1
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
O'Connor C, Mullally RE, McComish SF, O'Sullivan J, Woods I, Schoen I, Garre M, Caldwell MA, Dervan A, O'Brien FJ. Neurotrophic extracellular matrix proteins promote neuronal and iPSC astrocyte progenitor cell- and nano-scale process extension for neural repair applications. J Anat 2024. [PMID: 39463075 DOI: 10.1111/joa.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications. This study aimed to provide an in-depth analysis of how different commonly used extracellular matrix proteins- laminin-1, Fn, collagen IV, and collagen I-affect the morphology and growth of trophic induced pluripotent stem cell (iPSC)-derived astrocyte progenitors and mouse motor neuron-like cells. Following a 7-day culture period, morphological assessments revealed that laminin-1, fibronectin, and collagen-IV, but not collagen I, promoted increased process extension and a stellate morphology in astrocytes, with collagen-IV yielding the greatest increases. Subsequent analysis of neurons grown on the different extracellular matrix proteins revealed a similar pattern with laminin-1, fibronectin, and collagen-IV supporting robust neurite outgrowth. fibronectin promoted the greatest increase in neurite extension, while collagen-I did not enhance neurite growth compared to poly-L-lysine controls. Super-resolution microscopy highlighted extracellular matrix-specific nanoscale changes in cytoskeletal organization, with distinct patterns of actin filament distribution where the three basement membrane-associated proteins (laminin-1, fibronectin, and collagen-IV) promoted the extension of fine cellular processes. Overall, this study demonstrates the potent effect of laminin-1, fibronectin and collagen-IV to promote both iPSC-derived astrocyte progenitor and neuronal growth, yielding detailed insights into the effect of extracellular matrix proteins on neural cell morphology at both the whole cell and nanoscale levels. The ability of laminin-1, collagen-IV and fibronectin to elicit strong growth-promoting effects highlight their suitability as optimal extracellular matrix proteins to incorporate into neurotrophic biomaterial scaffolds for the delivery of cell cargoes for neural repair.
Collapse
Affiliation(s)
- Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Rena E Mullally
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Sarah F McComish
- Department of Physiology, School of Medicine, TCD, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCD, Dublin, Ireland
| | - Julia O'Sullivan
- Department of Physiology, School of Medicine, TCD, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCD, Dublin, Ireland
| | - Ian Woods
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland
| | - Massimiliano Garre
- Super-Resolution Imaging Consortium, Department of Chemistry RCSI, Dublin, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, TCD, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCD, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI & TCD, Dublin, Ireland
| |
Collapse
|
3
|
Gao F, Du W, Guo C, Geng P, Liu W, Jin X. α7nACh receptor, a promising target to reduce BBB damage by regulating inflammation and autophagy after ischemic stroke. Biomed Pharmacother 2024; 179:117337. [PMID: 39191022 DOI: 10.1016/j.biopha.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Increased blood-brain barrier (BBB) permeability can lead to cerebral vasogenic edema and hemorrhagic transformation (HT) after reperfusion with tissue plasminogen activator (tPA), the only United States Food and Drug Administration (FDA)-approved treatment for acute ischemia stroke (AIS). The therapeutic benefits of tPA after AIS are partially outweighed by a more than a six-fold increase in the risk of symptomatic intracerebral hemorrhage. Therefore, strategies to protect the integrity of BBB are urgently needed to reduce HT and vasogenic edema after tPA thrombolysis or endovascular thrombectomy. Interestingly, an NIH study showed that smokers treated with tPA had a significantly lower prevalence of brain hemorrhage than nonsmokers, suggesting that cigarette smoking may protect patients treated with tPA from the side effects of cerebral hemorrhage. Importantly, we recently showed that treatment with nicotine reduces AIS-induced BBB damage and that modulating α7nAChR by modulation could reduce ischemia/reperfusion-induced BBB damage, suggesting that α7nAChR could be a potential target to reduce BBB after AIS. In this review, we first provide an overview of stroke and the impact of α7nAChR activation on BBB damage. Next, we discuss the features and mechanism of BBB destruction after AIS. We then discuss the effect of nicotine effect on BBB integrity as well as the mechanism underlying those effects. Finally, we discuss the side effects and potential strategies for modulating α7nAChR to reduce AIS-induced BBB damage.
Collapse
Affiliation(s)
- Fengying Gao
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wencao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Juráková V, Széky B, Zapletalová M, Fehér A, Zana M, Pandey S, Kučera R, Šerý O, Hudeček J, Dinnyés A, Lochman J. Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease. Biol Proced Online 2024; 26:30. [PMID: 39342077 PMCID: PMC11437813 DOI: 10.1186/s12575-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Veronika Juráková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Omar Šerý
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic
| | - Jiří Hudeček
- Psychiatric Clinic, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - András Dinnyés
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
5
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
6
|
Berezovsky A, Nuga O, Datta I, Bergman K, Sabedot T, Gurdziel K, Irtenkauf S, Hasselbach L, Meng Y, Mueller C, Petricoin EF, Brown S, Purandare N, Aras S, Mikkelsen T, Poisson L, Noushmehr H, Ruden D, deCarvalho AC. Impact of genomic background and developmental state on signaling pathways and response to therapy in glioblastoma patient-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585115. [PMID: 39386580 PMCID: PMC11463645 DOI: 10.1101/2024.03.14.585115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glioblastoma (GBM) tumors represents diverse genomic epigenomic, and transcriptional landscapes, with significant intratumoral heterogeneity that challenges standard of care treatments involving radiation (RT) and the DNA-alkylating agent temozolomide (TMZ). In this study, we employed targeted proteomics to assess the response of a genomically-diverse panel of GBM patient-derived cancer stem cells (CSCs) to astrocytic differentiation, growth factor withdrawal and traditional high fetal bovine serum culture. Our findings revealed a complex crosstalk and co-activation of key oncogenic signaling in CSCs and diverse patterns of response to these external stimuli. Using RNA sequencing and DNA methylation, we observed common adaptations in response to astrocytic differentiation of CSCs across genomically distinct models, including BMP-Smad pathway activation, reduced cholesterol biosynthesis, and upregulation of extracellular matrix components. Notably, we observed that these differentiated CSC progenies retained a subset of stemness genes and the activation of cell survival pathways. We also examined the impact of differentiation state and genomic background on GBM cell sensitivity and transcriptional response to TMZ and RT. Differentiation of CSCs increased resistance to TMZ but not to RT. While transcriptional responses to these treatments were predominantly regulated by p53 in wild-type p53 GBM cells, its transcriptional activity was modulated by the differentiation status and treatment modality. Both mutant and wild-type p53 models exhibited significant activation of a DNA-damage associated interferon response in CSCs and differentiated cells, suggesting this pathway may play a wider role in GBM response to TMZ and RT. Our integrative analysis of the impact of GBM cell developmental states, in the context of genomic and molecular diversity of patient-derived models, provides valuable insights for pre-clinical studies aimed at optimizing treatment strategies.
Collapse
|
7
|
Lynch WB, Miracle SA, Goldstein SI, Beierle JA, Bhandari R, Gerhardt ET, Farnan A, Nguyen BM, Wingfield KK, Kazerani I, Saavedra GA, Averin O, Baskin BM, Ferris MT, Reilly CA, Emili A, Bryant CD. Validation studies and multi-omics analysis of Zhx2 as a candidate quantitative trait gene underlying brain oxycodone metabolite (oxymorphone) levels and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610534. [PMID: 39257803 PMCID: PMC11383981 DOI: 10.1101/2024.08.30.610534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sensitivity to the subjective reinforcing properties of opioids has a genetic component and can predict addiction liability of opioid compounds. We previously identified Zhx2 as a candidate gene underlying increased brain concentration of the oxycodone (OXY) metabolite oxymorphone (OMOR) in BALB/cJ (J) versus BALB/cByJ (By) females that could increase OXY state-dependent reward. A large structural intronic variant is associated with a robust reduction of Zhx2 expression in J mice, which we hypothesized enhances OMOR levels and OXY addiction-like behaviors. We tested this hypothesis by restoring the Zhx2 loss-of-function in Js (MVKO) and modeling the loss-of-function variant through knocking out the Zhx2 coding exon (E3KO) in Bys and assessing brain OXY metabolite levels and behavior. Consistent with our hypothesis, Zhx2 E3KO females showed an increase in brain OMOR levels and OXY-induced locomotor activity. However, contrary to our hypothesis, state-dependent expression of OXY-CPP was decreased in E3KO females and increased in E3KO males. We also overexpressed Zhx2 in the livers and brains of Js and observed Zhx2 overexpression in select brain regions that was associated with reduced OXY state-dependent learning. Integrative transcriptomic and proteomic analysis of E3KO mice identified astrocyte function, cell adhesion, extracellular matrix properties, and endothelial cell functions as pathways influencing brain OXY metabolite concentration and behavior. These results support Zhx2 as a quantitative trait gene underlying brain OMOR concentration that is associated with changes in OXY behavior and implicate potential quantitative trait mechanisms that together inform our overall understanding of Zhx2 in brain function.
Collapse
Affiliation(s)
- William B Lynch
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Sophia A Miracle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Stanley I Goldstein
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Rhea Bhandari
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Ethan T Gerhardt
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Undergraduate Research Opportunity Program (UROP), Boston University, Boston, MA USA
| | - Ava Farnan
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Binh-Minh Nguyen
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Kelly K Wingfield
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Ida Kazerani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Summer Research Internship Program, National Institute on Drug Abuse, North Bethesda, MD USA
| | - Gabriel A Saavedra
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Research in Science and Engineering Program, Boston University, Boston, MA USA
| | - Olga Averin
- Center for Human Toxicology, University of Utah Health, Salt Lake City, UT USA
| | - Britahny M Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Training Program on Development of Medications for Substance Use Disorder, Northeastern University, Boston, MA USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| |
Collapse
|
8
|
Wei R, Zhou J, Bui B, Liu X. Glioma actively orchestrate a self-advantageous extracellular matrix to promote recurrence and progression. BMC Cancer 2024; 24:974. [PMID: 39118096 PMCID: PMC11308147 DOI: 10.1186/s12885-024-12751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The intricate interplay between cancer cells and their surrounding microenvironment has emerged as a critical factor driving the aggressive progression of various malignancies, including gliomas. Among the various components of this dynamic microenvironment, the extracellular matrix (ECM) holds particular significance. Gliomas, intrinsic brain tumors that originate from neuroglial progenitor cells, have the remarkable ability to actively reform the ECM, reshaping the structural and biochemical landscape to their advantage. This phenomenon underscores the adaptability and aggressiveness of gliomas, and highlights the intricate crosstalk between tumor cells and their surrounding matrix.In this review, we delve into how glioma actively regulates glioma ECM to organize a favorable microenvironment for its survival, invasion, progression and therapy resistance. By unraveling the intricacies of glioma-induced ECM remodeling, we gain valuable insights into potential therapeutic strategies aimed at disrupting this symbiotic relationship and curbing the relentless advance of gliomas within the brain.
Collapse
Affiliation(s)
- Ruolun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jiasheng Zhou
- Medical Laboratory Science, Nantong University, Nantong, Jiangsu, China
| | - Brandon Bui
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Human Biology, Stanford University, Stanford, CA, USA
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Yang Q, Yan C, Sun Y, Xie Z, Yang L, Jiang M, Ni J, Chen B, Xu S, Yuan Z, Wu Y, Liu X, Yuan Z, Bai Z. Extracellular Matrix Remodeling Alleviates Memory Deficits in Alzheimer's Disease by Enhancing the Astrocytic Autophagy-Lysosome Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400480. [PMID: 38881515 PMCID: PMC11336928 DOI: 10.1002/advs.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aβ) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aβ plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aβ clearance and alleviating AD pathology. ECM remodeling also promoted Aβ plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Beining Chen
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Neurobiology, Interdisciplinary InnoCenter for Organoids, School of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yanyan Wu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zengqiang Yuan
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| |
Collapse
|
10
|
C Benincasa J, Madias MI, Kandell RM, Delgado-Garcia LM, Engler AJ, Kwon EJ, Porcionatto MA. Mechanobiological Modulation of In Vitro Astrocyte Reactivity Using Variable Gel Stiffness. ACS Biomater Sci Eng 2024; 10:4279-4296. [PMID: 38870483 PMCID: PMC11234334 DOI: 10.1021/acsbiomaterials.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear. Here, we developed a platform for the culture of cortical astrocytes using polyacrylamide (PA) gels of varying stiffness (measured in Pascal; Pa) to mimic injury-related regions in order to investigate the effects of tissue stiffness on astrocyte reactivity and morphology. Our results show that substrate stiffness influences astrocyte phenotype; soft 300 Pa substrates led to increased GFAP immunoreactivity, proliferation, and complexity of processes. Intermediate 800 Pa substrates increased Aggrecan+, Brevican+, and Neurocan+ astrocytes. The stiffest 1 kPa substrates led to astrocytes with basal morphologies, similar to a physiological state. These results advance our understanding of astrocyte mechanotransduction processes and provide evidence of how substrates with engineered stiffness can mimic the injury microenvironment.
Collapse
Affiliation(s)
- Julia C Benincasa
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| | - Marianne I Madias
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lina M Delgado-Garcia
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| | - Adam J Engler
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marimelia A Porcionatto
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| |
Collapse
|
11
|
Kolesnikova V, Revishchin A, Fab L, Alekseeva A, Ryabova A, Pronin I, Usachev DY, Kopylov A, Pavlova G. GQIcombi application to subdue glioma via differentiation therapy. Front Oncol 2024; 14:1322795. [PMID: 38988707 PMCID: PMC11233813 DOI: 10.3389/fonc.2024.1322795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Current therapy protocols fail to cure high-grade gliomas and prevent recurrence. Therefore, novel approaches need to be developed. A re-programing of glioma cell fate is an alternative attractive way to stop tumor growth. The two-step protocol applies the antiproliferative GQ bi-(AID-1-T) and small molecule inducers with BDNF to trigger neural differentiation into terminally differentiated cells, and it is very effective on GB cell cultures. This original approach is a successful example of the "differentiation therapy". To demonstrate a versatility of this approach, in this publication we have extended a palette of cell cultures to gliomas of II, III and IV Grades, and proved an applicability of that version of differential therapy for a variety of tumor cells. We have justified a sequential mode of adding of GQIcombi components to the glioma cells. We have shown a significant retardation of tumor growth after a direct injection of GQIcombi into the tumor in rat brain, model 101/8. Thus, the proposed strategy of influencing on cancer cell growth is applicable to be further translated for therapy use.
Collapse
Affiliation(s)
- Varvara Kolesnikova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexander Revishchin
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Lika Fab
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anna Alekseeva
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Neuromorphology, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Anastasia Ryabova
- Natural Sciences Center of Prokhorov General Physics Institute Russian Academy of Sciences (RAS), Moscow, Russia
| | - Igor Pronin
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry Y Usachev
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Galina Pavlova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Genetics, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Suda K, Pignatelli J, Genis L, Fernandez AM, de Sevilla EF, de la Cruz IF, Pozo-Rodrigalvarez A, de Ceballos ML, Díaz-Pacheco S, Herrero-Labrador R, Aleman IT. A role for astrocytic insulin-like growth factor I receptors in the response to ischemic insult. J Cereb Blood Flow Metab 2024; 44:970-984. [PMID: 38017004 PMCID: PMC11318401 DOI: 10.1177/0271678x231217669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Increased neurotrophic support, including insulin-like growth factor I (IGF-I), is an important aspect of the adaptive response to ischemic insult. However, recent findings indicate that the IGF-I receptor (IGF-IR) in neurons plays a detrimental role in the response to stroke. Thus, we investigated the role of astrocytic IGF-IR on ischemic insults using tamoxifen-regulated Cre deletion of IGF-IR in glial fibrillary acidic protein (GFAP) astrocytes, a major cellular component in the response to injury. Ablation of IGF-IR in astrocytes (GFAP-IGF-IR KO mice) resulted in larger ischemic lesions, greater blood-brain-barrier disruption and more deteriorated sensorimotor coordination. RNAseq detected increases in inflammatory, cell adhesion and angiogenic pathways, while the expression of various classical biomarkers of response to ischemic lesion were significantly increased at the lesion site compared to control littermates. While serum IGF-I levels after injury were decreased in both control and GFAP-IR KO mice, brain IGF-I mRNA expression show larger increases in the latter. Further, greater damage was also accompanied by altered glial reactivity as reflected by changes in the morphology of GFAP astrocytes, and relative abundance of ionized calcium binding adaptor molecule 1 (Iba 1) microglia. These results suggest a protective role for astrocytic IGF-IR in the response to ischemic injury.
Collapse
Affiliation(s)
- Kentaro Suda
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Laura Genis
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana M Fernandez
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | | | | | - Maria L de Ceballos
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sonia Díaz-Pacheco
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Raquel Herrero-Labrador
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Huber RE, Babbitt C, Peyton SR. Heterogeneity of brain extracellular matrix and astrocyte activation. J Neurosci Res 2024; 102:e25356. [PMID: 38773875 DOI: 10.1002/jnr.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.
Collapse
Affiliation(s)
- Rebecca E Huber
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Diao S, Chen C, Benani A, Magnan C, Van Steenwinckel J, Gressens P, Cruciani-Guglielmacci C, Jacquens A, Bokobza C. Preterm birth: A neuroinflammatory origin for metabolic diseases? Brain Behav Immun Health 2024; 37:100745. [PMID: 38511150 PMCID: PMC10950814 DOI: 10.1016/j.bbih.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.
Collapse
Affiliation(s)
- Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | | - Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| |
Collapse
|
16
|
Shi S, Hu M, Peng X, Cheng C, Feng S, Pu X, Yu X. Double crosslinking decellularized bovine pericardium of dialdehyde chondroitin sulfate and zwitterionic copolymer for bioprosthetic heart valves with enhanced antithrombogenic, anti-inflammatory and anti-calcification properties. J Mater Chem B 2024; 12:3417-3435. [PMID: 38525920 DOI: 10.1039/d4tb00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.
Collapse
Affiliation(s)
- Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
17
|
Dufour BD, Bartley T, McBride E, Allen E, McLennan YA, Hagerman RJ, Martínez-Cerdeño V. FXTAS Neuropathology Includes Widespread Reactive Astrogliosis and White Matter Specific Astrocyte Degeneration. Ann Neurol 2024; 95:558-575. [PMID: 38069470 PMCID: PMC10922917 DOI: 10.1002/ana.26851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.
Collapse
Affiliation(s)
- Brett D. Dufour
- Department of Psychiatry & Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Trevor Bartley
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Erin McBride
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Erik Allen
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana A. McLennan
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi J. Hagerman
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriner’s Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
18
|
Adzic Bukvic M, Laketa D, Dragic M, Lavrnja I, Nedeljkovic N. Expression of functionally distinct ecto-5'-nucleotidase/CD73 glycovariants in reactive astrocytes in experimental autoimmune encephalomyelitis and neuroinflammatory conditions in vitro. Glia 2024; 72:19-33. [PMID: 37646205 DOI: 10.1002/glia.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Ecto-5'-nucleotidase/CD73 (eN/CD73) is a membrane-bound enzyme involved in extracellular production of adenosine and a cell adhesion molecule involved in cell-cell interactions. In neuroinflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), reactive astrocytes occupying active demyelination areas significantly upregulate eN/CD73 and express additional eN/CD73 variants. The present study investigated whether the different eN/CD73 variants represent distinct glycoforms and the functional consequences of their expression in neuroinflammatory states. The study was performed in animals at different stages of EAE and in primary astrocyte cultures treated with a range of inflammatory cytokines. Upregulation at the mRNA, protein, and functional levels, as well as the appearance of multiple eN/CD73 glycovariants were detected in the inflamed spinal cord tissue. At the peak of the disease, eN/CD73 exhibited higher AMP turnover and lower enzyme-substrate affinity than the control group, which was attributed to altered glycosylation under neuroinflammatory conditions. A subsequent in vitro study showed that primary astrocytes upregulated eN/CD73 and expressed the multiple glycovariants upon stimulation with TNFα, IL-1β, IL-6, and ATP, with the effect occurring at least in part via induction of JAK/STAT3 signaling. Experimental removal of glycan moieties from membrane glycoproteins by PNGaseF decreased eN/CD73 activity but had no effect on the enzyme's involvement in astrocyte migration. Our results suggest that neuroinflammatory states are associated with the appearance of functionally distinct eN/CD73 glycovariants, which may play a role in the development of the reactive astrocyte phenotype.
Collapse
Affiliation(s)
- Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Jimenez-Vergara AC, Avina J, Block TJ, Sheldrake A, Koch C, Gonzalez A, Steele J, Díaz-Lasprilla AM, Munoz-Pinto DJ. A Bioinspired Astrocyte-Derived Coating Promotes the In Vitro Proliferation of Human Neural Stem Cells While Maintaining Their Stemness. Biomimetics (Basel) 2023; 8:589. [PMID: 38132528 PMCID: PMC10741944 DOI: 10.3390/biomimetics8080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The repair of neuronal tissue is a challenging process due to the limited proliferative capacity of neurons. Neural stem cells (NSCs) can aid in the regeneration process of neural tissue due to their high proliferation potential and capacity to differentiate into neurons. The therapeutic potential of these cells can only be achieved if sufficient cells are obtained without losing their differentiation potential. Toward this end, an astrocyte-derived coating (HAc) was evaluated as a promising substrate to promote the proliferation of NSCs. Mass spectroscopy and scanning electron microscopy were used to characterize the HAc. The proliferation rate and the expression of stemness and differentiation markers in NSCs cultured on the HAc were evaluated and compared to the responses of these cells to commonly used coating materials including Poly-L-Ornithine (PLO), and a Human Induced Pluripotent Stem Cell (HiPSC)-based coating. The use of the HAc promotes the in vitro cell growth of NSCs. The expression of the stemness markers Sox2 and Nestin, and the differentiation marker DCX in the HAc group was akin to the expression of these markers in the controls. In summary, HAc supported the proliferation of NSCs while maintaining their stemness and neural differentiation potential.
Collapse
Affiliation(s)
- Andrea C. Jimenez-Vergara
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Jacob Avina
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | | | - Anne Sheldrake
- StemBioSys, San Antonio, TX 78229, USA; (T.J.B.); (A.S.)
| | - Carson Koch
- Neuroscience Program, Trinity University, San Antonio, TX 78212, USA;
| | - Anna Gonzalez
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Jennifer Steele
- Physics and Astronomy Department, Trinity University, San Antonio, TX 78212, USA;
| | - Ana M. Díaz-Lasprilla
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Dany J. Munoz-Pinto
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
- Neuroscience Program, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
21
|
Li SJ, Li F, Kong N, Liu JR, Zhu X. Near Infrared Emissive Lanthanide Luminescence Nanoparticle Used in Early Diagnosis and Brain Temperature Detection for Ischemic Stroke. Adv Healthc Mater 2023; 12:e2302276. [PMID: 37717206 DOI: 10.1002/adhm.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Indexed: 09/18/2023]
Abstract
Ischemic stroke (IS) is one of the most dangerous medical conditions resulting in high mortality and morbidity. The increased brain temperature after IS is closely related to prognosis, making it highly significant for the early diagnosis and the progression evaluation of IS. Herein, a temperature-responsive near infrared (NIR) emissive lanthanide luminescence nanoparticle is developed for the early diagnosis and brain temperature detection of IS. After intravenous injection, the nanoparticles can pass through the damaged blood-brain barrier of the ischemic region, allowing the extravasation and enrichment of nanoparticles into the ischemic brain tissue. The NIR luminescence signals of the nanoparticles are used not only to judge the location and severity of the cerebral ischemic injury but also to report the brain temperature variation in the ischemic area through a visualized way. The results show that the designed nanoparticles can be used for the early diagnosis of ischemic stroke and minimally invasive temperature detection of cerebral ischemic tissues in transient middle cerebral artery occlusion mice model, which is expected to make the clinical diagnosis of ischemic stroke more rapid and convenient, more accurately evaluate the state of brain injury in stroke patients and also guide stroke hypothermia treatment.
Collapse
Affiliation(s)
- Shen-Jie Li
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Huangpu District, Shanghai, 200011, China
| | - Fang Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jian-Ren Liu
- Department of Neurology, Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 ZhiZaoJu Road, Huangpu District, Shanghai, 200011, China
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| |
Collapse
|
22
|
Abstract
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Collapse
Affiliation(s)
- Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arun R Chavan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Mihajlovic K, Bukvic MA, Dragic M, Scortichini M, Jacobson KA, Nedeljkovic N. Anti-inflammatory potency of novel ecto-5'-nucleotidase/CD73 inhibitors in astrocyte culture model of neuroinflammation. Eur J Pharmacol 2023; 956:175943. [PMID: 37541364 PMCID: PMC10527948 DOI: 10.1016/j.ejphar.2023.175943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Three novel cytosine-derived α,β-methylene diphosphonates designated MRS4598, MRS4552, and MRS4602 were tested in the range of 1 × 10-9 to 1 × 10-3 M for their efficacy and potency in inhibiting membrane-bound ecto-5'-nucleotidase/CD73 activity in primary astrocytes in vitro. The compounds were also tested for their ability to attenuate the reactive astrocyte phenotype induced by proinflammatory cytokines. The main findings are as follows: A) The tested compounds induced concentration-dependent inhibition of CD73 activity, with maximal inhibition achieved at ∼1 × 10-3M; B) All compounds showed high inhibitory potency, as reflected by IC50 values in the submicromolar range; C) All compounds showed high binding capacity, as reflected by Ki values in the low nanomolar range; D) Among the tested compounds, MRS4598 showed the highest inhibitory efficacy and potency, as reflected by IC50 and Ki values of 0.11 μM and 18.2 nM; E) Neither compound affected astrocyte proliferation and cell metabolic activity at concentrations near to IC50; E) MRS4598 was able to inhibit CD73 activity in reactive astrocytes stimulated with TNF-α and to induce concentration-dependent inhibition of CD73 in reactive astrocytes stimulated with IL-1β, with an order of magnitude higher IC50 value; F) MRS4598 was the only compound tested that was able to induce shedding of the CD73 from astrocyte membranes and to enhance astrocyte migration in the scratch wound migration assay, albeit at concentration well above its IC50 value. Given the role of CD73 in neurodegenerative diseases, MRS4598, MRS4552, and MRS4602 are promising pharmacological tools for the treatment of neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia.
| |
Collapse
|
24
|
Tang X, Feng C, Zhao Y, Zhang H, Gao Y, Cao X, Hong Q, Lin J, Zhuang H, Feng Y, Wang H, Shen L. A study of genetic heterogeneity in autism spectrum disorders based on plasma proteomic and metabolomic analysis: multiomics study of autism heterogeneity. MedComm (Beijing) 2023; 4:e380. [PMID: 37752942 PMCID: PMC10518435 DOI: 10.1002/mco2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Huajie Zhang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yan Gao
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xueshan Cao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Qi Hong
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yuying Feng
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hanghang Wang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyShenzhenP. R. China
| |
Collapse
|
25
|
Hashimoto JG, Zhang X, Guizzetti M. Ethanol-induced transcriptional and translational changes in Aldh1l1-Egfp/Rpl10a cortical astrocyte cultures. Front Neurosci 2023; 17:1193304. [PMID: 37415614 PMCID: PMC10320287 DOI: 10.3389/fnins.2023.1193304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
The role astrocytes play in brain development and function has garnered greater attention as the diversity of roles they are involved in has become apparent. We have previously shown that ethanol-exposed astrocytes alter neuronal neurite outgrowth in an in vitro co-culture system and that ethanol alters the astrocyte-produced extracellular matrix (ECM) in vitro, with similar alterations in vivo. In this study, we utilized the translating ribosome affinity purification (TRAP) procedure in Aldh1l1-EGFP/Rpl10a transgenic mouse primary cortical astrocyte cultures to transcriptionally and translationally profile the astrocyte response to ethanol. We found a large number of differences between the total RNA pool and the translating RNA pool, indicating that the transcriptional state of astrocytes may not always reflect the translational state of astrocytes. In addition, there was a considerable overlap between ethanol-dysregulated genes in the total RNA pool and the translating RNA pool. Comparisons to published datasets indicate the in vitro model used here is most similar to PD1 or PD7 in vivo cortical astrocytes, and the ethanol-regulated genes showed a significant overlap with models of chronic ethanol exposure in astrocytes, a model of third-trimester ethanol exposure in the hippocampus and cerebellum, and an acute model of ethanol exposure in the hippocampus. These findings will further our understanding of the effects of ethanol on astrocyte gene expression and protein translation and how these changes may alter brain development and support the use of in vitro astrocyte cultures as models of neonatal astrocytes.
Collapse
Affiliation(s)
- Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
26
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
27
|
Hou J, Zhou Y, Cai Z, Terekhova M, Swain A, Andhey PS, Guimaraes RM, Ulezko Antonova A, Qiu T, Sviben S, Strout G, Fitzpatrick JAJ, Chen Y, Gilfillan S, Kim DH, Van Dyken SJ, Artyomov MN, Colonna M. Transcriptomic atlas and interaction networks of brain cells in mouse CNS demyelination and remyelination. Cell Rep 2023; 42:112293. [PMID: 36952346 PMCID: PMC10511667 DOI: 10.1016/j.celrep.2023.112293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/04/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Demyelination is a hallmark of multiple sclerosis, leukoencephalopathies, cerebral vasculopathies, and several neurodegenerative diseases. The cuprizone mouse model is widely used to simulate demyelination and remyelination occurring in these diseases. Here, we present a high-resolution single-nucleus RNA sequencing (snRNA-seq) analysis of gene expression changes across all brain cells in this model. We define demyelination-associated oligodendrocytes (DOLs) and remyelination-associated MAFBhi microglia, as well as astrocytes and vascular cells with signatures of altered metabolism, oxidative stress, and interferon response. Furthermore, snRNA-seq provides insights into how brain cell types connect and interact, defining complex circuitries that impact demyelination and remyelination. As an explicative example, perturbation of microglia caused by TREM2 deficiency indirectly impairs the induction of DOLs. Altogether, this study provides a rich resource for future studies investigating mechanisms underlying demyelinating diseases.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafaela M Guimaraes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Ribeirão Preto Medical School, University of São Paulo - Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tian Qiu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Cell Biology and Physiology and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Hernandez SJ, Lim RG, Onur T, Dane MA, Smith R, Wang K, Jean GEH, Reyes-Ortiz A, Devlin K, Miramontes R, Wu J, Casale M, Kilburn D, Heiser LM, Korkola JE, Van Vactor D, Botas J, Thompson-Peer KL, Thompson LM. An altered extracellular matrix-integrin interface contributes to Huntington's disease-associated CNS dysfunction in glial and vascular cells. Hum Mol Genet 2023; 32:1483-1496. [PMID: 36547263 PMCID: PMC10117161 DOI: 10.1093/hmg/ddac303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.
Collapse
Affiliation(s)
- Sarah J Hernandez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Tarik Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Keona Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Grace En-Hway Jean
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Andrea Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kaylyn Devlin
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - David Kilburn
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Reeve-Irvine Research Center, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Qian Z, Qin J, Lai Y, Zhang C, Zhang X. Large-Scale Integration of Single-Cell RNA-Seq Data Reveals Astrocyte Diversity and Transcriptomic Modules across Six Central Nervous System Disorders. Biomolecules 2023; 13:692. [PMID: 37189441 PMCID: PMC10135484 DOI: 10.3390/biom13040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The dysfunction of astrocytes in response to environmental factors contributes to many neurological diseases by impacting neuroinflammation responses, glutamate and ion homeostasis, and cholesterol and sphingolipid metabolism, which calls for comprehensive and high-resolution analysis. However, single-cell transcriptome analyses of astrocytes have been hampered by the sparseness of human brain specimens. Here, we demonstrate how large-scale integration of multi-omics data, including single-cell and spatial transcriptomic and proteomic data, overcomes these limitations. We created a single-cell transcriptomic dataset of human brains by integration, consensus annotation, and analyzing 302 publicly available single-cell RNA-sequencing (scRNA-seq) datasets, highlighting the power to resolve previously unidentifiable astrocyte subpopulations. The resulting dataset includes nearly one million cells that span a wide variety of diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), epilepsy (Epi), and chronic traumatic encephalopathy (CTE). We profiled the astrocytes at three levels, subtype compositions, regulatory modules, and cell-cell communications, and comprehensively depicted the heterogeneity of pathological astrocytes. We constructed seven transcriptomic modules that are involved in the onset and progress of disease development, such as the M2 ECM and M4 stress modules. We validated that the M2 ECM module could furnish potential markers for AD early diagnosis at both the transcriptome and protein levels. In order to accomplish a high-resolution, local identification of astrocyte subtypes, we also carried out a spatial transcriptome analysis of mouse brains using the integrated dataset as a reference. We found that astrocyte subtypes are regionally heterogeneous. We identified dynamic cell-cell interactions in different disorders and found that astrocytes participate in key signaling pathways, such as NRG3-ERBB4, in epilepsy. Our work supports the utility of large-scale integration of single-cell transcriptomic data, which offers new insights into underlying multiple CNS disease mechanisms where astrocytes are involved.
Collapse
Affiliation(s)
- Zhenwei Qian
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jinglin Qin
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yiwen Lai
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing 210000, China
| | - Xiannian Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
30
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
31
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
32
|
Zhou Y, Tada M, Cai Z, Andhey PS, Swain A, Miller KR, Gilfillan S, Artyomov MN, Takao M, Kakita A, Colonna M. Human early-onset dementia caused by DAP12 deficiency reveals a unique signature of dysregulated microglia. Nat Immunol 2023; 24:545-557. [PMID: 36658241 PMCID: PMC9992145 DOI: 10.1038/s41590-022-01403-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous hypofunctional TREM2 variants impair microglia, accelerating late-onset Alzheimer's disease. Homozygous inactivating variants of TREM2 or TYROBP-encoding DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia characterized by cerebral atrophy, myelin loss and gliosis. Mechanisms underpinning NHD are unknown. Here, single-nucleus RNA-sequencing analysis of brain specimens from DAP12-deficient NHD individuals revealed a unique microglia signature indicating heightened RUNX1, STAT3 and transforming growth factor-β signaling pathways that mediate repair responses to injuries. This profile correlated with a wound healing signature in astrocytes and impaired myelination in oligodendrocytes, while pericyte profiles indicated vascular abnormalities. Conversely, single-nuclei signatures in mice lacking DAP12 signaling reflected very mild microglial defects that did not recapitulate NHD. We envision that DAP12 signaling in microglia attenuates wound healing pathways that, if left unchecked, interfere with microglial physiological functions, causing pathology in human. The identification of a dysregulated NHD microglia signature sparks potential therapeutic strategies aimed at resetting microglia signaling pathways.
Collapse
Affiliation(s)
- Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly R Miller
- 10x Genomics, Pleasanton, CA, USA
- Deepcell, Menlo Park, CA, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Masaki Takao
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
- Department of Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
33
|
The Biological Behaviors of Neural Stem Cell Affected by Microenvironment from Host Organotypic Brain Slices under Different Conditions. Int J Mol Sci 2023; 24:ijms24044182. [PMID: 36835592 PMCID: PMC9964775 DOI: 10.3390/ijms24044182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Therapeutic strategies based on neural stem cells (NSCs) transplantation bring new hope for neural degenerative disorders, while the biological behaviors of NSCs after being grafted that were affected by the host tissue are still largely unknown. In this study, we engrafted NSCs that were isolated from a rat embryonic cerebral cortex onto organotypic brain slices to examine the interaction between grafts and the host tissue both in normal and pathological conditions, including oxygen-glucose deprivation (OGD) and traumatic injury. Our data showed that the survival and differentiation of NSCs were strongly influenced by the microenvironment of the host tissue. Enhanced neuronal differentiation was observed in normal conditions, while significantly more glial differentiation was observed in injured brain slices. The process growth of grafted NSCs was guided by the cytoarchitecture of host brain slices and showed the distinct difference between the cerebral cortex, corpus callosum and striatum. These findings provided a powerful resource for unraveling how the host environment determines the fate of grafted NSCs, and raise the prospect of NSCs transplantation therapy for neurological diseases.
Collapse
|
34
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Axonal Guidance Using Biofunctionalized Straining Flow Spinning Regenerated Silk Fibroin Fibers as Scaffold. Biomimetics (Basel) 2023; 8:biomimetics8010065. [PMID: 36810396 PMCID: PMC9944560 DOI: 10.3390/biomimetics8010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
After an injury, the limited regenerative capacity of the central nervous system makes the reconnection and functional recovery of the affected nervous tissue almost impossible. To address this problem, biomaterials appear as a promising option for the design of scaffolds that promote and guide this regenerative process. Based on previous seminal works on the ability of regenerated silk fibroin fibers spun through the straining flow spinning (SFS) technique, this study is intended to show that the usage of functionalized SFS fibers allows an enhancement of the guidance ability of the material when compared with the control (nonfunctionalized) fibers. It is shown that the axons of the neurons not only tend to follow the path marked by the fibers, in contrast to the isotropic growth observed on conventional culture plates, but also that this guidance can be further modulated through the biofunctionalization of the material with adhesion peptides. Establishing the guidance ability of these fibers opens the possibility of their use as implants for spinal cord injuries, so that they may represent the core of a therapy that would allow the reconnection of the injured ends of the spinal cord.
Collapse
|
36
|
Freitag K, Eede P, Ivanov A, Sterczyk N, Schneeberger S, Borodina T, Sauer S, Beule D, Heppner FL. Diverse but unique astrocytic phenotypes during embryonic stem cell differentiation, culturing and development. Commun Biol 2023; 6:40. [PMID: 36639529 PMCID: PMC9839673 DOI: 10.1038/s42003-023-04410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Astrocytes are resident glial cells of the central nervous system (CNS) that play complex and heterogeneous roles in brain development, homeostasis and disease. Since their vast involvement in health and disease is becoming increasingly recognized, suitable and reliable tools for studying these cells in vivo and in vitro are of utmost importance. One of the key challenges hereby is to adequately mimic their context-dependent in vivo phenotypes and functions in vitro. To better understand the spectrum of astrocytic variations in defined settings we performed a side-by-side-comparison of murine embryonic stem cell (ESC)-derived astrocytes as well as primary neonatal and adult astrocytes, revealing major differences on a functional and transcriptomic level, specifically on proliferation, migration, calcium signaling and cilium activity. Our results highlight the need to carefully consider the choice of astrocyte origin and phenotype with respect to age, isolation and culture protocols based on the respective biological question.
Collapse
Affiliation(s)
- Kiara Freitag
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Pascale Eede
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany ,Present Address: Apollo Health Ventures, Schlüterstr. 36, 10629 Berlin, Germany
| | - Andranik Ivanov
- grid.6363.00000 0001 2218 4662Core Unit Bioinformatics, Berlin Institute of Health, Charité - University Hospital Berlin, 10117 Berlin, Germany
| | - Nele Sterczyk
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany
| | - Shirin Schneeberger
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany ,grid.517316.7Cluster of Excellence, NeuroCure, Berlin, Germany ,Present Address: Apollo Health Ventures, Schlüterstr. 36, 10629 Berlin, Germany
| | - Tatiana Borodina
- grid.419491.00000 0001 1014 0849Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sascha Sauer
- grid.419491.00000 0001 1014 0849Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany and Berlin Institute of Health (BIH), Berlin, Germany
| | - Dieter Beule
- grid.6363.00000 0001 2218 4662Core Unit Bioinformatics, Berlin Institute of Health, Charité - University Hospital Berlin, 10117 Berlin, Germany
| | - Frank L. Heppner
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany ,grid.517316.7Cluster of Excellence, NeuroCure, Berlin, Germany
| |
Collapse
|
37
|
Benchmarking brain organoid recapitulation of fetal corticogenesis. Transl Psychiatry 2022; 12:520. [PMID: 36539399 PMCID: PMC9767930 DOI: 10.1038/s41398-022-02279-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are becoming increasingly relevant to dissect the molecular mechanisms underlying psychiatric and neurological conditions. The in vitro recapitulation of key features of human brain development affords the unique opportunity of investigating the developmental antecedents of neuropsychiatric conditions in the context of the actual patients' genetic backgrounds. Specifically, multiple strategies of brain organoid (BO) differentiation have enabled the investigation of human cerebral corticogenesis in vitro with increasing accuracy. However, the field lacks a systematic investigation of how closely the gene co-expression patterns seen in cultured BO from different protocols match those observed in fetal cortex, a paramount information for ensuring the sensitivity and accuracy of modeling disease trajectories. Here we benchmark BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and prenatal cortices from the BrainSpan Atlas. We identified co-expression patterns and prioritized hubs of human corticogenesis and CBO differentiation, highlighting both well-preserved and discordant trends across BO protocols. We evaluated the relevance of identified gene modules for neurodevelopmental disorders and psychiatric conditions finding significant enrichment of disease risk genes especially in modules related to neuronal maturation and synapsis development. The longitudinal transcriptomic analysis of CBO revealed a two-step differentiation composed of a fast-evolving phase, corresponding to the appearance of the main cell populations of the cortex, followed by a slow-evolving one characterized by milder transcriptional changes. Finally, we observed heterochronicity of differentiation across BO models compared to fetal cortex. Our approach provides a framework to directly compare the extent of in vivo/in vitro alignment of neurodevelopmentally relevant processes and their attending temporalities, structured as a resource to query for modeling human corticogenesis and the neuropsychiatric outcomes of its alterations.
Collapse
|
38
|
Nazeri A, Krsnik Ž, Kostović I, Ha SM, Kopić J, Alexopoulos D, Kaplan S, Meyer D, Luby JL, Warner BB, Rogers CE, Barch DM, Shimony JS, McKinstry RC, Neil JJ, Smyser CD, Sotiras A. Neurodevelopmental patterns of early postnatal white matter maturation represent distinct underlying microstructure and histology. Neuron 2022; 110:4015-4030.e4. [PMID: 36243003 PMCID: PMC9742299 DOI: 10.1016/j.neuron.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Cerebral white matter undergoes a rapid and complex maturation during the early postnatal period. Prior magnetic resonance imaging (MRI) studies of early postnatal development have often been limited by small sample size, single-modality imaging, and univariate analytics. Here, we applied nonnegative matrix factorization, an unsupervised multivariate pattern analysis technique, to T2w/T1w signal ratio maps from the Developing Human Connectome Project (n = 342 newborns) revealing patterns of coordinated white matter maturation. These patterns showed divergent age-related maturational trajectories, which were replicated in another independent cohort (n = 239). Furthermore, we showed that T2w/T1w signal variations in these maturational patterns are explained by differential contributions of white matter microstructural indices derived from diffusion-weighted MRI. Finally, we demonstrated how white matter maturation patterns relate to distinct histological features by comparing our findings with postmortem late fetal/early postnatal brain tissue staining. Together, these results delineate concise and effective representation of early postnatal white matter reorganization.
Collapse
Affiliation(s)
- Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Sung Min Ha
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deanna M Barch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA; Psychological & Brain Sciences, Washington University School in St. Louis, Saint Louis, MO 63130, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
39
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
40
|
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022; 16:1022754. [PMID: 36339816 PMCID: PMC9630365 DOI: 10.3389/fncel.2022.1022754] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.
Collapse
|
41
|
Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer's disease mouse model: a role for ER-mitochondria interaction. Cell Death Dis 2022; 13:878. [PMID: 36257957 PMCID: PMC9579125 DOI: 10.1038/s41419-022-05324-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Deregulation of protein synthesis and ER stress/unfolded protein response (ER stress/UPR) have been reported in astrocytes. However, the relationships between protein synthesis deregulation and ER stress/UPR, as well as their role in the altered homeostatic support of Alzheimer's disease (AD) astrocytes remain poorly understood. Previously, we reported that in astrocytic cell lines from 3xTg-AD mice (3Tg-iAstro) protein synthesis was impaired and ER-mitochondria distance was reduced. Here we show that impaired protein synthesis in 3Tg-iAstro is associated with an increase of p-eIF2α and downregulation of GADD34. Although mRNA levels of ER stress/UPR markers were increased two-three-fold, we found neither activation of PERK nor downstream induction of ATF4 protein. Strikingly, the overexpression of a synthetic ER-mitochondrial linker (EML) resulted in a reduced protein synthesis and augmented p-eIF2α without any effect on ER stress/UPR marker genes. In vivo, in hippocampi of 3xTg-AD mice, reduced protein synthesis, increased p-eIF2α and downregulated GADD34 protein were found, while no increase of p-PERK or ATF4 proteins was observed, suggesting that in AD astrocytes, both in vitro and in vivo, phosphorylation of eIF2α and impairment of protein synthesis are PERK-independent. Next, we investigated the ability of 3xTg-AD astrocytes to support metabolism and function of other cells of the central nervous system. Astrocyte-conditioned medium (ACM) from 3Tg-iAstro cells significantly reduced protein synthesis rate in primary hippocampal neurons. When added as a part of pericyte/endothelial cell (EC)/astrocyte 3D co-culture, 3Tg-iAstro, but not WT-iAstro, severely impaired formation and ramification of tubules, the effect, replicated by EML overexpression in WT-iAstro cells. Finally, a chemical chaperone 4-phenylbutyric acid (4-PBA) rescued protein synthesis, p-eIF2α levels in 3Tg-iAstro cells and tubulogenesis in pericyte/EC/3Tg-iAstro co-culture. Collectively, our results suggest that a PERK-independent, p-eIF2α-associated impairment of protein synthesis compromises astrocytic homeostatic functions, and this may be caused by the altered ER-mitochondria interaction.
Collapse
|
42
|
Bijelić D, Adžić M, Perić M, Reiss G, Milošević M, Andjus PR, Jakovčevski I. Tenascin-C fibronectin D domain is involved in the fine-tuning of glial response to CNS injury in vitro. Front Cell Dev Biol 2022; 10:952208. [PMID: 36092707 PMCID: PMC9462431 DOI: 10.3389/fcell.2022.952208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding processes that occur after injuries to the central nervous system is essential in order to gain insight into how the restoration of function can be improved. Extracellular glycoprotein tenascin-C (TnC) has numerous functions in wound healing process depending on the expression time, location, isoform and binding partners which makes it interesting to study in this context. We used an in vitro injury model, the mixed culture of cortical astrocytes and microglia, and observed that without TnC microglial cells tend to populate gap area in greater numbers and proliferate more, whereas astrocytes build up in the border region to promote faster gap closure. Alternatively spliced domain of TnC, fibronectin type III-like repeat D (FnD) strongly affected physiological properties and morphology of both astrocytes and microglia in this injury model. The rate of microglial proliferation in the injury region decreased significantly with the addition of FnD. Additionally, density of microglia also decreased, in part due to reduced proliferation, and possibly due to reduced migration and increased contact inhibition between enlarged FnD-treated cells. Overall morphology of FnD-treated microglia resembled the activated pro-inflammatory cells, and elevated expression of iNOS was in accordance with this phenotype. The effect of FnD on astrocytes was different, as it did not affect their proliferation, but stimulated migration of reactivated astrocytes into the scratched area 48 h after the lesion. Elevated expression and secretion of TNF-α and IL-1β upon FnD treatment indicated the onset of inflammation. Furthermore, on Western blots we observed increased intensity of precursor bands of β1 integrin and appearance of monomeric bands of P2Y12R after FnD treatment which substantiates and clarifies its role in cellular shape and motility changes. Our results show versatile functions of TnC and in particular FnD after injury, mostly contributing to ongoing inflammation in the injury region. Based on our findings, FnD might be instrumental in limiting immune cell infiltration, and promoting astrocyte migration within the injury region, thus influencing spaciotemporal organization of the wound and surrounding area.
Collapse
Affiliation(s)
- Dunja Bijelić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dunja Bijelić, ; Igor Jakovčevski,
| | - Marija Adžić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Mina Perić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, University Witten / Herdecke, Witten, Germany
| | - Milena Milošević
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Igor Jakovčevski
- Institute for Anatomy and Clinical Morphology, University Witten / Herdecke, Witten, Germany
| |
Collapse
|
43
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
44
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
45
|
Yang X, Yun Y, Wang P, Zhao J, Sun X. Upregulation of RCAN1.4 by HIF1α alleviates OGD-induced inflammatory response in astrocytes. Ann Clin Transl Neurol 2022; 9:1224-1240. [PMID: 35836352 PMCID: PMC9380140 DOI: 10.1002/acn3.51624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Ischemic stroke is a leading cause of human mortality and long-term disability worldwide. As one of the main forms of regulator of calcineurin 1 (RCAN1), the contribution of RCAN1.4 in diverse biological and pathological conditions has been implicated. But the role of RCAN1.4 in ischemic stroke progression remains elusive. This study is to explore the expression changes and roles of RCAN1.4 in ischemic stroke as well as the underlying mechanisms for these changes and effects of RCAN1.4 in ischemic stroke. METHODS Middle cerebral artery occlusion model in C57BL/6J mice and oxygen-glucose deprivation (OGD) model in primary astrocytes were performed to induce the cerebral ischemic stroke. The expression pattern of RCAN1.4 was assessed using real-time quantitative PCR and western blotting in vivo and in vitro. Mechanistically, the underlying mechanism for the elevation of RCAN1.4 in the upstream was investigated. Lentiviruses were administrated, and the effect of RCAN1.4 in postischemic inflammation was clearly clarified. RESULTS Here we uncovered that RCAN1.4 was dramatically increased in mouse ischemic brains and OGD-induced primary astrocytes. HIF1α, activated upon OGD, significantly upregulated RCAN1.4 gene expression through specifically binding to the RCAN1.4 promoter region and activating its promoter activity. The functional hypoxia-responsive element (HRE) was located between -254 and -245 bp in the RCAN1.4 promoter region. Moreover, elevated RCAN1.4 alleviated the release of pro-inflammatory cytokines TNFα, IL1β, IL6 and reduced expression of iNOS, COX2 in primary astrocytes upon OGD, whereas RCAN1.4 silencing has the opposite effect. Of note, RCAN1.4 overexpression inhibited OGD-induced NF-κB activation in primary astrocytes, leading to decreased degradation of IκBα and reduced nuclear translocation of NF-κB/p65. INTERPRETATION Our results reveal a novel mechanism underscoring the upregulation of RCAN1.4 by HIF1α and the protective effect of RCAN1.4 against postischemic inflammation, suggesting its significance as a promising therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of NeurologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Yan Yun
- Department of RadiologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Pin Wang
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Juan Zhao
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Xiulian Sun
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Brain Research InstituteQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health CommissionQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| |
Collapse
|
46
|
Mao MJ, Yu HL, Wen YZ, Sun XY, Xu CY, Gao YZ, Jiang M, Yuan HM, Feng SW. Deficit of perineuronal net induced by maternal immune activation mediates the cognitive impairment in offspring during adolescence. Behav Brain Res 2022; 434:114027. [PMID: 35905839 DOI: 10.1016/j.bbr.2022.114027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
Abstract
Maternal immune activation (MIA) during pregnancy is considered a risk factor for neurodevelopment in the offspring, resulting in behavioral abnormalities. Furthermore, adolescence is a vulnerable period for developing different psycho-cognitive deficits. Here, we aimed to observe the cognitive consequences of prenatal MIA exposure in adolescents and explored the underlying mechanisms. We divided dams into CON and MIA groups after inducing a mouse model of MIA using lipopolysaccharide (120μg/kg) on gestational day 15. Open field (OF), elevated plus maze (EPM), and novel object recognition (NOR) tests were performed on postnatal day (PD) 35-37. The expression of hippocampal Wisteria floribunda agglutinin (WFA)+ perineuronal net (PNN), parvalbumin (PV), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule-1(Iba-1) were evaluated using immunofluorescence, and the expression of matrix metalloprotein-9 (MMP-9) in the hippocampus was assessed using the western blot. Following the infusion of chondroitinase ABC (ChABC) into CA1 in the offspring from the CON group on PD 30, they were divided into ChABC and Sham groups. OF, EPM, and NOR were performed on PD 35-37. Compared to the CON group, decreased exploration time of the novel object and preference ratio were observed in the MIA group. Meanwhile, the MIA group presented significantly decreased WFA+ PNN in CA1, increased Iba-1+ microglia, and MMP-9 in the hippocampus. Additionally, the density of PV+ neurons and GFAP+ astrocytes was comparable between both groups. After digesting the PNN, the exploration time of novel object and preference ratio decreased in the ChABC group compared to the Sham group. Conclusively, the PNN deficit in CA1 caused by prenatal MIA might, at least partially, induce cognitive impairment in adolescents. Microglia and MMP-9 may also be potential candidates for PNN deficit after MIA.
Collapse
Affiliation(s)
- Ming-Jie Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hui-Ling Yu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ya-Zhou Wen
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiao-Yun Sun
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chen-Yang Xu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ming Jiang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Hong-Mei Yuan
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Shan-Wu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
47
|
Dias A, Silva L, Moura J, Gabriel D, Maia LF. Fluid biomarkers in stroke: From animal models to clinical care. Acta Neurol Scand 2022; 146:332-347. [PMID: 35838031 DOI: 10.1111/ane.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Stroke prevention, early diagnosis, and efficient acute treatment are priorities to successfully impact stroke death and disability. Fluid biomarkers may improve stroke differential diagnostic, patient stratification for acute treatment, and post-stroke individualized rehabilitation. In the present work, we characterized the use of stroke animal models in fluid biomarker research through a systematic review of PubMed and Scopus databases, followed by a literature review on the translation to the human stroke care setting and future perspectives in the field. We found increasing numbers of publications but with limited translation to the clinic. Animal studies are very heterogeneous, do not account for several human features present in stroke, and, importantly, only a minority of such studies used human cohorts to validate biomarker findings. Clinical studies have found appealing candidates, both protein and circulating nucleic acids, to contribute to a more personalized stroke care pathway. Still, brain tissue complexity and the fact that different brain pathologies share lesion biomarkers make this task challenging due to biomarker low specificity. Moreover, the study design and lack of validation cohorts may have precluded a formal integration of biomarkers in different steps of stroke diagnosis and treatment. To overcome such issues, recent pivotal studies on biomarker dynamics in individual patients are providing added value to diagnosis and anticipating patients' early prognosis. Presently, the most consistent protein biomarkers for stroke diagnosis and short- and long-term prognosis are associated with tissue damage at neuronal (TAU), axonal (NFL), or astroglial (GFAP and S100β) levels. Most promising nucleic acids are microRNAs (miR), due to their stability in plasma and ease of access. Still, clinical validation and standardized quantitation place them a step behind compared protein as stroke biomarkers. Ultimately, the definition of clinically relevant biomarker panels and optimization of fast and sensitive biomarker measurements in the blood, together with their combination with clinical and neuroimaging data, will pave the way toward personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Lénia Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Moura
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Denis Gabriel
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis F Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
48
|
Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells 2022; 11:cells11142131. [PMID: 35883574 PMCID: PMC9317039 DOI: 10.3390/cells11142131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The neuroglial extracellular matrix (ECM) provides critical support and physiological cues for the proper growth, differentiation, and function of neuronal cells in the brain. However, in most in vitro settings that study neural physiology, cells are grown as monolayers on stiff surfaces that maximize adhesion and proliferation, and, therefore, they lack the physiological cues that ECM in native neuronal tissues provides. Macromolecular crowding (MMC) is a biophysical phenomenon based on the principle of excluded volume that can be harnessed to induce native ECM deposition by cells in culture. Here, we show that MMC using two species of Ficoll with vitamin C supplementation significantly boosts deposition of relevant brain ECM by cultured human astrocytes. Dopaminergic neurons cocultured on this astrocyte–ECM bed prepared under MMC treatment showed longer and denser neuronal extensions, a higher number of pre ad post synaptic contacts, and increased physiological activity, as evidenced by higher frequency calcium oscillation, compared to standard coculture conditions. When the pharmacological activity of various compounds was tested on MMC-treated cocultures, their responses were enhanced, and for apomorphine, a D2-receptor agonist, it was inverted in comparison to control cell culture conditions, thus emulating responses observed in in vivo settings. These results indicate that macromolecular crowding can harness the ECM-building potential of human astrocytes in vitro forming an ultra-flat 3D microenvironment that makes neural cultures more physiological and pharmacological relevant.
Collapse
|
49
|
Pereira C, Dani M, Taylor-Robinson SD, Fertleman M. Putative Involvement of Cytokine Modulation in the Development of Perioperative Neurocognitive Disorders. Int J Gen Med 2022; 15:5349-5360. [PMID: 35677803 PMCID: PMC9167835 DOI: 10.2147/ijgm.s364954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
Following surgery, local cytokine-driven inflammation occurs, as part of the normal healing process. Cytokines in the central nervous system such as IL-6 and IL-8 may also be elevated. These cytokine changes likely contribute to neuroinflammation, but the complex mechanisms through which this occurs are incompletely understood. It may be that perioperative changes in pro- and anti-inflammatory cytokines have a role in the development of perioperative neurocognitive disorders (PND), such as post-operative delirium (POD). This review considers the current evidence regarding perioperative cytokine changes in the blood and cerebrospinal fluid (CSF), as well as considering the potential for cytokine-altering therapies to prevent and treat PND.
Collapse
Affiliation(s)
- Christopher Pereira
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| | - Melanie Dani
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| | | | - Michael Fertleman
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
50
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|