1
|
Fu J, Song X, Mo R, Sebold BC, Luo Y, Li J, Fu Q, Li H, Liu X, Wang T, Ni G. Host-defence caerin 1.1 and 1.9 peptides suppress B16 melanoma growth by inducing apoptosis and disrupting lipid metabolism. Biomed Pharmacother 2025; 189:118242. [PMID: 40516331 DOI: 10.1016/j.biopha.2025.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/22/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025] Open
Abstract
Caerin peptides, originally isolated from the skin secretions of Australian tree frogs of the genus Litoria, have shown potential as anti-cancer agents in previous studies. This study investigates the impact of caerin 1.1 and 1.9 (F1/F3) peptides on lipid and amino acid metabolism in B16 melanoma cells, assessing their effects on cell proliferation and the tumour microenvironment (TME). F1/F3 significantly inhibited the proliferation of B16 cells in vitro, and metabolomic analysis revealed lipid metabolites, including lysophosphatidylcholines, phosphatidylcholines, phosphatidylethanolamines, and polyunsaturated fatty acids, were significantly downregulated in vivo in a murine model. Pathway enrichment analysis further highlighted suppressed fatty acid biosynthesis and unsaturated fatty acid synthesis, suggesting an impairment in lipid metabolic processes. Additionally, elevated levels of proinflammatory cytokine expression and inflammatory macrophage infiltration were observed in the TME, likely contributing to the enhanced anti-tumour response. Branched-chain amino acid degradation pathways were also less active in the F1/F3 group, suggesting altered acetyl-CoA availability impacting lipid synthesis. Notably, metabolites such as 3-Hydroxyvalproic acid and carnitine derivatives were markedly elevated, indicating potential antiproliferative and anti-inflammatory effects. These findings suggest that caerin peptides exert anti-cancer effects through multifaceted mechanisms, including modulation of lipid metabolism and immune activation, positioning caerin peptides as promising candidates for combination therapy in melanoma and potentially other malignancies.
Collapse
Affiliation(s)
- Jiawei Fu
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Xinyi Song
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Rongmi Mo
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | | | - Yuandong Luo
- Zhong'ao Biomedical Technology (Guangdong) Co. Ltd., Zhongshan, Guangdong 528403, China
| | - Junjie Li
- Zhong'ao Biomedical Technology (Guangdong) Co. Ltd., Zhongshan, Guangdong 528403, China
| | - Quanlan Fu
- Zhong'ao Biomedical Technology (Guangdong) Co. Ltd., Zhongshan, Guangdong 528403, China
| | - Hejie Li
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China; Zhong'ao Biomedical Technology (Guangdong) Co. Ltd., Zhongshan, Guangdong 528403, China.
| | - Tianfang Wang
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia.
| | - Guoying Ni
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China; Zhong'ao Biomedical Technology (Guangdong) Co. Ltd., Zhongshan, Guangdong 528403, China.
| |
Collapse
|
2
|
Chrzan N, Hartman ML. Copper in melanoma: At the crossroad of protumorigenic and anticancer roles. Redox Biol 2025; 81:103552. [PMID: 39970778 PMCID: PMC11880738 DOI: 10.1016/j.redox.2025.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Copper is an essential micronutrient that is a cofactor for various enzymes involved in multiple cellular processes. Melanoma patients have high serum copper levels, and elevated copper concentrations are found in melanoma tumors. Copper influences the activity of several melanoma-related proteins involved in cell survival, proliferation, pigmentation, angiogenesis, and metastasis. Targeting these processes with copper chelators has shown efficacy in reducing tumor growth and overcoming drug resistance. In contrast, excessive copper can also have detrimental effects when imported into melanoma cells. Multiple distinct cellular effects of copper overload, including the induction of different types of cell death, have been reported. Cuproptosis, a novel type of copper-dependent cell death, has been recently described and is associated with the metabolic phenotype. Melanoma cells can switch between glycolysis and oxidative phosphorylation, which are crucial for tumor growth and drug resistance. In this respect, metabolic plasticity might be exploited for the use of copper-delivery strategies, including repurposing of disulfiram, which is approved for the treatment of noncancer patients. In addition, the development of nanomedicines can improve the targeted delivery of copper to melanoma cells and enable the use of these drugs alone or in combination as copper has been shown to complement targeted therapy and immunotherapy in melanoma cells. However, further research is needed to explore the specific mechanisms of both copper restriction and excess copper-induced processes and determine effective biomarkers for predicting treatment sensitivity in melanoma patients. In this review, we discuss the dual role of copper in melanoma biology.
Collapse
Affiliation(s)
- Natalia Chrzan
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
3
|
Wannakul T, Miyazaki H, Maekawa M, Kagawa Y, Yamamoto Y, Owada Y. Loss of fatty acid-binding protein 7 promotes B16F10 melanoma metastasis. Sci Rep 2025; 15:10495. [PMID: 40140427 PMCID: PMC11947267 DOI: 10.1038/s41598-024-80874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/22/2024] [Indexed: 03/28/2025] Open
Abstract
Melanoma possesses the characteristic phenotypic plasticity, enhancing its metastatic formation and drug resistance. Lipid and fatty acid metabolism are usually altered to support melanoma progression and can be targeted for therapeutic development. Fatty acid binding protein 7 (FABP7) is highly expressed in melanomas and is shown to support its proliferation, migration, and invasion, but the mechanisms remain unclear. Our study aimed to link FABP7 to lipid metabolism and phenotypic shift in melanomas. We established the Fabp7-knockout (KO) B16F10 melanoma cells, which showed an enhanced invasion through matrix-coated membrane, without significant change in proliferation. Similar outcomes were obtained when using RNA interference targeting FABP7. Fabp7-KO cells injected into mice exhibited slower primary tumor growth, but formed higher metastatic foci count in the lungs. We also discovered a higher saturation in overall lipids, phosphatidylcholines, and triacylglycerols. We observed transcriptional shifts toward the invasive MITFLow/AXLHigh phenotype, with upregulation of transforming growth factor-beta (TGF-β) receptor mRNAs. In conclusion, FABP7 may help balancing lipid saturation and maintain the proliferative state of melanomas, mitigating invasiveness and metastatic formation.
Collapse
Affiliation(s)
- Tunyanat Wannakul
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
- Faculty of Medicine, Khon Kaen University, 123 Nai Muang, Muang, 40002, Khon Kaen, Thailand
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Motoko Maekawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Anatomy, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
4
|
Menon A, Mutalik VS, Chen Y, Ponamgi SPD, Peela S, Schroth RJ, Ghavami S, Chelikani P. Beyond Genetics: Exploring Lifestyle, Microbiome, and Social Determinants in Oral Cancer Development. Cancers (Basel) 2025; 17:1094. [PMID: 40227635 PMCID: PMC11988157 DOI: 10.3390/cancers17071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Oral cancer refers to cancers originating in the oral cavity and oropharyngeal regions. It is the 16th most prevalent cancer and the sixth leading cause of cancer-related deaths. However, the mechanisms of its progression are still being understood, and interventions to provide early diagnosis need to be improved. More studies have recently been conducted on oral cancer, and many reviews have summarized the findings in this field, focusing on individual factors. However, few review articles have evaluated the combinational impacts of different factors on oral cancer. This review aimed to provide an overview of the combinational effects of three extracellular factors, including lifestyle habits, oral microbiome, and socioeconomic factors, on oral cancer progression. Oral cancer is differentially affected by lifestyle habits; high-sugar diets, processed foods, alcohol, smoking, and possibly sleep disorders benefit its progression, whereas eating natural diets, such as fruits, vegetables, fish, and garlic, drinking tea or coffee, and physical exercise can combat it. The oral microbiome could suppress or promote oral cancer progression. Low socioeconomic status can impact oral cancer development. Furthermore, crosstalk among these three factors affects oral cancer progression. This review has limitations in not including all oral cancer-affecting factors and all important publications. More focus should be placed on the combinational effects of multiple factors on oral cancer progression and treatment. The findings in this study could update researchers on the landscape of oral cancer progression and help formulate approaches to promote oral cancer prevention and treatment.
Collapse
Affiliation(s)
- Anil Menon
- Department of Preventive Dental Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.M.); (R.J.S.)
| | - Vimi S. Mutalik
- Department of Dental Diagnostics and Surgical Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Yongqiang Chen
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - SPD. Ponamgi
- Department of Biotechnology, Andhra University College of Science and Technology, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India;
| | - Sujatha Peela
- Department of Biotechnology, Dr. B. R Ambedkar University, Srikakulam 532410, Andhra Pradesh, India;
| | - Robert J. Schroth
- Department of Preventive Dental Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.M.); (R.J.S.)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| |
Collapse
|
5
|
Baldassari F, Bonanomi M, Mallia S, Bonas M, Brivio E, Aramini T, Porro D, Gaglio D. Emodin and Aloe-Emodin Reduce Cell Growth and Disrupt Metabolic Plasticity in Human Melanoma Cells. Nutrients 2025; 17:1113. [PMID: 40218871 PMCID: PMC11990439 DOI: 10.3390/nu17071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Melanoma is an aggressive skin cancer with intratumor metabolic heterogeneity, which drives its progression and therapy resistance. Natural anthraquinones, such as emodin and aloe-emodin, exhibit anti-cancer properties, but their effects on metabolic plasticity remain unclear. This study evaluated their impact on proliferation and metabolic pathways in heterogenous melanoma human cell lines. Methods: COLO 800, COLO 794, and A375 melanoma cell lines representing distinct metabolic phenotypes were analyzed. Targeted and untargeted metabolomics analyses integrated with Seahorse assays were performed to assess the effects of emodin and aloe-emodin on cell proliferation, mitochondrial function, and redox homeostasis. Glucose tracing using [U-13C6] glucose and metabolic flux analysis (MFA) were carried out to evaluate the glycolysis and TCA cycle dynamics. Results: Emodin and aloe-emodin inhibited proliferation by disrupting glycolysis, oxidative phosphorylation, and energy production across all cell lines. Both compounds impaired glucose metabolism, reduced TCA cycle intermediates, and induced mitochondrial ROS accumulation, causing oxidative stress and redox imbalance. Despite intrinsic metabolic differences, COLO 800 and COLO 794 upregulated antioxidant defenses; A375 enhanced one-carbon metabolism and amino acid pathways to maintain redox balance and nucleotide biosynthesis. Conclusions: Emodin and aloe-emodin can disrupt the metabolic plasticity of melanoma cells by impairing glycolysis, mitochondrial function, and redox homeostasis. Their ability to target metabolic vulnerabilities across diverse phenotypes highlights their therapeutic potential for overcoming resistance mechanisms and advancing melanoma treatment strategies.
Collapse
Affiliation(s)
- Federica Baldassari
- Institute of Bioimaging and Complex Biological Systems, National Research Council (CNR), 20054 Segrate, MI, Italy; (F.B.); (M.B.); (S.M.); (T.A.); (D.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, PA, Italy
| | - Marcella Bonanomi
- Institute of Bioimaging and Complex Biological Systems, National Research Council (CNR), 20054 Segrate, MI, Italy; (F.B.); (M.B.); (S.M.); (T.A.); (D.P.)
| | - Sara Mallia
- Institute of Bioimaging and Complex Biological Systems, National Research Council (CNR), 20054 Segrate, MI, Italy; (F.B.); (M.B.); (S.M.); (T.A.); (D.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, PA, Italy
| | - Matteo Bonas
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, MI, Italy; (M.B.); (E.B.)
| | - Elisa Brivio
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, MI, Italy; (M.B.); (E.B.)
| | - Tecla Aramini
- Institute of Bioimaging and Complex Biological Systems, National Research Council (CNR), 20054 Segrate, MI, Italy; (F.B.); (M.B.); (S.M.); (T.A.); (D.P.)
| | - Danilo Porro
- Institute of Bioimaging and Complex Biological Systems, National Research Council (CNR), 20054 Segrate, MI, Italy; (F.B.); (M.B.); (S.M.); (T.A.); (D.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, PA, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, MI, Italy; (M.B.); (E.B.)
| | - Daniela Gaglio
- Institute of Bioimaging and Complex Biological Systems, National Research Council (CNR), 20054 Segrate, MI, Italy; (F.B.); (M.B.); (S.M.); (T.A.); (D.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, PA, Italy
| |
Collapse
|
6
|
Subramanian C, Hohenberger KK, Zuo A, Cousineau E, Blagg B, Cohen M. C-Terminal Hsp90 Inhibitors Overcome MEK and BRAF Inhibitor Resistance in Melanoma. J Cell Mol Med 2025; 29:e70489. [PMID: 40135438 PMCID: PMC11937850 DOI: 10.1111/jcmm.70489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Targeted therapies for melanoma MEK and BRAF inhibitors fail due to the development of chemoresistance. As Hsp90 inhibitors target client proteins of resistant pathways, we hypothesised that C-terminal Hsp90 inhibitors will target BRAF/MEK inhibitor resistant melanoma cells by overcoming the resistant pathways. Two melanoma cell lines, A375 and A375 MEK/BRAF inhibitor resistant (A375MEKi) were utilised. The inhibitory concentrations (IC50) of two C-terminal Hsp90 inhibitors, KU757 and KU758, were determined by CellTiter Glo. RNA sequencing was performed after treatment with KU757. Pathways targeted by differentially expressed genes were evaluated by David, IPA, GSEA, and by evaluating the cell cycle, apoptosis and oxidative phosphorylation. Expression levels of hub genes were evaluated using Xena and validated by RT-PCR. The survival analysis was performed using UALCAN. A375MEKi was not resistant to the C-terminal Hsp90 inhibitor with a KU757 IC50 of 0.59 μM versus 0.64 μM and a KU758 IC50 of 0.89 μM versus 0.93 μM in A375 versus A375MEKi, respectively. RNA sequencing analysis revealed KU757 upregulates cell cycle checkpoint regulation and apoptosis and downregulates genes involved in the peroxisome, AKT/PI3K/MTOR, EIF2, fatty acid metabolism and oxidative phosphorylation. These pathways were further validated through survival analysis that demonstrated potential survival benefit in patients with dysregulated NDUFA7, CDC20, CDC25C, CDK1, VDAC2, HEATR5a, COL4A4, FLT3LG, BMP2, PRKCH and ADMST9. Melanomas often develop concurrent resistance to BRAF and MEK inhibitors. C-terminal Hsp90 inhibition with KU757 appears to overcome these chemo-resistance pathways in vitro, downregulating metabolic pathways including oxidative phosphorylation and the cell cycle, warranting further in vivo translation. The novel C-terminal HSP90 inhibitor KU757 effectively targets primary and BRAF and MEK inhibitor-resistant melanoma cells equally by affecting oxidative phosphorylation and the cell cycle.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Surgery, and Biomedical and Translational SciencesCarle Illinois College of Medicine at the University of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | | | - Ang Zuo
- Department of PharmacologyUniversity of Notre DameNotre DameIndianaUSA
| | - Eric Cousineau
- Department of Surgery, and Biomedical and Translational SciencesCarle Illinois College of Medicine at the University of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Brian Blagg
- Department of PharmacologyUniversity of Notre DameNotre DameIndianaUSA
| | - Mark Cohen
- Department of Surgery, and Biomedical and Translational SciencesCarle Illinois College of Medicine at the University of Illinois Urbana ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
7
|
Montico B, Giurato G, Guerrieri R, Colizzi F, Salvati A, Nassa G, Lamberti J, Memoli D, Sabatelli P, Comelli M, Bellazzo A, Fejza A, Camicia L, Baboci L, Dal Bo M, Covre A, Nyman TA, Weisz A, Steffan A, Maio M, Sigalotti L, Mongiat M, Andreuzzi E, Fratta E. Suppression of Spry1 reduces HIF1α-dependent glycolysis and impairs angiogenesis in BRAF-mutant cutaneous melanoma. J Exp Clin Cancer Res 2025; 44:53. [PMID: 39953610 PMCID: PMC11827140 DOI: 10.1186/s13046-025-03289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND About 50% of cutaneous melanoma (CM) harbors the activating BRAFV600 mutation which exerts most of the oncogenic effects through the MAPK signaling pathway. In the last years, a number of MAPK modulators have been identified, including Spry1. In this context, we have recently demonstrated that knockout of Spry1 (Spry1KO) in BRAFV600-mutant CM led to cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and reduced tumor growth in vivo. Despite these findings, however, the precise molecular mechanism linking Spry1 to BRAFV600-mutant CM remains to be elucidated. MATERIALS AND METHODS Immunoprecipitation coupled to mass spectrometry was employed to gain insight into Spry1 interactome. Spry1 gene was knocked-out using the CRISPR strategy in the BRAF-mutant cell lines. Transmission electron microscopy was used to assess the relationship between Spry1 expression and mitochondrial morphology. By using in vitro and in vivo models, the effects of Spry1KO were investigated through RNA-sequencing, quantitative real-time PCR, Western blot, and immunofluorescence analyses. The Seahorse XF24 assay allowed real-time measurement of cellular metabolism in our model. Angiogenic potential was assessed through in vitro tube formation assays and in vivo CD31 staining. RESULTS Spry1 was mainly located in mitochondria in BRAFV600-mutant CM cells where it interacted with key molecules involved in mitochondrial homeostasis. Spry1 loss resulted in mitochondrial shape alterations and dysfunction, which associated with increased reactive oxygen species production. In agreement, we found that nuclear hypoxia-inducible factor-1 alpha (HIF1α) protein levels were reduced in Spry1KO clones both in vitro and in vivo along with the expression of its glycolysis related genes. Accordingly, Ingenuity Pathway Analysis identified "HIF1α Signaling" as the most significant molecular and cellular function affected by Spry1 silencing, whereas the glycolytic function was significantly impaired in Spry1 depleted BRAFV600-mutant CM cells. In addition, our results indicated that the expression of the vascular endothelial growth factor A was down-regulated following Spry1KO, possibly as a result of mitochondrial dysfunction. Consistently, we observed a substantial impairment of angiogenesis, as assessed by the tube formation assay in vitro and the immunofluorescence staining of CD31 in vivo. CONCLUSIONS Altogether, these findings identify Spry1 as a potential regulator of mitochondrial homeostasis, and uncover a previously unrecognized role for Spry1 in regulating nuclear HIF1α expression and angiogenesis in BRAFV600-mutant CM. SIGNIFICANCE Spry1KO profoundly impacts on mitochondria homeostasis, while concomitantly impairing HIF1α-dependent glycolysis and reducing angiogenesis in BRAF-mutant CM cells, thus providing a potential therapeutic target to improve BRAFV600-mutant CM treatment.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Annamaria Salvati
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Division of Oncology, AOU 'S. Giovanni Di Dio E Ruggi 14 d'Aragona', Università Di Salerno, Molecular Pathology and Medical Genomics Program, Salerno, 84131, Italy
| | - Giovanni Nassa
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Division of Oncology, AOU 'S. Giovanni Di Dio E Ruggi 14 d'Aragona', Università Di Salerno, Molecular Pathology and Medical Genomics Program, Salerno, 84131, Italy
| | - Jessica Lamberti
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Arianna Bellazzo
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Albina Fejza
- Molecular Oncology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
- UBT-Higher Education Institution, Street Rexhep Krasniqi Nr. 56, Prishtina, Kalabria, 10000, Kosovo
| | - Lucrezia Camicia
- Molecular Oncology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lorena Baboci
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit , Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, PN, Italy
| | | | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Division of Oncology, AOU 'S. Giovanni Di Dio E Ruggi 14 d'Aragona', Università Di Salerno, Molecular Pathology and Medical Genomics Program, Salerno, 84131, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
8
|
Tian J, Zhang L, Shi K, Yang L. The role of mitophagy-related genes in prognosis and immunotherapy of cutaneous melanoma: a comprehensive analysis based on single-cell RNA sequencing and machine learning. Immunol Res 2025; 73:30. [PMID: 39799269 DOI: 10.1007/s12026-025-09593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, plays a crucial role in cancer progression and therapy response. This study aims to elucidate the role of mitophagy-related genes (MRGs) in cutaneous melanoma (CM) through single-cell RNA sequencing (scRNA-seq) and machine learning approaches, ultimately developing a predictive model for patient prognosis. The scRNA-seq data, bulk transcriptomic data, and clinical data of CM were obtained from publicly available databases. The single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis (WGCNA) were used to identify gene modules associated with mitophagy phenotypes. A machine learning framework employing ten different algorithms was used to develop the prognostic model. Based on scRNA-seq data, we identified 16 distinct cell subpopulations in melanoma, and melanoma cells exhibited significantly higher mitophagy scores. The turquoise module identified via WGCNA showed the strongest correlation with mitophagy scores. A prognostic model incorporating seven genes was developed through machine learning algorithms, achieving an average C-index of 0.754 across training and validation cohorts. Functionally, low-risk patients were enriched in interferon-gamma response and inflammatory processes, whereas high-risk patients showed enrichment in glycolysis regulation and signaling pathways such as KRAS and Wnt/β-catenin. Notably, low-risk patients demonstrated enhanced immune infiltration and greater sensitivity to immunotherapy. RT-qPCR validated the expression level of 7 model genes in human melanoma cell lines and normal melanocyte cell lines. Our study provides a comprehensive understanding of MRGs in melanoma and presents a novel prognostic model. These findings enhance our understanding of the tumor microenvironment and may guide personalized treatment strategies for CM patients.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Lei Zhang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Kexin Shi
- Data Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
9
|
Corbishley C, Rainford P, Reed A, Khaled W. Single-Cell Analysis in the Mouse and Human Mammary Gland. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:45-73. [PMID: 39821020 DOI: 10.1007/978-3-031-70875-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The mammary gland is a complex organ, host to a rich array of different cell types. As the only organ to complete its development in adulthood, it delicately balances both cell intrinsic and external signalling from hormones, growth factors and other stimulants. The gland can undergo vast proliferation, restructuring and functional maturation during pregnancy and undo these gross changes to a nearly identical resting state during involution. The adaptive nature of the mammary gland underpins its function but also increases its susceptibility to cancer. While already characterised at a macro scale, understanding the complexities of mammary gland morphogenesis, development and tumorigenesis requires interrogation of cellular and molecular mechanisms. As outlined below, single-cell analysis is a key approach for this, allowing us to unbiasedly explore and characterise the functions and properties of individual cells from the genome to the proteome. Here, we introduce key single-cell analysis methods and give brief introductions to their respective workflows. We then discuss the structure, cell types and development of the mammary gland from birth, puberty and through pregnancy, as well as cancer formation. Additionally, we highlight the benefits and caveats of implementing single-cell methodologies and mouse models for studying critical time points of human development and disease. Finally, we highlight some limitations and future directions of single-cell techniques. This chapter provides a starting point for users hoping to further their understanding of mammary gland development and its link to cancer as explained by single-cell analysis studies.
Collapse
Affiliation(s)
- Catriona Corbishley
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Patrick Rainford
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Austin Reed
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Walid Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Tavukcuoglu Z, Butt U, de Faria AVS, Oesterreicher J, Holnthoner W, Laitinen S, Palviainen M, Siljander PRM. Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes. Cell Commun Signal 2024; 22:601. [PMID: 39695652 DOI: 10.1186/s12964-024-01973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types. This allowed us to investigate the differential capacity of PEVs to alter cancer hallmark functions such as proliferation, invasion, and pro-angiogenic potential using melanoma as a model. Additionally, we analyzed changes in the cell transcriptomes and cancer EV profiles. METHODS Two human melanoma cell lines (MV3 and A2058) with differential metastatic potential were studied in the 3D spheroid cultures. Human platelets were activated with collagen related peptide (CRP), fucoidan from Fucus vesiculosus (FFV), thrombin & collagen co-stimulus and Ca2+ ionophore, and PEVs were isolated by size-exclusion chromatography followed by ultrafiltration. Spheroids or cells were treated with PEVs and used in functional assays of proliferation, invasion, and endothelial tube formation as well as for the analysis of cancer EV production and their tetraspanin profiles. Differentially expressed genes and enriched signaling pathways in the PEV-treated spheroids were analyzed at 6 h and 24 h by RNA sequencing. RESULTS Among the studied PEVs, those generated by CRP and FFV exhibited the most pronounced effects on altering cancer hallmark functions. Specifically, CRP and FFV PEVs increased proliferation in both MV3 and A2058 spheroids. Distinct tetraspanin signatures of melanoma EVs were induced by all PEV types. While the PI3K-Akt and MAPK signaling pathways were activated by both CRP and FFV PEVs, they differently upregulated the immunomodulatory TGF-β and type-I interferon signaling pathways, respectively. CONCLUSIONS Our study revealed both shared and distinct, cancer-promoting functions of PEVs, which contributed to the transcriptome and metastatic capabilities of the melanoma spheroids. Inhibiting the platelet receptors that modulate the PEVs' cancer-promoting properties may open up new strategies for identifying promising treatment targets for cancer therapy.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Umar Butt
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Alessandra V Sousa de Faria
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Loftus AW, Zarei M, Kakish H, Hajihassani O, Hue JJ, Boutros C, Graor HJ, Nakazzi F, Bahlibi T, Winter JM, Rothermel LD. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma. Cancer Treat Rev 2024; 129:102795. [PMID: 38972133 PMCID: PMC11361048 DOI: 10.1016/j.ctrv.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.
Collapse
Affiliation(s)
- Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Christina Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Faith Nakazzi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tsegaw Bahlibi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Trandafir CM, Closca RM, Poenaru M, Sarau OS, Sarau CA, Rakitovan M, Baderca F, Sima LV. Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study. Cancers (Basel) 2024; 16:2863. [PMID: 39199634 PMCID: PMC11352549 DOI: 10.3390/cancers16162863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Sinonasal mucosal melanoma originates from melanocytes and it is a rare malignancy in the sinonasal tract. It is an aggressive melanocytic neoplasm with a very poor prognosis. The symptoms are nonspecific and the diagnosis is delayed, usually until the advanced stages of the disease. The current study performs a correlation between the histopathological aspects of sinonasal mucosal melanoma and different types of immune cells present in the microenvironment, with prognostic and therapeutic implications. The endpoint is to quantify the cellular immune microenvironment and correlate it with patient survival. This study presents nine cases of primary sinonasal mucosal melanomas diagnosed at the Emergency City Hospital Timisoara, Romania during a period of 15 years. The histopathological examination was performed in the Department of Pathology of the same hospital, using morphological hematoxylin-eosin staining. Additional immunohistochemical reactions were performed to confirm the diagnosis and evaluate the components of the tumor immune microenvironment. This study identifies eosinophils, macrophages, natural killer cells and plasma cells as favorable prognostic factors. Therefore, a CD8:CD4 ratio of more than 3 is correlated with a good response to PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Cornelia Marina Trandafir
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (C.M.T.); (M.P.)
| | - Raluca Maria Closca
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania;
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Marioara Poenaru
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (C.M.T.); (M.P.)
- ENT Department, Emergency City Hospital, 300254 Timisoara, Romania
| | - Oana Silvana Sarau
- Hematology Department of the Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Cristian Andrei Sarau
- Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Internal Medicine Department of the Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania
| | - Marina Rakitovan
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Oro-Maxillo-Facial Surgery Clinic of the Emergency City Hospital, 300062 Timisoara, Romania
| | - Flavia Baderca
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania;
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Laurentiu Vasile Sima
- Department of Surgery, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Department of Surgery, Emergency City Hospital, Gheorghe Dima Square No 5, 300254 Timisoara, Romania
| |
Collapse
|
13
|
Cunha ES, Mazepa E, Batista M, Marchini FK, Martinez GR. Redox proteomics in melanoma cells: An optimized protocol. Anal Biochem 2024; 691:115543. [PMID: 38636731 DOI: 10.1016/j.ab.2024.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Cancer development and progression are intimately related with post-translational protein modifications, e.g., highly reactive thiol moiety of cysteines enables structural rearrangements resulting in redox biological switches. In this context, redox proteomics techniques, such as 2D redox DIGE, biotin switch assay and OxIcat are fundamental tools to identify and quantify redox-sensitive proteins and to understand redox mechanisms behind thiol modifications. Given the great variability in redox proteomics protocols, problems including decreased resolution of peptides and low protein amounts even after enrichment steps may occur. Considering the biological importance of thiol's oxidation in melanoma, we adapted the biotin-switch assay technique for melanoma cells in order to overcome the limitations and improve coverage of detected proteins.
Collapse
Affiliation(s)
- E S Cunha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação Em Ciências (Bioquímica), UFPR, Brazil
| | - E Mazepa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação Em Ciências (Bioquímica), UFPR, Brazil
| | - M Batista
- Laboratório de Ciências e Tecnologias Aplicadas Em Saúde (LaCTAS), Instituto Carlos Chagas - FIOCRUZ/PR, Brazil
| | - F K Marchini
- Laboratório de Ciências e Tecnologias Aplicadas Em Saúde (LaCTAS), Instituto Carlos Chagas - FIOCRUZ/PR, Brazil
| | - G R Martinez
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação Em Ciências (Bioquímica), UFPR, Brazil.
| |
Collapse
|
14
|
Lu X, Zhu Y, Qin T, Shen Y. The role of immune metabolism in skin cancers: implications for pathogenesis and therapy. Transl Cancer Res 2024; 13:3898-3903. [PMID: 39145080 PMCID: PMC11319983 DOI: 10.21037/tcr-24-695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
The skin is a complex organ that serves as a critical barrier against external pathogens and environmental impact. Recent advances in immunometabolism have highlighted the intricate link between cellular metabolism and immune function, particularly in the context of skin cancers. This review aims to provide a comprehensive overview of the key metabolic pathways and adaptations that occur in immune cells during homeostasis and activation, and explore how metabolic reprogramming contributes to the pathogenesis of specific skin cancers. We discuss the complex interplay between tumor cells and infiltrating immune cells, which shapes the tumor microenvironment and influences disease outcomes. The review delves into the role of various metabolic pathways, such as glycolysis, oxidative phosphorylation, and lipid metabolism, in the regulation of immune cell function and their impact on the development and progression of skin cancers. Furthermore, we examine the potential of targeting metabolic pathways as a therapeutic strategy in skin cancers and discuss the challenges and future perspectives in this rapidly evolving field. By understanding the metabolic basis of skin immune responses, we can develop novel, personalized therapies for the treatment of skin cancers, ultimately improving patient outcomes and quality of life. The insights gained from this review will contribute to the growing body of knowledge in immunometabolism and its application in the management of skin cancers, paving the way for more effective and targeted interventions in the future.
Collapse
Affiliation(s)
- Xuanyu Lu
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Yurui Zhu
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Tianyu Qin
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Yu Shen
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
| |
Collapse
|
15
|
Aubé F, Fontrodona N, Guiguettaz L, Vallin E, Fabbri L, Lapendry A, Vagner S, Ricci EP, Auboeuf D. Metabolism-dependent secondary effect of anti-MAPK cancer therapy on DNA repair. NAR Cancer 2024; 6:zcae019. [PMID: 38690580 PMCID: PMC11059277 DOI: 10.1093/narcan/zcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.
Collapse
Affiliation(s)
- Fabien Aubé
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Nicolas Fontrodona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Audrey Lapendry
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Stephan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| |
Collapse
|
16
|
Li S, Zhao J, Wang G, Yao Q, Leng Z, Liu Q, Jiang J, Wang W. Based on scRNA-seq and bulk RNA-seq to establish tumor immune microenvironment-associated signature of skin melanoma and predict immunotherapy response. Arch Dermatol Res 2024; 316:262. [PMID: 38795156 DOI: 10.1007/s00403-024-03080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 10/28/2023] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. Exploring tumor microenvironment (TME)-based prognostic indicators would help improve the efficacy of immunotherapy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome Atlas (TCGA), we employed SKCM expression profiling to identify differentially expressed immune-associated genes (DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microenvironment-associated genes (TIMAGs) for constructing TIMAS were identified and validated. Finally, the characteristics of TIAMS subgroups and the ability of TIMAS to predict immunotherapy outcomes were analyzed. We identified five TIMAGs (CD86, CD80, SEMA4D, C1QA, and IRF1) and used them to construct TIMAS. In addition, five potential SKCM drugs were identified. The results showed that TIMAS-low patients were associated with immune-related signaling pathways, high MUC16 mutation frequency, high T cell infiltration, and M1 macrophages, and were more favorable for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.
Collapse
Affiliation(s)
- Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Leng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qinglei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jun Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
17
|
Wang R, Chen Y, Xie Y, Ma X, Liu Y. Deciphering and overcoming Anti-PD-1 resistance in Melanoma: A comprehensive review of Mechanisms, biomarker Developments, and therapeutic strategies. Int Immunopharmacol 2024; 132:111989. [PMID: 38583243 DOI: 10.1016/j.intimp.2024.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Worldwide, tens of thousands of people die from melanoma each year, making it the most frequently fatal form of cutaneous cancer. Immunotherapeutic advancements, particularly with anti-PD-1 medications, have significantly enhanced treatment outcomes over recent decades. With the broad application of anti-PD-1 therapies, insights into the mechanisms of resistance have evolved. Despite the development of combination treatments and early predictive biomarkers, a comprehensive synthesis of these advancements is absent in the current literature. This review underscores the prevailing knowledge of anti-PD-1 resistance mechanisms and underscores the critical role of robust predictive biomarkers in stratifying patients for targeted combinations of anti-PD-1 and other conventional or innovative therapeutic approaches. Additionally, we offer insights that may shape future melanoma treatment strategies.
Collapse
Affiliation(s)
- Ruoqi Wang
- Shanghai Skin Disease Hospital, Shanghai Clinical College of Dermatology, Fifth Clinical Medical College, Anhui Medical University, Shanghai 200443, China
| | - Yanbin Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Shanghai Clinical College of Dermatology, Fifth Clinical Medical College, Anhui Medical University, Shanghai 200443, China; Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
18
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
19
|
Capoferri D, Mignani L, Manfredi M, Presta M. Proteomic Analysis Highlights the Impact of the Sphingolipid Metabolizing Enzyme β-Galactosylceramidase on Mitochondrial Plasticity in Human Melanoma. Int J Mol Sci 2024; 25:3062. [PMID: 38474307 DOI: 10.3390/ijms25053062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial plasticity, marked by a dynamism between glycolysis and oxidative phosphorylation due to adaptation to genetic and microenvironmental alterations, represents a characteristic feature of melanoma progression. Sphingolipids play a significant role in various aspects of cancer cell biology, including metabolic reprogramming. Previous observations have shown that the lysosomal sphingolipid-metabolizing enzyme β-galactosylceramidase (GALC) exerts pro-oncogenic functions in melanoma. Here, mining the cBioPortal for a Cancer Genomics data base identified the top 200 nuclear-encoded genes whose expression is negatively correlated with GALC expression in human melanoma. Their categorization indicated a significant enrichment in Gene Ontology terms and KEGG pathways related to mitochondrial proteins and function. In parallel, proteomic analysis by LC-MS/MS of two GALC overexpressing human melanoma cell lines identified 98 downregulated proteins when compared to control mock cells. Such downregulation was confirmed at a transcriptional level by a Gene Set Enrichment Analysis of the genome-wide expression profiling data obtained from the same cells. Among the GALC downregulated proteins, we identified a cluster of 42 proteins significantly associated with GO and KEGG categorizations related to mitochondrion and energetic metabolism. Overall, our data indicate that changes in GALC expression may exert a significant impact on mitochondrial plasticity in human melanoma cells.
Collapse
Affiliation(s)
- Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 13100 Novara, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), Unit of Brescia, 25123 Brescia, Italy
| |
Collapse
|
20
|
Zeng B, Chen X, Zhang L, Gao X, Gui Y. Norcantharidin in cancer therapy - a new approach to overcoming therapeutic resistance: A review. Medicine (Baltimore) 2024; 103:e37394. [PMID: 38428865 PMCID: PMC10906652 DOI: 10.1097/md.0000000000037394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
Therapeutic resistance in cancer remains a dilemma that scientists and oncologists are eager to solve. Despite several preclinical and clinical studies dedicated to overcoming therapeutic resistance, they often do not yield the expected outcomes. This is primarily due to the multifactorial phenomenon of therapeutic resistance. Norcantharidin (NCTD) is an artificial compound derived from cantharidin that has significant anticancer efficacy without incurring serious side effects. Intriguingly, extensive research suggests that NCTD is essential for boosting anticancer efficacy and reversing treatment resistance. This review article presents a full description of how NCTD can effectively overcome cancer resistance to standard treatments such as chemotherapy, radiation, hormone therapy, and targeted therapy. We also discuss the potential prospects and challenges associated with using NCTD as a therapeutic strategy for reversing resistance to cancer therapy. We anticipate that our review will serve as a valuable reference for researchers and clinicians.
Collapse
Affiliation(s)
- Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xulan Chen
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lijuan Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xi Gao
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Gui
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
21
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Song B, Wang K, Peng Y, Zhu Y, Cui Z, Chen L, Yu Z, Song B. Combined signature of G protein-coupled receptors and tumor microenvironment provides a prognostic and therapeutic biomarker for skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:18135-18160. [PMID: 38006451 DOI: 10.1007/s00432-023-05486-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) have been shown to have an important role in tumor development and metastasis, and abnormal expression of GPCRs is significantly associated with poor prognosis of tumor patients. In this study, we analyzed the GPCRs-related gene (GPRGs) and tumor microenvironment (TME) in skin cutaneous melanoma (SKCM) to construct a prognostic model to help SKCM patients obtain accurate clinical treatment strategies. METHODS SKCM expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analysis, LASSO algorithm, and univariate and multivariate cox regression analysis were used to screen prognosis-related genes (GPR19, GPR146, S1PR2, PTH1R, ADGRE5, CXCR3, GPR143, and OR2I1P) and multiple prognosis-good immune cells; the data set was analyzed according to above results and build up a GPR-TME classifier. The model was further subjected to immune infiltration, functional enrichment, tumor mutational load, immunotherapy prediction, and scRNA-seq data analysis. Finally, cellular experiments were conducted to validate the functionality of the key gene GPR19 in the model. RESULTS The findings indicate that high expression of GPRGs is associated with a poor prognosis in patients with SKCM, highlighting the significant role of GPRGs and the tumor microenvironment (TME) in SKCM development. Notably, the group characterized by low GPR expression and a high TME exhibited the most favorable prognosis and immunotherapeutic efficacy. Furthermore, cellular assays demonstrated that knockdown of GPR19 significantly reduced the proliferation, migration, and invasive capabilities of melanoma cells in A375 and A2058 cell lines. CONCLUSION This study provides novel insights for the prognosis evaluation and treatment of melanoma, along with the identification of a new biomarker, GPR19.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yixuan Peng
- School of Basic Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
23
|
MaruYama T, Miyazaki H, Komori T, Osana S, Shibata H, Owada Y, Kobayashi S. Curcumin analog GO-Y030 inhibits tumor metastasis and glycolysis. J Biochem 2023; 174:511-518. [PMID: 37656908 PMCID: PMC11002536 DOI: 10.1093/jb/mvad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Tumor metastasis is one of the worst prognostic features of cancer. Although metastasis is a major cause of cancer-related deaths, an effective treatment has not yet been established. Here, we explore the antitumor effects of GO-Y030, a curcumin analog, via various mechanisms using a mouse model. GO-Y030 treatment of B16-F10 melanoma cells inhibited TGF-β expression and glycolysis. The invasion assay results showed almost complete invasion inhibition following GO-Y030 treatment. Mouse experiments demonstrated that GO-Y030 administration inhibited lung tumor metastasis without affecting vascular endothelial cells. Consistent with this result, GO-Y030 treatment led to the downregulation of MMP2 and VEGFα, inhibiting tumor invasion and metastasis. The silencing of eIF4B, a downstream molecule of S6, attenuated MMP2 expression. Our study demonstrates the novel efficacy of GO-Y030 in inhibiting tumor metastasis by regulating metastasis-associated gene expression via inhibiting dual access, glycolytic and TGF-β pathways.
Collapse
Affiliation(s)
- Takashi MaruYama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
- Department of Immunology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research(NIDCR), National Institutes of Health, 30 convent drive, Building 30, Bethesda, MD, 20892, USA
| | - Shion Osana
- Department of Engineering Science, University of Electro-Communications, Graduate School of Informatics and Engineering, Chofugaoka 1-5-1, Chofu, Tokyo, 182-8585, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
24
|
Marciniak M, Wagner M. Innate lymphoid cells and tumor-derived lactic acid: novel contenders in an enduring game. Front Immunol 2023; 14:1236301. [PMID: 37868977 PMCID: PMC10585168 DOI: 10.3389/fimmu.2023.1236301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period of time been perceived as a defining feature of tumor metabolism. The redirection of glucose utilization towards increased production of lactate by cancer cells enables their rapid proliferation, unceasing growth, and longevity. At the same time, it serves as a significant contributor to acidification of the tumor microenvironment, which, in turn, imposes substantial constraints on infiltrating immune cells. Here, we delve into the influence of tumor-derived lactic acid on innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given the abundance of ILCs in barrier tissues such as the skin, we provide insights aimed at translating this knowledge into therapies that may specifically target skin cancer.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Foda BM, Neubig RR. Role of Rho/MRTF in Aggressive Vemurafenib-Resistant Murine Melanomas and Immune Checkpoint Upregulation. Int J Mol Sci 2023; 24:13785. [PMID: 37762086 PMCID: PMC10531039 DOI: 10.3390/ijms241813785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.
Collapse
Affiliation(s)
- Bardees M. Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki 12622, Egypt
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Nicholas V. Perricone, M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
26
|
Liu N, Yan M, Tao Q, Wu J, Chen J, Chen X, Peng C. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer 2023; 11:e007146. [PMID: 37678921 PMCID: PMC10496672 DOI: 10.1136/jitc-2023-007146] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND anti-Programmed Death-1 (anti-PD-1) immunotherapy has shown promising manifestation in improving the survival rate of patients with advanced melanoma, with its efficacy closely linked to Programmed cell death-Ligand 1 (PD-L1) expression. However, low clinical efficacy and drug resistance remain major challenges. Although the metabolic alterations from tricarboxylic acid (TCA) cycle to glycolysis is a hallmark in cancer cells, accumulating evidence demonstrating TCA cycle plays critical roles in both tumorigenesis and treatment. METHODS The plasma levels of metabolites in patients with melanoma were measured by nuclear magnetic resonance (NMR) spectroscopy. The effect of pyruvate dehydrogenase subunit 1 (PDHA1) and oxoglutarate dehydrogenase (OGDH) on immunotherapy was performed by B16F10 tumor-bearing mice. Flow cytometry analyzed the immune microenvironment. RNA sequencing analyzed the global transcriptome alterations in CPI613-treated melanoma cells. The regulation of PD-L1 and glycolysis by PDHA1/OGDH-ATF3 signaling were confirmed by Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, dual-luciferase reporter gene, Chromatin immunoprecipitation (ChIP)-quantitative PCR and Seahorse assay. The relationship between PDHA1/OGDH-ATF3-glycolysis and the efficacy of melanoma anti-PD-1 immunotherapy was verified in the clinical database and single-cell RNA-seq (ScRNA-Seq). RESULTS In our study, the results showed that significant alterations in metabolites associated with glycolysis and the TCA cycle in plasma of patients with melanoma through NMR technique, and then, PDHA1 and OGDH, key enzymes for regulation TCA cycle, were remarkable raised in melanoma and negatively related to anti-PD-1 efficacy through clinical database analysis as well as ScRNA-Seq. Inhibition of PDHA1 and OGDH by either shRNA or pharmacological inhibitor by CPI613 dramatically attenuated melanoma progression as well as improved the therapeutic efficacy of anti-PD-1 against melanoma. Most importantly, suppression of TCA cycle remarkably raises PD-L1 expression and glycolysis flux through AMPK-CREB-ATF3 signaling. CONCLUSIONS Taken together, our results demonstrated the role of TCA cycle in immune checkpoint blockade and provided a novel combination strategy for anti-PD-1 immunotherapy in melanoma treatment.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
28
|
Grafanaki K, Grammatikakis I, Ghosh A, Gopalan V, Olgun G, Liu H, Kyriakopoulos GC, Skeparnias I, Georgiou S, Stathopoulos C, Hannenhalli S, Merlino G, Marie KL, Day CP. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol Ther 2023; 248:108466. [PMID: 37301330 PMCID: PMC10527631 DOI: 10.1016/j.pharmthera.2023.108466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioannis Grammatikakis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arin Ghosh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulden Olgun
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerrie L Marie
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Zueva AO, Ermakova SP. The Combined Metabolically Oriented Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Its Carboxymethylated Derivative with 2-Deoxy-D-Glucose on Human Melanoma Cells. Int J Mol Sci 2023; 24:12050. [PMID: 37569428 PMCID: PMC10418387 DOI: 10.3390/ijms241512050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity. This work aimed to assess the metabolically oriented effect and mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and its carboxymethylated derivative (ScFCM) in combination with 2-deoxy-D-glucose (2-DG) on the proliferation and colony formation of human melanoma cell lines SK-MEL-28, SK-MEL-5, and RPMI-7951. The metabolic profile of melanoma cells was determined by the glucose uptake and Lactate-GloTM assays. The effect of 2-DG, ScF, ScFCM, and their combination on the proliferation, colony formation, and activity of glycolytic enzymes was assessed by the MTS, soft agar, and Western blot methods, respectively. When applied separately, 2-DG (IC50 at 72 h = 8.7 mM), ScF (IC50 at 72 h > 800 µg/mL), and ScFCM (IC50 at 72 h = 573.9 μg/mL) inhibited the proliferation and colony formation of SK-MEL-28 cells to varying degrees. ScF or ScFCM enhanced the inhibiting effect of 2-DG at low, non-toxic concentrations via the downregulation of Glut 1, Hexokinase II, PKM2, LDHA, and pyruvate dehydrogenase activities. The obtained results emphasize the potential of the use of 2-DG in combination with algal fucoidan or its derivative as metabolic modifiers for inhibition of melanoma SK-MEL-28 cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
30
|
Garbarino O, Valenti GE, Monteleone L, Pietra G, Mingari MC, Benzi A, Bruzzone S, Ravera S, Leardi R, Farinini E, Vernazza S, Grottoli M, Marengo B, Domenicotti C. PLX4032 resistance of patient-derived melanoma cells: crucial role of oxidative metabolism. Front Oncol 2023; 13:1210130. [PMID: 37534247 PMCID: PMC10391174 DOI: 10.3389/fonc.2023.1210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Background Malignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation. Methods The herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient's treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance. Results Collectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance. Conclusion Therefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Ombretta Garbarino
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Lorenzo Monteleone
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa, Italy
| | | | | | - Stefania Vernazza
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Melania Grottoli
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| |
Collapse
|
31
|
Peng J, Lin Z, Chen W, Ruan J, Deng F, Yao L, Rao M, Xiong X, Xu S, Zhang X, Liu X, Sun X. Vemurafenib induces a noncanonical senescence-associated secretory phenotype in melanoma cells which promotes vemurafenib resistance. Heliyon 2023; 9:e17714. [PMID: 37456058 PMCID: PMC10345356 DOI: 10.1016/j.heliyon.2023.e17714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
More than one half melanoma patients have BRAF gene mutation. BRAF inhibitor vemurafenib is an effective medication for these patients. However, acquired resistance is generally inevitable, the mechanisms of which are not fully understood. Cell senescence and senescence-associated secretory phenotype (SASP) are involved in extensive biological functions. This study was designed to explore the possible role of senescent cells in vemurafenib resistance. The results showed that vemurafenib treatment induced BRAF-mutant but not wild-type melanoma cells into senescence, as manifested by positive β-galactosidase staining, cell cycle arrest, enlarged cellular morphology, and cyclin D1/p-Rb pathway inhibition. However, the senescent cells induced by vemurafenib (SenV) did not display DNA damage response, p53/p21 pathway activation, reactive oxygen species accumulation, decline of mitochondrial membrane potential, or secretion of canonical SASP cytokines. Instead, SenV released other cytokines, including CCL2, TIMP2, and NGFR, to protect normal melanoma cells from growth inhibition upon vemurafenib treatment. Xenograft experiments further confirmed that vemurafenib induced melanoma cells into senescence in vivo. The results suggest that vemurafenib can induce robust senescence in BRAFV600E melanoma cells, leading to the release of resistance-conferring cytokines. Both the senescent cells and the resistant cytokines could be potential targets for tackling vemurafenib resistance.
Collapse
Affiliation(s)
- Jianyu Peng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Zijun Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Jie Ruan
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Minla Rao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xingdong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xiangning Zhang
- Department of Pathophysiology, Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| |
Collapse
|
32
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
33
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
34
|
Venuta A, Nasso R, Gisonna A, Iuliano R, Montesarchio S, Acampora V, Sepe L, Avagliano A, Arcone R, Arcucci A, Ruocco MR. Celecoxib, a Non-Steroidal Anti-Inflammatory Drug, Exerts a Toxic Effect on Human Melanoma Cells Grown as 2D and 3D Cell Cultures. Life (Basel) 2023; 13:life13041067. [PMID: 37109596 PMCID: PMC10141119 DOI: 10.3390/life13041067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cutaneous melanoma (CM) remains one of the leading causes of tumor mortality due to its high metastatic spread. CM growth is influenced by inflammation regulated by prostaglandins (PGs) whose synthesis is catalyzed by cyclooxygenases (COXs). COX inhibitors, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit tumor development and growth. In particular, in vitro experiments have shown that celecoxib, a NSAID, inhibits the growth of some tumor cell lines. However, two-dimensional (2D) cell cultures, used in traditional in vitro anticancer assays, often show poor efficacy due to a lack of an in vivo like cellular environment. Three-dimensional (3D) cell cultures, such as spheroids, are better models because they can mimic the common features displayed by human solid tumors. Hence, in this study, we evaluated the anti-neoplastic potential of celecoxib, in both 2D and 3D cell cultures of A2058 and SAN melanoma cell lines. In particular, celecoxib reduced the cell viability and migratory capability and triggered the apoptosis of melanoma cells grown as 2D cultures. When celecoxib was tested on 3D melanoma cell cultures, the drug exerted an inhibitory effect on cell outgrowth from spheroids and reduced the invasiveness of melanoma cell spheroids into the hydrogel matrix. This work suggests that celecoxib could represent a new potential therapeutic approach in melanoma therapy.
Collapse
Affiliation(s)
- Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", 80133 Naples, Italy
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta Iuliano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Sara Montesarchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rosaria Arcone
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", 80133 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
35
|
Cykowska A, Hofmann UK, Tiwari A, Kosnopfel C, Riester R, Danalache M. Biomechanical and biochemical assessment of YB-1 expression in A375 melanoma cell line: Exploratory study. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1050487. [PMID: 39086667 PMCID: PMC11285636 DOI: 10.3389/fmmed.2023.1050487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/23/2023] [Indexed: 08/02/2024]
Abstract
Malignant melanoma is the most lethal form of skin cancer. Y-box binding protein 1 (YB-1) plays a prominent role in mediating metastatic behavior by promoting epithelial-to-mesenchymal transition (EMT). Migratory melanoma cells exhibit two major migration modes: elongated mesenchymal or rounded amoeboid. Using A375 melanoma cell line and the YB-1 knock-out model, we aimed to elucidate biochemical and biomechanical changes in migration signaling pathways in the context of melanoma metastases. We subjected A375 YB-1 knock-out and parental cells to atomic force microscopy (stiffness determination), immunolabelling, and proteome analysis. We found that YB-1 expressing cells were significantly stiffer compared to the corresponding YB-1 knock-out cell line. Our study demonstrated that the constitutive expression of YB-1 in A375 melanoma cell line appears to be closely related to known biomarkers of epithelial-to-mesenchymal transition, nestin, and vimentin, resulting in a stiffer phenotype, as well as a wide array of proteins involved in RNA, ribosomes, and spliceosomes. YB-1 knock-out resulted in nestin depletion and significantly lower vimentin expression, as well as global upregulation of proteins related to the cytoskeleton and migration. YB-1 knock-out cells demonstrated both morphological features and biochemical drivers of mesenchymal/ameboid migration. Melanoma is a highly plastic, adaptable, and aggressive tumor entity, capable of exhibiting characteristics of different migratory modes.
Collapse
Affiliation(s)
- Anna Cykowska
- Department of Orthopaedic Surgery, University Hospital and Faculty of Medicine, University Hospital of Tübingen, Tübingen, Germany
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Aadhya Tiwari
- Department of System Biology, MD Anderson Cancer Center, Houston, TX, United States
| | - Corinna Kosnopfel
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Department of Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Rosa Riester
- Department of Orthopaedic Surgery, University Hospital and Faculty of Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Marina Danalache
- Department of Orthopaedic Surgery, University Hospital and Faculty of Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Regression in cutaneous melanoma: histological assessment, immune mechanisms and clinical implications. Pathology 2023; 55:227-235. [PMID: 36639333 DOI: 10.1016/j.pathol.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
Tumour regression is an immunologically driven process that results in complete or partial disappearance of tumour cells. This can be observed in histological sections as replacement of tumour cells with fibrosis, angiogenesis, and a variable inflammatory infiltrate. In primary cutaneous melanoma, the prognostic significance of regression has been debated for decades, in part because inconsistent histological criteria are used in prognostication studies. It is broadly accepted that CD8+ T lymphocytes are the primary effectors of the anti-tumour response, but the interplay between melanoma and the immune system is complex, dynamic, and incompletely understood. Sustained progress in unravelling the pathogenesis of melanoma regression has led to the identification of therapeutic targets, culminating in the development of immune checkpoint inhibitors for the management of advanced disease. Modern techniques allow for high-resolution spatial analyses of the tumour microenvironment. Such studies may lead to better understanding of the immune drivers of melanoma regression, thereby facilitating the search for new prognostic and predictive biomarkers to assist clinical decision-making.
Collapse
|
37
|
Chen C, Zhang X. Glycolysis regulator PFKP induces human melanoma cell proliferation and tumor growth. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03096-7. [PMID: 36792847 DOI: 10.1007/s12094-023-03096-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE Cutaneous melanoma is an aggressive and deadly cancer resulting from malignant transformation of cells involved in skin pigmentation. Glycolysis is widely implicated in cancer progression, but its precise role in melanoma has not been extensively studied. Here, we investigated the role of the glycolysis regulator phosphofructokinase 1 platelet isoform (PFKP) in melanoma progression. METHODS PFKP expression in human melanoma tissues was analyzed by immunohistochemistry. Knockdown of PFKP by siRNA and overexpression of PFKP were performed to evaluate its functions in vitro. CCK-8 assay was used to assess cell proliferation. Glycolytic activity was determined via measurement of extracellular acidification rate (ECAR), lactic acid level, and ATP content. A tumor xenograft model was used to test the function of PFKP in vivo. RESULTS PFKP upregulation was observed in human melanoma tissues and correlated with poor patient survival. Knockdown of PFKP in human melanoma cells suppressed cell proliferation and reduced ECAR, ATP levels, and lactic acid levels, while overexpression of PFKP displayed the opposite effects. In vivo, knockdown of PFKP in melanoma cells markedly reduced tumorigenesis. Inhibitory effects on cell proliferation, glycolysis, and tumorigenesis due to PFKP knockdown were further augmented upon treatment with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). CONCLUSION Collectively, these results indicate that PFKP expression in melanoma cells increases proliferation and glycolytic activity in vitro and promotes tumorigenesis in vivo, suggesting that suppression of PKFP and inhibition of glycolysis may potently suppress melanoma progression.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Fenglin Rd No.180, Shanghai, 200032, China
| | - Xuejun Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Fenglin Rd No.180, Shanghai, 200032, China.
| |
Collapse
|
38
|
PPARs and the Kynurenine Pathway in Melanoma-Potential Biological Interactions. Int J Mol Sci 2023; 24:ijms24043114. [PMID: 36834531 PMCID: PMC9960262 DOI: 10.3390/ijms24043114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in various physiological and pathological processes within the skin. PPARs regulate several processes in one of the most aggressive skin cancers, melanoma, including proliferation, cell cycle, metabolic homeostasis, cell death, and metastasis. In this review, we focused not only on the biological activity of PPAR isoforms in melanoma initiation, progression, and metastasis but also on potential biological interactions between the PPAR signaling and the kynurenine pathways. The kynurenine pathway is a major pathway of tryptophan metabolism leading to nicotinamide adenine dinucleotide (NAD+) production. Importantly, various tryptophan metabolites exert biological activity toward cancer cells, including melanoma. Previous studies confirmed the functional relationship between PPAR and the kynurenine pathway in skeletal muscles. Despite the fact this interaction has not been reported in melanoma to date, some bioinformatics data and biological activity of PPAR ligands and tryptophan metabolites may suggest a potential involvement of these metabolic and signaling pathways in melanoma initiation, progression, and metastasis. Importantly, the possible relationship between the PPAR signaling pathway and the kynurenine pathway may relate not only to the direct biological effect on melanoma cells but also to the tumor microenvironment and the immune system.
Collapse
|
39
|
Liu Z, Hayashi H, Matsumura K, Uemura N, Shiraishi Y, Sato H, Baba H. Biological and Clinical Impacts of Glucose Metabolism in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15020498. [PMID: 36672448 PMCID: PMC9856866 DOI: 10.3390/cancers15020498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type as it is prone to metastases and is difficult to diagnose at an early stage. Despite advances in molecular detection, its clinical prognosis remains poor and it is expected to become the second leading cause of cancer-related deaths. Approximately 85% of patients develop glucose metabolism disorders, most commonly diabetes mellitus, within three years prior to their pancreatic cancer diagnosis. Diabetes, or glucose metabolism disorders related to PDAC, are typically associated with insulin resistance, and beta cell damage, among other factors. From the perspective of molecular regulatory mechanisms, glucose metabolism disorders are closely related to PDAC initiation and development and to late invasion and metastasis. In particular, abnormal glucose metabolism impacts the nutritional status and prognosis of patients with PDAC. Meanwhile, preliminary research has shown that metformin and statins are effective for the prevention or treatment of malignancies; however, no such effect has been shown in clinical trials. Hence, the causes underlying these conflicting results require further exploration. This review focuses on the clinical significance of glucose metabolism disorders in PDAC and the mechanisms behind this relationship, while also summarizing therapeutic approaches that target glycolysis.
Collapse
|
40
|
Demeter JB, Elshaarrawi A, Dowker‐Key PD, Bettaieb A. The emerging role of
PKM
in keratinocyte homeostasis and pathophysiology. FEBS J 2022; 290:2311-2319. [PMID: 36541050 DOI: 10.1111/febs.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Increased aerobic glycolysis in keratinocytes has been reported as a hallmark of skin diseases while its pharmacological inhibition restores keratinocyte homeostasis. Pyruvate kinase muscle (PKM) isoforms are key enzymes in the glycolytic pathway and, therefore, an attractive therapeutic target. Simon Nold and colleagues used CRISPR/Cas9-mediated gene editing to investigate the outcomes of PKM splicing perturbations and specific PKM1 or PKM2 deficiency in human HaCaT keratinocytes. Collectively, the study demonstrated different effects of PKM1 or PKM2 depletion on the reciprocal PKM isoform and on keratinocyte gene expression, metabolism and proliferation. Findings from this study provide novel insights into the role of PKM in keratinocyte homeostasis, warranting additional investigations into the underlying molecular mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Jenna B. Demeter
- Department of Nutrition The University of Tennessee Knoxville TN USA
| | - Ahmed Elshaarrawi
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
| | | | - Ahmed Bettaieb
- Department of Nutrition The University of Tennessee Knoxville TN USA
- Graduate School of Genome Science and Technology The University of Tennessee Knoxville TN USA
- Department of Biochemistry & Cellular and Molecular Biology The University of Tennessee Knoxville TN USA
| |
Collapse
|
41
|
Vital PDS, Bonatelli M, Dias MP, de Salis LVV, Pinto MT, Baltazar F, Maria-Engler SS, Pinheiro C. 3-Bromopyruvate Suppresses the Malignant Phenotype of Vemurafenib-Resistant Melanoma Cells. Int J Mol Sci 2022; 23:ijms232415650. [PMID: 36555289 PMCID: PMC9779063 DOI: 10.3390/ijms232415650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
(1) BRAF mutations are associated with high mortality and are a substantial factor in therapeutic decisions. Therapies targeting BRAF-mutated tumors, such as vemurafenib (PLX), have significantly improved the overall survival of melanoma patients. However, patient relapse and low response rates remain challenging, even with contemporary therapeutic alternatives. Highly proliferative tumors often rely on glycolysis to sustain their aggressive phenotype. 3-bromopyruvate (3BP) is a promising glycolysis inhibitor reported to mitigate resistance in tumors. This study aimed to evaluate the potential of 3BP as an antineoplastic agent for PLX-resistant melanoma treatment. (2) The effect of 3BP alone or in combination with PLX on viability, proliferation, colony formation, cell death, migration, invasion, epithelial-mesenchymal marker and metabolic protein expression, extracellular glucose and lactate, and reactive species were evaluated in two PLX-resistant melanoma cell lines. (3) 3BP treatment, which was more effective as monotherapy than combined with PLX, disturbed the metabolic and epithelial-mesenchymal profile of PLX-resistant cells, impairing their proliferation, migration, and invasion and triggering cell death. (4) 3BP monotherapy is a potent metabolic-disrupting agent against PLX-resistant melanomas, supporting the suppression of the malignant phenotype in this type of neoplasia.
Collapse
Affiliation(s)
- Patrik da Silva Vital
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Marina Pereira Dias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Larissa Vedovato Vilela de Salis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, Barretos 14785-002, SP, Brazil
| | - Mariana Tomazini Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Silvya Stuchi Maria-Engler
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 04023-901, SP, Brazil
| | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, Barretos 14785-002, SP, Brazil
- Correspondence: ; Tel.: +55-(17)-3321-3060
| |
Collapse
|
42
|
Torres-Quesada O, Strich S, Stefan E. Kinase perturbations redirect mitochondrial function in cancer. BIOENERGETICS COMMUNICATIONS 2022; 2022:17. [PMID: 37081928 PMCID: PMC7614455 DOI: 10.26124/bec:2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Protein kinases take the center stage in numerous signaling pathways by phosphorylating compartmentalized protein substrates for controlling cell proliferation, cell cycle and metabolism. Kinase dysfunctions have been linked to numerous human diseases such as cancer. This has led to the development of kinase inhibitors which aim to target oncogenic kinase activities. The specificity of the cancer blockers depends on the range of targeted kinases. Therefore, the question arises of how cell-type-specific off-target effects impair the specificities of cancer drugs. Blockade of kinase activities has been shown to converge on the energetic organelle, the mitochondria. In this review, we highlight examples of selected major kinases that impact mitochondrial signaling. Further, we discuss pharmacological strategies to target kinase activities linked to cancer progression and redirecting mitochondrial function. Finally, we propose that cell-based recordings of mitochondrial bioenergetic states might predict off-target or identify specific on-target effects of kinase inhibitors.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Corresponding authors: ;
| | - Sophie Strich
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Corresponding authors: ;
| |
Collapse
|
43
|
Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules 2022; 27:molecules27227800. [PMID: 36431901 PMCID: PMC9698468 DOI: 10.3390/molecules27227800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.
Collapse
|
44
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
45
|
Georgescu SR, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M, Tampa M. Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating. J Pers Med 2022; 12:jpm12091506. [PMID: 36143291 PMCID: PMC9505119 DOI: 10.3390/jpm12091506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of melanoma, a very aggressive skin cancer, has increased over the past few decades. Although there are well-established clinical, dermoscopic and histopathological criteria, the diagnosis is often performed late, which has important implications on the patient’s clinical outcome. Unfortunately, melanoma is one of the most challenging tumors to diagnose because it is a heterogeneous neoplasm at the clinical, histopathological, and molecular level. The use of reliable biomarkers for the diagnosis and monitoring of disease progression is becoming a standard of care in modern medicine. In this review, we discuss the latest studies, which highlight findings from the genomics, epitranscriptomics, proteomics and metabolomics areas, pointing out different genes, molecules and cells as potential diagnostic and prognostic biomarkers in cutaneous melanoma.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Madalina Irina Mitran
- “Cantacuzino” National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
46
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
47
|
Avagliano A, Fiume G, Bellevicine C, Troncone G, Venuta A, Acampora V, De Lella S, Ruocco MR, Masone S, Velotti N, Carotenuto P, Mallardo M, Caiazza C, Montagnani S, Arcucci A. Thyroid Cancer and Fibroblasts. Cancers (Basel) 2022; 14:cancers14174172. [PMID: 36077709 PMCID: PMC9455043 DOI: 10.3390/cancers14174172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine cancer, and its prevalence continue to rise. Non-metastatic thyroid cancer patients are successfully treated. However, looking for new therapeutic strategies is of great importance for metastatic thyroid cancers that still lead to death. With respect to this, the tumor microenvironment (TME), which plays a key role in tumor progression, should be considered as a new promising therapeutic target to hamper thyroid cancer progression. Indeed, thyroid tumors consist of cancer cells and a heterogeneous and ever-changing niche, represented by the TME, which contributes to establishing most of the features of cancer cells. The TME consists of extracellular matrix (ECM) molecules, soluble factors, metabolites, blood and lymphatic tumor vessels and several stromal cell types that, by interacting with each other and with tumor cells, affect TME remodeling, cancer growth and progression. Among the thyroid TME components, cancer-associated fibroblasts (CAFs) have gained more attention in the last years. Indeed, recent important evidence showed that thyroid CAFs strongly sustain thyroid cancer growth and progression by producing soluble factors and ECM proteins, which, in turn, deeply affect thyroid cancer cell behavior and aggressiveness. Hence, in this article, we describe the thyroid TME, focusing on the desmoplastic stromal reaction, which is a powerful indicator of thyroid cancer progression and an invasive growth pattern. In addition, we discuss the origins and features of the thyroid CAFs, their influence on thyroid cancer growth and progression, their role in remodeling the ECM and their immune-modulating functions. We finally debate therapeutic perspectives targeting CAFs.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Alessandro Venuta
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Vittoria Acampora
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Sabrina De Lella
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Nunzio Velotti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| |
Collapse
|
48
|
Song B, Chi H, Peng G, Song Y, Cui Z, Zhu Y, Chen G, Wu J, Liu W, Dong C, Wang Y, Xu K, Yu Z, Song B. Characterization of coagulation-related gene signature to predict prognosis and tumor immune microenvironment in skin cutaneous melanoma. Front Oncol 2022; 12:975255. [PMID: 36059641 PMCID: PMC9434152 DOI: 10.3389/fonc.2022.975255] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUD Skin cutaneous melanoma (SKCM) is an extremely metastatic form of skin cancer. However, there are few valuable molecular biomarkers, and accurate diagnosis is still a challenge. Hypercoagulable state encourages the infiltration and development of tumor cells and is significantly associated with poor prognosis in cancer patients. However, the use of a coagulation-related gene (CRG) signature for prognosis in SKCM, on the other hand, has yet to be determined. METHOD We used data from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases to identify differentially expressed CRGs, then designed a prognostic model by using the LASSO algorithm, univariate and multivariate Cox regression analysis, and constructed a nomogram which was evaluated by calibration curves. Moreover, the Gene Expression Omnibus (GEO), GSE54467 was used as an independent validation. The correlation between risk score and clinicopathological characteristics, tumor microenvironment (TME), and immunotherapy was further analyzed. RESULTS To develop a prognostic model, seven CRGs in SKCM patients related to overall survival (OS) were selected: ANG, C1QA, CFB, DUSP6, KLKB1, MMP7, and RABIF. According to the Kaplan-Meier survival analysis, an increased OS was observed in the low-risk group than in the high-risk group (P<0.05). Immunotherapy was much more beneficial in the low-risk group, as per immune infiltration, functional enrichment, and immunotherapy analysis. CONCLUSIONS The prognosis of SKCM patients may now be predicted with the use of a CRG prognostic model, thus guiding the development of treatment plans for SKCM patients and promoting OS rates.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Junzheng Wu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
49
|
Falletta P, Goding CR, Vivas-García Y. Connecting Metabolic Rewiring With Phenotype Switching in Melanoma. Front Cell Dev Biol 2022; 10:930250. [PMID: 35912100 PMCID: PMC9334657 DOI: 10.3389/fcell.2022.930250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma is a complex and aggressive cancer type that contains different cell subpopulations displaying distinct phenotypes within the same tumor. Metabolic reprogramming, a hallmark of cell transformation, is essential for melanoma cells to adopt different phenotypic states necessary for adaptation to changes arising from a dynamic milieu and oncogenic mutations. Increasing evidence demonstrates how melanoma cells can exhibit distinct metabolic profiles depending on their specific phenotype, allowing adaptation to hostile microenvironmental conditions, such as hypoxia or nutrient depletion. For instance, increased glucose consumption and lipid anabolism are associated with proliferation, while a dependency on exogenous fatty acids and an oxidative state are linked to invasion and metastatic dissemination. How these different metabolic dependencies are integrated with specific cell phenotypes is poorly understood and little is known about metabolic changes underpinning melanoma metastasis. Recent evidence suggests that metabolic rewiring engaging transitions to invasion and metastatic progression may be dependent on several factors, such as specific oncogenic programs or lineage-restricted mechanisms controlling cell metabolism, intra-tumor microenvironmental cues and anatomical location of metastasis. In this review we highlight how the main molecular events supporting melanoma metabolic rewiring and phenotype-switching are parallel and interconnected events that dictate tumor progression and metastatic dissemination through interplay with the tumor microenvironment.
Collapse
Affiliation(s)
- Paola Falletta
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Falletta, ; Colin R. Goding, ; Yurena Vivas-García, ,
| | - Colin R. Goding
- Nuffield Department of Clinical Medicine, Ludwig Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paola Falletta, ; Colin R. Goding, ; Yurena Vivas-García, ,
| | - Yurena Vivas-García
- Nuffield Department of Clinical Medicine, Ludwig Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paola Falletta, ; Colin R. Goding, ; Yurena Vivas-García, ,
| |
Collapse
|
50
|
Song B, Wu P, Liang Z, Wang J, Zheng Y, Wang Y, Chi H, Li Z, Song Y, Yin X, Yu Z, Song B. A Novel Necroptosis-Related Gene Signature in Skin Cutaneous Melanoma Prognosis and Tumor Microenvironment. Front Genet 2022; 13:917007. [PMID: 35899194 PMCID: PMC9309482 DOI: 10.3389/fgene.2022.917007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Necroptosis has been identified recently as a newly recognized programmed cell death that has an impact on tumor progression and prognosis, although the necroptosis-related gene (NRGs) potential prognostic value in skin cutaneous melanoma (SKCM) has not been identified. The aim of this study was to construct a prognostic model of SKCM through NRGs in order to help SKCM patients obtain precise clinical treatment strategies. Methods: RNA sequencing data collected from The Cancer Genome Atlas (TCGA) were used to identify differentially expressed and prognostic NRGs in SKCM. Depending on 10 NRGs via the univariate Cox regression analysis usage and LASSO algorithm, the prognostic risk model had been built. It was further validated by the Gene Expression Omnibus (GEO) database. The prognostic model performance had been assessed using receiver operating characteristic (ROC) curves. We evaluated the predictive power of the prognostic model for tumor microenvironment (TME) and immunotherapy response. Results: We constructed a prognostic model based on 10 NRGs (FASLG, TLR3, ZBP1, TNFRSF1B, USP22, PLK1, GATA3, EGFR, TARDBP, and TNFRSF21) and classified patients into two high- and low-risk groups based on risk scores. The risk score was considered a predictive factor in the two risk groups regarding the Cox regression analysis. A predictive nomogram had been built for providing a more beneficial prognostic indicator for the clinic. Functional enrichment analysis showed significant enrichment of immune-related signaling pathways, a higher degree of immune cell infiltration in the low-risk group than in the high-risk group, a negative correlation between risk scores and most immune checkpoint inhibitors (ICIs), anticancer immunity steps, and a more sensitive response to immunotherapy in the low-risk group. Conclusions: This risk score signature could be applied to assess the prognosis and classify low- and high-risk SKCM patients and help make the immunotherapeutic strategy decision.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pingfan Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Liang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zichao Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xisheng Yin
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|