1
|
Morrison FG, Van Orden LJ, Zeitz K, Kuijer EJ, Smith SL, Heal DJ, Wallace TL. Navacaprant, a novel and selective kappa opioid receptor antagonist, has no agonist properties implicated in opioid-related abuse. Neuropharmacology 2024; 257:110037. [PMID: 38876309 DOI: 10.1016/j.neuropharm.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Kappa opioid receptors (KORs) are implicated in the pathophysiology of various psychiatric and neurological disorders creating interest in targeting the KOR system for therapeutic purposes. Accordingly, navacaprant (NMRA-140) is a potent, selective KOR antagonist being evaluated as a treatment for major depressive disorder. In the present report, we have extended the pharmacological characterization of navacaprant by further demonstrating its selective KOR antagonist properties and confirming its lack of agonist activity at KORs and related targets involved in opioid-related abuse. Using CHO-K1 cells expressing human KOR, mu (MOR), or delta (DOR) opioid receptors, navacaprant demonstrated selective antagonist properties at KOR (IC50 = 0.029 μM) versus MOR (IC50 = 3.3 μM) and DOR (IC50 > 10 μM) in vitro. In vivo, navacaprant (10-30 mg/kg, i.p.) dose-dependently abolished KOR-agonist induced analgesia in the mouse tail-flick assay. Additionally, navacaprant (10, 30 mg/kg, p.o.) significantly reduced KOR agonist-stimulated prolactin release in mice and rats, confirming KOR antagonism in vivo. Navacaprant showed no agonist activity at any opioid receptor subtype (EC50 > 10 μM) in vitro and exhibited no analgesic effect in the tail-flick assays at doses ≤100 mg/kg, p.o. thereby confirming a lack of opioid receptor agonist activity in vivo. Importantly, navacaprant did not alter extracellular dopamine concentrations in the nucleus accumbens shell of freely-moving rats following doses ≤100 mg/kg, p.o., whereas morphine (10, 20 mg/kg, i.p.) significantly increased dopamine levels. These results demonstrate that navacaprant is a KOR-selective antagonist with no pharmacological properties implicated in opioid-related abuse.
Collapse
MESH Headings
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Animals
- CHO Cells
- Cricetulus
- Humans
- Male
- Mice
- Rats
- Analgesics, Opioid/pharmacology
- Cricetinae
- Opioid-Related Disorders/drug therapy
- Narcotic Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Mice, Inbred C57BL
- Dopamine/metabolism
Collapse
Affiliation(s)
| | | | - Karla Zeitz
- Neumora Therapeutics, Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Eloise J Kuijer
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - David J Heal
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK; DevelRx Ltd., BioCity, Nottingham, NG1 1GF, UK
| | - Tanya L Wallace
- Neumora Therapeutics, Inc., 490 Arsenal Way, Watertown, MA, 02472, USA.
| |
Collapse
|
2
|
Abdollahzadeh Hamzekalayi MR, Hooshyari Ardakani M, Moeini Z, Rezaei R, Hamidi N, Rezaei Somee L, Zolfaghar M, Darzi R, Kamalipourazad M, Riazi G, Meknatkhah S. A systematic review of novel cannabinoids and their targets: Insights into the significance of structure in activity. Eur J Pharmacol 2024; 976:176679. [PMID: 38821167 DOI: 10.1016/j.ejphar.2024.176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
Collapse
Affiliation(s)
| | | | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Rezaei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Negin Hamidi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Leila Rezaei Somee
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdis Zolfaghar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Raheleh Darzi
- Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Kamalipourazad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Kummer K, Sheets PL. Targeting Prefrontal Cortex Dysfunction in Pain. J Pharmacol Exp Ther 2024; 389:268-276. [PMID: 38702195 PMCID: PMC11125798 DOI: 10.1124/jpet.123.002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Patrick L Sheets
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Ji G, Presto P, Kiritoshi T, Chen Y, Navratilova E, Porreca F, Neugebauer V. Chemogenetic Manipulation of Amygdala Kappa Opioid Receptor Neurons Modulates Amygdala Neuronal Activity and Neuropathic Pain Behaviors. Cells 2024; 13:705. [PMID: 38667320 PMCID: PMC11049235 DOI: 10.3390/cells13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | - Yong Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Bali B, Tuan WJ, Scott A, Bollampally P, Groff D, Leong SL, King VL, Bone C. Assessing men with opioid use disorder for testosterone deficiency after the development of symptoms. J Addict Dis 2024:1-7. [PMID: 38619057 DOI: 10.1080/10550887.2024.2327751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Individuals with opioid use disorder (OUD) have reduced life expectancy and inferior outcomes when treated for depression, diabetes, and fractures. Their elevated risk of testosterone deficiency may contribute to all of these relationships, however few individuals prescribed opioids are evaluated with testosterone assays. The purpose of this study is to determine whether patients with opioid use disorder are evaluated for testosterone deficiency after development of a symptom that may merit investigation, such as erectile dysfunction (ED). METHOD We conducted a retrospective longitudinal cohort study that utilized data from a national database called TriNetX. Patients were eligible for inclusion if they were 20 to 90 years of age, male, and diagnosed with erectile dysfunction. We utilized descriptive statistics and logistic regression to address study aims. RESULTS Testosterone testing was uncommon for all patients with ED. Among 20,658 patients, it was assessed in 11.2% with OUD and 15.1% without OUD. Among those screened, 40% individuals with OUD and ED had testosterone deficiency. Odds of screening those with OUD were lower than matched controls (RR 0.74). CONCLUSIONS Individuals with OUD are at increased risk of testosterone deficiency than the general population, but nearly 90% are not evaluated for this condition even after development symptoms. That 40% of individuals assessed were classified as testosterone deficient suggests endocrine disorders may be contributing to increased fracture risk, chronic pain, and severe depression commonly encountered in patients with OUD. Addressing this care gap may reduce morbidity and mortality associated with opioid use disorder.
Collapse
Affiliation(s)
- Bhavna Bali
- Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Wen Jan Tuan
- Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Alyssa Scott
- University of Maryland Medical Center, Baltimore, Maryland, USA
| | | | - Destin Groff
- Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Shou Ling Leong
- Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Van L King
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Curtis Bone
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
Batallé G, Bai X, Balboni G, Pol O. The Impact of UFP-512 in Mice with Osteoarthritis Pain: The Role of Hydrogen Sulfide. Antioxidants (Basel) 2023; 12:2085. [PMID: 38136204 PMCID: PMC10740868 DOI: 10.3390/antiox12122085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The pain-relieving properties of opioids in inflammatory and neuropathic pain are heightened by hydrogen sulfide (H2S). However, whether allodynia and functional and/or emotional impairments related to osteoarthritis (OA) could be reduced by activating δ-opioid receptors (DOR) and the plausible influence of H2S on these actions has not been completely established. In female C57BL/6J mice with OA pain generated via monosodium acetate (MIA), we analyze: (i) the effects of UFP-512 (a DOR agonist), given alone and co-administered with two H2S donors, on the symptoms of allodynia, loss of grip strength (GS), and anxiodepressive-like comportment; (ii) the reversion of UFP-512 actions with naltrindole (a DOR antagonist), and (iii) the impact of UFP-512 on the expression of phosphorylated NF-kB inhibitor alpha (p-IKBα) and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and glutathione sulfur transferase M1 (GSTM1); and the effects of H2S on DOR levels in the dorsal root ganglia (DRG), amygdala (AMG), and hippocampus (HIP) of MIA-injected animals. Results showed that systemic and local administration of UFP-512 dose-dependently diminished the allodynia and loss of GS caused by MIA, whose effects were potentiated by H2S and reversed by naltrindole. UFP-512 also inhibited anxiodepressive-like behaviors, normalized the overexpression of p-IKBα in DRG and HIP, and enhanced the expression of SOD-1 and GSTM1 in DRG, HIP, and/or AMG. Moreover, the increased expression of DOR triggered by H2S might support the improved analgesic actions of UFP-512 co-administered with H2S donors. This study proposes the use of DOR agonists, alone or combined with H2S donors, as a new treatment for OA pain.
Collapse
Affiliation(s)
- Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
7
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Shahbazi Nia S, Hossain MA, Ji G, Jonnalagadda SK, Obeng S, Rahman MA, Sifat AE, Nozohouri S, Blackwell C, Patel D, Thompson J, Runyon S, Hiranita T, McCurdy CR, McMahon L, Abbruscato TJ, Trippier PC, Neugebauer V, German NA. Studies on diketopiperazine and dipeptide analogs as opioid receptor ligands. Eur J Med Chem 2023; 254:115309. [PMID: 37054561 PMCID: PMC10634475 DOI: 10.1016/j.ejmech.2023.115309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.
Collapse
Affiliation(s)
- Siavash Shahbazi Nia
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samuel Obeng
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL, 35229, USA
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Collin Blackwell
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jon Thompson
- Veterinary School of Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | - Scott Runyon
- Reserach Triangle Institute, Research Triangle Park, Durham, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
9
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Zhou S, Yin Y, Sheets PL. Mouse models of surgical and neuropathic pain produce distinct functional alterations to prodynorphin expressing neurons in the prelimbic cortex. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100121. [PMID: 36864928 PMCID: PMC9971546 DOI: 10.1016/j.ynpai.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The medial prefrontal cortex (mPFC) consists of a heterogeneous population of neurons that respond to painful stimuli, and our understanding of how different pain models alter these specific mPFC cell types remains incomplete. A distinct subpopulation of mPFC neurons express prodynorphin (Pdyn+), the endogenous peptide agonist for kappa opioid receptors (KORs). Here, we used whole cell patch clamp for studying excitability changes to Pdyn expressing neurons in the prelimbic region of the mPFC (PLPdyn+ neurons) in mouse models of surgical and neuropathic pain. Our recordings revealed that PLPdyn+ neurons consist of both pyramidal and inhibitory cell types. We find that the plantar incision model (PIM) of surgical pain increases intrinsic excitability only in pyramidal PLPdyn+ neurons one day after incision. Following recovery from incision, excitability of pyramidal PLPdyn+ neurons did not differ between male PIM and sham mice, but was decreased in PIM female mice. Moreover, the excitability of inhibitory PLPdyn+ neurons was increased in male PIM mice, but was with no difference between female sham and PIM mice. In the spared nerve injury model (SNI), pyramidal PLPdyn+ neurons were hyperexcitable at both 3 days and 14 days after SNI. However, inhibitory PLPdyn+ neurons were hypoexcitable at 3 days but hyperexcitable at 14 days after SNI. Our findings suggest different subtypes of PLPdyn+ neurons manifest distinct alterations in the development of different pain modalities and are regulated by surgical pain in a sex-specific manner. Our study provides information on a specific neuronal population that is affected by surgical and neuropathic pain.
Collapse
Affiliation(s)
- Shudi Zhou
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuexi Yin
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick L. Sheets
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author at: Indiana University School of Medicine, Neuroscience Research Building 400 D, 320 West 15th St, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
West AM, Holleran KM, Jones SR. Kappa Opioid Receptors Reduce Serotonin Uptake and Escitalopram Efficacy in the Mouse Substantia Nigra Pars Reticulata. Int J Mol Sci 2023; 24:2080. [PMID: 36768403 PMCID: PMC9916942 DOI: 10.3390/ijms24032080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The serotonin and kappa opioid receptor (KOR) systems are strongly implicated in disorders of negative affect, such as anxiety and depression. KORs expressed on axon terminals inhibit the release of neurotransmitters, including serotonin. The substantia nigra pars reticulata (SNr) is involved in regulating affective behaviors. It receives the densest serotonergic innervation in the brain and has high KOR expression; however, the influence of KORs on serotonin transmission in this region is yet to be explored. Here, we used ex vivo fast-scan cyclic voltammetry (FSCV) to investigate the effects of a KOR agonist, U50, 488 (U50), and a selective serotonin reuptake inhibitor, escitalopram, on serotonin release and reuptake in the SNr. U50 alone reduced serotonin release and uptake, and escitalopram alone augmented serotonin release and slowed reuptake, while pretreatment with U50 blunted both the release and uptake effects of escitalopram. Here, we show that the KOR influences serotonin signaling in the SNr in multiple ways and short-term activation of the KOR alters serotonin responses to escitalopram. These interactions between KORs and serotonin may contribute to the complexity in the responses to treatments for disorders of negative affect. Ultimately, the KOR system may prove to be a promising pharmacological target, alongside traditional antidepressant treatments.
Collapse
Affiliation(s)
| | | | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| |
Collapse
|
12
|
Guan Q, Velho RV, Sehouli J, Mechsner S. Endometriosis and Opioid Receptors: Are Opioids a Possible/Promising Treatment for Endometriosis? Int J Mol Sci 2023; 24:ijms24021633. [PMID: 36675147 PMCID: PMC9864914 DOI: 10.3390/ijms24021633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Endometriosis (EM), defined as the presence of endometrial-like tissue with surrounding smooth muscle cells outside the uterus, is a disregarded gynecological disease reported to affect 6-10% of women of reproductive age, with 30-50% of them suffering from chronic pelvic pain and infertility. Since the exact pathogenic mechanisms of EM are still unclear, no curative therapy is available. As pain is an important factor in EM, optimal analgesia should be sought, which to date has been treated primarily with non-steroidal anti-inflammatory drugs (NSAIDs), metamizole or, in extreme cases, opioids. Here, we review the pain therapy options, the mechanisms of pain development in EM, the endogenous opioid system and pain, as well as the opioid receptors and EM-associated pain. We also explore the drug abuse and addiction to opioids and the possible use of NOP receptors in terms of analgesia and improved tolerability as a target for EM-associated pain treatment. Emerging evidence has shown a promising functional profile of bifunctional NOP/MOP partial agonists as safe and nonaddictive analgesics. However, until now, the role of NOP receptors in EM has not been investigated. This review offers a thought which still needs further investigation but may provide potential options for relieving EM-associated pain.
Collapse
|
13
|
Lee SJ, Logsdon AF, Yagi M, Baskin BM, Peskind ER, Raskind MM, Cook DG, Schindler AG. The dynorphin/kappa opioid receptor mediates adverse immunological and behavioral outcomes induced by repetitive blast trauma. J Neuroinflammation 2022; 19:288. [PMID: 36463243 PMCID: PMC9719647 DOI: 10.1186/s12974-022-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Adverse pathophysiological and behavioral outcomes related to mild traumatic brain injury (mTBI), posttraumatic stress disorder (PTSD), and chronic pain are common following blast exposure and contribute to decreased quality of life, but underlying mechanisms and prophylactic/treatment options remain limited. The dynorphin/kappa opioid receptor (KOR) system helps regulate behavioral and inflammatory responses to stress and injury; however, it has yet to be investigated as a potential mechanism in either humans or animals exposed to blast. We hypothesized that blast-induced KOR activation mediates adverse outcomes related to inflammation and affective behavioral response. METHODS C57Bl/6 adult male mice were singly or repeatedly exposed to either sham (anesthesia only) or blast delivered by a pneumatic shock tube. The selective KOR antagonist norBNI or vehicle (saline) was administered 72 h prior to repetitive blast or sham exposure. Serum and brain were collected 10 min or 4 h post-exposure for dynorphin A-like immunoreactivity and cytokine measurements, respectively. At 1-month post-exposure, mice were tested in a series of behavioral assays related to adverse outcomes reported by humans with blast trauma. RESULTS Repetitive but not single blast exposure resulted in increased brain dynorphin A-like immunoreactivity. norBNI pretreatment blocked or significantly reduced blast-induced increase in serum and brain cytokines, including IL-6, at 4 h post exposure and aversive/anxiety-like behavioral dysfunction at 1-month post-exposure. CONCLUSIONS Our findings demonstrate a previously unreported role for the dynorphin/KOR system as a mediator of biochemical and behavioral dysfunction following repetitive blast exposure and highlight this system as a potential prophylactic/therapeutic treatment target.
Collapse
Affiliation(s)
- Suhjung Janet Lee
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Aric F. Logsdon
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| | - Mayumi Yagi
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Britahny M. Baskin
- grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA
| | - Elaine. R. Peskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - Murray M. Raskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - David G. Cook
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Pharmacology, University of Washington, Seattle, WA 98195 USA
| | - Abigail. G. Schindler
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
14
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
15
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
16
|
Watanabe M, Kopruszinski CM, Moutal A, Ikegami D, Khanna R, Chen Y, Ross S, Mackenzie K, Stratton J, Dodick DW, Navratilova E, Porreca F. Dysregulation of serum prolactin links the hypothalamus with female nociceptors to promote migraine. Brain 2022; 145:2894-2909. [PMID: 35325034 PMCID: PMC9890468 DOI: 10.1093/brain/awac104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/17/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.
Collapse
Affiliation(s)
| | | | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Daigo Ikegami
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Yanxia Chen
- Present address: The Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Ross
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kimberly Mackenzie
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - Jennifer Stratton
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Frank Porreca
- Correspondence to: Frank Porreca, PhD Department of Pharmacology University of Arizona College of Medicine Tucson AZ 85724, USA E-mail:
| |
Collapse
|
17
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
18
|
Blockade of kappa opioid receptors reduces mechanical hyperalgesia and anxiety-like behavior in a rat model of trigeminal neuropathic pain. Behav Brain Res 2022; 417:113595. [PMID: 34592375 DOI: 10.1016/j.bbr.2021.113595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
It has been shown that kappa opioid receptor (KOR) antagonists, such as nor-binaltorphimine (nor-BNI), have antinociceptive effects in some pain models that affect the trigeminal system. Also, its anxiolytic-like effect has been extensively demonstrated in the literature. The present study aimed to investigate the systemic, local, and central effect of nor-BNI on trigeminal neuropathic pain using the infraorbital nerve constriction model (CCI-ION), as well as to evaluate its effect on anxiety-like behavior associated with this model. Animals received nor-BNI systemically; in the trigeminal ganglion (TG); in the subarachnoid space to target the spinal trigeminal nucleus caudalis (Sp5C) or in the central amygdala (CeA) 14 days after CCI-ION surgery. Systemic administration of nor-BNI caused a significant reduction of facial mechanical hyperalgesia and promoted an anxiolytic-like effect, which was detected in the elevated plus-maze and the light-dark transition tests. When administered in the TG or CeA, the KOR antagonist was able to reduce facial mechanical hyperalgesia induced by CCI-ION, but without changing the anxiety-like behavior. Moreover, no change was observed on nociception and anxiety-like behavior after nor-BNI injection into the Sp5C. The present study demonstrated antinociceptive and anxiolytic-like effects of nor-BNI in a model of trigeminal neuropathic pain. The antinociceptive effect seems to be dissociated from the anxiolytic-like effect, at both the sites involved and at the dose need to achieve the effect. In conclusion, the kappa opioid system may represent a promising target to be explored for the control of trigeminal pain and associated anxiety. However, further studies are necessary to better elucidate its functioning and modulatory role in chronic trigeminal pain states.
Collapse
|
19
|
Best KM, Mojena MM, Barr GA, Schmidt HD, Cohen AS. Endogenous Opioid Dynorphin Is a Potential Link between Traumatic Brain Injury, Chronic Pain, and Substance Use Disorder. J Neurotrauma 2022; 39:1-19. [PMID: 34751584 PMCID: PMC8978570 DOI: 10.1089/neu.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem associated with numerous physical and neuropsychiatric comorbidities. Chronic pain is prevalent and interferes with post-injury functioning and quality of life, whereas substance use disorder (SUD) is the third most common neuropsychiatric diagnosis after TBI. Neither of these conditions has a clear mechanistic explanation based on the known pathophysiology of TBI. Dynorphin is an endogenous opioid neuropeptide that is significantly dysregulated after TBI. Both dynorphin and its primary receptor, the ĸ-opioid receptor (KOR), are implicated in the neuropathology of chronic pain and SUD. Here, we review the known roles of dynorphin and KORs in chronic pain and SUDs. We synthesize this information with our current understanding of TBI and highlight potential mechanistic parallels between and across conditions that suggest a role for dynorphin in long-term sequelae after TBI. In pain studies, dynorphin/KOR activation has either antinociceptive or pro-nociceptive effects, and there are similarities between the signaling pathways influenced by dynorphin and those underlying development of chronic pain. Moreover, the dynorphin/KOR system is considered a key regulator of the negative affective state that characterizes drug withdrawal and protracted abstinence in SUD, and molecular and neurochemical changes observed during the development of SUD are mirrored by the pathophysiology of TBI. We conclude by proposing hypotheses and directions for future research aimed at elucidating the potential role of dynorphin/KOR in chronic pain and/or SUD after TBI.
Collapse
Affiliation(s)
- Kaitlin M. Best
- Department of Nursing and Clinical Care Services, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa M. Mojena
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Akiva S. Cohen, PhD, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Room 816-I, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Lorente JD, Cuitavi J, Campos-Jurado Y, Montón-Molina R, González-Romero JL, Hipólito L. Kappa opioid receptor blockade in the nucleus accumbens shell prevents sex-dependent alcohol deprivation effect induced by inflammatory pain. Pain 2022; 163:e137-e147. [PMID: 34393203 DOI: 10.1097/j.pain.0000000000002332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain-induced negative affect reduces life quality of patients by increasing psychiatric comorbidities, including alcohol use disorders (AUDs). Indeed, clinical data suggest pain as a risk factor to suffer AUDs, predicting relapse drinking in abstinent patients. Here, we analyse the impact of pain on alcohol relapse and the role of kappa opioid receptor (KOR) activation in mediating these pain-induced effects because KORs play an important role in pain-driven negative affect and AUD. Female and male Sprague-Dawley rats underwent 2 alcohol intermittent access periods separated by a forced abstinence period. The complete Freund adjuvant model of inflammatory pain was introduced during abstinence, and alcohol intake before and after alcohol reintroduction was assessed. In addition, we used behavioural approaches to measure stress and memory impairment and biochemical assays to measure KOR expression in abstinence and reintroduction periods. Only female CFA-treated rats increased alcohol intake during the reintroduction period. Concomitantly, this group showed enhanced anxiety-like behaviour and increased KOR expression in the nucleus accumbens shell that was developed during abstinence and remained during the reintroduction period. Finally, KOR antagonist norbinaltorphimine was administered in the nucleus accumbens shell during abstinence to prevent a pain-induced alcohol deprivation effect, a phenomenon observed in CFA-female rats. The administration of norbinaltorphimine effectively blocked a pain-induced alcohol deprivation effect in female rats. Our data evidenced that inflammatory pain constitutes a risk factor to increase alcohol consumption during a reintroduction phase only in female rats by the rise and maintenance of stress probably mediated by KOR signalling in the nucleus accumbens.
Collapse
Affiliation(s)
- Jesús D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Zhou Q, Zhang Z, Long S, Li W, Wang B, Liang N. Opioids in cancer: The κ‑opioid receptor (Review). Mol Med Rep 2021; 25:44. [PMID: 34878160 PMCID: PMC8674701 DOI: 10.3892/mmr.2021.12560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
The κ‑opioid receptor (KOR) is one of the primary receptors of opioids and serves a vital role in the regulation of pain, anesthesia, addiction and other pathological and physiological processes. KOR is associated with several types of cancer and may influence cancer progression. It has been proposed that KOR may represent a new tumor molecular marker and provide a novel basis for molecular targeted therapies for cancer. However, the association between KOR and cancer remains to be explored comprehensively. The present review introduces KOR and its association with different types of cancer. Improved understanding of KOR may facilitate development of novel antitumor therapies.
Collapse
Affiliation(s)
- Qier Zhou
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhiwei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Songkai Long
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wanjun Li
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Na Liang
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
22
|
Ballantyne JC, Koob GF. Allostasis theory in opioid tolerance. Pain 2021; 162:2315-2319. [PMID: 33769368 DOI: 10.1097/j.pain.0000000000002280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - George F Koob
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Cameron CM, Nieto S, Bosler L, Wong M, Bishop I, Mooney L, Cahill CM. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1. [PMID: 35265942 PMCID: PMC8903193 DOI: 10.3389/adar.2021.10009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012. Suicide is the 10th leading cause of death among Americans and more than 44 K people died by suicide in 2019 in the United States. Patients with chronic pain, including, but not limited to, those with substance use disorders, are particularly vulnerable. Chronic pain patients have twice the risk of death by suicide compared to those without pain, and 50% of chronic pain patients report that they have considered suicide at some point due to their pain. The kappa opioid system is implicated in negative mood states including dysphoria, depression, and anxiety, and recent evidence shows that chronic pain increases the function of this system in limbic brain regions important for affect and motivation. Additionally, dynorphin, the endogenous ligand that activates the kappa opioid receptor is increased in the caudate putamen of human suicide victims. A potential treatment for reducing suicidal ideation and suicidal attempts is buprenorphine. Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties, reduced suicidal ideation in chronic pain patients with and without an opioid use disorder. This review will highlight the clinical and preclinical evidence to support the use of buprenorphine in mitigating pain-induced negative affective states and suicidal thoughts, where these effects are at least partially mediated via its kappa antagonist properties.
Collapse
Affiliation(s)
- Courtney M. Cameron
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Nieto
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucienne Bosler
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan Wong
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabel Bishop
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larissa Mooney
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Catherine M. Cahill,
| |
Collapse
|
24
|
Rullo L, Posa L, Caputi FF, Stamatakos S, Formaggio F, Caprini M, Liguori R, Candeletti S, Romualdi P. Nociceptive behavior and central neuropeptidergic dysregulations in male and female mice of a Fabry disease animal model. Brain Res Bull 2021; 175:158-167. [PMID: 34339779 DOI: 10.1016/j.brainresbull.2021.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
Fabry disease (FD) is an X-linked inherited disorder characterized by glycosphingolipid accumulation due to deficiency of α-galactosidase A (α-Gal A) enzyme. Chronic pain and mood disorders frequently coexist in FD clinical setting, however underlying pathophysiologic mechanisms are still unclear. Here we investigated the mechanical and thermal sensitivity in α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. We also characterized the gene expression of dynorphinergic, nociceptinergic and CRFergic systems, known to be involved in pain control and mood disorders, in the prefrontal cortex, amygdala and thalamus of α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. Moreover, KOP receptor protein levels were evaluated in the same areas. Fabry knock-out male, but not female, mice displayed a decreased pain threshold in both mechanical and thermal tests compared to their wild type littermates. In the amygdala and prefrontal cortex, we observed a decrease of pDYN mRNA levels in males, whereas an increase was assessed in females, thus suggesting sex-related dysregulation of stress coping and pain mechanisms. Elevated mRNA levels for pDYN/KOP and CRF/CRFR1 systems were observed in male and female thalamus, a critical crossroad for both painful signals and cognitive/emotional processes. KOP receptor protein level changes assessed in the investigated areas, appeared mostly in agreement with KOP gene expression alterations. Our data suggest that α-Gal A enzyme deficiency in male and female mice is associated with distinct neuropeptide gene and protein expression dysregulations of investigated systems, possibly related to the neuroplasticity underlying the neurological features of FD.
Collapse
Affiliation(s)
- Laura Rullo
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Luca Posa
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy; Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Francesca Felicia Caputi
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Serena Stamatakos
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Francesco Formaggio
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Marco Caprini
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences, Bologna, Italy; Dept. of Biomedical and Neuromotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Via Altura 3, Bologna, 40139, Italy
| | - Sanzio Candeletti
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Patrizia Romualdi
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy.
| |
Collapse
|
25
|
Burek DJ, Massaly N, Doering M, Zec A, Gaelen J, Morón JA. Long-term inflammatory pain does not impact exploratory behavior and stress coping strategies in mice. Pain 2021; 162:1705-1721. [PMID: 33433146 PMCID: PMC8119306 DOI: 10.1097/j.pain.0000000000002179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Pain puts patients at risk for developing psychiatric conditions such as anxiety and depression. Preclinical mouse models of pain-induced affective behavior vary widely in methodology and results, impairing progress towards improved therapeutics. To systematically investigate the effect of long-term inflammatory pain on exploratory behavior and stress coping strategy, we assessed male C57BL/6J mice in the forced swim test (FST), elevated zero maze, and open field test at 4 and 6 weeks postinjection of Complete Freund's Adjuvant, while controlling for testing order and combination. Inflammatory pain did not induce a passive stress coping strategy in the FST and did not reduce exploratory behavior in the elevated zero maze or the open field test. Using systematic correlational analysis and composite behavioral scores, we found no consistent association among measures for mice with or without inflammatory pain. A meta-analysis of similar studies indicated a modest, significant effect of Complete Freund's Adjuvant on exploratory behavior, but not immobility in the FST, and high heterogeneity among effect sizes in all 3 paradigms. Given the urgency for understanding the mechanisms of pain comorbidities and identifying novel therapies, these findings support the reallocation of our limited resources away from such unreliable assays and toward motivated and naturalistic behaviors. Future studies in pain and psychiatric translational research may benefit by considering outcomes beyond binary categorization, quantifying the associations between multiple measured behaviors, and agnostically identifying subtle yet meaningful patterns in behaviors.
Collapse
Affiliation(s)
- Dominika J. Burek
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Michelle Doering
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Jordan Gaelen
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
26
|
Lee GJ, Kim SA, Kim YJ, Oh SB. Naloxone-induced analgesia mediated by central kappa opioid system in chronic inflammatory pain. Brain Res 2021; 1762:147445. [PMID: 33766518 DOI: 10.1016/j.brainres.2021.147445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Opioids, which are widely used for the treatment of chronic pain, have an analgesic effect by mainly activating mu-opioid receptor (MOR). Paradoxically, a high dose of naloxone, non-selective opioid receptor antagonist, is also known to induce analgesia, but the underlying mechanism remains unclear. Since kappa-opioid receptor (KOR) and dynorphin (KOR ligand) have been implicated in the naloxone-induced analgesia, we aimed to elucidate its mechanism by focusing on the kappa-opioid system in the brain under inflammatory pain condition. Systemic administration of naloxone (10 mg/kg, i.p.) decreased spontaneous pain behaviors only in complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model but not in the formalin-induced acute pain model. Immunohistochemistry analysis in the CFA model revealed both a significant decrease in MOR expression and an increase in prodynorphin density in the central nucleus of theamygdala (CeA) and nucleus accumbens (NAc) but not in other brain areas. Systemic administration of KOR antagonist (norbinaltorphimine, nor-BNI 10 mg/kg) also decreased spontaneous pain behaviors in the CFA model. Furthermore, microinjection of both naloxone and nor-BNI into NAc and CeA significantly reduced spontaneous chronic pain behavior. Taken together, our results suggest that naloxone-induced analgesia may be mediated by blocking facilitated kappa-opioid systems in the NAc and CeA.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Shin Ae Kim
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yea Jin Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
28
|
Ji MJ, Yang J, Gao ZQ, Zhang L, Liu C. The Role of the Kappa Opioid System in Comorbid Pain and Psychiatric Disorders: Function and Implications. Front Neurosci 2021; 15:642493. [PMID: 33716658 PMCID: PMC7943636 DOI: 10.3389/fnins.2021.642493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 01/25/2023] Open
Abstract
Both pain and psychiatric disorders, such as anxiety and depression, significantly impact quality of life for the sufferer. The two also share a strong pathological link: chronic pain-induced negative affect drives vulnerability to psychiatric disorders, while patients with comorbid psychiatric disorders tend to experience exacerbated pain. However, the mechanisms responsible for the comorbidity of pain and psychiatric disorders remain unclear. It is well established that the kappa opioid system contributes to depressive and dysphoric states. Emerging studies of chronic pain have revealed the role and mechanisms of the kappa opioid system in pain processing and, in particular, in the associated pathological alteration of affection. Here, we discuss the key findings and summarize compounds acting on the kappa opioid system that are potential candidates for therapeutic strategies against comorbid pain and psychiatric disorders.
Collapse
Affiliation(s)
- Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Qiang Gao
- Jiangsu Province Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Abstract
Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.
Collapse
|
30
|
Koob GF. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol Rev 2021; 73:163-201. [PMID: 33318153 PMCID: PMC7770492 DOI: 10.1124/pharmrev.120.000083] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Compulsive drug seeking that is associated with addiction is hypothesized to follow a heuristic framework that involves three stages (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) and three domains of dysfunction (incentive salience/pathologic habits, negative emotional states, and executive function, respectively) via changes in the basal ganglia, extended amygdala/habenula, and frontal cortex, respectively. This review focuses on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the addiction cycle. Hyperkatifeia provides an additional source of motivation for compulsive drug seeking via negative reinforcement. Negative reinforcement reflects an increase in the probability of a response to remove an aversive stimulus or drug seeking to remove hyperkatifeia that is augmented by genetic/epigenetic vulnerability, environmental trauma, and psychiatric comorbidity. Neurobiological targets for hyperkatifeia in addiction involve neurocircuitry of the extended amygdala and its connections via within-system neuroadaptations in dopamine, enkephalin/endorphin opioid peptide, and γ-aminobutyric acid/glutamate systems and between-system neuroadaptations in prostress corticotropin-releasing factor, norepinephrine, glucocorticoid, dynorphin, hypocretin, and neuroimmune systems and antistress neuropeptide Y, nociceptin, endocannabinoid, and oxytocin systems. Such neurochemical/neurocircuitry dysregulations are hypothesized to mediate a negative hedonic set point that gradually gains allostatic load and shifts from a homeostatic hedonic state to an allostatic hedonic state. Based on preclinical studies and translational studies to date, medications and behavioral therapies that reset brain stress, antistress, and emotional pain systems and return them to homeostasis would be promising new targets for medication development. SIGNIFICANCE STATEMENT: The focus of this review is on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the drug addiction cycle and a driving force for negative reinforcement in addiction. Medications and behavioral therapies that reverse hyperkatifeia by resetting brain stress, antistress, and emotional pain systems and returning them to homeostasis would be promising new targets for medication development.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Cramer N, Silva-Cardoso G, Masri R, Keller A. Control of synaptic transmission and neuronal excitability in the parabrachial nucleus. NEUROBIOLOGY OF PAIN 2020; 9:100057. [PMID: 33364528 PMCID: PMC7753201 DOI: 10.1016/j.ynpai.2020.100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The parabrachial nucleus (PB) processes intero- and exteroceptive noxious stimuli. Synaptic activity in PB is regulated by GABAB, µ- and κ-opioid and CB1 receptors. GABAergic presynaptic terminals are most potently regulated by these receptors. Changes in these pathways may promote PB excitability and pathological conditions.
The parabrachial nucleus (PB) is a hub for aversive behaviors, including those related to pain. We have shown that the expression of chronic pain is causally related to amplified activity of PB neurons, and to changes in synaptic inhibition of these neurons. These findings indicate that regulation of synaptic activity in PB may modulate pain perception and be involved in the pathophysiology of chronic pain. Here, we identify the roles in PB of signaling pathways that modulate synaptic functions. In pharmacologically isolated lateral PB neurons in acute mouse slices we find that baclofen, a GABAB receptor agonist, suppresses the frequency of miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSC). Activation of µ-opioid peptide receptors with DAMGO had similar suppressive effects on excitatory and inhibitory synapses, while the κ-opioid peptide receptor agonist U-69593 suppressed mIPSC release but had no consistent effects on mEPSCs. Activation of cannabinoid type 1 receptors with WIN 55,212-2 reduced the frequency of both inhibitory and excitatory synaptic events, while the CB1 receptor inverse agonist AM251 had opposite effects on mIPSC and mEPSC frequencies. AM251 increased the frequency of inhibitory events but led to a reduction in excitatory events through a GABAB mediated mechanism. Although none of the treatments produced a consistent effect on mIPSC or mEPSC amplitudes, baclofen and DAMGO both reliably activated a postsynaptic conductance. These results demonstrate that multiple signaling pathways can alter synaptic transmission and neuronal excitability in PB and provide a basis for investigating the contributions of these systems to the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Anatomy and Neurobiology and the Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gleice Silva-Cardoso
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Radi Masri
- Department of Oral Sciences and Pain. School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA
| | - Asaf Keller
- Department of Anatomy and Neurobiology and the Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Li X, Wan H, Dong P, Wang B, Zhang L, Hu Q, Zhang T, Feng J, He F, Bai C, Zhang L, Tao W. Discovery of SHR0687, a Highly Potent and Peripheral Nervous System-Restricted KOR Agonist. ACS Med Chem Lett 2020; 11:2151-2155. [PMID: 33214823 DOI: 10.1021/acsmedchemlett.0c00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Analgesics with no abuse liability are highly demanded in the market. KOR agonists have been proved to be strong analgesics without MOR agonist-related side effects, such as respiratory depression, tolerance, and dependence liability; however, activation of KOR in the central nervous system (CNS) may cause sedation and anxiety. It has been reported that peripheral KOR activation produces comparable bioactivity without CNS-related side effects. Herein, we designed and synthesized a novel tetrapeptide (SHR0687), which was shown to be a highly potent KOR agonist with excellent selectivity over other opioid receptors, such as MOR and DOR. In addition, SHR0687 displayed favorable PK profiles across species, as well as robust in vivo efficacy in a rat carrageenan-induced pain model. Notably, SHR0687 exhibited negligible blood-brain barrier penetration, which was meaningful in minimizing CNS-related side effects.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Ping Dong
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Bin Wang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Lei Zhang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Qiyue Hu
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Ting Zhang
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Jun Feng
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
- Chengdu Suncadia Medicine CO., LTD., 88 South Keyuan Road, Chengdu, Si Chuan 610000, China
| | - Chang Bai
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
| | - Lianshan Zhang
- Jiangsu Hengrui Medicine CO., LTD., Lianyungang, Jiangsu 222047, China
| | - Weikang Tao
- Shanghai Hengrui Pharmaceutical CO., LTD., 279 Wenjing Road, Shanghai 200245, China
- Chengdu Suncadia Medicine CO., LTD., 88 South Keyuan Road, Chengdu, Si Chuan 610000, China
| |
Collapse
|
33
|
Schmidhammer H, Erli F, Guerrieri E, Spetea M. Development of Diphenethylamines as Selective Kappa Opioid Receptor Ligands and Their Pharmacological Activities. Molecules 2020; 25:E5092. [PMID: 33147885 PMCID: PMC7663249 DOI: 10.3390/molecules25215092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023] Open
Abstract
Among the opioid receptors, the kappa opioid receptor (KOR) has been gaining substantial attention as a promising molecular target for the treatment of numerous human disorders, including pain, pruritus, affective disorders (i.e., depression and anxiety), drug addiction, and neurological diseases (i.e., epilepsy). Particularly, the knowledge that activation of the KOR, opposite to the mu opioid receptor (MOR), does not produce euphoria or leads to respiratory depression or overdose, has stimulated the interest in discovering ligands targeting the KOR as novel pharmacotherapeutics. However, the KOR mediates the negative side effects of dysphoria/aversion, sedation, and psychotomimesis, with the therapeutic promise of biased agonism (i.e., selective activation of beneficial over deleterious signaling pathways) for designing safer KOR therapeutics without the liabilities of conventional KOR agonists. In this review, the development of new KOR ligands from the class of diphenethylamines is presented. Specifically, we describe the design strategies, synthesis, and pharmacological activities of differently substituted diphenethylamines, where structure-activity relationships have been extensively studied. Ligands with distinct profiles as potent and selective agonists, G protein-biased agonists, and selective antagonists, and their potential use as therapeutic agents (i.e., pain treatment) and research tools are described.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/therapeutic use
- Humans
- Ligands
- Pain/drug therapy
- Pain/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (F.E.); (E.G.)
| | | | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (F.E.); (E.G.)
| |
Collapse
|
34
|
Simmons SC, Shepard RD, Gouty S, Langlois LD, Flerlage WJ, Cox BM, Nugent FS. Early life stress dysregulates kappa opioid receptor signaling within the lateral habenula. Neurobiol Stress 2020; 13:100267. [PMID: 33344720 PMCID: PMC7739170 DOI: 10.1016/j.ynstr.2020.100267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic brain region associated with value-based decision making and stress evasion through its modulation of dopamine (DA)-mediated reward circuitry. Specifically, increased activity of the LHb is associated with drug addiction, schizophrenia and stress-related disorders such as depression, anxiety and posttraumatic stress disorder. Dynorphin (Dyn)/Kappa opioid receptor (KOR) signaling is a mediator of stress response in reward circuitry. Previously, we have shown that maternal deprivation (MD), a severe early life stress, increases LHb spontaneous neuronal activity and intrinsic excitability while blunting the response of LHb neurons to extrahypothalamic corticotropin-releasing factor (CRF) signaling, another stress mediator. CRF pathways also interact with Dyn/KOR signaling. Surprisingly, there has been little study of direct KOR regulation of the LHb despite its distinct role in stress, reward and aversion processing. To test the functional role of Dyn/KOR signaling in the LHb, we utilized ex-vivo electrophysiology combined with pharmacological tools in rat LHb slices. We show that activation of KORs by a KOR agonist (U50,488) exerted differential effects on the excitability of two distinct sub-populations of LHb neurons that differed in their expression of hyperpolarization-activated cation currents (HCN, Ih). Specifically, KOR stimulation increased neuronal excitability in LHb neurons with large Ih currents (Ih+) while decreasing neuronal excitability in small/negative Ih (Ih-) neurons. We found that an intact fast-synaptic transmission was required for the effects of U50,488 on the excitability of both Ih- and Ih+ LHb neuronal subpopulations. While AMPAR-, GABAAR-, or NMDAR-mediated synaptic transmission alone was sufficient to mediate the effects of U50,488 on excitability of Ih- neurons, either GABAAR- or NMDAR-mediated synaptic transmission could mediate these effects in Ih+ neurons. Consistently, KOR activation also altered both glutamatergic and GABAergic synaptic transmission where stimulation of presynaptic KORs uniformly suppressed glutamate release onto LHb neurons while primarily decreased or in some cases increased GABA release. We also found that MD significantly increased immunolabeled Dyn (the endogenous KOR agonist) labeling in neuronal fibers in LHb while significantly decreasing mRNA levels of KORs in LHb tissues compared to those from non-maternally deprived (non-MD) control rats. Moreover, the U50,488-mediated increase in LHb neuronal firing observed in non-MD rats was absent following MD. Altogether, this is the first demonstration of the existence of functional Dyn/KOR signaling in the LHb that can be modulated in response to severe early life stressors such as MD.
Collapse
Key Words
- Dynorphin
- Early life stress
- KOR
- Kappa opioid receptor
- Kappa opioid receptor, (KOR)
- LHb
- Lateral habenula
- action potential, (AP)
- adverse childhood experiences, (ACE)
- artificial cerebral spinal fluid, (ACSF)
- corticotropin-releasing factor, (CRF)
- dopamine, (DA)
- dynorphin, (Dyn)
- early life stress, (ELS)
- fastafterhyperpolarization, (fAHP)
- hyperpolarization activated cation current, (HCN, Ih)
- input resistance, (Rin)
- inter-event interval, (IEI)
- maternal deprivation, (MD)
- medium afterhyperpolarization, (mAHP)
- miniature excitatory postsynaptic current, (mEPSC)
- miniature inhibitory postsynaptic current, (mIPSC)
- non-maternally deprived, (non-MD)
- nucleus accumbens, (NAc)
- postnatal age, (PN)
- raphe nuclei, (RN)
- rostromedial tegmental area, (RMTg)
- serotonin, (5HT)
- ventral tegmental area, (VTA)
Collapse
Affiliation(s)
- Sarah C. Simmons
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ryan D. Shepard
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ludovic D. Langlois
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - William J. Flerlage
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| |
Collapse
|
35
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
36
|
Meade JA, Alkhlaif Y, Contreras KM, Obeng S, Toma W, Sim-Selley LJ, Selley DE, Damaj MI. Kappa opioid receptors mediate an initial aversive component of paclitaxel-induced neuropathy. Psychopharmacology (Berl) 2020; 237:2777-2793. [PMID: 32529265 DOI: 10.1007/s00213-020-05572-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Cancer patients receiving the antineoplastic drug paclitaxel report higher incidences and longer duration of treatment-resistant depression than patients receiving other classes of chemotherapeutics. Rodents treated with paclitaxel exhibit a suite of changes in affect-like behaviors. Further, paclitaxel causes chemotherapy-induced peripheral neuropathy (CIPN) in humans and rodents. Kappa opioid receptors (KOR) have a well-established role in depression and neuropathy. The contributions of KOR signaling to paclitaxel-induced aversive-like state and CIPN in rodents remain to be explored. OBJECTIVES We aimed to investigate whether dysregulation of the KOR/dynorphin system is associated with paclitaxel-mediated pain-like behavior and depression-like behavior. METHODS Cancer-free male C57BL/6J mice were treated with four injections of vehicle or paclitaxel (32 mg/kg cumulative). The effects of the selective KOR antagonist norbinaltorphimine (norBNI) on paclitaxel-induced sucrose preference deficits and mechanical hypersensitivity were measured. Prodynorphin mRNA and receptor-mediated G protein activation were measured at two time points following the last paclitaxel injection using quantitative real-time polymerase chain reaction and agonist-stimulated [35S]guanosine-5'-O'-(γ-thio)-triphosphate ([35S]GTPγS) binding, respectively, in the nucleus accumbens (NAc), caudate-putamen, amygdala, and spinal cord. RESULTS Paclitaxel produced a norBNI-reversible sucrose preference deficit, whereas mechanical hypersensitivity was not reversed by norBNI. Paclitaxel treatment increased the levels of mRNA for prodynorphin, a precursor for endogenous KOR agonists, in the NAc. Paclitaxel also had time-dependent effects on KOR-mediated G protein activation in the NAc. CONCLUSIONS These results suggest that KOR signaling mediates an initial aversive component of paclitaxel, but not necessarily paclitaxel-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Julie A Meade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA.
| | - Y Alkhlaif
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - K M Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - S Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - W Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - L J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - D E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA.,Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
37
|
Li G, Nieman AN, Mian MY, Zahn NM, Mikulsky BN, Poe MM, Methuku KR, Liu Y, Cook JM, Stafford DC, Arnold LA. A Structure-Activity Relationship Comparison of Imidazodiazepines Binding at Kappa, Mu, and Delta Opioid Receptors and the GABA A Receptor. Molecules 2020; 25:E3864. [PMID: 32854311 PMCID: PMC7503500 DOI: 10.3390/molecules25173864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023] Open
Abstract
Analgesic and anti-inflammatory properties mediated by the κ opioid receptor (KOR) have been reported for oxadiazole imidazodiazepines. Affinities determined by radioligand competition assays of more than seventy imidazodiazepines using cell homogenates from HEK293 cells that overexpress KOR, µ opioid receptor (MOR), and δ opioid receptor (DOR) are presented. Affinities to synaptic, benzodiazepine-sensitive receptors (BZR) were determined with rat brain extract. The highest affinity for KOR was recorded for GL-I-30 (Ki of 27 nM) and G-protein recruitment was observed with an EC50 of 32 nM. Affinities for MOR and DOR were weak for all compounds. Ester and amide imidazodiazepines were among the most active KOR ligands but also competed with 3H-flunitrazepam for brain extract binding, which is mediated predominately by gamma aminobutyric acid type A receptors (GABAAR) of the α1-3β2-3γ1-2 subtypes. Imidazodiazepines with carboxylic acid and primary amide groups did not bind KOR but interacted strongly with GABAARs. Pyridine substitution reduced KOR affinity. Oxadiazole imidazodiazepines exhibited good KOR binding and interacted weakly with BZR, whereas oxazole imidazodiazepines were more selective towards BZR. Compounds that lack the imidazole moiety, the pendent phenyl, or pyridine substitutions exhibited insignificant KOR affinities. It can be concluded that a subset of imidazodiazepines represents novel KOR ligands with high selectivity among opioid receptors.
Collapse
MESH Headings
- Animals
- Azepines/chemistry
- Azepines/pharmacology
- GABA-A Receptor Agonists/chemistry
- GABA-A Receptor Agonists/pharmacology
- HEK293 Cells
- Humans
- Protein Binding
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Guanguan Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Amanda N. Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Nicolas M. Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | | | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA;
| | - Kashi R. Methuku
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Yongfeng Liu
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA;
| | - James M. Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Douglas C. Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
- Pantherics Incorporated, La Jolla, CA 92037, USA;
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
- Pantherics Incorporated, La Jolla, CA 92037, USA;
| |
Collapse
|
38
|
Lorente JD, Cuitavi J, Campos-Jurado Y, Hipólito L. Pain-induced alterations in the dynorphinergic system within the mesocorticolimbic pathway: Implication for alcohol addiction. J Neurosci Res 2020; 100:165-182. [PMID: 32770601 DOI: 10.1002/jnr.24703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Latest studies have revealed that pain negatively impacts on reward processing and motivation leading to negative affective states and stress. These states not only reduce quality of life of patients by increasing the appearance of psychiatric comorbidities, but also have an important impact on vulnerability to drug abuse, including alcohol. In fact, clinical, epidemiological but also preclinical studies have revealed that the presence of pain is closely related to alcohol use disorders (AUDs). All this evidence suggests that pain is a factor that increases the risk of suffering AUD, predicting heavy drinking behavior and relapse drinking in those patients with a previous history of AUD. The negative consequences of chronic pain and its impact on stress and AUD are likely mediated by alterations in the central nervous system, especially in the stress and reward systems. Therefore, pain and stress impact on dopaminergic mesolimbic pathway can lead to an increase in drug abuse liability. In this mini review we analyze the interaction between pain, stress, and alcohol addiction, and how dynamic changes in the kappa opioid system might play a crucial role in the development of compulsive alcohol drinking in chronic pain patients.
Collapse
Affiliation(s)
- Jesús David Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| |
Collapse
|
39
|
Parker KE, Sugiarto E, Taylor AMW, Pradhan AA, Al-Hasani R. Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease. Mol Pharmacol 2020; 98:433-444. [PMID: 32958571 DOI: 10.1124/mol.120.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field. The most recent addition to the opioid family, the nociceptin receptor system, shows promise as the missing link in understanding the neurocircuitry of motivation. It is well known that activation of the kappa opioid receptor system modulates negative affect and dysphoria, but recent studies now implicate the kappa opioid system in the modulation of negative affect associated with pain. Opioids are critical in pain management; however, the often-forgotten delta opioid receptor system has been identified as a novel therapeutic target for headache disorders and migraine. Lastly, changes to the gut microbiome have been shown to directly contribute to many of the symptoms of chronic opioid use and opioid related behaviors. This review summarizes the findings from each of these areas with an emphasis on identifying new therapeutic targets. SIGNIFICANCE STATEMENT: The focus of this minireview is to highlight new disease areas or new aspects of disease in which opioids have been implicated; this includes pain, motivation, migraine, and the microbiome. In some cases, this has resulted in the pursuit of a novel therapeutic target and resultant clinical trial. We believe this is very timely and will be a refreshing take on reading about opioids and disease.
Collapse
Affiliation(s)
- Kyle E Parker
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Elizabeth Sugiarto
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Anna M W Taylor
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Amynah A Pradhan
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Ream Al-Hasani
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| |
Collapse
|
40
|
Emery MA, Akil H. Endogenous Opioids at the Intersection of Opioid Addiction, Pain, and Depression: The Search for a Precision Medicine Approach. Annu Rev Neurosci 2020; 43:355-374. [PMID: 32109184 PMCID: PMC7646290 DOI: 10.1146/annurev-neuro-110719-095912] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.
Collapse
Affiliation(s)
- Michael A Emery
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
41
|
Mercadante S, Romualdi P. The Therapeutic Potential of Novel Kappa Opioid Receptor-based Treatments. Curr Med Chem 2020; 27:2012-2020. [PMID: 30666905 DOI: 10.2174/0929867326666190121142459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Similarly to the μ opioid receptor, kappa opioid receptor (KOR), is present either in the central nervous system or in peripheral tissues. In the last years, several molecules, able to interact with KOR, have been the focus of basic research for their therapeutic potential in the field of chronic pain, as well as in depression, autoimmune disorders and neurological diseases. DISCUSSION The role of KOR system and the consequent clinical effects derived by its activation or inhibition are discussed. Their potential therapeutic utilization in conditions of stress and drug relapse, besides chronic pain, is presented here, including the possible use of KORagonists in drug addiction. Moreover, the potential role of KOR-antagonists, KOR agonistantagonists and peripheral KOR agonists is proposed. CONCLUSION Other than pain, KORs have a role in regulating reward and mood. Due to its location, KORs seem to mediate interactions between psychiatric disorders, addiction and depression. Experimental studies in animal models have identified brain mechanisms that may contribute to clarify specific pathophysiological processes.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Pain Relief & Palliative/Supportive Care Unit, La Maddalena Cancer Center, Palermo, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
43
|
Chapman KB, Groenen PS, Vissers KC, van Helmond N, Stanton-Hicks MD. The Pathways and Processes Underlying Spinal Transmission of Low Back Pain: Observations From Dorsal Root Ganglion Stimulation Treatment. Neuromodulation 2020; 24:610-621. [PMID: 32329155 DOI: 10.1111/ner.13150] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dorsal root ganglion stimulation (DRG-S) is a novel approach to treat chronic pain. Lead placement at L2 has been reported to be an effective treatment for axial low back pain (LBP) primarily of discogenic etiology. We have recently shown, in a diverse cohort including cases of multilevel instrumentation following extensive prior back surgeries, that DRG-S lead placement at T12 is another promising target. Local effects at the T12 DRG, alone, are insufficient to explain these results. MATERIALS AND METHODS We performed a literature review to explore the mechanisms of LBP relief with T12 DRG-S. FINDINGS Branches of individual spinal nerve roots innervate facet joints and posterior spinal structures, while the discs and anterior vertebrae are carried via L2, and converge in the dorsal horn (DH) of the spinal cord at T8-T9. The T12 nerve root contains cutaneous afferents from the low back and enters the DH of the spinal cord at T10. Low back Aδ and C-fibers then ascend via Lissauer's tract (LT) to T8-T9, converging with other low back afferents. DRG-S at T12, then, results in inhibition of the converged low back fibers via endorphin-mediated and GABAergic frequency-dependent mechanisms. Therefore, T12 lead placement may be the optimal location for DRG-S to treat LBP.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Northwell Health Systems, New York City, NY, USA
| | - Pauline S Groenen
- The Spine & Pain Institute of New York, New York City, NY, USA.,College of Medicine, Radboud University, Nijmegen, the Netherlands
| | - Kris C Vissers
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University, Nijmegen, the Netherlands
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| | | |
Collapse
|
44
|
Llorca-Torralba M, Pilar-Cuéllar F, da Silva Borges G, Mico JA, Berrocoso E. Opioid receptors mRNAs expression and opioids agonist-dependent G-protein activation in the rat brain following neuropathy. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109857. [PMID: 31904442 DOI: 10.1016/j.pnpbp.2019.109857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Potent opioid-based therapies are often unsuccessful in promoting satisfactory analgesia in neuropathic pain. Moreover, the side effects associated with opioid therapy are still manifested in neuropathy-like diseases, including tolerance, abuse, addiction and hyperalgesia, although the mechanisms underlying these effects remain unclear. Studies in the spinal cord and periphery indicate that neuropathy alters the expression of mu-[MOP], delta-[DOP] or kappa-[KOP] opioid receptors, interfering with their activity. However, there is no consensus as to the supraspinal opioidergic modulation provoked by neuropathy, the structures where the sensory and affective-related pain components are processed. In this study we explored the effect of chronic constriction of the sciatic nerve (CCI) over 7 and 30 days (CCI-7d and CCI-30d, respectively) on MOP, DOP and KOP mRNAs expression, using in situ hybridization, and the efficacy of G-protein stimulation by DAMGO, DPDPE and U-69593 (MOP, DOP and KOP specific agonists, respectively), using [35S]GTPγS binding, within opioid-sensitive brain structures. After CCI-7d, CCI-30d or both, opioid receptor mRNAs expression was altered throughout the brain: MOP - in the paracentral/centrolateral thalamic nuclei, ventral posteromedial thalamic nuclei, superior olivary complex, parabrachial nucleus [PB] and posterodorsal tegmental nucleus; DOP - in the somatosensory cortex [SSC], ventral tegmental area, caudate putamen [CPu], nucleus accumbens [NAcc], raphe magnus [RMg] and PB; and KOP - in the locus coeruleus. Agonist-stimulated [35S]GTPγS binding was altered following CCI: MOP - CPu and RMg; DOP - prefrontal cortex [PFC], SSC, RMg and NAcc; and KOP - PFC and SSC. Thus, this study shows that several opioidergic circuits in the brain are recruited and modified following neuropathy.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | | | - Juan A Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Esther Berrocoso
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
45
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
46
|
Sivalingam M, Ogawa S, Parhar IS. Mapping of Morphine-Induced OPRM1 Gene Expression Pattern in the Adult Zebrafish Brain. Front Neuroanat 2020; 14:5. [PMID: 32153369 PMCID: PMC7044135 DOI: 10.3389/fnana.2020.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
Morphine is a potent analgesic opiate commonly used in treating pain, and it is also a substance of abuse and highly addictive. Hence, it is vital to discover the action sites of morphine in the brain to increase its efficacy of treatment. In the present study, we aimed at identifying comprehensive neuroanatomical locations that are sensitive to morphine in the adult zebrafish (Danio rerio). We performed in situ hybridization to localize the mu opioid receptor (oprm1) gene and to map the morphine sensitive brain areas using neuronal PAS domain-containing protein 4a (npas4a), an early gene marker. Real-time PCR was used to detect changes in mRNA levels of oprm1 and npas4a in control and acute morphine treated fish (2 mg/L; 20 min). Intense positive oprm1 signals were seen in the telencephalon, preoptic area, habenula, hypothalamic area and periventricular gray zone of the optic tectum. Acute morphine exposure significantly increased oprm1 and npas4a mRNA levels in the medial zone of dorsal telencephalon (Dm), ventral region of the ventral telencephalon (Vv), preoptic area, and in the hypothalamus but a decrease in oprm1 and npas4a signals in the dorsal habenula. This study provides a detailed map of oprm1 localization in the brain, which includes previously unreported oprm1 in the habenula of teleost. Presence of oprm1 in multiple brain sites implies multiple action targets of morphine and potential brain functions which could include reward, cognitive and negative emotions.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
47
|
Abstract
Opioid use disorder (OUD) is a chronic relapsing disorder that, whilst initially driven by activation of brain reward neurocircuits, increasingly engages anti-reward neurocircuits that drive adverse emotional states and relapse. However, successful recovery is possible with appropriate treatment, although with a persisting propensity to relapse. The individual and public health burdens of OUD are immense; 26.8 million people were estimated to be living with OUD globally in 2016, with >100,000 opioid overdose deaths annually, including >47,000 in the USA in 2017. Well-conducted trials have demonstrated that long-term opioid agonist therapy with methadone and buprenorphine have great efficacy for OUD treatment and can save lives. New forms of the opioid receptor antagonist naltrexone are also being studied. Some frequently used approaches have less scientifically robust evidence but are nevertheless considered important, including community preventive strategies, harm reduction interventions to reduce adverse sequelae from ongoing use and mutual aid groups. Other commonly used approaches, such as detoxification alone, lack scientific evidence. Delivery of effective prevention and treatment responses is often complicated by coexisting comorbidities and inadequate support, as well as by conflicting public and political opinions. Science has a crucial role to play in informing public attitudes and developing fuller evidence to understand OUD and its associated harms, as well as in obtaining the evidence today that will improve the prevention and treatment interventions of tomorrow.
Collapse
|
48
|
Koob GF. Neurobiology of Opioid Addiction: Opponent Process, Hyperkatifeia, and Negative Reinforcement. Biol Psychiatry 2020; 87:44-53. [PMID: 31400808 DOI: 10.1016/j.biopsych.2019.05.023] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/29/2023]
Abstract
Opioids are powerful drugs that usurp and overpower the reward function of endogenous opioids and engage dramatic tolerance and withdrawal via molecular and neurocircuitry neuroadaptations within the same reward system. However, they also engage the brain systems for stress and pain (somatic and emotional) while producing hyperalgesia and hyperkatifeia, which drive pronounced drug-seeking behavior via processes of negative reinforcement. Hyperkatifeia (derived from the Greek "katifeia" for dejection or negative emotional state) is defined as an increase in intensity of the constellation of negative emotional or motivational signs and symptoms of withdrawal from drugs of abuse. In animal models, repeated extended access to drugs or opioids results in negative emotion-like states, reflected by the elevation of reward thresholds, lower pain thresholds, anxiety-like behavior, and dysphoric-like responses. Such negative emotional states that drive negative reinforcement are hypothesized to derive from the within-system dysregulation of key neurochemical circuits that mediate incentive-salience and/or reward systems (dopamine, opioid peptides) in the ventral striatum and from the between-system recruitment of brain stress systems (corticotropin-releasing factor, dynorphin, norepinephrine, hypocretin, vasopressin, glucocorticoids, and neuroimmune factors) in the extended amygdala. Hyperkatifeia can extend into protracted abstinence and interact with learning processes in the form of conditioned withdrawal to facilitate relapse to compulsive-like drug seeking. Compelling evidence indicates that plasticity in the brain pain emotional systems is triggered by acute excessive drug intake and becomes sensitized during the development of compulsive drug taking with repeated withdrawal. It then persists into protracted abstinence and contributes to the development and persistence of compulsive opioid-seeking behavior.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
49
|
Bechara A, Berridge KC, Bickel WK, Morón JA, Williams SB, Stein JS. A Neurobehavioral Approach to Addiction: Implications for the Opioid Epidemic and the Psychology of Addiction. Psychol Sci Public Interest 2019; 20:96-127. [PMID: 31591935 PMCID: PMC7001788 DOI: 10.1177/1529100619860513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two major questions about addictive behaviors need to be explained by any worthwhile neurobiological theory. First, why do people seek drugs in the first place? Second, why do some people who use drugs seem to eventually become unable to resist drug temptation and so become "addicted"? We will review the theories of addiction that address negative-reinforcement views of drug use (i.e., taking opioids to alleviate distress or withdrawal), positive-reinforcement views (i.e., taking drugs for euphoria), habit views (i.e., growth of automatic drug-use routines), incentive-sensitization views (i.e., growth of excessive "wanting" to take drugs as a result of dopamine-related sensitization), and cognitive-dysfunction views (i.e., impaired prefrontal top-down control), including those involving competing neurobehavioral decision systems (CNDS), and the role of the insula in modulating addictive drug craving. In the special case of opioids, particular attention is paid to whether their analgesic effects overlap with their reinforcing effects and whether the perceived low risk of taking legal medicinal opioids, which are often prescribed by a health professional, could play a role in the decision to use. Specifically, we will address the issue of predisposition or vulnerability to becoming addicted to drugs (i.e., the question of why some people who experiment with drugs develop an addiction, while others do not). Finally, we review attempts to develop novel therapeutic strategies and policy ideas that could help prevent opioid and other substance abuse.
Collapse
Affiliation(s)
- Antoine Bechara
- Department of Psychology, University of Southern California
- Brain and Creativity Institute, University of Southern California
| | | | - Warren K. Bickel
- Addiction Recovery Research Center & Center for Transformational Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Jose A. Morón
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
| | - Sidney B. Williams
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
| | - Jeffrey S. Stein
- Addiction Recovery Research Center & Center for Transformational Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| |
Collapse
|
50
|
Modulation of the Negative Affective Dimension of Pain: Focus on Selected Neuropeptidergic System Contributions. Int J Mol Sci 2019; 20:ijms20164010. [PMID: 31426473 PMCID: PMC6720937 DOI: 10.3390/ijms20164010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual’s affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.
Collapse
|