1
|
Lin S, Yincang W, Jiazhe D, Xilin X, Zhang X. Pharmacology and mechanisms of apigenin in preventing osteoporosis. Front Pharmacol 2024; 15:1486646. [PMID: 39726788 PMCID: PMC11669520 DOI: 10.3389/fphar.2024.1486646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Osteoporosis (OP) stands as the most prevalent systemic skeletal condition associated with aging. The current clinical management of OP predominantly depends on anti-resorptive and anabolic agents. Nevertheless, prolonged use of some of these medications has been observed to reduce efficacy and elevate adverse effects. Given the necessity for sustained or even lifelong treatment of OP, the identification of drugs that are not only effective but also safe and cost-efficient is of utmost significance. As disease treatment paradigms continue to evolve and recent advancements in OP research come to light, certain plant-derived compounds have emerged, presenting notable benefits in the management of OP. This review primarily explores the pharmacological properties of apigenin and elucidates its therapeutic mechanisms in the context of OP. The insights provided herein aspire to offer a foundation for the judicious use of apigenin in forthcoming research, particularly within the scope of OP.
Collapse
Affiliation(s)
- Sun Lin
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| | - Wang Yincang
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| | - Du Jiazhe
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xu Xilin
- The Third Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2024. [DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTOsteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology—an emerging field of study—investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune‐related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| |
Collapse
|
3
|
Zhang X, Liu Z, Li Z, Qi L, Huang T, Li F, Li M, Wang Y, Ma Z, Gao Y. Ferroptosis pathways: Unveiling the neuroprotective power of cistache deserticola phenylethanoid glycosides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118465. [PMID: 38944360 DOI: 10.1016/j.jep.2024.118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.
Collapse
Affiliation(s)
- Xianxie Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zuoxu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zhihui Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Ling Qi
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Tianke Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Fang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Maoxing Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zengchun Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yue Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China.
| |
Collapse
|
4
|
Xue T, Zheng D, Wen L, Hou Q, He S, Zhang H, Gong Y, Li M, Hu J, Yang J. Advance in Cistanche deserticola Y. C. Ma. polysaccharides: Isolation, structural characterization, bioactivities and application: A review. Int J Biol Macromol 2024; 278:134786. [PMID: 39153679 DOI: 10.1016/j.ijbiomac.2024.134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cistanche deserticola Y. C. Ma (CD), is mainly distributed in the regions of China (Xinjiang, Inner Mongolia, Gansu), Mongolia, Iran and India. Cistanche deserticola polysaccharide (CDPs), as one of the main components and a crucial bioactive substance of CD, has a variety of pharmacological activities, including immunomodulatory, anti-aging, anti-oxidant, hepatoprotective, anti-osteoporotic, anti-inflammatory, intestinal flora regulatory effects. Many polysaccharides have been successfully obtained in the last three decades from CD. However, there is currently no comprehensive review available concerning CDPs. Considering the importance of CDPs for biological study and drug discovery, the present review aims to systematically summarize the recent major studies on extraction and purification methods of polysaccharides from CD, as well as the characterization of their chemical structure, biological activity, structure-activity relationship, and the application of CDPs in pharmaceutical field. Meanwhile, the shortcomings of CDPs research are further discussed in detail, and new valuable insights for future CDPs research as therapeutic agents and functional foods are proposed.
Collapse
Affiliation(s)
- Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Dongxuan Zheng
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Qiang Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Shengqi He
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Haibo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Yuehong Gong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Mingjie Li
- People's Hospital of Shaya, Aksu 842200, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830054, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China.
| |
Collapse
|
5
|
Shan C, Wu Z, Xia Y, Ji X, Zhang W, Peng X, Zhao J. Network pharmacological study and in vitro studies validation-Molecular dynamics simulation of Cistanche deserticola in promoting periodontitis and bone remodeling. Int Immunopharmacol 2024; 135:112299. [PMID: 38776853 DOI: 10.1016/j.intimp.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Periodontitis is a chronic infectious disease, characterized by loss of alveolar bone and supporting tissues. Cistanche deserticola(Cd), a local medicinal herb in Xinjiang, possesses favorable biological characteristics and potential applications. Our aim is to investigate the remodeling properties of Cd extract and elucidate the specific mechanisms underlying its therapeutic effects on periodontitis, by employing a combination of basic experimental and network pharmacology approaches. METHODS Firstly, UHPLC-QTOF-MS analysis was conducted on Cd extract to identify its main components, with several compounds were identified by standard. Subsequently, in vitro studies were performed using the Cd extract on MC3T3-E1 cells. Cell proliferation viability was assessed using CCK-8 and apoptosis assays, while ALP and ARS staining and quantitative experiments, qRT-PCR, and Western blot assays were employed to evaluate the osteogenic differentiation capability. Network pharmacology analysis was then carried out using the identified compounds to establish a database of Cd components and targets, along with a database of periodontitis. The intersection of these databases revealed the network relationship between Cd components-mapped genes-signaling pathways. KEGG/GO pathway analysis of the targets was performed to filter potential enriched pathways. PPI/CytoHubba protein interaction network analysis was utilized to identify hub genes. Molecular docking and molecular dynamics simulations were employed to analyze the docking and interaction between core gene and Cd components. RESULTS We detected 38 major components in the Cd extract, with Echinacoside, Acteoside, Tubuloside A, and Cistanoside A undergoing standard substance verification. In vitro studies indicated that the Cd, at concentrations below 100 μg/ mL, did not affect cell proliferation and inhibited apoptosis. Osteogenesis assays demonstrated that Cd at concentrations of 1 μg/ mL, 10 μg/ mL, and 100 μg/ mL significantly promoted the osteogenic differentiation ability of MC3T3-E1 cells. It also notably upregulated the mRNA and protein levels of Alp, Bmp2, Runx2, and Opn, and the optimal concentration was 10 μg/mL. Network pharmacology results revealed the network relationship between Cd's components, crossed targets and signaling pathways. Combined with KEGG/GO pathway analysis and PPI/CytoHubba protein interaction network analysis. The key pathway and hub genes of Cd regulating periodontitis are both related to hypoxia pathway and HIF-1α. Molecular docking results showed a strong binding affinity between Cd compounds and hub genes, and molecular dynamics simulation results indicated the stability of the complexes formed between HIF-1α and several Cd compounds. CONCLUSION Cistanche deserticola exhibits a notable capacity to promote bone regeneration, and its mechanism of action in regulating periodontitis is associated with the hypoxia signaling pathway. HIF-1α may serve as a potential core gene. Future research will focus on exploring the mechanism of Cd in intervene periodontitis and promoting bone remodeling in hypoxic environment.
Collapse
Affiliation(s)
- Chao Shan
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Zeyu Wu
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Yuning Xia
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Xiaowei Ji
- Department of Prosthodontics and Dental Implantology, Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumgi 830054,People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Wenjie Zhang
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Jin Zhao
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China.
| |
Collapse
|
6
|
Hu W, Pei Z, Xia A, Jiang Y, Yang B, Liu X, Zhao J, Zhang H, Chen W. Lactobacillus helveticus-Derived Whey-Calcium Chelate Promotes Calcium Absorption and Bone Health of Rats Fed a Low-Calcium Diet. Nutrients 2024; 16:1127. [PMID: 38674818 PMCID: PMC11053418 DOI: 10.3390/nu16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the characteristics of Lactobacillus helveticus-derived whey-calcium chelate (LHWCC) and its effect on the calcium absorption and bone health of rats. Fourier-transform infrared spectroscopy showed that carboxyl oxygen atoms, amino nitrogen atoms, and phosphate ions were the major binding sites with calcium in LHWCC, which has a sustained release effect in simulated in vitro digestion. LHWCC had beneficial effects on serum biochemical parameters, bone biomechanics, and the morphological indexes of the bones of calcium-deficient rats when fed at a dose of 40 mg Ca/kg BW for 7 weeks. In contrast to the inorganic calcium supplement, LHWCC significantly upregulated the gene expression of transient receptor potential cation V5 (TRPV5), TRPV6, PepT1, calcium-binding protein-D9k (Calbindin-D9k), and a calcium pump (plasma membrane Ca-ATPase, PMCA1b), leading to promotion of the calcium absorption rate, whereas Ca3(PO4)2 only upregulated the TRPV6 channel in vivo. These findings illustrate the potential of LHWCC as an organic calcium supplement.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiwen Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aonan Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Cao G, Hu S, Ning Y, Dou X, Ding C, Wang L, Wang Z, Sang X, Yang Q, Shi J, Hao M, Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front Pharmacol 2024; 15:1370900. [PMID: 38628648 PMCID: PMC11019011 DOI: 10.3389/fphar.2024.1370900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Gang Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - ShaoQi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Cheng X, Jin S, Feng M, Miao Y, Dong Q, He B. The Role of Herbal Medicine in Modulating Bone Homeostasis. Curr Top Med Chem 2024; 24:634-643. [PMID: 38333981 DOI: 10.2174/0115680266286931240201131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Osteoporosis and other bone diseases are a major public health concern worldwide. Current pharmaceutical treatments for bone disorders have limitations, driving interest in complementary herbal medicines that can help maintain bone health. This review summarizes the scientific evidence for medicinal herbs that modulate bone cell activity and improve bone mass, quality and strength. Herbs with osteogenic, anti-osteoporotic, and anti-osteoclastic effects are discussed, including compounds and mechanisms of action. Additionally, this review examines the challenges and future directions for translational research on herbal medicines for osteoporosis and bone health. While preliminary research indicates beneficial bone bioactivities for various herbs, rigorous clinical trials are still needed to verify therapeutic efficacy and safety. Further studies should also elucidate synergistic combinations, bioavailability of active phytochemicals, and precision approaches to match optimal herbs with specific etiologies of bone disease. Advancing evidence- based herbal medicines may provide novel alternatives for promoting bone homeostasis and treating skeletal disorders.
Collapse
Affiliation(s)
- Xinnan Cheng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Shanshan Jin
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Yunfeng Miao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Qi Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| |
Collapse
|
9
|
An F, Wang X, Wang C, Liu Y, Sun B, Zhang J, Gao P, Yan C. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1210627. [PMID: 37645421 PMCID: PMC10461560 DOI: 10.3389/fendo.2023.1210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaxia Wang
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Yan J, Wang H, Wang H, Bian Y, Wang K, Zhai X, Li Y, Wu K, Wang W, Li J, Tang Z, Wang X. Quantitative analysis and hepatoprotective mechanism of Cistanche deserticola Y. C. Ma against alcohol-induced liver injury in mice. Biomed Pharmacother 2023; 162:114719. [PMID: 37080088 DOI: 10.1016/j.biopha.2023.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023] Open
Abstract
Cistanche deserticola Y. C. Ma (CD), known as "desert ginseng", has been found to have hepatoprotective effect. This research aimed to investigate the quality control and its alleviating effect on alcoholic liver injury in mice. In this study, for the first time, a sensitive and efficient ultra-high-performance liquid chromatography with quadrupole ion-trap mass spectrometry (UPLC-Q-TRAP/MS) method was developed to rapidly characterize nine representative phenylethanoid glycosides (PhGs) in the CD extract within 14 min, offering a reference for the quality control standard of this plant. In addition, we found that the CD extract significantly inhibited the weight loss, decreased the liver index, and attenuated excessive lipid deposition, inflammatory and oxidative stress in the mice liver. With the help of the high-throughput lipidomics technique, we discovered that CD markedly reversed 17 lipid metabolites and their involved linoleic acid, arachidonic acid and glycerophospholipid metabolic pathways. As these metabolites are mainly associated with lipid metabolism and liver damage, we further used molecular biological tests to found that CD could regulate the upstream genes and proteins of the lipid metabolism pathway, including adenosine 5'-monophosphate-activated protein kinase (AMPK), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and peroxidase proliferators activate receptors α (PPARα). In conclusion, this study elucidates the modulatory effects of CD on lipid metabolism disorders in alcoholic fatty liver from holistic system and provides a reference for further research and development of CD as a therapeutic agent.
Collapse
Affiliation(s)
- Jiajing Yan
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Huanjun Wang
- College of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xinyuan Zhai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Weihua Wang
- Engineer Center of Pharmaceutical Technology, Tsinghua University, Beijing 100084, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
11
|
Wu L, Xiang T, Chen C, Isah MB, Zhang X. Studies on Cistanches Herba: A Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1098. [PMID: 36903966 PMCID: PMC10005655 DOI: 10.3390/plants12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
As a famous tonic herb, Cistanches Herba is known for its broad medicinal functions, especially its hormone balancing, anti-aging, anti-dementia, anti-tumor, anti-oxidative, neuroprotective, and hepatoprotective effects. This study aims to provide a comprehensive bibliometric analysis of studies on Cistanche and to identify research hotspots and frontier topics on the genus. Based on the metrological analysis software CiteSpace, 443 Cistanche related papers were quantitatively reviewed. The results indicate that 330 institutions from 46 countries have publications in this field. China was the leading country in terms of research importance and number of publication (335 articles). In the past decades, studies on Cistanche have mainly focused on its rich active substances and pharmacological effects. Although the research trend shows that Cistanche has grown from an endangered species to an important industrial plant, its breeding and cultivation continue to be important areas for research. In the future, the application of Cistanche species as functional foods may be a new research trend. In addition, active collaborations among researchers, institutions, and countries are expected.
Collapse
Affiliation(s)
- Longjiang Wu
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tian Xiang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Murtala Bindawa Isah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, P.M.B. 2218, Katsina 820102, Nigeria
- Biomedical Research and Training Centre, Yobe State University, P.M.B. 1144, Damaturu 600213, Nigeria
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Duan Y, Su YT, Ren J, Zhou Q, Tang M, Li J, Li SX. Kidney tonifying traditional Chinese medicine: Potential implications for the prevention and treatment of osteoporosis. Front Pharmacol 2023; 13:1063899. [PMID: 36699069 PMCID: PMC9868177 DOI: 10.3389/fphar.2022.1063899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The aging global population is increasingly affected by osteoporosis (OP), which is one of the most significant threats to the elderly. Moreover, its prevention and treatment situations have become increasingly severe. Therefore, it is imperative to develop alternatives or complementary drugs for preventing and treating osteoporosis. Kidney tonifying traditional Chinese medicine (KTTCM) has been used for the treatment of osteoporosis for a long time. Pharmacological studies have shown that kidney tonifying traditional Chinese medicine can promote osteoblasts, inhibit osteoclasts, and regulate the level of estrogen and plays vital roles in stimulating osteogenesis, restraining adipogenesis of marrow mesenchymal stem cells (MSCs), regulating the metabolism of calcium and phosphorus, and inhibiting oxidative stress. These effects are mediated by OPG/RANKL/RANK, BMP/Smads, MAPKs, and Wnt/β-catenin systems. To develop a safe, synergistic, effective, and homogenized TCM formula with robust scientific evidence to provide faster and more economical alternatives, the anti-osteoporosis ingredients and pharmacological mechanisms of kidney tonifying traditional Chinese medicine are recapitulated from the perspective of molecular and cell biology, and the safety and toxicity of kidney tonifying traditional Chinese medicine have also been reviewed in this paper.
Collapse
Affiliation(s)
- Yan Duan
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Yu-Ting Su
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Jie Ren
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Qun Zhou
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Min Tang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Juan Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Shun-Xiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China,*Correspondence: Shun-Xiang Li,
| |
Collapse
|
13
|
Protective effect of Cistanche deserticola on gentamicin-induced nephrotoxicity in rats. CHINESE HERBAL MEDICINES 2023; 15:102-109. [PMID: 36875447 PMCID: PMC9975639 DOI: 10.1016/j.chmed.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Gentamicin (GM) is a commonly used aminoglycoside antibiotic, however, renal toxicity has limited its usage. The present study was designed to evaluate the ameliorative effect of Cistanche deserticola on GM-induced nephrotoxicity in rats. Methods The nephrotoxicity in rats was induced by intraperitoneal administration of GM (100 mg/kg) for 10 consecutive days. Glomerular filtration rate, blood urea nitrogen, creatinine and kidney histopathology were detected to assess the GM-induced nephrotoxicity. The oxidative stress (catalase, superoxide dismutase, glutathione and malondialdehyde) was assessed. The inflammatory response (tumor necrosis factor-α, interleukin-6, myeloperoxidase and nuclear factor-kappa B) and apoptotic marker (Bax and Bcl-2) were also evaluated. Results The results showed that water and 75% ethanol extracts of C. deserticola (named CDW and CDE, respectively) (100, 200 and 400 mg/kg) in combination with GM could recover the reduction of glomerular filtration rate and enhance the renal endogenous antioxidant capability induced by GM. The increase in the expression of renal inflammatory cytokines (tumor necrosis factor-α and interleukin-6), nuclear protein of nuclear factor-kappa B (p65) and the activity of myeloperoxidase induced by GM was significantly decreased upon CDW or CDE treatment. In addition, CDW or CDE treatment could decrease the Bax protein expression and increase the Bcl-2 protein expression in GM-induced nephrotoxicity in rats significantly. Conclusion The study demonstrated that C. deserticola treatment could attenuate kidney dysfunction and structural damage in rats induced by GM through the reduction of inflammation, oxidative stress and apoptosis.
Collapse
|
14
|
Cistanche Deserticola for Regulation of Bone Metabolism: Therapeutic Potential and Molecular Mechanisms on Postmenopausal Osteoporosis. Chin J Integr Med 2023; 29:74-80. [PMID: 35930138 DOI: 10.1007/s11655-022-3518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a generalized disease of bone that leads to a loss of bone density and bone mass, destruction of bone microstructure, increased brittleness and therefore fracture. At present, the main treatment of Western medicine is drug therapy such as bisphosphonates, calcitriol, vitamin D, etc. However, long-term use of these drugs may bring some adverse reactions. Chinese herbal medicine Cistanche deserticola could regulate bone metabolism by promoting osteoblast activity and inhibiting osteoclast activity with low toxicity and adverse reactions. Therefore, Cistanche deserticola has attracted increasing attention for its efficacy in the prevention and treatment of osteoporosis in recent years. Here we present a literature review of the molecular pathways involved in osteoporosis and the effects of Cistanche deserticola on bone metabolism. Our objective is to clarify the mechanism of Cistanche deserticola in the treatment of osteoporosis.
Collapse
|
15
|
Liu J, Ding S, Yang L, Zhao X, Ren R, Wang Y, Su C, Chen J, Ma X. Integration of pharmacodynamics and metabolomics reveals the therapeutic effects of 6-acetylacteoside on ovariectomy-induced osteoporosis mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154399. [PMID: 36057143 DOI: 10.1016/j.phymed.2022.154399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 6-acetylacteoside (6-AA) is a phenylethanoid glycoside isolated from Cistanche deserticola which had been previously proven to possess anti-osteoporotic activity previously. Currently, it is still unknown whether 6-AA plays a crucial role on the anti-osteoporotic effects of C. deserticola. PURPOSE To elucidate the therapeutic effect and mechanism of 6-AA on osteoporosis by employing an ovariectomized mouse model in vivo and RAW264.7 cells in vitro. METHODS Sixty female ICR mice were randomly assigned into six groups: sham-operated control group (SHAM, vehicle), ovariectomized model group (OVX, vehicle), positive group (EV, 1 mg/kg/day of estradiol valerate), low dosage (10 mg/kg/day of 6-AA), medium dosage (20 mg/kg/day of 6-AA) and high dosage (40 mg/kg/day of 6-AA) treatment groups. All substances were administered daily by intragastric gavage. After 12 weeks of intervention, trabecular bone microarchitecture was estimated and bone biomechanics were determined. Bone formation and resorption factors were determined by using the corresponding Elisa kits. The related proteins and metabolites were estimated by using western-blot and metabolomics techniques. RESULTS OVX mice demonstrated significant atrophy of the uterine and vagina, declined biomechanical parameters such as flexural strength and maximum load, deteriorated trabecular bone microarchitecture such as decreased BMD, BMC, TMC, TMD, BVF, Tb. N, and Tb. Th and increased Tb. Sp, as well as increased bone resorption factors such as TRAP, cathepsin K, and DPD, all after 12 weeks of ovariectomy operation. Following administration of 6-AA to OVX mice, parameters related to the bone microarchitecture, bone resorption activities as well as biomechanical properties were all significantly improved. Meanwhile, the levels of NF-κB, NFATc1, RANK, RANKL and TRAF6 were significantly downregulated, while OPG, PI3K and AKT were upregulated after 6-AA intervention. This indicates that, 6-AA could prevent bone resorption by regulating the RANKL/RANK/OPG mediated NF-κB and PI3K/AKT pathways. Furthermore, 26 different metabolites corresponding to 25 metabolic pathways were identified, and 5 of which were related to the formation of osteoporosis. Interestingly, 23 abnormal metabolites were recovered after 6-AA treatment. CONCLUSION Our results revealed the significant anti-osteoporotic effects of 6-AA on ovariectomized mice which were probably exerted via suppression of osteoclast formation and bone resorption.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China; School of Pharmacy, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Shuqin Ding
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojun Zhao
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China
| | - Ruru Ren
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yingli Wang
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China
| | - Chao Su
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
16
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
17
|
Combined Therapy of Yishen Zhuanggu Decoction and Caltrate D600 Alleviates Postmenopausal Osteoporosis by Targeting FoxO3a and Activating the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7732508. [PMID: 35873637 PMCID: PMC9307327 DOI: 10.1155/2022/7732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background Postmenopausal osteoporosis (PMO) is the most prevalent metabolic bone disease in women. Yishen Zhuanggu (YSZG) decoction and Caltrate D600 reportedly affects bone formation. This study aimed to investigate the efficacy and mechanism of YSZG decoction combined with Caltrate D600 in PMO treatment. Methods Ovariectomy-induced PMO rat model was treated with YSZG or/and Caltrate D600 for 12 weeks. Femur bone mineral density (BMD), osteoporosis-related protein expression, and serum parameters were measured. Pathological features of femur bone tissues were observed using hematoxylin and eosin staining. Serum levels of oxidative stress parameters were measured using corresponding commercial kits. The mRNA and protein expression of FoxO3a, Wnt, and β-catenin was detected using qRT-PCR and western blotting. Results The BMD and ultimate load of PMO rats were increased after treatment with YSZG. YSZG treatment promoted the bone trabeculae formation of PMO rats. YSZG treatment also induced bone differentiation and suppress oxidative stress in PMO rats, evidenced by the increased BALP, Runx2, OPG, SOD, and CAT levels, as well as the decreased TRACP 5b, RANKL, ROS, and MDA levels. Additionally, YSZG treatment downregulated the FoxO3a expression and upregulated the levels of Wnt and β-catenin in PMO rats. Caltrate D600 addition showed an auxiliary effect for YSZG. Conclusion YSZG decoction exerts the antiosteoporotic effect on PMO by restraining the FoxO3a expression and activating the Wnt/β-catenin pathway, which has an impressive synergistic effect with Caltrate D600.
Collapse
|
18
|
Wang S, Wang S, Wang X, Xu Y, Zhang X, Han Y, Yan H, Liu L, Wang L, Ye H, Li X. Effects of Icariin on Modulating Gut Microbiota and Regulating Metabolite Alterations to Prevent Bone Loss in Ovariectomized Rat Model. Front Endocrinol (Lausanne) 2022; 13:874849. [PMID: 35399950 PMCID: PMC8988140 DOI: 10.3389/fendo.2022.874849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is an estrogen deficiency-induced bone loss, which has been shown an association with an altered gut microbiota (GM). Gut microbiota-bone axis has been recognized as a crucial mediator for bone homeostasis. Icariin (ICA) is an effective agent to delay bone loss by regulating the bone homeostasis. Thus, we hypothesize that ICA can prevent bone loss by modulating GM and regulating metabolite alterations. The effects of ICA on bone metabolism improvement in ovariectomized (OVX) rats and their relationships with the GM and fecal metabolites were investigated. Micro-computed tomography (micro-CT) and hematoxylin-eosin (HE) staining showed a typical bone boss in OVX group, while ICA or estradiol (E2) administration exhibited positive effects on bone micro-architecture improvement. The GM such as Actinobacteria, Gammaproteobacteria, Erysipelotrichi, Erysipelotrichales, Enterobacteriales, Actinomycetales, Ruminococcus and Oscillospira significantly correlated to serum bone Gla-protein (BGP), receptor activator of nuclear factor-κB (RANK), receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG) and tartrate resistant acid phosphatase (TRACP). Further t-test revealed a substantial variation of the GM and fecal metabolites in different treatments. Among them, Lachnoclostridium, Butyricimonas, Rikenella, Paraprevolla, Adlercreutzia, Enterorhabdus, Anaerovorax, Allobaculum, Elusimicrobium, Lactococcus, Globicatella and Lactobacillus were probably the key microbial communities driving the change of bile acid, amino acid and fatty acid, thereby leading to an improvement of PMOP. The significant up-regulation of L-Saccharopine, 1-Aminocyclohexadieneacid and linoleic acid after ICA administration suggested important contributions of amino acid and fatty acid metabolisms in the prevention and treatment of PMOP. Taken together, our study has provided new perspectives to better understand the effects of ICA on PMOP improvement by regulating GM and the associated fecal metabolites. Our findings contribute to develop ICA as a potential therapy for PMOP.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengjie Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunteng Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linglong Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
19
|
Song J, Liu G, Song Y, Jiao K, Wang S, Cao T, Yu J, Wei Y. Positive effect of compound amino acid chelated calcium from the shell and skirt of scallop in an ovariectomized rat model of postmenopausal osteoporosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1363-1371. [PMID: 34358348 DOI: 10.1002/jsfa.11468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/18/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Osteoporosis has become an important public health issue with the increase of aging population, and afflicts millions of people worldwide, particularly elderly or postmenopausal women. In the present study, we prepared compound amino acid chelated calcium (CAA-Ca) from processing by-products of Chlamys farreri, and evaluated its effect on postmenopausal osteoporosis with an ovariectomized (OVX) rat model. RESULTS A 60-day treatment of OVX rats with CAA-Ca significantly enhanced the bone mineral density (BMD) and the bone calcium content. Meanwhile, some bone morphometric parameters, trabecular bone number (Tb.N), trabecular bone volume fraction (BV/TV), trabecular bone thickness (Tb.Th) and cortical bone wall thickness (Ct.Th), were also increased by 8.20%, 118.18%, 32.99% and 19.10%, respectively. In addition, the alkaline phosphatase (ALP) levels in serum were significantly reduced after CAA-Ca treatment, while the blood calcium levels were increased. Mechanistically, CAA-Ca down-regulated the levels of receptor activator of nuclear factor-κB (RANK) and receptor activator of nuclear factor-κB ligand (RANKL), and up-regulated osteoprotegerin (OPG) levels in osteoclasts, inhibiting bone resorption and bone loss. Meanwhile, CAA-Ca treatment raised β-catenin levels and lowered Dickkopf1 (DKK1) levels in the Wnt signaling pathway of osteoblasts, which can promote calcium absorption and bone formation. CONCLUSION The results suggested that CAA-Ca promoted bone formation, inhibited bone resorption and improved bone microstructure. Therefore, this study contributes to the potential application of CAA-Ca as a functional food resource in the treatment of postmenopausal osteoporosis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiale Song
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Guofeng Liu
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Yahui Song
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Kui Jiao
- College of Life Sciences, Qingdao University, Qingdao, China
| | | | | | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Yin H, Wang Y, Wang L, Bai X, Zhang J. HPLC-MS/MS based comparative pharmacokinetics of 12 bioactive components in normal and osteoporosis rats after oral administration of You-Gui-Wan. J Sep Sci 2021; 45:832-844. [PMID: 34931459 DOI: 10.1002/jssc.202100689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/12/2021] [Indexed: 11/06/2022]
Abstract
You-Gui-Wan is a traditional Chinese patent medicine that has been extensively used to treat kidney-yang deficiency syndrome. An HPLC-MS/MS method was developed to measure contents of 12 components of You-Gui-Wan in rat plasma. Considering that pathological changes might directly affect the pharmacokinetic behavior of drugs, this method was further applied to compare pharmacokinetics between normal and osteoporotic animals. The results indicated that osteoporosis significantly altered the pharmacokinetic characteristics of the 12 components. Thus, the pharmacokinetics of You-Gui-Wan evaluated under osteoporotic conditions were much closer to clinical practice than that in normal physiological states. Thus, the optimized analytical method, along with the pharmacokinetic evaluation in the osteoporotic model may offer a more comprehensive understanding to elucidate the anti-osteoporosis mechanism of You-Gui-Wan. These findings may aid in developing a more effective treatment plan for osteoporosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hua Yin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Yahong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Ling Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Xue Bai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Jianhua Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, P. R. China
| |
Collapse
|
21
|
Qian D, Zhou H, Fan P, Yu T, Patel A, O’Brien M, Wang Z, Lu S, Tong G, Shan Y, Wang L, Gao Y, Xiong Y, Zhang L, Wang X, Liu Y, Zhou S. A Traditional Chinese Medicine Plant Extract Prevents Alcohol-Induced Osteopenia. Front Pharmacol 2021; 12:754088. [PMID: 35002697 PMCID: PMC8730326 DOI: 10.3389/fphar.2021.754088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced in the treatment of bone diseases and alcoholism. Chronic excessive alcohol use results in alcohol-induced bone diseases, including osteopenia and osteoporosis, which increases fracture risk, deficient bone repair, and osteonecrosis. This preclinical study investigated the therapeutic effects of TCM herbal extracts in animal models of chronic excessive alcohol consumption-induced osteopenia. TCM herbal extracts (Jing extracts) were prepared from nine Chinese herbal medicines, a combinative herbal formula for antifatigue and immune regulation, including Astragalus, Cistanche deserticola, Dioscorea polystachya, Lycium barbarum, Epimedium, Cinnamomum cassia, Syzygium aromaticum, Angelica sinensis, and Curculigo orchioides. In this study, Balb/c male mice were orally administrated alcohol (3.2 g/kg/day) with/without TCM herbal extracts (0.125 g/kg, 0.25 g/kg, or 0.5 g/kg) by gavage. Our results showed that after 50 days of oral administration, TCM herbal extracts prevented alcohol-induced osteopenia demonstrated by μ-CT bone morphological analysis in young adults and middle-aged/old Balb/c male mice. Biochemical analysis demonstrated that chronic alcohol consumption inhibits bone formation and has a neutral impact on bone resorption, suggesting that TCM herbal extracts (Jing extracts) mitigate the alcohol-induced abnormal bone metabolism in middle-aged/old male mice. Protocatechuic acid, a natural phenolic acid in Jing extracts, mitigates in vivo alcohol-induced decline of alkaline phosphatase (ALP) gene expression in the bone marrow of Balb/c male mice and in vitro ALP activity in pre-osteoblast MC3T3-E1 cells. Our study suggests that TCM herbal extracts prevent chronic excessive alcohol consumption-induced osteopenia in male mice, implying that traditional medicinal plants have the therapeutic potential of preventing alcohol-induced bone diseases.
Collapse
Affiliation(s)
- Dongyang Qian
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhou
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Pan Fan
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Spine Center, Zhongda Hospital, Southeast University Medical School, Nanjing, China
| | - Tao Yu
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anish Patel
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Morgan O’Brien
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Zhe Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Shiguang Lu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Guoqiang Tong
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yimin Shan
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Lei Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Xiong
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lily Zhang
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuancai Liu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| |
Collapse
|
22
|
Wang S, Ma Q, Xie Z, Shen Y, Zheng B, Jiang C, Yuan P, An Q, Fan S, Jie Z. An Antioxidant Sesquiterpene Inhibits Osteoclastogenesis Via Blocking IPMK/TRAF6 and Counteracts OVX-Induced Osteoporosis in Mice. J Bone Miner Res 2021; 36:1850-1865. [PMID: 33956362 DOI: 10.1002/jbmr.4328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Excessive bone resorption induced by increased osteoclast activity in postmenopausal women often causes osteoporosis. Although the pharmacological treatment of osteoporosis has been extensively developed, a safer and more effective treatment is still needed. Here, we found that curcumenol (CUL), an antioxidant sesquiterpene isolated from Curcuma zedoaria, impaired receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in vitro, whereas the osteoblastogenesis of MC3T3-E1 cells was not affected. We further demonstrated that CUL treatment during RANKL-induced osteoclastogenesis promotes proteasomal degradation of TRAF6 by increasing its K48-linked polyubiquitination, leading to suppression of mitogen-activated protein kinases (MAPKs) and NF-κB pathways and the production of reactive oxygen species (ROS). We also showed that inositol polyphosphate multikinase (IPMK) binds with TRAF6 to reduce its K48-linked polyubiquitination under RANKL stimulation. Concurrently, IPMK deficiency inhibits osteoclast differentiation. The binding between IPMK and TRAF6 blocked by CUL treatment was found in our study. Finally, we confirmed that CUL treatment prevented ovariectomy (OVX)-induced bone loss in mice. In summary, our study demonstrates that CUL could impair the stability of TRAF6 enhanced by IPMK and suppress excessive osteoclast activity in estrogen-deficient mice to treat osteoporosis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qin An
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Sun X, Zheng Y, Tian L, Miao Y, Zeng T, Jiang Y, Pei J, Ahmad B, Huang L. Metabolome profiling and molecular docking analysis revealed the metabolic differences and potential pharmacological mechanisms of the inflorescence and succulent stem of Cistanche deserticola. RSC Adv 2021; 11:27226-27245. [PMID: 35480642 PMCID: PMC9037670 DOI: 10.1039/d0ra07488h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cistanche deserticola is an endangered plant used for medicine and food. Our purpose is to explore the differences in metabolism between inflorescences in non-medicinal parts and succulent stems in medicinal parts in order to strengthen the application and development of the non-medicinal parts of C. deserticola. We performed metabolomics analysis through LC-ESI-MS/MS on the inflorescences and succulent stems of three ecotypes (saline-alkali land, grassland and sandy land) of C. deserticola. A total of 391 common metabolites in six groups were identified, of which isorhamnetin O-hexoside (inflorescence) and rosinidin O-hexoside (succulent stems) can be used as chemical markers to distinguish succulent stems and inflorescences. Comparing the metabolic differences of three ecotypes, we found that most of the different metabolites related to salt-alkali stress were flavonoids. In particular, we mapped the biosynthetic pathway of phenylethanoid glycosides (PhGs) and showed the metabolic differences in the six groups. To better understand the pharmacodynamic mechanisms and targets of C. deserticola, we screened 88 chemical components and 15 potential disease targets through molecular docking. The active ingredients of C. deserticola have a remarkable docking effect on the targets of aging diseases such as osteoporosis, vascular disease and atherosclerosis. To explore the use value of inflorescence, we analyzed the molecular docking of the unique flavonoid metabolites in inflorescence with inflammation targets. The results showed that chrysoeriol and cynaroside had higher scores for inflammation targets. This study provides a scientific basis for the discovery and industrialization of the resource value of the non-medicinal parts of C. deserticola, and the realization of the sustainable development of C. deserticola. It also provides a novel strategy for exploring indications of Chinese herb. Flow chart for exploring the metabolic and pharmacological characteristics of different parts of Cistanche deserticola.![]()
Collapse
Affiliation(s)
- Xiao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Yan Zheng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197.,Jiangxi University of Traditional Chinese Medicine Nanchang 330000 Jiangxi China
| | - Lixia Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Yujing Miao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Tiexin Zeng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197.,Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Yuan Jiang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Jin Pei
- Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar 25000 Peshawar Pakistan
| | - Linfang Huang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| |
Collapse
|
24
|
Guo Y, Cui Q, Ren S, Hao D, Morikawa T, Wang D, Liu X, Pan Y. The hepatoprotective efficacy and biological mechanisms of three phenylethanoid glycosides from cistanches herba and their metabolites based on intestinal bacteria and network pharmacology. J Nat Med 2021; 75:784-797. [PMID: 34003414 DOI: 10.1007/s11418-021-01508-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/20/2021] [Indexed: 12/16/2022]
Abstract
Echinacoside (ECH), acteoside (ACT), and isoacteoside (ISAT), the typical phenylethanoid glycosides (PhGs) in cistanches herba, have various pharmacological activities. However, the ECH, ACT and ISAT have extremely low oral bioavailability, which is related to their metabolism under the intestinal flora. Previous studies showed that intestinal metabolites were the hepatoprotective substances in vivo, but the research on whether PhGs has effects without intestinal bacteria has not been studied. In this paper, ECH, ACT and ISAT were incubated with human or rat intestinal bacteria for 36 h. After incubating with human bacteria for 36 h, three prototype compounds were not detected and were mainly biotransformed to 3-HPP and HT. In the network pharmacology, a total of 6 common targets were obtained by analysing the prototypes, the metabolites and the liver injury. It was found that the combinations of three metabolites and common targets were more stable than those of the prototypes and common targets by molecular docking. Meanwhile, hepatocellular apoptosis, proliferation, inflammation and oxidative responses might play important roles in the mechanisms of the metabolites exerting hepatoprotective activities. Then normal and pseudo-sterile mice experiments were adopted to further compare the hepatoprotective activities of prototypes and metabolites. Animal experiment results showed that the prototypes and the metabolites in the normal mice had significantly hepatoprotective activity. Interestingly, in the pseudo-germfree mice, the metabolites showed significant hepatoprotective effect, but the prototypes had not effect. It indicated that the prototype cannot exert liver protective activity without the effect of intestinal bacteria.
Collapse
Affiliation(s)
- Yongli Guo
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Qingling Cui
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Deguo Hao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
25
|
Wang F, Tu P, Zeng K, Jiang Y. Total glycosides and polysaccharides of Cistanche deserticola prevent osteoporosis by activating Wnt/β-catenin signaling pathway in SAMP6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113899. [PMID: 33549763 DOI: 10.1016/j.jep.2021.113899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine Cistanche deserticola Y. C. Ma has effect of "tonifying kidney and strengthening bone". However, the specific active extracts of C. deserticola and mechanisms for treatment of osteoporotic are not clear. AIM OF THE STUDY We wanted to identify the effective component extracts of C. deserticola for the treatment of osteoporosis and the potential mechanisms. MATERIALS AND METHODS Our group researched the extracts of C. deserticola with anti-osteoporotic activity, including total glycosides (TGs), polysaccharides (PSs), and oligosaccharides (OSs) in senescence accelerated mouse prone 6 (SAMP6) mice. The Goldner's Trichrome, Van Gieson's (VG), Safranin O-Fast Green staining and Von Kossa staining were performed to investigate the bone structure formation and calcium deposits. Serum was collected for detecting biochemical markers. Bone micro-architecture was detected by micro-CT. Expressions of bone morphogenetic protein-2 (BMP-2), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator of nuclear factor-κ B ligand (RANKL), p-glycogen synthetase kinase-3β (p-GSK-3β), and p-β-catenin were analyzed by western blotting and immunohistochemistry. RESULTS TGs and PSs ameliorated bone histopathological damages, promoted the formation of new bone, collagenous fiber, and chondrocytes, and accelerated the calcium deposits. Moreover, they remarkable altered the biomarkers of bone turnover and effectively ameliorated bone microarchitecture. The further mechanisms study showed that TGs and PSs significantly decreased the expressions of RANKL, p-β-catenin, as well as up-regulated the expression of BMP-2, OCN, OPG, and p-GSK-3β (Ser9). CONCLUSION The findings of this study suggest that TGs and PSs can promote osteoblastogenic bone formation and improve bone microstructure damage in SAMP6 mice, and their therapeutic effect on osteoporosis is via activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Fujiang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
26
|
Zhao Y, Xu Y, Zheng H, Lin N. QingYan formula extracts protect against postmenopausal osteoporosis in ovariectomized rat model via active ER-dependent MEK/ERK and PI3K/Akt signal pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113644. [PMID: 33264660 DOI: 10.1016/j.jep.2020.113644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QingYan Formula has been traditionally used to tonify kidney and benefit essence, and QingYan Formula 70% ethanol extracts (QYFE) showed estrogen-like effect on reproductive system in our previous studies. However, there were no reports of QYFE on bone. AIM OF THE STUDY This study offered preliminary insight of QYFE into the pharmacodynamics and mechanism of anti-bone osteoporosis in ovariectomized rats. MATERIALS AND METHODS OVX rats were orally administrated QYFE or estradiol valerate (EV) for 12 weeks. We investigated the pharmacodynamic effects of QYFE on anti-bone loss in OVX rats, and also investigated the role of QYFE in promoting osteogenesis and inhibiting osteoclast differentiation. RESULTS QYFE administration significantly reduced the degree of high bone turnover, dose-dependently repaired the damaged microstructure of trabecular and cortical bone by Hematoxylin-Eosin (HE) staining and micro-computed tomography (micro-CT), and reduced the number of femur osteoclasts by TRAP staining. QYFE enhanced the proliferation and activity of alkaline phosphatase (ALP), the phosphorylation levels of extracellular regulated kinase (ERK) and Akt in MG-63 cells, which was inhibited by ICI 182 780. Moreover, in RAW264.7 cells, QYFE inhibited osteoclasts differentiation, reduced the number of osteoclasts, decreased the activity of TRAP enzyme during formation, down-regulated the protein expression of p-ERK inhibited by ICI 182 780 and p-Akt not inhibited by ICI 182 780. CONCLUSION This experiment demonstrated that QYFE had a definite anti-bone loss effect and had potential effect on postmenopausal osteoporosis. The molecular mechanism was related to the activation of estrogen receptor (ER)-dependent mitogen-activated protein kinase kinase (MEK)/ERK and phosphoinositide 3-kinase (PI3K)/Akt signal pathways in osteoblast, down-regulation protein expressions of ER-dependent p-ERK and ER-independent p-Akt in osteoclast.
Collapse
Affiliation(s)
- Yuan Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China; Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, 518033, PR China.
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China.
| | - Hongxia Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Dongzhimen Nanxiao Road, Dongcheng, Beijing, 100700, PR China.
| |
Collapse
|
27
|
Song Y, Zeng K, Jiang Y, Tu P. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med Res Rev 2021; 41:1539-1577. [PMID: 33521978 DOI: 10.1002/med.21768] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Cistanches Herba (CH, Chinese name: Roucongrong), is a very precious, tonic Chinese medicine. Cistanche deserticola and Cistanche tubulosa are the two commonly used species and authenticated in Chinese Pharmacopoeia. Due to the parasitic nature of Cistanche plants, the wild source was once endangered and listed in the Appendix II of Convention on International Trade in Endangered Species of Wild Fauna and Flora. However, after continuously struggling in the past decades, CH has grown up to a big brand of Chinese medicine featured with the cultivation area as 1.26 million mu, the annual output as 6000 tons, and the related industrial output value as more than 20 billion China Yuan, attributing to large-scale cultivation and in-depth phytochemical and pharmacological investigations. Noteworthily, great achievements have reached concerning the research and development of relevant products, such as modern drugs, traditional Chinese medicine prescriptions, and dietary supplements. The current review summarizes the research progresses concerning the distribution and cultivation, phytochemistry, pharmacology, metabolism and product development of CH in the past decades, and the emerging challenges and developing prospects are discussed as well.
Collapse
Affiliation(s)
- Yuelin Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Nam HH, Lee AY, Seo YS, Park I, Yang S, Chun JM, Moon BC, Song JH, Kim JS. Three Scrophularia Species ( Scrophularia buergeriana, S. koraiensis, and S. takesimensis) Inhibit RANKL-Induced Osteoclast Differentiation in Bone Marrow-Derived Macrophages. PLANTS 2020; 9:plants9121656. [PMID: 33256150 PMCID: PMC7760964 DOI: 10.3390/plants9121656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Scrophulariae Radix, derived from the dried roots of Scrophularia ningpoensis Hemsl. or S. buergeriana Miq, is a traditional herbal medicine used in Asia to treat rheumatism, arthritis, and pharyngalgia. However, the effects of Scrophularia buergeriana, S. koraeinsis, and S. takesimensis on osteoclast formation and bone resorption remain unclear. In this study, we investigated the morphological characteristics and harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis, and compared the effects of ethanol extracts of these species using nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation. The harpagoside content of the three Scrophularia species was analyzed by high-performance liquid chromatography–mass spectrometry (HPLC/MS). Their therapeutic effects were evaluated by tartrate-resistant acid phosphatase (TRAP)-positive cell formation and bone resorption in bone marrow-derived macrophages (BMMs) harvested from ICR mice. We confirmed the presence of harpagoside in the Scrophularia species. The harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis was 1.94 ± 0.24 mg/g, 6.47 ± 0.02 mg/g, and 5.50 ± 0.02 mg/g, respectively. Treatment of BMMs with extracts of the three Scrophularia species inhibited TRAP-positive cell formation in a dose-dependent manner. The area of hydroxyapatite-absorbed osteoclasts was markedly decreased after treatment with the three Scrophularia species extracts. Our results indicated that the three species of the genus Scrophularia might exert preventive effects on bone disorders by inhibiting osteoclast differentiation and bone resorption, suggesting that these species may have medicinal and functional value.
Collapse
|
29
|
Du YY, Chen ZX, Liu MY, Liu QP, Lin CS, Chu CQ, Xu Q. Leonurine Regulates Treg/Th17 Balance to Attenuate Rheumatoid Arthritis Through Inhibition of TAZ Expression. Front Immunol 2020; 11:556526. [PMID: 33117342 PMCID: PMC7575723 DOI: 10.3389/fimmu.2020.556526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Leonurine, an active alkaloid extracted from Herba leonuri, is reported to have potent anti-inflammatory activity against rheumatoid arthritis (RA). However, the molecular mechanism of action of leonurine in RA remains poorly understood. In this study, we detected 3,425 mRNAs differentially expressed between CD4+ T cells of RA patients and those of healthy individuals using microarray raw data mining. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that transcriptional coactivator with PDZ-binding motif (TAZ) regulates a variety of biological processes including T-helper (Th)-17 cell development, and was thus selected for functional verification. In a naïve CD4+ T cell differentiation assay, we found that TAZ overexpression was associated with impaired balance between T regulatory (Treg) and Th17 cells in vitro. TAZ overexpression increased the levels of the pro-inflammatory cytokines interleukin (IL)-17, IL-1β, and tumor necrosis factor (TNF)-α and decreased that of the anti-inflammatory cytokine IL-10. Leonurine treatment had a direct recovery effect on the impaired balance and reduced the expression of TAZ and led to normalization of IL-17, IL-1β, and TNF-α and IL-10. Furthermore, IL-6 was found to promote the expression of TAZ and receptor activator of nuclear factor kappa-B ligand (RANKL), and RANK. Leonurine significantly inhibited TAZ-mediated expression of RANKL, and RANK and IL-6 in synovial fibroblasts. We conclude that the therapeutic effect of leonurine was through suppression of TAZ led to restoration of Treg/Th17 balance and suppression of synovial fibroblast action.
Collapse
Affiliation(s)
- Yan-Yi Du
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Xin Chen
- Chinese Medicine Department, South China Agricultural University Hospital, Guangzhou, China
| | - Min-Ying Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Ping Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Song Lin
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong-Qiu Chu
- Oregon Health & Science University, Portland, OR, United States
| | - Qiang Xu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Li Y, Li N, Zhao X, Zhang B, Yang L, Liu J, Snooks H, Hu C, Ma X. Beneficial effect of 2'-acetylacteoside on ovariectomized mice via modulating the function of bone resorption. Biomed Pharmacother 2020; 131:110747. [PMID: 32932047 DOI: 10.1016/j.biopha.2020.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
2'-Acetylacteoside-(2'-AA), a bioactive constituent isolated from Cistanche deserticola, has been proven to possess a variety of important pharmacological effects, thus brought an increased amount of scientists' attention. As the extract of C. deserticola exhibited significant anti-osteoporotic bioactivity in our previous study, we proposed that 2'-AA maybe one of the responsibilities. As a result, 2'-AA (10, 20 and 40 mg/kg body weight/day) exhibited significant anti-osteoporotic effects on ovariectomized (OVX) mice after 12 weeks of oral administration, confirmed by the increased bone mineral density, enhanced bone strength and improved trabecular bone micro-architecture including bone mineral content, tissue mineral content, trabecular number, and trabecular separation of OVX mice. Moreover, the properties of bone resorption markers including cathepsin K, TRAP and deoxypyridinoline were significantly suppressed, whereas the activities of bone formation index like ALP and BGP as well as the weights of the body, uterus, and vagina were seemingly not influenced by 2'-AA intervention. Mechanistically, the above therapeutic effect of 2'-AA on bone resorption of OVX mice operated maybe mainly through RANKL/RANK/TRAF6-mediated NF-κB/NFATc1 pathway, which was confirmed by the down-regulated expressions of RANK, TRAF6, IκB kinase β, NF-κB and NFATc1. Summarily, 2'-AA exhibited significant anti-osteoporotic activity and may be regarded as a promising anti-osteoporotic candidate for future clinical trial.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Nan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojun Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Hunter Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|