Univariate and multivariate analyses identified high sPD-L1 level (≥ 8.774 ng/ml) and visceral metastasis were independent factors associated with poor prognosis. Relevance analysis showed that the plasma sPD-L1 level was weakly associated with some systemic inflammation markers, including white cell count (WBC), absolute monocyte count, and absolute neutrophil count. Furthermore, we found sPD-L1 could be found in supernatant of culture with breast cancer cell line expressing PD-L1 on the cell surface and inhibit T lymphocyte function, playing a negative regulatory role in cellular immunity. sPD-L1 was a good tumor predictive maker in breast cancer and it may play a potentially important role in immune tolerance.
Collapse
|
37
|
Dowell AC, Munford H, Goel A, Gordon NS, James ND, Cheng KK, Zeegers MP, Ward DG, Bryan RT. PD-L2 Is Constitutively Expressed in Normal and Malignant Urothelium. Front Oncol 2021; 11:626748. [PMID: 33718196 PMCID: PMC7951139 DOI: 10.3389/fonc.2021.626748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 11/14/2022] Open
Abstract
The use of immune checkpoint blockade, in particular PD-1 and PD-L1 inhibitors, is now commonplace in many clinical settings including the treatment of muscle-invasive bladder cancer (MIBC). Notwithstanding, little information exists regarding the expression of the alternative PD-1 ligand, PD-L2 in urothelial bladder cancer (UBC). We therefore set out to characterise the expression of PD-L2 in comparison to PD-L1. Firstly, we assessed PD-L2 expression by immunohistochemistry and found widespread expression of PD-L2 in UBC, albeit with reduced expression in MIBC. We further investigated these findings using RNA-seq data from a cohort of 575 patients demonstrating that PDCD1LG2 (PD-L2) is widely expressed in UBC and correlated with CD274 (PD-L1). However, in contrast to our immunohistochemistry findings, expression was significantly increased in advanced disease. We have also provided detailed evidence of constitutive PD-L2 expression in normal urothelium and propose a mechanism by which PD-L2 is cleaved from the cell surface in MIBC. These data provide a comprehensive assessment of PD-L2 in UBC, showing PD-L2 is abundant in UBC and, importantly, constitutively present in normal urothelium. These data have implications for future development of immune checkpoint blockade, and also the understanding of the function of the immune system in the normal urinary bladder.
Collapse
Affiliation(s)
- Alexander C Dowell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Haydn Munford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Anshita Goel
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Naheema S Gordon
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas D James
- Prostate and Bladder Cancer Research Team, The Institute of Cancer Research, London, United Kingdom
| | - K K Cheng
- School of Health and Population Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maurice P Zeegers
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, Netherlands
| | - Douglas G Ward
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Huang P, Hu W, Zhu Y, Wu Y, Lin H. The Prognostic Value of Circulating Soluble Programmed Death Ligand-1 in Cancers: A Meta-Analysis. Front Oncol 2021; 10:626932. [PMID: 33718120 PMCID: PMC7950317 DOI: 10.3389/fonc.2020.626932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
Background Studies on the prognostic value of the soluble programmed death ligand 1 (sPD-L1) in cancer patients have not yielded consistent results. Objective This meta-analysis was performed to assess the association between sPD-L1 and the prognosis of cancer patients. Methods Published articles in Pubmed, EMBASE, and Cochrane clinical trial databases were searched from the inception to September 2020. Overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS) data were evaluated using a hazard ratio (HR) at 95% confidence interval (95% CI). Results A total 31 studies involving 17 tumors and 3,780 patients were included. The overexpression of sPD-L1 was associated with shorter OS (HR 1.85, 95% CI 1.59–2.15, I2 = 33%). High sPD-L1 had worse PFS (HR 2.40, 95% CI 1.55–3.72, I2 = 83%), and worse DFS (HR 2.92, 95% CI 2.02–4.29, I2 = 40%), without significant statistical difference in RFS (HR 2.08, 95% CI 0.99–4.40, I2 = 0%). Conclusions High sPD-L1 levels were associated with worse survival prognosis in cancer patients. The sPD-L1 may be a potential prognostic, non-invasive, and dynamic monitoring biomarker for cancers in the future.
Collapse
Affiliation(s)
- Pei Huang
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Hu
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhu
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushen Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huapeng Lin
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Solorzano-Ibarra F, Alejandre-Gonzalez AG, Ortiz-Lazareno PC, Bastidas-Ramirez BE, Zepeda-Moreno A, Tellez-Bañuelos MC, Banu N, Carrillo-Garibaldi OJ, Chavira-Alvarado A, Bueno-Topete MR, Del Toro-Arreola S, Haramati J. Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis. Clin Exp Immunol 2021; 204:78-95. [PMID: 33306195 DOI: 10.1111/cei.13561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint therapy to reverse natural killer (NK) and T cell exhaustion has emerged as a promising treatment in various cancers. While anti-programmed cell death 1 (PD-1) pembrolizumab has recently gained Food and Drug Administration (FDA) approval for use in recurrent or metastatic cervical cancer, other checkpoint molecules, such as T cell immunoreceptor with immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) and T cell immunoglobulin and mucin-domain containing-3 (Tim-3), have yet to be fully explored in this disease. We report expression of TIGIT, Tim-3 and PD-1 on subsets of peripheral blood NK (CD56dim/neg CD16bright/dim/neg and CD56bright CD16dim/neg ) and T cells. The percentages of these cells were increased in women with cervical cancer and pre-malignant lesions. PD-1+ NK and T cells were likely to co-express TIGIT and/or Tim-3. These cells, with an apparently 'exhausted' phenotype, were augmented in patients. A subset of cells were also natural killer group 2 member D (NKG2D)- and DNAX accessory molecule 1 (DNAM-1)-positive. PD-1int and PD-1high T cells were notably increased in cervical cancer. Soluble programmed cell death ligand 1 (PD-L1) was higher in cancer patient blood versus healthy donors and we observed a positive correlation between sPD-L1 and PD-1+ T cells in women with low-grade lesions. Within the cancer group, there were no significant correlations between sPD-L1 levels and cervical cancer stage. However, when comparing cancer versus healthy donors, we observed an inverse association between sPD-L1 and total T cells and a correlation between sPD-L1 and CD56dim NK cells. Our results may show an overview of the immune response towards pre-cancerous lesions and cervical cancer, perhaps giving an early clue as to whom to administer blocking therapies. The increase of multiple checkpoint markers may aid in identifying patients uniquely responsive to combined antibody therapies.
Collapse
Affiliation(s)
- F Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - A G Alejandre-Gonzalez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - P C Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - B E Bastidas-Ramirez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - A Zepeda-Moreno
- Instituto de Investigación en Cáncer en la Infancia y Adolescencia, Departamento de Clínicas de la Reproducción Humana, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - M C Tellez-Bañuelos
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, México
| | - N Banu
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - O J Carrillo-Garibaldi
- Clínica de Tumores Pélvicos, Instituto Jalisciense de Cancerología, Organismo Público Descentralizado, Guadalajara, México
| | - A Chavira-Alvarado
- Clínica de Displasias, Nuevo Hospital Civil de Guadalajara "Dr Juan I. Menchaca", Organismo Público Descentralizado, Guadalajara, México
| | - M R Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - S Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - J Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
40
|
Montemagno C, Hagege A, Borchiellini D, Thamphya B, Rastoin O, Ambrosetti D, Iovanna J, Rioux-Leclercq N, Porta C, Negrier S, Ferrero JM, Chamorey E, Pagès G, Dufies M. Soluble forms of PD-L1 and PD-1 as prognostic and predictive markers of sunitinib efficacy in patients with metastatic clear cell renal cell carcinoma. Oncoimmunology 2020; 9:1846901. [PMID: 33299657 PMCID: PMC7714499 DOI: 10.1080/2162402x.2020.1846901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic clear cell renal cell carcinoma (mccRCC) benefits from several treatment options in the first-line setting with VEGFR inhibitors and/or immunotherapy including anti-PD-L1 or anti-PD1 agents. Identification of predictive biomarkers is highly needed to optimize patient care. Circulating markers could reflect the biology of metastatic disease. Therefore, we evaluated soluble forms of PD-L1 (sPD-L1) and PD-1 (sPD-1) in mccRCC patients. The levels of sPD-L1 and sPD-1 were evaluated from plasma samples of mccRCC patients before they received a first-line treatment (T0) by the VEGFR inhibitor sunitinib (50 patients) or by the anti-VEGF bevacizumab (37 patients). The levels of sPD-L1 and sPD-1 were correlated to clinical parameters and progression-free survival (PFS). High levels of sPD-1 or sPDL1 were not correlated to PFS under bevacizumab while they were independent prognostic factors of PFS in the sunitinib group. Patients with high T0 plasmatic levels of sPD-L1 had a shorter PFS (11.3 vs 22.5 months, p = .011) in the sunitinib group. Equivalent shorter PFS was found with high levels of sPD-1 (8.6 vs 14.1 months, p = .009). mccRCC patients with high plasmatic levels of sPD-L1 or sPD-1 are poor responders to sunitinib. sPD-L1 or sPD-1 could be a valuable tool to guide the optimal treatment strategy including VEGFR inhibitor.
Collapse
Affiliation(s)
- Christopher Montemagno
- Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.,Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Anais Hagege
- Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Delphine Borchiellini
- University Côte d'Azur, Centre Antoine Lacassagne, Department of Medical Oncology, University Côte d'Azur, Nice, France
| | - Brice Thamphya
- Centre Antoine Lacassagne, Department of Statistic, University Côte d'Azur, Nice, France
| | - Olivia Rastoin
- Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Damien Ambrosetti
- Centre Hospitalier Universitaire (CHU) De Nice, Hôpital Pasteur, Central Laboratory of Pathology University Côte d'Azur, Nice, France
| | - Juan Iovanna
- Team Pancreatic Cancer, Centre De Recherche En Cancérologie De Marseille (CRCM), Marseille, France
| | | | - Camillio Porta
- Department of Biomedical Sciences and Human Oncology, I.R.C.C.S. San Matteo University Hospital, Pavia, Italy (Present Affiliation: University of Bari 'A. Moro', Bari, Italy
| | - Sylvie Negrier
- Centre Léon Bérard, University Hospital De Lyon, Lyon, France
| | - Jean-Marc Ferrero
- University Côte d'Azur, Centre Antoine Lacassagne, Department of Medical Oncology, University Côte d'Azur, Nice, France
| | - Emmanuel Chamorey
- Centre Antoine Lacassagne, Department of Statistic, University Côte d'Azur, Nice, France
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.,Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| |
Collapse
|
41
|
Keup C, Kimmig R, Kasimir-Bauer S. Liquid Biopsies to Evaluate Immunogenicity of Gynecological/Breast Tumors: On the Way to Blood-Based Biomarkers for Immunotherapies. Breast Care (Basel) 2020; 15:470-480. [PMID: 33223990 PMCID: PMC7650128 DOI: 10.1159/000510509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the assumption of breast cancer (BC) as a cold, non-immunogenic tumor, immune checkpoint inhibitor (ICI) therapy is favorable for a subgroup of patients. Immunohistochemical assessment of the programmed cell death ligand 1 (PD-L1) is the only approved companion diagnostic for anti-PD-L1 therapy in metastatic triple-negative BC; however, challenges regarding the standardization of PD-L1 scoring in tumor tissue still remain. Consequently, to select patients most likely to respond to ICI, blood-based biomarkers are urgently needed. SUMMARY AND KEY MESSAGES Liquid biopsy, comprising circulating immune cells, circulating tumor cells and extracellular vesicles, as well as their surface proteins, is of high potential, and these analytes were already shown to be molecular correlates or regulators of the evasion from antitumoral immune reaction. Liquid biopsy, also enabling the evaluation of tumor mutational burden (TMB), microsatellite instability, and the T-cell receptor repertoire, allows serial sampling for monitoring purposes and reflects intra-tumoral heterogeneity which qualifies as marker for immunogenicity. Only a very few studies have already elucidated the potential of these analytes as biomarkers under ICI therapy. Nonetheless, the topic is of growing interest and has high relevance for the future. However, for clinical implementation, these multifarious analytes first need to pass robust standardization and validation procedures.
Collapse
Affiliation(s)
| | | | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
42
|
Qiao XW, Jiang J, Pang X, Huang MC, Tang YJ, Liang XH, Tang YL. The Evolving Landscape of PD-1/PD-L1 Pathway in Head and Neck Cancer. Front Immunol 2020; 11:1721. [PMID: 33072064 PMCID: PMC7531035 DOI: 10.3389/fimmu.2020.01721] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Over the past 10 years, cancer immunotherapy has made significant progress in multiple cancer types and has been gradually been applied to clinical cancer care, in which the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is one of the most attractive targets. Compared with traditional therapies, the emerging PD-1/PD-L1 blockade immunotherapy exhibited more satisfactory curative effects and lower toxicity for patients with advanced head and neck squamous cell carcinoma (HNSCC). This review analyzes the expression characteristics and clinical significance of PD-1/PD-L1 in HNSCC, the immunosuppressive roles of tumor cell and stromal cell expressing PD-1/PD-L1 in this disease, and presents the development landscape of PD-1/PD-L1 inhibitors, which may provide new curative alternatives for recurrent or metastatic HNSCC.
Collapse
Affiliation(s)
- Xin-Wei Qiao
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Liskova A, Samec M, Koklesova L, Giordano FA, Kubatka P, Golubnitschaja O. Liquid Biopsy is Instrumental for 3PM Dimensional Solutions in Cancer Management. J Clin Med 2020; 9:E2749. [PMID: 32854390 PMCID: PMC7563444 DOI: 10.3390/jcm9092749] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
One in every four deaths is due to cancer in Europe. In view of its increasing incidence, cancer became the leading cause of death and disease burden in Denmark, France, the Netherlands, and the UK. Without essential improvements in cancer prevention, an additional 775,000 cases of annual incidence have been prognosed until 2040. Between 1995 and 2018, the direct costs of cancer doubled from EUR 52 billion to EUR 103 billion in Europe, and per capita health spending on cancer increased by 86% from EUR 105 to EUR 195 in general, whereby Austria, Germany, Switzerland, Benelux, and France spend the most on cancer care compared to other European countries. In view of the consequent severe socio-economic burden on society, the paradigm change from a reactive to a predictive, preventive, and personalized medical approach in the overall cancer management is essential. Concepts of predictive, preventive, and personalized medicine (3PM) demonstrate a great potential to revise the above presented trends and to implement cost-effective healthcare that benefits the patient and society as a whole. At any stage, application of early and predictive diagnostics, targeted prevention, and personalization of medical services are basic pillars making 3PM particularly attractive for the patients as well as ethical and cost-effective healthcare. Optimal 3PM approach requires novel instruments such as well-designed liquid biopsy application. This review article highlights current achievements and details liquid biopsy approaches specifically in cancer management. 3PM-relevant expert recommendations are provided.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
44
|
Jia Y, Li X, Zhao C, Ren S, Su C, Gao G, Li W, Zhou F, Li J, Zhou C. Soluble PD-L1 as a Predictor of the Response to EGFR-TKIs in Non-small Cell Lung Cancer Patients With EGFR Mutations. Front Oncol 2020; 10:1455. [PMID: 32983977 PMCID: PMC7477347 DOI: 10.3389/fonc.2020.01455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed cell death ligand 1 (PD-L1) expressed on tumor tissues is a vital molecule for immune suppression and its impact on the response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has been reported. The significance of soluble PD-L1 (sPD-L1) for lung cancer patients remains unknown. This study investigated whether sPD-L1 could predict the response of EGFR-mutated non-small cell lung cancer (NSCLC) to EGFR-targeted therapy. We retrospectively evaluated patients who received first-line treatment with EGFR-TKIs for advanced NSCLC with EGFR mutations. Pre-treatment plasma concentrations of PD-L1 and on-treatment (1 month after treatment initiation) plasma concentrations of PD-L1 were measured using the R-plex Human PD-L1 assay. The association between the sPD-L1 level and the clinical outcome was analyzed. Among 66 patients who were eligible for the study, patients with high pre-treatment or on-treatment sPD-L1 levels had decreased objective response rate (ORR) compared with that of patients with low sPD-L1 levels (39.4 vs. 66.7%, p = 0.026 for pre-treatment sPD-L1 level, and 43.5 vs. 73.9%, p = 0.025 for on-treatment sPD-L1 level). A high baseline sPD-L1 level was associated with a shortened progression-free survival (PFS) rate (9.9 vs. 16.1 months, p = 0.005). Both univariate and multivariate analyses showed that a high baseline sPD-L1 level was an independent factor associated with the PFS (hazard ratio [HR] 2.56, p = 0.011). Our study revealed that the sPD-L1 level was strongly related to the outcome of EGFR-TKIs in NSCLC patients harboring EGFR mutations.
Collapse
Affiliation(s)
- Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Okła K, Rajtak A, Czerwonka A, Bobiński M, Wawruszak A, Tarkowski R, Bednarek W, Szumiło J, Kotarski J. Accumulation of blood-circulating PD-L1-expressing M-MDSCs and monocytes/macrophages in pretreatment ovarian cancer patients is associated with soluble PD-L1. J Transl Med 2020; 18:220. [PMID: 32487171 PMCID: PMC7268341 DOI: 10.1186/s12967-020-02389-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 (sPD-L1) in human cancers. However, still contradictory results exist. Our aim was evaluation of PD-L1-expressing monocytic myeloid-derived suppressor cells (M-MDSCs), monocytes/macrophages (MO/MA), tumour cells (TC) and immune/inflammatory cells (IC) as well as investigation of the sPD-L1 in ovarian cancer (OC) patients. METHODS The group of 74 pretreatment women were enrollment to the study. The expression of PD-L1 on M-MDSCS and MO/MA was assessed by flow cytometry. The profile of sPD-L1 was examined with ELISA. The expression of PD-L1 in mononuclear cells (MCs) was analyzed using real time PCR. PD-L1 immunohistochemical analysis was prepared on TC and IC. An in silico validation of prognostic significance of PD-L1 mRNA expression was performed based microarray datasets. RESULTS OC patients had significantly higher frequency of MO/MA versus M-MDSC in the blood, ascites and tumour (each p < 0.0001). In contrast, PD-L1 expression was higher on M-MDSCs versus MO/MA in the blood and ascites (each p < 0.0001), but not in the tumour (p > 0.05). Significantly higher accumulation of blood-circulating M-MDSC, MO/MA, PD-L1+M-MDSC, PD-L1+MO/MA and sPD-L1 was observed in patients versus control (p < 0.001, p < 0.05, p < 0.001, p < 0.001 and p < 0.0001, respectively). Accumulation of these factors was clinicopathologic-independent (p > 0.05). The expression of PD-L1 was significantly higher on IC versus TC (p < 0.0001) and was clinicopathologic-independent (p > 0.05) except higher level of PD-L1+TC in the endometrioid versus mucinous tumours. Interestingly, blood-circulating sPD-L1 positively correlated with PD-L1+M-MDSCs (p = 0.03) and PD-L1+MO/MA (p = 0.02) in the blood but not with these cells in the ascites and tumours nor with PD-L1+TC/IC (each p > 0.05). PD-L1 and sPD-L1 were not predictors of overall survival (OS; each p > 0.05). Further validation revealed no association between PD-L1 mRNA expression and OS in large independent OC patient cohort (n = 655, p > 0.05). CONCLUSIONS Although PD-L1 may not be a prognostic factor for OC, our study demonstrated impaired immunity manifested by up-regulation of PD-L1/sPD-L1. Furthermore, there was a positive association between PD-L1+ myeloid cells and sPD-L1 in the blood, suggesting that sPD-L1 may be a noninvasive surrogate marker for PD-L1+myeloid cells immunomonitoring in OC. Overall, these data should be under consideration during future clinical studies/trials.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland.
| | - Alicja Rajtak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Marcin Bobiński
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Rafał Tarkowski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Wiesława Bednarek
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, 20-090, Lublin, Poland
| | - Jan Kotarski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| |
Collapse
|
46
|
Lu T, Chen Y, Li J, Guo Q, Lin W, Zheng Y, Su Y, Zong J, Lin S, Ye Y, Pan J. High Soluble Programmed Death-Ligand 1 Predicts Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:1757-1765. [PMID: 32161471 PMCID: PMC7051865 DOI: 10.2147/ott.s242517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Immune checkpoint proteins in the tumor microenvironment can enter the blood circulation and are potential markers for liquid biopsy. The aims of this study were to explore differences in immune checkpoint protein expression between patients with nasopharyngeal carcinoma (NPC) and healthy controls and to investigate the prognostic value of the soluble form of programmed death-ligand 1 (sPD-L1) in NPC. Methods In total, 242 patients were included in the disease group. Plasma samples from 23 NPC patients and 15 healthy control were used for immune checkpoint protein panel assays. Samples from 219 patients with NPC including 30 paired pre-treatment and post-radiotherapy samples were evaluated by enzyme-linked immunosorbent assay to determine sPD-L1 levels. Results A total of 14 immune checkpoint proteins, including sPD-L1were upregulated in 23 patients with NPC (all p<0.001) compared with 15 healthy controls. Among 219 patients, the median follow-up time was 50 months (7–82 months). Based on the optimal cutoff value of 93.7 pg/mL, patients with high expression of sPD-L1 had worse distant metastasis-free survival (87.5% vs 74.0%, p=0.006) than those of patients with low expression. Multivariate analysis showed that sPD-L1 (HR=1.99, p=0.048) and EBV-DNA (HR=2.51, p=0.030) were poor prognostic factors for DMFS. In the group with high EBV-DNA expression, DMFS was worse for patients with high sPD-L1 expression than those with low sPD-L1 expression (56.4% vs 82.6%, p=0.002). Conclusion Plasma immune checkpoint protein expression differed significantly between patients with NPC and healthy donors. Plasma sPD-L1 levels are a candidate prognostic biomarker, especially when combined with EBV-DNA.
Collapse
Affiliation(s)
- Tianzhu Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yiping Chen
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yuhong Zheng
- Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ying Su
- Department of Radiation Biology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Shaojun Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China.,The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jianji Pan
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
47
|
Liu S, Zhu Y, Zhang C, Meng X, Sun B, Zhang G, Fan Y, Kang X. The Clinical Significance of Soluble Programmed Cell Death-Ligand 1 (sPD-L1) in Patients With Gliomas. Front Oncol 2020; 10:9. [PMID: 32038986 PMCID: PMC6989542 DOI: 10.3389/fonc.2020.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/06/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Soluble PD-L1 (sPD-L1) in the circulation has been documented to activate global immunosuppression and is considered a predictor of negative clinical outcomes in several malignances. However, the clinical significance of sPD-L1 in the peripheral blood and cerebrospinal fluid (CSF) of patients with glioma remains unclear. Objective: The aim of this study was to detect the correlations of sPD-L1 with clinical features in brain tumors and assess the diagnostic value of this protein in gliomas. Methods: Serum samples were obtained from 73 patients with glioma, 20 patients with meningioma, and 49 healthy controls (HCs) in this study. In total, 31 CSF samples were collected from the matched glioma patients, and seven samples were collected from the matched meningioma patients. The expression of serum sPD-L1 in the glioma cohort was followed for 20 days after surgery to examine the kinetics in the circulation. Inflammatory markers were evaluated based on preoperative blood parameters. The sPD-L1 levels in the serum and CSF were determined by enzyme-linked immunosorbent assay (ELISA). The logistic regression model was used to assess the independent associations of sPD-L1 with gliomas, including high-grade gliomas. Results: Serum and CSF levels of sPD-L1 were significantly elevated in patients with gliomas compared to those with meningiomas and HCs. Additionally, increased levels of sPD-L1 were observed in relatively advanced tumors. sPD-L1 overexpression in the CSF appears to be more representative of aggressive tumor features than overexpression in the serum. For glioma diagnosis, both serum and CSF sPD-L1 showed significant value in the diagnosis and stratification of glioma, and the best diagnostic performance was obtained with serum sPD-L1 rather than blood-based inflammatory markers. In addition, a descending trend in the level of serum sPD-L1 was observed in postoperative patients. Conclusion: In gliomas, elevated circulating and CSF sPD-L1 levels are associated with aggressive biological activities. The results of the current study suggest that sPD-L1 is a promising biomarker for gliomas that can be used in clinical practice.
Collapse
Affiliation(s)
- Shujun Liu
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing, China
| | - Yadi Zhu
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing, China
| | - Chenxi Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing, China
| | - Xiangrui Meng
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing, China
| | - Bo Sun
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
48
|
Zhou K, Guo S, Li F, Sun Q, Liang G. Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2020; 8:569219. [PMID: 33178688 PMCID: PMC7593554 DOI: 10.3389/fcell.2020.569219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
As a classical immune checkpoint molecule, PD-L1 on the surface of tumor cells plays a pivotal role in tumor immunosuppression, primarily by inhibiting the antitumor activities of T cells by binding to its receptor PD-1. PD-1/PD-L1 inhibitors have demonstrated unprecedented promise in treating various human cancers with impressive efficacy. However, a significant portion of cancer patients remains less responsive. Therefore, a better understanding of PD-L1-mediated immune escape is imperative. PD-L1 can be expressed on the surface of tumor cells, but it is also found to exist in extracellular forms, such as on exosomes. Recent studies have revealed the importance of exosomal PD-L1 (ExoPD-L1). As an alternative to membrane-bound PD-L1, ExoPD-L1 produced by tumor cells also plays an important regulatory role in the antitumor immune response. We review the recent remarkable findings on the biological functions of ExoPD-L1, including the inhibition of lymphocyte activities, migration to PD-L1-negative tumor cells and immune cells, induction of both local and systemic immunosuppression, and promotion of tumor growth. We also discuss the potential implications of ExoPD-L1 as a predictor for disease progression and treatment response, sensitive methods for detection of circulating ExoPD-L1, and the novel therapeutic strategies combining the inhibition of exosome biogenesis with PD-L1 blockade in the clinic.
Collapse
Affiliation(s)
- Kaijian Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo,
| | - Fei Li
- Department of Pharmaceutical Science, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoxin Liang
- Cancer Therapy Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|