1
|
Sharma M, Pal P, Gupta SK, Potdar MB, Belgamwar AV. Microglial-mediated immune mechanisms in autoimmune uveitis: Elucidating pathogenic pathways and targeted therapeutics. J Neuroimmunol 2024; 395:578433. [PMID: 39168018 DOI: 10.1016/j.jneuroim.2024.578433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
This review offers a comprehensive examination of the role of microglia in the pathogenesis of autoimmune uveitis, an inflammatory eye disease with significant potential for vision impairment. Central to our discussion is the dual nature of microglial cells, which act as both protectors and potential perpetrators in the immune surveillance of the retina. We explore the mechanisms of microglial activation, highlighting the key signaling pathways involved, such as NF-κB, JAK/STAT, MAPK, and PI3K/Akt. The review also delves into the genetic and environmental factors influencing microglial behavior, underscoring their complex interaction in disease manifestation. Advanced imaging techniques and emerging biomarkers for microglial activation, pivotal in diagnosing and monitoring the disease, are critically assessed. Additionally, we discuss current and novel therapeutic strategies targeting microglial activity, emphasizing the shift towards more precise and personalized interventions. This article aims to provide a nuanced understanding of microglial dynamics in autoimmune uveitis, offering insights into potential avenues for effective treatment and management.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India; IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
2
|
Chen HA, Tai YN, Hsieh EH, Thacker M, Lin IC, Tseng CL, Lin FH. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes. Int J Biol Macromol 2024; 275:133467. [PMID: 38945319 DOI: 10.1016/j.ijbiomac.2024.133467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 μM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.
Collapse
Affiliation(s)
- Huai-An Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Yi-Ning Tai
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Minal Thacker
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan..
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli County, Taiwan.
| |
Collapse
|
3
|
Wong KY, Wong MS, Liu J. Nanozymes for Treating Ocular Diseases. Adv Healthc Mater 2024:e2401309. [PMID: 38738646 DOI: 10.1002/adhm.202401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Nanozymes, characterized by their nanoscale size and enzyme-like catalytic activities, exhibit diverse therapeutic potentials, including anti-oxidative, anti-inflammatory, anti-microbial, and anti-angiogenic effects. These properties make them highly valuable in nanomedicine, particularly ocular therapy, bypassing the need for systemic delivery. Nanozymes show significant promise in tackling multi-factored ocular diseases, particularly those influenced by oxidation and inflammation, like dry eye disease, and age-related macular degeneration. Their small size, coupled with their ease of modification and integration into soft materials, facilitates the effective penetration of ocular barriers, thereby enabling targeted or prolonged therapy within the eye. This review is dedicated to exploring ocular diseases that are intricately linked to oxidation and inflammation, shedding light on the role of nanozymes in managing these conditions. Additionally, recent studies elucidating advanced applications of nanozymes in ocular therapeutics, along with their integration with soft materials for disease management, are discussed. Finally, this review outlines directions for future investigations aimed at bridging the gap between nanozyme research and clinical applications.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong
| |
Collapse
|
4
|
Zhang D, He J, Hua SY, Li Y, Zhou M. Reactive Oxygen Species-Responsive Dual Anti-Inflammatory and Antioxidative Nanoparticles for Anterior Uveitis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38656895 DOI: 10.1021/acsami.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Anterior uveitis (AU) is an immune-mediated inflammatory disease that results in iritis, cyclitis, glaucoma, cataracts, and even a loss of vision. The frequent and long-term administration of corticosteroid drugs is limited in the clinic owing to the side effects and patient noncompliance with the drugs. Therefore, specifically delivering drugs to inflammatory anterior segment tissues and reducing the topical application dosage of the drug are still a challenge. Here, we developed dual dexamethasone (Dex) and curcumin (Cur)-loaded reactive oxygen species (ROS)-responsive nanoparticles (CPDC NPs) to treat anterior uveitis. The CPDC NPs demonstrated both anti-inflammatory and antioxidative effects, owing to their therapeutic characteristics of dexamethasone and curcumin, respectively. The CPDC NPs could effectively release dexamethasone and curcumin in the oxidizing physiological environment of the inflammation tissue. The CPDC NPs can effectively internalize by activated macrophage cells, subsequently suppressing the proinflammatory factor expression. Moreover, the CPDC NPs can inhibit ROS and inflammation via nuclear transcription factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway activation. In an endotoxin-induced uveitis rabbit model, the CPDC NPs show a therapeutic effect that is better than that of either free drugs or commercial eye drops. Importantly, the CPDC NPs with a lower dexamethasone dosage could reduce the side effects significantly. Taken together, we believe that the dual-drug-loaded ROS-responsive NPs could effectively target and inhibit inflammation and have the potential for anterior uveitis treatment in clinical practice.
Collapse
Affiliation(s)
- Dike Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Department of Ophthalmology, Jining Medical University Affiliated Hospital, Jining 272000, China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shi Yuan Hua
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yonghua Li
- Department of Ophthalmology, Jining Medical University Affiliated Hospital, Jining 272000, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
5
|
Chang CH, Hsiao G, Wang SW, Yen JY, Huang SJ, Chi WC, Lee TH. Chemical constituents from the medicinal herb-derived fungus Chaetomium globosum Km1226. BOTANICAL STUDIES 2023; 64:34. [PMID: 38030829 PMCID: PMC10686906 DOI: 10.1186/s40529-023-00406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Endophytic fungi have proven to be a rich source of novel natural products with a wide-array of biological activities and higher levels of structural diversity. RESULTS Chemical investigation on the liquid- and solid-state fermented products of Chaetomium globosum Km1226 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-14. Their structures were determined by spectroscopic analysis as three previously undescribed C13-polyketides, namely aureonitol C (1), mollipilins G (2), and H (3), along with eleven known compounds 4-14. Among these, mollipilin A (5) exhibited significant nitric oxide production inhibitory activity in LPS-induced BV-2 microglial cells with an IC50 value of 0.7 ± 0.1 µM, and chaetoglobosin D (10) displayed potent anti-angiogenesis property in human endothelial progenitor cells (EPCs) with an IC50 value of 0.8 ± 0.3 µM. CONCLUSIONS Three previously unreported compounds 1-3 were isolated and identified. Mollipilin A (5) and chaetoglobosin D (10) could possibly be developed as anti-inflammatory and anti-angiogenic lead drugs, respectively.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 25245, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung, 807378, Taiwan
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Juei-Yu Yen
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 25245, Taiwan
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, 10491, Taiwan
| | - Shu-Jung Huang
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Chiung Chi
- Department of Food Science, National Quemoy University, Kinmen, 89250, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
6
|
Gao W, Jin X, Zhou P, Zhu H, Xie K, Jin B, Du L. Relationship between Uveitis and the Differential Reactivity of Retinal Microglia. Ophthalmic Res 2023; 66:1206-1212. [PMID: 37666222 PMCID: PMC10614524 DOI: 10.1159/000531156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Uveitis, a complicated group of ocular inflammatory diseases, can be affected by massive pathogenic contributors such as infection, autoimmunity, and genetics. Although it is well known that many pathological changes, including disorders of the immune system and disruption of the blood-retinal barrier, count much in the onset and progression of uveitis, there is a paucity of safe and effective treatments, which has exceedingly hindered the appropriate treatment of uveitis. As innate immune cells in the retina, microglia occupy a salient position in retinal homeostasis. Many studies have reported the activation of microglia in uveitis and the mitigation of uveitis by interfering with microglial reactivity, which strongly implicates microglia as a therapeutic target. However, it has been increasingly recognized that microglia are a nonhomogeneous population under different physiological and pathological conditions, which makes it essential to thoroughly have knowledge of their specific characteristics. The paper outlines the various properties of activated microglia in uveitis, summarizes the connections between their polarization patterns and the manifestations of uveitis, and ultimately is intended to enhance the understanding of microglial versatility and expedite the exploration of promising strategies for visual protection.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Zhu
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunpeng Xie
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Lin FL, Cheng YW, Chen LH, Ho JD, Yen JL, Wang MH, Lee TH, Hsiao G. Retinal protection by fungal product theissenolactone B in a sodium iodate-induced AMD model through targeting retinal pigment epithelial matrix metalloproteinase-9 and microglia activity. Biomed Pharmacother 2023; 158:114138. [PMID: 36535199 DOI: 10.1016/j.biopha.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of low vision and blindness for which there is currently no cure. Increased matrix metalloproteinase-9 (MMP-9) was found in AMD and potently contributes to its pathogenesis. Resident microglia also promote the processes of chronic neuroinflammation, accelerating the progression of AMD. The present study investigates the effects and mechanisms of the natural compound theissenolactone B (LB53), isolated from Theissenia cinerea, on the effects of RPE dysregulation and microglia hyperactivation and its retinal protective ability in a sodium iodate (NaIO3)-induced retinal degeneration model of AMD. The fungal component LB53 significantly reduces MMP-9 gelatinolysis in TNF-α-stimulated human RPE cells (ARPE-19). Similarly, LB53 abolishes MMP-9 protein and mRNA expression in ARPE-19 cells. Moreover, LB53 efficiently suppresses nitric oxide (NO) production, iNOS expression, and intracellular ROS levels in LPS-stimulated TLR 4-activated microglial BV-2 cells. According to signaling studies, LB53 specifically targets canonical NF-κB signaling in both ARPE-19 and BV-2 microglia. In an RPE-BV-2 interaction assay, LB53 ameliorates LPS-activated BV-2 conditioned medium-induced MMP-9 activation and expression in the RPE. In NaIO3-induced AMD mouse model, LB53 restores photoreceptor and bipolar cell dysfunction as assessed by electroretinography (ERG). Additionally, LB53 prevents retinal thinning, primarily the photoreceptor, and reduces retinal blood flow from NaIO3 damage evaluated by optic coherence tomography (OCT) and laser speckle flowgraphy (LSFG), respectively. Our results demonstrate that LB53 exerts neuroprotection in a mouse model of AMD, which can be attributed to its anti-retinal inflammatory effects by impeding RPE-mediated MMP-9 activation and anti-microglia.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Li-Huei Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Chen S, Kong J, Wu S, Luo C, Shen J, Zhang Z, Zou J, Feng L. Targeting TBK1 attenuates ocular inflammation in uveitis by antagonizing NF-κB signaling. Clin Immunol 2023; 246:109210. [PMID: 36528252 DOI: 10.1016/j.clim.2022.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Uveitis with complex pathogenesis is a kind of eye emergency involving refractory and blinding inflammation. Dysregulation of TANK binding kinase 1 (TBK1), which plays an important role in innate immunity, often leads to inflammatory diseases in various organs. However, the role of TBK1 in uveitis remains elusive. In this study, we identified that the mRNA expression level of TBK1 and its phosphorylation level were significantly increased in peripheral blood mononuclear cells (PBMCs) of patients with uveitis. Consistent with this, the expression of Tbk1 was elevated in the ocular tissues of uveitis rats and primary peritoneal macrophages while its phosphorylation levels, which present activation forms, were upregulated as well, accompanied by an increase in the level of nuclear factor-κB (NF-κB) and proinflammatory cytokines. In addition, inhibition of TBK1 may effectively reduce the inflammatory response of uveitis rats by blocking NF-κB entry into the nucleus and impeding the initiation of NLRP3 inflammasome- and caspase-1-mediated pyroptosis pathways.
Collapse
Affiliation(s)
- Si Chen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Department of ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201599, China
| | - Jinfeng Kong
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chenqi Luo
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310009, China.
| | - Jian Zou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Lei Feng
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
9
|
Chang CH, Lee YC, Hsiao G, Chang LK, Chi WC, Cheng YC, Huang SJ, Wang TC, Lu YS, Lee TH. Anti-Epstein-Barr Viral Agents from the Medicinal Herb-Derived Fungus Alternaria alstroemeriae Km2286. JOURNAL OF NATURAL PRODUCTS 2022; 85:2667-2674. [PMID: 36346918 DOI: 10.1021/acs.jnatprod.2c00783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 μM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 μM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chieh Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chiung Chi
- Department of Food Science, National Quemoy University, Kinmen 89250, Taiwan
| | - Yuan-Chung Cheng
- Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Jung Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Chou Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Shan Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Palevski D, Ben-David G, Weinberger Y, Haj Daood R, Fernández JA, Budnik I, Levy-Mendelovich S, Kenet G, Nisgav Y, Weinberger D, Griffin JH, Livnat T. 3K3A-Activated Protein C Prevents Microglia Activation, Inhibits NLRP3 Inflammasome and Limits Ocular Inflammation. Int J Mol Sci 2022; 23:ijms232214196. [PMID: 36430674 PMCID: PMC9694680 DOI: 10.3390/ijms232214196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
3K3A-Activated Protein C (APC) is a recombinant variant of the physiological anticoagulant APC with pleiotropic cytoprotective properties albeit without the bleeding risks. The anti-inflammatory activities of 3K3A-APC were demonstrated in multiple preclinical injury models, including various neurological disorders. We determined the ability of 3K3A-APC to inhibit ocular inflammation in a murine model of lipopolysaccharide (LPS)-induced uveitis. Leukocyte recruitment, microglia activation, NLRP3 inflammasome and IL-1β levels were assessed using flow cytometry, retinal cryosection histology, retinal flatmount immunohistochemistry and vascular imaging, with and without 3K3A-APC treatment. LPS triggered robust inflammatory cell recruitment in the posterior chamber. The 3K3A-APC treatment significantly decreased leukocyte numbers and inhibited leukocyte extravasation from blood vessels into the retinal parenchyma to a level similar to controls. Resident microglia, which underwent an inflammatory transition following LPS injection, remained quiescent in eyes treated with 3K3A-APC. An inflammation-associated increase in retinal thickness, observed in LPS-injected eyes, was diminished by 3K3A-APC treatment, suggesting its clinical relevancy. Finally, 3K3A-APC treatment inhibited inflammasome activation, determined by lower levels of NLRP3 and its downstream effector IL-1β. Our results highlight the anti-inflammatory properties of 3K3A-APC in ocular inflammation and suggest its potential use as a novel treatment for retinal diseases associated with inflammation.
Collapse
Affiliation(s)
- Dahlia Palevski
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Gil Ben-David
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Yehonatan Weinberger
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Rabeei Haj Daood
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - José A. Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ivan Budnik
- Sheba Medical Center, The Amalia Biron Thrombosis Research Institute, Tel-Hashomer 52621, Israel
| | - Sarina Levy-Mendelovich
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sheba Medical Center, The Amalia Biron Thrombosis Research Institute, Tel-Hashomer 52621, Israel
| | - Gili Kenet
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sheba Medical Center, The Amalia Biron Thrombosis Research Institute, Tel-Hashomer 52621, Israel
| | - Yael Nisgav
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
| | - Dov Weinberger
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tami Livnat
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Petah-Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sheba Medical Center, The Amalia Biron Thrombosis Research Institute, Tel-Hashomer 52621, Israel
- Correspondence:
| |
Collapse
|
11
|
Hsiao G, Chi WC, Chang CH, Chiang YR, Fu YJ, Lee TH. Bioactive pulvinones from a marine algicolous fungus Aspergillus terreus NTU243. PHYTOCHEMISTRY 2022; 200:113229. [PMID: 35568258 DOI: 10.1016/j.phytochem.2022.113229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Marine fungi are regarded as an under-explored source of structurally interesting and bioactive natural products with the potential to provide attractive lead compounds for drug discovery. In this study, several fungal strains were isolated from marine algae collected from the northeastern coast of Taiwan. In the preliminary antimicrobial screening against bacteria and fungi, the ethyl acetate extract of the fermented products of Aspergillus terreus NTU243 derived from a green alga Ulva lactuca was found to exhibit significant antimicrobial activities. Therefore, bioassay-guided separations of the active principle from liquid and solid fermented products of A. terreus NTU243 were undertaken, which resulted in the isolation and purification of 16 compounds. Their structures were elucidated by spectroscopic analysis to be four previously undescribed aspulvinones S-V as well as twelve known compounds. All the isolates were assessed for anti-inflammatory activity by measuring the amount of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 cells, and aspulvinone V, butyrolactone I, and (+)-terrein inhibited 45.0%, 34.5%, and 49.2% of NO production, respectively, at 10 μM concentration. Additionally, zymography showed that the conditioned medium of THP-1 cells post-LPS challenged significantly enhanced matrix metalloproteinase (MMP)-9-mediated gelatinolysis, and pretreatment with aspulvinones U and V significantly attenuated MMP-9-mediated gelatinolysis by 56.0% and 67.8%, separately.
Collapse
Affiliation(s)
- George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wei-Chiung Chi
- Department of Food Science, National Quemoy University, Kinmen, 89250, Taiwan.
| | - Chia-Hao Chang
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academic Sinica, Taipei, 11529, Taiwan.
| | - Yan-Jie Fu
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Weng TH, Ke CC, Huang YS. Anti-Inflammatory Effects of GM1 Ganglioside on Endotoxin-Induced Uveitis in Rats. Biomolecules 2022; 12:biom12050727. [PMID: 35625654 PMCID: PMC9138562 DOI: 10.3390/biom12050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Exogenous ganglioside GM1 has been reported to exert an immunomodulatory effect. We investigated the anti-inflammatory effect of GM1 ganglioside on endotoxin-induced uveitis (EIU) in rats and RAW 264.7 macrophages. Methods: EIU was induced in Lewis rats by administering a subcutaneous injection of lipopolysaccharide (LPS). GM1 was injected intraperitoneally for three consecutive days prior to the LPS injection. Twenty-four hours after the LPS injection, the integrity of the blood-aqueous barrier was evaluated by determining the protein concentration and number of infiltrating cells in the aqueous humor (AqH). Immunohistochemical and Western blot analyses of the iris-ciliary body (ICB) were performed to evaluate the effect of GM1 on the LPS-induced expression of cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1). The effect of GM1 on proinflammatory mediators and signaling cascades was examined in LPS-stimulated RAW 264.7 cells using Western blotting and immunofluorescence staining to further clarify the underlying anti-inflammatory mechanism. Results: GM1 significantly reduced the protein concentration and number of infiltrating cells in the AqH of rats with EIU. GM1 also decreased the LPS-induced expression of the ICAM-1 and COX-2 proteins in the ICB. In RAW 264.7 cells, GM1 inhibited the proinflammatory mediators induced by LPS, including inducible nitric oxide synthase (iNOS), COX-2, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and this inhibitory effect was potentially mediated by suppressing transforming growth factor-β-activated kinase 1 (TAK1) and reactive oxygen species (ROS)-mediated activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Conclusions: Based on this study, GM1 may be a potential anti-inflammatory agent for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Tzu-Heng Weng
- Department of Ophthalmology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.W.); (C.-C.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chang-Chih Ke
- Department of Ophthalmology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.W.); (C.-C.K.)
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-87923100 (ext. 18735)
| |
Collapse
|
13
|
Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: Functions and diseases. Immunology 2022; 166:268-286. [PMID: 35403700 DOI: 10.1111/imm.13479] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| | - Weidi Huang
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Ophthalmology, Second Xiangya Hospital Central South University Changsha Hunan China
| | - Jiayi Chen
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Na Li
- College of Basic Medicine Chongqing Medical University Chongqing China
| | - Liming Mao
- Department of Immunology School of Medicine, Nantong University, 19 Qixiu Road Nantong Jiangsu China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| |
Collapse
|
14
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Wang Z, Huang Y, Chu F, Ji S, Liao K, Cui Z, Chen J, Tang S. Clock Gene Nr1d1 Alleviates Retinal Inflammation Through Repression of Hmga2 in Microglia. J Inflamm Res 2021; 14:5901-5918. [PMID: 34795498 PMCID: PMC8594447 DOI: 10.2147/jir.s326091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinal inflammation is involved in the pathogenesis of several retinal diseases. As one of the core clock genes, Nr1d1 has been reported to suppress inflammation in many diseases. We investigated whether pharmacological activation of Nr1d1 can inhibit retinal inflammation and delineated the mechanisms of Nr1d1 in alleviating microglia activation. Methods Lipopolysaccharide (LPS) induced mice models were used to examine the effects of SR9009 (agonist of NR1D1) treatment on inflammatory phenotypes in vivo. Anti-inflammatory effects of Nr1d1 and associated mechanisms were investigated in the BV2 microglia cell line, and in primary retinal microglia in vitro. Results SR9009 treatment alleviated LPS-induced inflammatory cell infiltration, elevated cytokine levels and morphological changes of the microglia in mice models. In LPS-stimulated BV2 cells and primary retinal microglia, SR9009 suppressed cytokine expressions by inhibiting the NF-κB signaling pathway. Moreover, SR9009 treatment increased the levels of the M2 phenotype marker (CD206) and the proportions of ramified microglia. Suppression of Nr1d1 with siRNA reversed the inhibitory effects of SR9009 on cytokine production in BV2 cells. RNA-seq analysis showed that genes that were upregulated following Nr1d1 knockdown were enriched in inflammatory-associated biological processes. Subsequently, ChIP-seq of NR1D1 in BV2 was performed, and the results were integrated with RNA-seq results using the Binding and Expression Target Analysis (BETA) tool. Luciferase assays, electrophoretic mobility shift assay (EMSA), qPCR and Western blotting assays revealed that NR1D1 binds the promoter of Hmga2 to suppress its transcription. Notably, overexpressed Hmga2 in activated microglia could partly abolish the anti-inflammatory effects of Nr1d1. Conclusion The clock gene Nr1d1 protects against retinal inflammation and microglia activation in part by suppressing Hmga2 transcription.
Collapse
Affiliation(s)
- Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Feixue Chu
- Department of Ophthalmology, Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, People's Republic of China
| | - Shangli Ji
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Zekai Cui
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China.,Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, People's Republic of China.,Institute of Ophthalmology, Jinan University, Guangzhou, People's Republic of China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Hsieh MH, Hsiao G, Chang CH, Yang YL, Ju YM, Kuo YH, Lee TH. Polyketides with Anti-neuroinflammatory Activity from Theissenia cinerea. JOURNAL OF NATURAL PRODUCTS 2021; 84:1898-1903. [PMID: 34185528 DOI: 10.1021/acs.jnatprod.0c01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Theissenia cinerea 89091602 is a previously reported plant-derived bioactive fungal strain, and the active principles separated from the extracts of its submerged culture were shown to exhibit potent anti-neuroinflammatory activities in both cellular study and animal testing. In a continuation of our previous investigation on the bioactive entities from this fungus, solid state fermentation was performed in an attempt to diversify the bioactive secondary metabolites. In the present study, five previously unreported polyketides, theissenophenol (1), theissenepoxide (2), theissenolactone D (3), theissenone (4), and theissenisochromanone (5), together with the known theissenolactone B (6), theissenolactone C (7), and arthrinone (8), were isolated and characterized through spectroscopic analysis and comparison with the literature data. The configurations of theissenepoxide (2) and theissenisochromanone (5) were further corroborated by single-crystal X-ray diffraction data analysis. Theissenone (4), theissenolactone B (6), theissenolactone C (7), and arthrinone (8) exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells with IC50 values of 5.0 ± 1.0, 4.5 ± 0.6, 1.1 ± 0.1, and 3.2 ± 0.3 μM, respectively, without any significant cytotoxic effects.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hao Chang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medical Research Center, China Medical University, Taichung 40447, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Hsueh PJ, Wang MH, Hsiao CJ, Chen CK, Lin FL, Huang SH, Yen JL, Tsai PH, Kuo YH, Hsiao G. Ergosta-7,9(11),22-trien-3β-ol Alleviates Intracerebral Hemorrhage-Induced Brain Injury and BV-2 Microglial Activation. Molecules 2021; 26:molecules26102970. [PMID: 34067678 PMCID: PMC8156058 DOI: 10.3390/molecules26102970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3β-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Po-Jen Hsueh
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta University, GA 30912, USA;
| | - Che-Jen Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Laboratory of Neural Repair, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Kuang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Tayouan, Taoyuan 33378, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia;
| | - Shu-Hsien Huang
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Ping-Huei Tsai
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medical Imaging and Radiological Sciences, Chung Shang Medical University, Taichung 40201, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| |
Collapse
|
18
|
Zhuang X, Ma J, Xu S, Sun Z, Zhang R, Zhang M, Xu G. SHP-1 suppresses endotoxin-induced uveitis by inhibiting the TAK1/JNK pathway. J Cell Mol Med 2021; 25:147-160. [PMID: 33207073 PMCID: PMC7810969 DOI: 10.1111/jcmm.15888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated how Src-homology 2-domain phosphatase-1 (SHP-1) regulates the inflammatory response in endotoxin-induced uveitis (EIU), and the signalling pathways involved. One week after intravitreal injection of short hairpin RNA targeting SHP-1 or SHP-1 overexpression lentivirus in rats, we induced ocular inflammation with an intravitreal injection of lipopolysaccharide (LPS). We then assessed the extent of inflammation and performed full-field electroretinography. The concentrations and retinal expression of various inflammatory mediators were examined with enzyme-linked immunosorbent assays and Western blotting, respectively. SHP-1 overexpression and knockdown were induced in Müller cells to study the role of SHP-1 in the LPS-induced inflammatory response in vitro. Retinal SHP-1 expression was up-regulated by LPS. SHP-1 knockdown exacerbated LPS-induced retinal dysfunction and increased the levels of proinflammatory mediators in the retina, which was abrogated by a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). SHP-1 overexpression had the opposite effects. In Müller cells, the LPS-induced inflammatory response was enhanced by SHP-1 knockdown and suppressed by SHP-1 overexpression. SHP-1 negatively regulated the activation of the transforming growth factor-β-activated kinase-1 (TAK1)/JNK pathway, but not the nuclear factor-κB pathway. These results indicate that SHP-1 represses EIU, at least in part, by inhibiting the TAK1/JNK pathway and suggest that SHP-1 is a potential therapeutic target for uveitis.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Jun Ma
- Eye InstituteEye & ENT HospitalFudan UniversityShanghaiChina
| | - Sisi Xu
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Zhongcui Sun
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Rong Zhang
- Eye InstituteEye & ENT HospitalFudan UniversityShanghaiChina
| | - Meng Zhang
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Gezhi Xu
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationFudan UniversityShanghaiChina
- NHC Key Laboratory of MyopiaFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Zhang W, Dai L, Li X, Li Y, Hung Yap MK, Liu L, Deng H. SARI prevents ocular angiogenesis and inflammation in mice. J Cell Mol Med 2020; 24:4341-4349. [PMID: 32119762 PMCID: PMC7171405 DOI: 10.1111/jcmm.15096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
SARI (Suppressor of AP‐1, regulated by IFN‐β) is known to play an important role in some systemic disease processes such an inflammatory conditions and cancer. We hypothesize that SARI may also play a role in ocular diseases involving inflammation and neovascularization. To explore our hypothesis, further, we investigated an endotoxin‐induced uveitis (EIU) and experimental argon laser‐induced choroidal neovascularization (CNV) model in SARI wild‐type (SARIWT) and SARI‐deficient (SARI−/−) mice. Through imaging, morphological and immunohistochemical (IHC) studies, we found that SARI deficiency exacerbated the growth of CNV. More VEGF‐positive cells were presented in the retina of SARI−/− mice with CNV. Compared to SARIWT mice, more inflammatory cells infiltrated the ocular anterior segment and posterior segments in SARI−/− mice with EIU. Collectively, the results point to a potential dual functional role of SARI in inflammatory ocular diseases, suggesting that SARI could be a potential therapy target for ocular inflammation and neovascularization.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Ophthalmology and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Ophthalmology and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Kumar GB, Nair BG, Perry JJP, Martin DBC. Recent insights into natural product inhibitors of matrix metalloproteinases. MEDCHEMCOMM 2019; 10:2024-2037. [PMID: 32904148 PMCID: PMC7451072 DOI: 10.1039/c9md00165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies. Natural products that affect MMP activities have been of strong interest as templates for drug discovery, and for their use as chemical tools to help delineate the roles of MMPs that still remain to be defined. Herein, we highlight the most recent discoveries of structurally diverse natural product inhibitors to these proteases.
Collapse
Affiliation(s)
- Geetha B Kumar
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - Bipin G Nair
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - J Jefferson P Perry
- School of Biotechnology , Amrita University , Kollam , Kerala , India
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA .
| | - David B C Martin
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of Iowa , Iowa City , IA 52242 , USA .
| |
Collapse
|
21
|
Zhang T, Ouyang H, Mei X, Lu B, Yu Z, Chen K, Wang Z, Ji L. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. FASEB J 2019; 33:11776-11790. [PMID: 31365278 DOI: 10.1096/fj.201802614rrr] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Blood-retinal barrier (BRB) breakdown is a typical event in the early stage of diabetic retinopathy (DR). This study aims to elucidate the protection of erianin, a natural compound isolated from Dendrobium chrysotoxum Lindl, against DR development. Erianin alleviated BRB breakdown and rescued the reduced claudin1 and occludin expression in retinas from streptozotocin-induced diabetic mice. Erianin reduced microglial activation, ERK1/2 phosphorylation, NF-κB transcriptional activation, and the elevated TNF-α expression both in vitro and in vivo. ERK1/2 inhibitor U0126 abrogated NF-κB activation in d-glucose-treated BV2 cells. Erianin reduced cellular glucose uptake, and molecular docking analysis indicated the potential interaction of erianin with glucose transporter (GLUT)1. GLUT1 inhibitor (STF31) reduced the activation of the ERK1/2-NF-κB signaling pathway. Coculture with d-glucose-stimulated microglial BV2 cells and with TNF-α stimulation both induced inner BRB and outer BRB damage in human retinal endothelial cells and APRE19 cells, but erianin improved all these damages. In summary, erianin attenuated BRB breakdown during DR development by inhibiting microglia-triggered retinal inflammation via reducing cellular glucose uptake and abrogating the subsequent activation of the downstream ERK1/2-NF-κB pathway. Moreover, erianin also alleviated BRB damage induced by TNF-α released from the activated microglia.-Zhang, T., Ouyang, H., Mei, X., Lu, B., Yu, Z., Chen, K., Wang, Z., Ji, L. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tianyu Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Ouyang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiyu Mei
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Lu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zengyang Yu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines-The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Lin FL, Cheng YW, Yu M, Ho JD, Kuo YC, Chiou GCY, Chang HM, Lee TH, Hsiao G. The fungus-derived retinoprotectant theissenolactone C improves glaucoma-like injury mediated by MMP-9 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:207-214. [PMID: 30668341 DOI: 10.1016/j.phymed.2018.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that has been found to induce matrix metalloproteinase-9 (MMP-9) activation and result in eventual retinal dysfunction. Proinflammatory cytokines such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-1β (IL-1β) were also found to be involved in disease progression by mediating MMP-9 production. We previously reported that fungal derivative theissenolactone C (LC53) could exert ocular protective effects by suppressing neuroinflammation in experimental uveitis. PURPOSE The aim of this study was to investigate the retinoprotective effects of natural compound LC53 on the high IOP-induced ischemia/reperfusion (I/R)-injury model of glaucoma and its cellular mechanisms. METHODS A high IOP-induced I/R-injury model was manipulated by normal saline injection into the anterior chamber of the rat eye. MCP-1-stimulated monocytes and IL-1β-activated primary astrocytes were used to investigate the cellular mechanisms of LC53. Retinal function was evaluated with the scotopic threshold response (STR) and combined rod-cone response by electroretinography (ERG). As a positive control, rats were treated with memantine. MMP-9 gelatinolysis, mRNA expression and protein expression were analyzed by gelatin zymography, RT-PCR, and Western Blot, respectively. The phosphorylation levels of MAPKs and NF-κB p65 were tested by Western Blot. Additionally, the levels of inflammatory MCP-1 and IL-1β were determined by ELISA. RESULTS The present study revealed that LC53 preserved the retina functional deficiency assessed by scotopic threshold response (STR) and combined rod-cone response of ERG after high IOP-induced I/R injury. These retinal protective effects of LC53 were positively correlated with inhibitory activities in I/R injury-elicited ocular MMP-9 activation and expression. The increased level of MCP-1 was not affected, and the enhanced IL-1β production was partially reduced by LC53 in the retina after I/R injury. According to cellular studies, LC53 significantly and concentration-dependently abrogated MMP-9 activation and expression in MCP-1-stimulated THP-1 monocytes. We found the inhibitory activities of LC53 were through the ERK- and NF-κB-dependent pathways. In addition, LC53 dramatically suppressed IL-1β-induced MMP-9 activation and expression in primary astrocytes. The phosphorylation of 65-kD protein (p65) of NF-κB was substantially blocked by LC53 in IL-1β-stimulated primary astrocytes. CONCLUSION LC53 exerted a retinal protective effect through NF-κB inhibition and was highly potent against MMP-9 activities after high IOP-induced I/R injury, suggesting that LC53 would be a promising drug lead for glaucoma or related medical conditions attributed to retinal ischemia.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Min Yu
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, 252 Wu-Hsing St. Taipei 110, Taiwan
| | - Yu-Cheng Kuo
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan; Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan.
| |
Collapse
|
23
|
Cheng Z, Yang Y, Duan F, Lou B, Zeng J, Huang Y, Luo Y, Lin X. Inhibition of Notch1 Signaling Alleviates Endotoxin-Induced Inflammation Through Modulating Retinal Microglia Polarization. Front Immunol 2019; 10:389. [PMID: 30930891 PMCID: PMC6423918 DOI: 10.3389/fimmu.2019.00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microglial cells are resident immune cells and play an important role in various cerebral and retinal inflammatory diseases. Notch1 signaling is involved in the microglia polarization and the control of cerebral inflammatory reactions. However, its role in endotoxin-induced uveitis (EIU) remains unknown. This study aimed to investigate the role of Notch1 signaling on retinal microglia polarization and inflammation in the cultured retinal microglial cells and EIU rat model. We found that Notch1 signaling blockade with N-[N-(3, 5-difluorophenacetyl)-1-alany1-S-phenyglycine t-butyl ester (DAPT) shifted retinal microglia phenotype from pro-inflammatory M1 phenotype (COX2+ and iNOS+) to anti-inflammatory M2 phenotype (Arg-1+) and reduced the release of pro-inflammatory cytokines both in vivo and in vitro. Moreover, DAPT treatment contributed to prevent retinal ganglion cells from apoptosis, reduce the intraocular infiltrating cells, and attenuate the impairment of retinal function. Taken together, these results suggest that inhibition of Notch1 signaling could alleviate the inflammatory response in EIU rat mainly through regulating the polarization of retinal microglia. Therefore, Notch1 signaling might be a promising therapeutic target in the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Zhixing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Lin FL, Yen JL, Kuo YC, Kang JJ, Cheng YW, Huang WJ, Hsiao G. HADC8 Inhibitor WK2-16 Therapeutically Targets Lipopolysaccharide-Induced Mouse Model of Neuroinflammation and Microglial Activation. Int J Mol Sci 2019; 20:ijms20020410. [PMID: 30669368 PMCID: PMC6359084 DOI: 10.3390/ijms20020410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Glial activation and neuroinflammatory processes play important roles in the pathogenesis of brain abscess and neurodegenerative diseases. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which contribute to the exacerbation of neuronal cell death. The inhibition of glial activation has been shown to alleviate neurodegenerative conditions. The present study was to investigate the specific HDAC8 inhibitor WK2-16, especially its effects on the neuroinflammatory responses through glial inactivation. WK2-16 significantly reduced the gelatinolytic activity of MMP-9, and expression of COX-2/iNOS proteins in striatal lipopolysaccharide (LPS)-induced neuroinflammation in C57BL/6 mice. The treatment of WK2-16 markedly improved neurobehavioral deficits. Immunofluorescent staining revealed that WK2-16 reduced LPS-stimulated astrogliosis and microglial activation in situ. Consistently, cellular studies revealed that WK2-16 significantly suppressed LPS-induced mouse microglia BV-2 cell proliferation. WK2-16 was proven to concentration-dependently induce the levels of acetylated SMC3 in microglial BV-2 cells. It also reduced the expression of COX-2/iNOS proteins and TNF-α production in LPS-activated microglial BV-2 cells. The signaling studies demonstrated that WK2-16 markedly inhibited LPS-activated STAT-1/-3 and Akt activation, but not NF-κB or MAPK signaling. In summary, the HDAC8 inhibitor WK2-16 exhibited neuroprotective effects through its anti-neuroinflammation and glial inactivation properties, especially in microglia in vitro and in vivo.
Collapse
Affiliation(s)
- Fan-Li Lin
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112-21, Taiwan.
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Yu-Cheng Kuo
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Jaw-Jou Kang
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112-21, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110-31, Taiwan.
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| |
Collapse
|
25
|
Mérida S, Sancho-Tello M, Almansa I, Desco C, Peris C, Moreno ML, Villar VM, Navea A, Bosch-Morell F. Bevacizumab Diminishes Inflammation in an Acute Endotoxin-Induced Uveitis Model. Front Pharmacol 2018; 9:649. [PMID: 29971005 PMCID: PMC6018210 DOI: 10.3389/fphar.2018.00649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction: Uveitis is an eye disease characterized by inflammation of the uvea and an early and exhaustive diagnosis is essential for its treatment. The aim of our study is to assess the potential toxicity and anti-inflammatory efficacy of Bevacizumab in an experimental uveitis model by subcutaneously injecting lipopolysaccharide into Lewis rats and to clarify its mechanism. Material and Methods: Blood-aqueous barrier integrity was assessed 24 h after endotoxin-induced uveitis (EIU) by analyzing two parameters: cell count and protein concentration in aqueous humors. Histopathology of all eye structures was also studied. Enzyme-linked immunosorbent analyses of the aqueous humor samples were performed in order to calculate the diverse chemokine and cytokine protein levels and oxidative stress-related markers were also evaluated. Results: The aqueous humor's cellular content significantly increased in the group treated with only Bevacizumab, but it had no effect on retina histopathological grading. Nevertheless, the inflammation noted in ocular structures when administering Bevacizumab with endotoxin was mostly prevented since aqueous humor cell content considerably lowered, and concomitantly with a sharp drop in uveal, vitreous, and retina histopathological grading. The values of the multi-faceted cytokine IL-2 also significantly decreased (p < 0.05 vs. endotoxin group), and the protective IL-6 and IL-10 cytokines values rose with related anti-oxidant system recovery (p < 0.05 vs. endotoxin group). Concurrently, some related M1 macrophage chemokines substantially increased, e.g., GRO/KC, a chemokine that also displays any kind of protective role. Conclusion: All these results revealed that 24 h after being administered, Bevacizumab treatment in EIU significantly prevented inflammation in various eye structures and correct results in efficacy vs. toxicity balance were obtained.
Collapse
Affiliation(s)
- Salvador Mérida
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Inmaculada Almansa
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Carmen Desco
- Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Cristina Peris
- Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Mari-Luz Moreno
- Department of Basic Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Vincent M. Villar
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Amparo Navea
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Francisco Bosch-Morell
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| |
Collapse
|