1
|
Kivrak E, Kara P. Simultaneous detection of ovarian cancer related miRNA biomarkers with carboxylated graphene oxide modified electrochemical biosensor platform. Bioelectrochemistry 2025; 161:108806. [PMID: 39244915 DOI: 10.1016/j.bioelechem.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Ovarian cancer, known as "silent killer", is a gynocological cancer with high mortality that usually diagnosed in the late stages. Gold standard immunoassay technique is evaluation of CA-125 levels which is not merely specific to ovarian cancer. Therefore, there is a need for sensitive determination of more specific biomarkers. miR-200 family is RNA nucleic acids that known to be upregulated in the presence of ovarian cancer. Since diagnosis based on a single biomarker is prone to generate misleading results, it is important to develop point-of-care systems that allow diagnosis of multiple miRNAs. Herein, an electrochemical nanobiosensor platform was developed for the multiplexed and simultaneous detection of miR-200c and miR-141. Biorecognition part was constitutued of methylene blue and ferrocene labeled hairpin DNA probes immobilized onto carboxylated graphene oxide modified pencil graphite electrodes. Their hybridization with miRNAs were examined upon "signal-off" approach using Square Wave Voltammetry. The platform demonstrated a linear detection range of 0.1 pM to 10 nM for both miR-141 and miR-200c, with low detection limits of 0.029 pM and 0.026 pM, respectively. We assume that the developed biosensor platform may pave the way in early diagnosis of the disease and the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Ezgi Kivrak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey; Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Ege University, 35100 Izmir, Bornova, Turkey
| | - Pinar Kara
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey.
| |
Collapse
|
2
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
3
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
4
|
Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol 2024; 24:244. [PMID: 39506720 PMCID: PMC11539483 DOI: 10.1186/s12894-024-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Prostate cancer is the most common solid malignant tumor in men, characterized by high morbidity and mortality. While current screening tools, such as prostate-specific antigen (PSA) testing and digital rectal examination, are available for early detection of prostate cancer, their sensitivity and specificity are limited. Tissue puncture biopsy, although capable of offering a definitive diagnosis, has poor positive predictive rates and burdens the patient more. Therefore, more reliable molecular diagnostic tools for prostate cancer urgently need to be developed. In recent years, microRNAs (miRNAs) have attracted much attention in prostate cancer research. miRNAs are extensively engaged in biological processes such as cell proliferation, differentiation, apoptosis, migration, and invasion by modulating gene expression post-transcriptionally. Dysregulation of miRNA expression in cancer is considered a critical factor in tumorigenesis and progression. This review first briefly introduces the biogenesis of miRNAs and their functions in cancer, then focuses on tumor-promoting miRNAs and tumor-suppressor miRNAs in prostate cancer. Finally, the potential application of miRNAs as multifunctional tools for cancer diagnosis, prognostic assessment, and therapy is discussed in detail. The concluding section summarizes the major points of the review and the challenges ahead.
Collapse
Affiliation(s)
- Xu Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Wen
- Department of Urology, West China Tianfu Hospital, Sichuan University, Chengdu, 610213, P.R. China.
| |
Collapse
|
5
|
Li Q, Tian J, Chen C, Liu H, Li B. Meta-analysis of the diagnostic value of exosomal microRNAs in renal cell carcinoma. Front Oncol 2024; 14:1441429. [PMID: 39558958 PMCID: PMC11571148 DOI: 10.3389/fonc.2024.1441429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024] Open
Abstract
Aim This meta-analysis aims to evaluate the potential of exosomal microRNAs(Exo-miRs) as diagnostic biomarkers for renal cell carcinoma(RCC). Methods Clinical studies reporting the use of Exo-miRs in the diagnosis of RCC were retrieved from PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang, VIP, and Chinese Biomedical Literature Database (SinoMed). After relevant data were screened and extracted, the quality of the included studies was assessed using the QUADAS-2 tool. The Meta-disc (version 1.4) software was used to analyze the heterogeneity of threshold/non-threshold effects in the included studies. The Stata MP (version 16.0) software was used to calculate sensitivity(Sen), specificity(Spe), positive likelihood ratio(+LR), negative likelihood ratio(-LR), area under the curve(AUC), diagnostic odds ratio(DOR), and publication bias. Results A total of 11 studies were included in this meta-analysis. Spearman correlation coefficient was 0.319 (P = 0.075; >0.05), indicating no threshold effects. The pooled Sen, Spe, +LR, -LR, DOR, and AUC were 0.73 (95% CI, 0.68-0.78), 0.81 (95% CI, 0.76-0.85), 3.80 (95% CI, 3.02-4.77), 0.33 (95% CI, 0.28-0.40), 11.48 (95% CI, 8.27-15.95), and 0.84 (95% CI, 0.80-0.87), respectively. No publication bias was detected among the included studies. Conclusion The expression of Exo-miRs plays an important role in the diagnosis of RCC. However, owing to the limited number of included studies and heterogeneity among them, further clinical research is necessary to verify the findings of this meta-analysis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023445956.
Collapse
Affiliation(s)
- Qingru Li
- Department of Nephrology, the Eighth Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
- Department of Nephrology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jing Tian
- Department of Cardiovascular, the First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cuiqing Chen
- Department of Nephrology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Hong Liu
- Department of Nephrology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Binyi Li
- Department of Oncology, Shenzhen Bao’an Authentic TCM Therapy
Hospital, Shenzhen, China
| |
Collapse
|
6
|
Lu W, Huang H, Xu Z, Xu S, Zhao K, Xiao M. MiR-27a inhibits the growth and metastasis of multiple myeloma through regulating Th17/Treg balance. PLoS One 2024; 19:e0311419. [PMID: 39413115 PMCID: PMC11482689 DOI: 10.1371/journal.pone.0311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The imbalance between T helper 17 (Th17) and T regulatory (Treg) cells plays a key role in the progression of multiple myeloma (MM). METHODS The gene expression profiles of MM were acquired and examined from the Gene Expression Omnibus (GEO) database (GSE72213). Our research involved experimental investigations conducted using the MOPC-MM mouse model. Dysregulation of Treg and Th17 cells was evaluated through flow cytometry, while the levels of inflammatory factors were measured using the enzyme-linked immunosorbent assay. Cell proliferation was gauged using the Cell Counting Kit-8 assay, and cell apoptosis was quantified via flow cytometry. Cell metastasis capabilities were determined by conducting transwell assays. To confirm the relationship between miR-27a and PI3K, a dual-luciferase reporter assay was employed. Finally, proteins associated with the PI3K/AKT/mTOR signaling pathway were assessed using western blotting. RESULTS MiR-27a exhibited reduced expression levels in MM. Moreover, it exerted control over the equilibrium of Th17 and Treg cells while reducing the expression of inflammatory mediators such as TGF-β1 and IL-10 in an in vivo setting. Elevated miR-27a levels led to the inhibition of cell viability, colony formation capacity, migratory and invasive traits in an in vitro context. The PI3K/AKT/mTOR signaling pathway was identified as a direct target of miR-27a and could reverse the effects induced by miR-27a in MM cells. Notably, PI3K was directly targeted by miR-27a. CONCLUSIONS Our study revealed that miR-27a inhibited MM evolution by regulating the Th17/Treg balance. Inhibition of the PI3K/AKT/mTOR signaling pathway by miR-27a may play a potential mechanistic role.
Collapse
Affiliation(s)
- Weiguo Lu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zhanjie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingfeng Xiao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Raheem AR, Abdul-Rasheed OF, Khattab OS, Alsammarraie AZ, Al-Aubaidy H, Abid HA. Circulating miRNA-373 and Vascular Endothelial Growth Factor as Potential Biomarkers for Early Detection of Breast Cancer. Indian J Clin Biochem 2024; 39:529-538. [PMID: 39346711 PMCID: PMC11436544 DOI: 10.1007/s12291-023-01174-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/06/2023] [Indexed: 10/01/2024]
Abstract
Breast cancer is the leading cause of cancer-related mortality among women worldwide. MicroRNAs (miRNAs), short non-coding RNAs, have been implicated in cancer-related processes such as tumor development, metastasis, angiogenesis, and drug resistance. Circulating miRNA-373 demonstrates higher relative exosomal serum levels in breast cancer patients compared to healthy women, making it a potential non-invasive biomarker. Separately, vascular endothelial growth factor (VEGF) is crucial for angiogenesis, and is elevated in breast cancer. In this case-control study, we aimed to investigate the diagnostic accuracy of miRNA-373 and VEGF as biomarkers for early-stage breast cancer detection. Serum samples were collected from 120 participants, comprising 30 breast cancer patients, 30 benign breast tumor patients, and 60 healthy controls, over the period of April 2022 to January 2023. MiRNA-373 expression was analyzed by reverse transcription-quantitative PCR with GAPDH normalisation, while VEGF levels in serum samples were measured by ELISA. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of both biomarkers. MiRNA-373 expression (∆Ct) differed significantly between the three groups (breast cancer: - 12.20 ± 1.11; benign tumors: - 12.79 ± 1.09; controls: - 13.64 ± 0.93). ROC analysis revealed moderate discriminative power for miRNA-373 (specificity = 76.7%; sensitivity = 70.0%; AUC = 0.839) and excellent discriminative power for VEGF (specificity = 85.0%; sensitivity = 90.0%; AUC = 0.944) in distinguishing early-stage breast cancer patients from healthy controls. In summary, this study demonstrates the promising potential of miRNA-373 as an early diagnostic biomarker for breast cancer detection, requiring further validation in larger cohorts. Our findings also reinforce the diagnostic value of circulating VEGF levels for breast cancer screening. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01174-9.
Collapse
Affiliation(s)
- Anmar R. Raheem
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Kadhmyia, Baghdad, Iraq
- Al-Imamain Al-Kadhimain Medical City, Ministry of Health, Baghdad, Iraq
| | - Omar F. Abdul-Rasheed
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Kadhmyia, Baghdad, Iraq
| | - Omar S. Khattab
- Department of Surgery, College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Hayder Al-Aubaidy
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC Australia
- Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC Australia
| | - Hussein A. Abid
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Kadhmyia, Baghdad, Iraq
- Department of Laboratory Diagnostics, Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| |
Collapse
|
8
|
Mazzeo R, Sears J, Palmero L, Bolzonello S, Davis AA, Gerratana L, Puglisi F. Liquid biopsy in triple-negative breast cancer: unlocking the potential of precision oncology. ESMO Open 2024; 9:103700. [PMID: 39288656 PMCID: PMC11421323 DOI: 10.1016/j.esmoop.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
In the era of precision oncology, the management of triple-negative breast cancer (TNBC) is rapidly changing and becoming more complicated with a variety of chemotherapy, immunotherapy, and targeted treatment options. Currently, TNBC treatment is based on prognostic and predictive factors including immunohistochemical biomarkers [e.g. programmed death-ligand 1 (PD-L1)] and germline BRCA mutations. Given the current limitation of existing biomarkers, liquid biopsies may serve as clinically useful tools to determine treatment efficacy and response in both the (neo)adjuvant and metastatic settings, for detecting early relapse, and for monitoring clonal evolution during treatment. In this review, we comprehensively summarize current and future liquid biopsy applications. Specifically, we highlight the role of circulating tumor cell characterization, circulating tumor DNA, and other preclinical liquid biopsy technologies including circulating exosomes, RNA liquid biopsy, and circulating immune-based biomarkers. In the near future, these biomarkers may serve to identify early disease relapse, therapeutic targets, and disease clonality for patients with TNBC in the clinical setting.
Collapse
Affiliation(s)
- R Mazzeo
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - J Sears
- Department of Medicine, Washington University in St. Louis, St. Louis
| | - L Palmero
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - S Bolzonello
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano
| | - A A Davis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, USA
| | - L Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy.
| | - F Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
9
|
Feix AS, Tabaie EZ, Singh AN, Wittenberg NJ, Wilson EH, Joachim A. An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms. Microbiol Mol Biol Rev 2024; 88:e0003724. [PMID: 38869292 PMCID: PMC11426017 DOI: 10.1128/mmbr.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYExtracellular vesicles (EVs) have been recognized throughout scientific communities as potential vehicles of intercellular communication in both eukaryotes and prokaryotes, thereby influencing various physiological and pathological functions of both parent and recipient cells. This review provides an in-depth exploration of the multifaceted roles of EVs in the context of bacteria and protozoan parasite EVs, shedding light on their contributions to physiological processes and disease pathogenesis. These studies highlight EVs as a conserved mechanism of cellular communication, which may lead us to important breakthroughs in our understanding of infection, mechanisms of pathogenesis, and as indicators of disease. Furthermore, EVs are involved in host-microbe interactions, offering insights into the strategies employed by bacteria and protozoan parasites to modulate host responses, evade the immune system, and establish infections.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Emily Z. Tabaie
- Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Emma H. Wilson
- Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Zhang X, Wang T, Fan X, Wang M, Duan Z, He F, Wang HH, Li Z. Development of a Modular miRNA-Responsive Biosensor for Organ-Specific Evaluation of Liver Injury. BIOSENSORS 2024; 14:450. [PMID: 39329825 PMCID: PMC11430419 DOI: 10.3390/bios14090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
MicroRNAs (miRNAs) are increasingly being considered essential diagnostic biomarkers and therapeutic targets for multiple diseases. In recent years, researchers have emphasized the need to develop probes that can harness extracellular miRNAs as input signals for disease diagnostics. In this study, we introduce a novel miRNA-responsive biosensor (miR-RBS) designed to achieve highly sensitive and specific detection of miRNAs, with a particular focus on targeted organ-specific visualization. The miR-RBS employs a Y-structured triple-stranded DNA probe (Y-TSDP) that exhibits a fluorescence-quenched state under normal physiological conditions. The probe switches to an activated state with fluorescence signals in the presence of high miRNA concentrations, enabling rapid and accurate disease reporting. Moreover, the miR-RBS probe had a modular design, with a fluorescence-labeled strand equipped with a functional module that facilitates specific binding to organs that express high levels of the target receptors. This allowed the customization of miRNA detection and cell targeting using aptameric anchors. In a drug-induced liver injury model, the results demonstrate that the miR-RBS probe effectively visualized miR-122 levels, suggesting it has good potential for disease diagnosis and organ-specific imaging. Together, this innovative biosensor provides a versatile tool for the early detection and monitoring of diseases through miRNA-based biomarkers.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Tingting Wang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Xiangqing Fan
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Meixia Wang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Zhixi Duan
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Trauma Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- FuRong Laboratory, Changsha 410078, China
| | - Fang He
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Zhihong Li
- Department of Trauma Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- FuRong Laboratory, Changsha 410078, China
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
11
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
12
|
Genova C, Marconi S, Chiorino G, Guana F, Ostano P, Santamaria S, Rossi G, Vanni I, Longo L, Tagliamento M, Zullo L, Dal Bello MG, Dellepiane C, Alama A, Rijavec E, Ludovini V, Barletta G, Passiglia F, Metro G, Baglivo S, Chiari R, Rivoltini L, Biello F, Baraibar I, Gil-Bazo I, Novello S, Grossi F, Coco S. Extracellular vesicles miR-574-5p and miR-181a-5p as prognostic markers in NSCLC patients treated with nivolumab. Clin Exp Med 2024; 24:182. [PMID: 39105937 PMCID: PMC11303437 DOI: 10.1007/s10238-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the management of advanced non-small cell lung cancer (NSCLC), although patient survival is still unsatisfactory. Accurate predictive markers capable of personalizing the treatment of patients with NSCLC are still lacking. Circulating extracellular vesicles involved in cell-to-cell communications through miRNAs (EV-miRs) transfer are promising markers. Plasma from 245 patients with advanced NSCLC who received nivolumab as second-line therapy was collected and analyzed. EV-miRnome was profiled on 174/245 patients by microarray platform, and selected EV-miRs were validated by qPCR. A prognostic model combining EV-miR and clinical variables was built using stepwise Cox regression analysis and tested on an independent patient cohort (71/245). EV-PD-L1 gene copy number was assessed by digital PCR. For 54 patients with disease control, EV-miR changes at best response versus baseline were investigated by microarray and validated by qPCR. EV-miRNome profiling at baseline identified two EV-miRs (miR-181a-5p and miR-574-5p) that, combined with performance status, are capable of discriminating patients unlikely from those that are likely to benefit from immunotherapy (median overall survival of 4 months or higher than 9 months, respectively). EV-PD-L1 digital evaluation reported higher baseline copy number in patients at increased risk of mortality, without improving the prognostic score. Best response EV-miRNome profiling selected six deregulated EV-miRs (miR19a-3p, miR-20a-5p, miR-142-3p, miR-1260a, miR-1260b, and miR-5100) in responding patients. Their longitudinal monitoring highlighted a significant downmodulation already in the first treatment cycles, which lasted more than 6 months. Our results demonstrate that EV-miRs are promising prognostic markers for NSCLC patients treated with nivolumab.
Collapse
Affiliation(s)
- Carlo Genova
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy.
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Sara Santamaria
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanni Rossi
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Irene Vanni
- Genetica Oncologica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Luca Longo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Marco Tagliamento
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Lodovica Zullo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Maria Giovanna Dal Bello
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Dellepiane
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Angela Alama
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Giulia Barletta
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Rita Chiari
- Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Piazzale Cinelli 4, 61126, Pesaro, PU, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Federica Biello
- Oncology Unit, Azienda Ospedaliera Universitaria Maggiore Della Carità, Largo Bellini, 28100, Novara, Italy
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Francesco Grossi
- Division of Medical Oncology, Department of Medicine and Surgery, Ospedale Di Circolo E Fondazione Macchi, ASST Dei Sette Laghi, Via Lazio, 36, 21100, Varese, Italy
| | - Simona Coco
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
13
|
Maunder D, Brown PM, Barron-Millar B, Lendrem DW, Naamane N, Macdonald J, Wang XN, Isaacs JD, Anderson AE, Morgan AW, Crossland RE, Mackie SL, Pratt AG. Micro-RNA content of circulating extracellular vesicles in early rheumatoid arthritis as biomarkers and mediators of methotrexate efficacy. Rheumatology (Oxford) 2024; 63:2259-2267. [PMID: 37930878 PMCID: PMC11292053 DOI: 10.1093/rheumatology/kead569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVES Extracellular vesicles (EVs) are abundant in body fluids, contributing to intercellular signalling by transferring cargo that includes microRNAs (miRs)-themselves implicated in pathobiology. For the first time we evaluated the potential of EV miRs to contribute diagnostic information in early RA, predict methotrexate (MTX) efficacy or shed light on the drug's mechanism of action. METHODS Seven hundred and ninety-eight miRs isolated from serum-derived EVs of 46 patients with untreated RA, 23 with untreated polymyalgia rheumatica (PMR; inflammatory disease control group) and 12 in whom significant inflammatory disease had been excluded (non-inflammatory controls; NICs) were profiled (NanoString); the same measurements were made for RA patients after 6 months' MTX treatment. Analyses took multiple testing into account. RESULTS Twenty-eight EV miRs were robustly differentially expressed between early RA (but not PMR) patients and NICs after correction for age and sex, suggesting discriminatory value. Cross-validated partial least squares-discriminant analysis also indicated the predictive potential of a distinct baseline EV miR signature with respect to MTX-induced remission at 6 months. The change in expression of 13 miRs over the course of MTX treatment differed significantly between responders and non-responders, and four of those exhibiting increased relative abundance amongst responders have known roles in regulating the pathogenic potential of synovial fibroblasts, namely miR-212-3p, miR-338-5p, miR-410-3p and miR-537. CONCLUSION Our data highlight the potential of serum EV miRs as diagnostic and therapeutic biomarkers, highlighting a novel potential mechanism by which MTX may exert its therapeutic effect in early RA that warrants further investigation.
Collapse
Affiliation(s)
- Daniel Maunder
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Philip M Brown
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Ben Barron-Millar
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Dennis W Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jamie Macdonald
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Xiao N Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Amy E Anderson
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Ann W Morgan
- School of Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rachel E Crossland
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sarah L Mackie
- School of Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
14
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Enikeev AD, Galetsky SA, Beliaeva AA, Kopnin PB, Moiseenko AV, Senkovenko AM, Tchevkina EM. Integrated miRNA Profiling of Extracellular Vesicles from Uterine Aspirates, Malignant Ascites and Primary-Cultured Ascites Cells for Ovarian Cancer Screening. Pharmaceutics 2024; 16:902. [PMID: 39065600 PMCID: PMC11280431 DOI: 10.3390/pharmaceutics16070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Extracellular vesicles (EVs) are of growing interest in the context of screening for highly informative cancer markers. We have previously shown that uterine aspirate EVs (UA EVs) are a promising source of ovarian cancer (OC) diagnostic markers. In this study, we first conducted an integrative analysis of EV-miRNA profiles from UA, malignant ascitic fluid (AF), and a conditioned medium of cultured ascites cells (ACs). Using three software packages, we identified 79 differentially expressed miRNAs (DE-miRNAs) in UA EVs from OC patients and healthy individuals. To narrow down this panel and select miRNAs most involved in OC pathogenesis, we aligned these molecules with the DE-miRNA sets obtained by comparing the EV-miRNA profiles from OC-related biofluids with the same control. We found that 76% of the DE-miRNAs from the identified panel are similarly altered (differentially co-expressed) in AF EVs, as are 58% in AC EVs. Interestingly, the set of miRNAs differentially co-expressed in AF and AC EVs strongly overlaps (40 out of 44 miRNAs). Finally, the application of more rigorous criteria for DE assessment, combined with the selection of miRNAs that are differentially co-expressed in all biofluids, resulted in the identification of a panel of 29 miRNAs for ovarian cancer screening.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Andrei V. Komelkov
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Kirill I. Zhordania
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Dmitry V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Adel D. Enikeev
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Sergey A. Galetsky
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Anastasiia A. Beliaeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Pavel B. Kopnin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| | - Andey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Alexey M. Senkovenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.V.B.); (A.V.M.); (A.M.S.)
| | - Elena M. Tchevkina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Highway, Moscow 115522, Russia; (G.O.S.); (A.V.K.); (K.I.Z.); (A.D.E.); (S.A.G.); (A.A.B.); (P.B.K.)
| |
Collapse
|
15
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Yu X, Du Z, Zhu P, Liao B. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep 2024; 76:273-286. [PMID: 38388810 DOI: 10.1007/s43440-024-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow-up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a ''signature'' or ''fingerprint'' of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.
Collapse
Affiliation(s)
- Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
18
|
Wang R, Huang K, Feng Y, Duan J, Ying H, Shi Q, Zhang Y, Jiang R, Yang L. Exo-miR-144-3p as a promising diagnostic biomarker for depressive symptoms in heart failure. Neurobiol Dis 2024; 192:106415. [PMID: 38266934 DOI: 10.1016/j.nbd.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
AIMS The prevalence of depression is higher in heart failure (HF) patients. Early screening of depressive symptoms in HF patients and timely intervention can help to improve patients' quality of life and prognosis. This study aims to explore diagnostic biomarkers by examining the expression profile of serum exosomal miRNAs in HF patients with depressive symptoms. METHODS Serum exosomal RNA was isolated and extracted from 6 HF patients with depressive symptoms (HF-DS) and 6 HF patients without depressive symptoms (HF-NDS). High-throughput sequencing was performed to obtain miRNA expression profiles and target genes were predicted for the screened differentially expressed miRNAs. Biological functions of the target genes were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, we collected serum exosomal RNAs from HF-DS (n = 20) and HF-NDS (n = 20). The differentially expressed miRNAs selected from the sequencing results were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Finally, the diagnostic efficacy of the differentially expressed exosomal miRNAs for HF-DS was evaluated by using receiver operating characteristic (ROC) curves. RESULTS A total of 19 significantly differentially expressed exosomal miRNAs were screened by high-throughput sequencing, consisting of 12 up-regulated and 7 down-regulated exosomal miRNAs. RT-qPCR validation demonstrated that the expression level of exo-miR-144-3p was significantly down-regulated in the HF-DS group, and the expression levels of exo-miR-625-3p and exo-miR-7856-5p were significantly up-regulated. In addition, the expression level of exo-miR-144-3p was negatively correlated with the severity of depressive symptoms in HF patients, and that the area under the curve (AUC) of exo-miR-144-3p for diagnosing HF-DS was 0.763. CONCLUSIONS In this study, we examined the serum exosomal miRNA expression profiles of HF patients with depressive symptoms and found that lower level of exo-miR-144-3p was associated with more severe depressive symptoms. Exo-miR-144-3p is a potential biomarker for the diagnosis of HF-DS.
Collapse
Affiliation(s)
- Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Qianyuan Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
19
|
Leong SY, Lok WW, Goh KY, Ong HB, Tay HM, Su C, Kong F, Upadya M, Wang W, Radnaa E, Menon R, Dao M, Dalan R, Suresh S, Lim DWT, Hou HW. High-Throughput Microfluidic Extraction of Platelet-free Plasma for MicroRNA and Extracellular Vesicle Analysis. ACS NANO 2024; 18:6623-6637. [PMID: 38348825 DOI: 10.1021/acsnano.3c12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cell-free RNAs and extracellular vesicles (EVs) are valuable biomarkers in liquid biopsies, but they are prone to preanalytical variabilities such as nonstandardized centrifugation or ex vivo blood degradation. Herein, we report a high-throughput and label-free inertial microfluidic device (ExoArc) for isolation of platelet-free plasma from blood for RNA and EV analysis. Unlike conventional inertial microfluidic devices widely used for cell sorting, a submicrometer size cutoff (500 nm) was achieved which completely removed all leukocytes, RBCs, platelets, and cellular debris based on differential lateral migration induced by Dean vortices. The single-step operation also reduced platelet-associated miRNAs (∼2-fold) compared to centrifugation. We clinically validated ExoArc for plasma miRNA profiling (39 samples) and identified a 7-miRNA panel that detects non-small cell lung cancer with ∼90% sensitivity. ExoArc was also coupled with size exclusion chromatography (SEC) to isolate EVs within 50 min with ∼10-fold higher yield than ultracentrifugation. As a proof-of-concept for EV-based transcriptomics analysis, we performed miRNA analysis in healthy and type 2 diabetes mellitus (T2DM) subjects (n = 3 per group) by coupling ExoArc and ExoArc+SEC with quantitative polymerase chain reaction (RT-qPCR) assay. Among 293 miRNAs detected, plasmas and EVs showed distinct differentially expressed miRNAs in T2DM subjects. We further demonstrated automated in-line EV sorting from low volume culture media for continuous EV monitoring. Overall, the developed ExoArc offers a convenient centrifugation-free workflow to automate plasma and EV isolation for point-of-care diagnostics and quality control in EV manufacturing.
Collapse
Affiliation(s)
- Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Kah Yee Goh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Chengxun Su
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Megha Upadya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Wei Wang
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 138634
| | - Enkhtuya Radnaa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1062, United States
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1062, United States
| | - Ming Dao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rinkoo Dalan
- Endocrine and Diabetes, Tan Tock Seng Hospital, Singapore 308433
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Subra Suresh
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673
- Duke-NUS Medical School, Singapore 169857
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| |
Collapse
|
20
|
Kim EB, Song JH, Le LNH, Kim H, Koh JW, Seo Y, Jeong HR, Kim HT, Ryu S. Characterization of exosomal microRNAs in preterm infants fed with breast milk and infant formula. Front Nutr 2024; 11:1339919. [PMID: 38304545 PMCID: PMC10830786 DOI: 10.3389/fnut.2024.1339919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Breastfeeding not only reduces infection-related morbidity, but also increases growth of preterm infants. Advantages of breast milk (BM) for preterm infants are significant. They continue to be studied. However, because not all preterm infants can receive breastfeeding, bovine-based infant formula (IF) is used as an alternative, which may increase the risk of several preterm complications. Exosomes isolated from biofluids are emerging as biomarkers in research of various diseases. Here, we characterized miRNA contents of exosomes in urine and serum samples of preterm infants who were BM and IF fed and performed transcriptomic analysis of small RNA libraries. We identified significantly up-regulated 6 miRNAs and 10 miRNAs, respectively. Gene Ontology (GO) analysis revealed that target genes of these miRNAs might participate in neuronal development, immunity modulation, detoxification of reactive oxygen species, and transmembrane exchange. Our data suggest that exosome-based systemic screening for preterm infants with breastfeeding might be a screening tool for identifying target molecules involved in therapy for preterm infants in neonatal intensive care unit (NICU) and for future application as nutraceutical formulations or pharmaceuticals.
Collapse
Affiliation(s)
- Eun-Bit Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun Hwan Song
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ho Kim
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Ji Won Koh
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Yekyeng Seo
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Hwal Rim Jeong
- Department of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
21
|
Chai YL, Strohm L, Zhu Y, Chia RS, Chong JR, Suresh DD, Zhou LH, Too HP, Hilal S, Radivoyevitch T, Koo EH, Chen CP, Poplawski GHD. Extracellular Vesicle-Enriched miRNA-Biomarkers Show Improved Utility for Detecting Alzheimer's Disease Dementia and Medial Temporal Atrophy. J Alzheimers Dis 2024; 99:1317-1331. [PMID: 38788066 PMCID: PMC11191453 DOI: 10.3233/jad-230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Background Emerging diagnostic modalities suggest that miRNA profiles within extracellular vesicles (EVs) isolated from peripheral blood specimens may provide a non-invasive diagnostic alternative for dementia and neurodegenerative disorders. Given that EVs confer a protective environment against miRNA enzymatic degradation, the miRNAs enriched in the EV fraction of blood samples could serve as more stable and clinically relevant biomarkers compared to those obtained from serum. Objective To compare miRNAs isolated from EVs versus serum in blood taken from Alzheimer's disease (AD) dementia patients and control cohorts. Methods We compared 25 AD patients to 34 individuals who exhibited no cognitive impairments (NCI). Subjects were Singapore residents with Chinese heritage. miRNAs purified from serum versus blood-derived EVs were analyzed for associations with AD dementia and medial temporal atrophy detected by magnetic resonance imaging. Results Compared to serum-miRNAs, we identified almost twice as many EV-miRNAs associated with AD dementia, and they also correlated more significantly with medial temporal atrophy, a neuroimaging marker of AD-brain pathology. We further developed combination panels of serum-miRNAs and EV-miRNAs with improved performance in identifying AD dementia. Dominant in both panels was miRNA-1290. Conclusions This data indicates that miRNA profiling from EVs offers diagnostic superiority. This underscores the role of EVs as vectors harboring prognostic biomarkers for neurodegenerative disorders and suggests their potential in yielding novel biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Lea Strohm
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Rachel S.L. Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Joyce Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Danesha Devini Suresh
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Heng Phon Too
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Kent Ridge, Singapore
| | - Tomas Radivoyevitch
- Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Edward H. Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Gunnar Heiko Dirk Poplawski
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
22
|
Nasu M, Khadka VS, Jijiwa M, Kobayashi K, Deng Y. Exploring Optimal Biomarker Sources: A Comparative Analysis of Exosomes and Whole Plasma in Fasting and Non-Fasting Conditions for Liquid Biopsy Applications. Int J Mol Sci 2023; 25:371. [PMID: 38203541 PMCID: PMC10779159 DOI: 10.3390/ijms25010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The study of liquid biopsy with plasma samples is being conducted to identify biomarkers for clinical use. Exosomes, containing nucleic acids and metabolites, have emerged as possible sources for biomarkers. To evaluate the effectiveness of exosomes over plasma, we analyzed the small non-coding RNAs (sncRNAs) and metabolites extracted from exosomes in comparison to those directly extracted from whole plasma under both fasting and non-fasting conditions. We found that sncRNA profiles were not affected by fasting in either exosome or plasma samples. Our results showed that exosomal sncRNAs were found to have more consistent profiles. The plasma miRNA profiles contained high concentrations of cell-derived miRNAs that were likely due to hemolysis. We determined that certain metabolites in whole plasma exhibited noteworthy concentration shifts in relation to fasting status, while others did not. Here, we propose that (1) fasting is not required for a liquid biopsy study that involves both sncRNA and metabolomic profiling, as long as metabolites that are not influenced by fasting status are selected, and (2) the utilization of exosomal RNAs promotes robust and consistent findings in plasma samples, mitigating the impact of batch effects derived from hemolysis. These findings advance the optimization of liquid biopsy methodologies for clinical applications.
Collapse
Affiliation(s)
- Masaki Nasu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Ken Kobayashi
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| |
Collapse
|
23
|
Vianello E, Persson J, Andersson B, van Veen S, Dias TL, Santoro F, Östensson M, Obudulu O, Agbajogu C, Torkzadeh S, Nakaya HI, Medaglini D, Siegrist CA, Ottenhoff TH, Harandi AM. Global blood miRNA profiling unravels early signatures of immunogenicity of Ebola vaccine rVSVΔG-ZEBOV-GP. iScience 2023; 26:108574. [PMID: 38162033 PMCID: PMC10755791 DOI: 10.1016/j.isci.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
The vectored Ebola vaccine rVSVΔG-ZEBOV-GP elicits protection against Ebola Virus Disease (EVD). In a study of forty-eight healthy adult volunteers who received either the rVSVΔG-ZEBOV-GP vaccine or placebo, we profiled intracellular microRNAs (miRNAs) from whole blood cells (WB) and circulating miRNAs from serum-derived extracellular vesicles (EV) at baseline and longitudinally following vaccination. Further, we identified early miRNA signatures associated with ZEBOV-specific IgG antibody responses at baseline and up to one year post-vaccination, and pinpointed target mRNA transcripts and pathways correlated to miRNAs whose expression was altered after vaccination by using systems biology approaches. Several miRNAs were differentially expressed (DE) and miRNA signatures predicted high or low IgG ZEBOV-specific antibody levels with high classification performance. The top miRNA discriminators were WB-miR-6810, EV-miR-7151-3p, and EV-miR-4426. An eight-miRNA antibody predictive signature was associated with immune-related target mRNAs and pathways. These findings provide valuable insights into early blood biomarkers associated with rVSVΔG-ZEBOV-GP vaccine-induced IgG antibody responses.
Collapse
Affiliation(s)
- Eleonora Vianello
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ogonna Obudulu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Agbajogu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Torkzadeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Donata Medaglini
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Claire-Anne Siegrist
- Centre for Vaccinology, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Ciaccio AM, Tuttolomondo A. Exosomal miRNAs as Biomarkers of Ischemic Stroke. Brain Sci 2023; 13:1647. [PMID: 38137095 PMCID: PMC10741776 DOI: 10.3390/brainsci13121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are small lipid bilayer membrane particles released from all living cells into the extracellular environment. They carry several molecules and have a critical role in cell-cell communication under physiological and pathological conditions. In recent decades, exosomes, and especially their cargo, have emerged as a promising tool for several clinical conditions. However, the literature has become increasingly unambiguous in defining the role of exosomes in chronic cerebrovascular diseases. Because they can pass through the blood-brain barrier, they have great potential to reflect intracerebral changes. They can, thus, provide valuable insight into the mechanisms of central nervous system diseases. The purpose of this review is to describe the literature on the role of exosomal miRNA, which represents the most widely investigated exosomal biomarker, in strokes. First, we provide an overview of exosomes, from biology to isolation and characterization. Then, we describe the relationship between exosomes and stroke pathogenesis. Finally, we summarize the human studies evaluating exosomal miRNA biomarkers of stroke. Although the collective literature supports the potential use of exosomal miRNA as biomarkers of ischemic stroke, there are still several limitations hampering their introduction into clinical practice.
Collapse
Affiliation(s)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Regional Reference Center for Diagnosis and Treatment of Anderson-Fabry Disease, Department of Health Promotion, Maternal and Child Health, Internal Medicine, and Specialty Excellence “G. D’Alessandro” (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
25
|
Soltane R, Almulla N, Alasiri A, Elashmawy NF, Qumsani AT, Alshehrei FM, Keshek DEG, Alqadi T, AL-Ghamdi SB, Allayeh AK. A Comparative Analysis of MicroRNA Expression in Mild, Moderate, and Severe COVID-19: Insights from Urine, Serum, and Nasopharyngeal Samples. Biomolecules 2023; 13:1681. [PMID: 38136554 PMCID: PMC10742216 DOI: 10.3390/biom13121681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, manifests with a wide range of clinical symptoms that vary from mild respiratory issues to severe respiratory distress. To effectively manage and predict the outcomes of the disease, it is important to understand the molecular mechanisms underlying its severity. This study focuses on analyzing and comparing the expression patterns of microRNAs (miRNAs) in serum, urine, and nasopharyngeal samples from patients with mild, moderate, and severe COVID-19. The aim is to identify potential associations with disease progression and discover suitable markers for diagnosis and prognosis. Our findings indicate the consistent upregulation of miR-21, miR-146a, and miR-155 in urine, serum, and nasopharyngeal samples from patients with mild COVID-19. In moderate cases, there were more significant changes in miRNA expression compared to mild cases. Specifically, miR-let-7 demonstrated upregulation, while miR-146b exhibited downregulation. The most notable alterations in miRNA expression profiles were observed in severe COVID-19 cases, with a significant upregulation of miR-223. Moreover, our analysis using Receiver-operating characteristic (ROC) curves demonstrated that miR-155, miR-let-7, and miR-223 exhibited high sensitivity and specificity, suggesting their potential as biomarkers for distinguishing COVID-19 patients from healthy individuals. Overall, this comparative analysis revealed distinct patterns in miRNA expression. The overlapping expression patterns of miRNAs in urine, serum, and nasopharyngeal samples suggest their potential utility in discriminating disease status.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | - Nabila F. Elashmawy
- Biology Department, College of Science, Jazan University, Jazan 82817, Saudi Arabia;
| | - Alaa T. Qumsani
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
| | - Doaa El-Ghareeb Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia; (A.T.Q.); (F.M.A.); (D.E.-G.K.)
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza 12512, Egypt
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (N.A.); (A.A.); (T.A.)
| | | | - Abdou Kamal Allayeh
- Virology Lab 176, Environment and Climate Change Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
26
|
Olotu O, Ahmedani A, Kotaja N. Small Non-Coding RNAs in Male Reproduction. Semin Reprod Med 2023; 41:213-225. [PMID: 38346711 DOI: 10.1055/s-0044-1779726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Male reproductive functions are strictly regulated in order to maintain sperm production and fertility. All processes are controlled by precise regulation of gene expression, which creates specific gene expression programs for different developmental stages and cell types, and forms the functional basis for the reproductive system. Small non-coding RNAs (sncRNAs) are involved in gene regulation by targeting mRNAs for translational repression and degradation through complementary base pairing to recognize their targets. This review article summarizes the current knowledge on the function of different classes of sncRNAs, in particular microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), during male germ cell differentiation, with the focus on sncRNAs expressed in the germline. Although transcriptionally inactive, mature spermatozoa contain a complex population of sncRNAs, and we also discuss the recently identified role of sperm sncRNAs in the intergenerational transmission of epigenetic information on father's environmental and lifestyle exposures to offspring. Finally, we summarize the current information on the utility of sncRNAs as potential biomarkers of infertility that may aid in the diagnosis and prediction of outcomes of medically assisted reproduction.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Noora Kotaja
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Chee TM, O'Farrell HE, Lima LG, Möller A, Fong KM, Yang IA, Bowman RV. Optimal isolation of extracellular vesicles from pleural fluid and profiling of their microRNA cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e119. [PMID: 38939736 PMCID: PMC11080846 DOI: 10.1002/jex2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 06/29/2024]
Abstract
Pleural effusion occurs in both benign and malignant pleural disease. In malignant pleural effusions, the diagnostic accuracy and sensitivity of pleural fluid cytology is less than perfect, particularly for the diagnosis of malignant pleural mesothelioma, but also in some cases for the diagnosis of metastatic pleural malignancy with primary cancer in the lung, breast or other sites. Extracellular vesicles (EVs) carry an enriched cargo of microRNAs (miRNAs) which are selectively packaged and differentially expressed in pleural disease states. To investigate the diagnostic potential of miRNA cargo in pleural fluid extracellular vesicles (PFEVs), we evaluated methods for isolating the extracellular vesicle (EV) fraction including combinations of ultracentrifugation, size-exclusion chromatography (SEC) and ultrafiltration (10 kDa filter unit). PFEVs were characterized by total and EV-associated protein, nanoparticle tracking analysis and visualisation by transmission electron microscopy. miRNA expression was analyzed by Nanostring nCounter® in separate EV fractions isolated from pleural fluid with or without additional RNA purification by ultrafiltration (3 kDa filter unit). Optimal PFEV yield, purity and miRNA expression were observed when PFEV were isolated from a larger volume of pleural fluid processed through combined ultracentrifugation and SEC techniques. Purification of total RNA by ultrafiltration further enhanced the detectability of PFEV miRNAs. This study demonstrates the feasibility of isolating PFEVs, and the potential to examine PFEV miRNA cargo using Nanostring technology to discover disease biomarkers.
Collapse
Affiliation(s)
- Tian Mun Chee
- The University of Queensland Thoracic Research CentreThe Prince Charles HospitalChermsideQueenslandAustralia
| | - Hannah E. O'Farrell
- The University of Queensland Thoracic Research CentreThe Prince Charles HospitalChermsideQueenslandAustralia
| | - Luize G. Lima
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Andreas Möller
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
- Department of OtorhinolaryngologyChinese University of Hong KongShatinHong Kong
- Li Ka Shing Institute of Health SciencesChinese University of Hong KongHong KongChina
| | - Kwun M. Fong
- The University of Queensland Thoracic Research CentreThe Prince Charles HospitalChermsideQueenslandAustralia
| | - Ian A. Yang
- The University of Queensland Thoracic Research CentreThe Prince Charles HospitalChermsideQueenslandAustralia
| | - Rayleen V. Bowman
- The University of Queensland Thoracic Research CentreThe Prince Charles HospitalChermsideQueenslandAustralia
| |
Collapse
|
28
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
29
|
Ryu IS, Kim DH, Ro JY, Park BG, Kim SH, Im JY, Lee JY, Yoon SJ, Kang H, Iwatsubo T, Teunissen CE, Cho HJ, Ryu JH. The microRNA-485-3p concentration in salivary exosome-enriched extracellular vesicles is related to amyloid β deposition in the brain of patients with Alzheimer's disease. Clin Biochem 2023:110603. [PMID: 37355215 DOI: 10.1016/j.clinbiochem.2023.110603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by progressive long-term memory loss and cognitive dysfunction. Neuroimaging tests for abnormal amyloid-β (Aβ) deposition are considered the most reliable methods for the diagnosis of AD; however, the cost for such testing is very high and generally not covered by national insurance systems. Accordingly, it is only recommended for individuals exhibiting clinical symptoms of AD supported by clinical cognitive assessments. Recently, it was suggested that dysregulated microRNA-485-3p (miRNA-485-3p) in the brain and cerebrospinal fluid is closely related to pathogenesis of AD. However, a relationship between circulating miRNA-485-3p in salivary exosome-enriched extracellular vesicles (EE-EV) and Aβ deposition in the brain has not been observed. DESIGN & METHODS Using quantitative real-time polymerase chain reaction, we analyzed miRNA-485-3p concentration in salivary EE-EV. We used receiver operating characteristic (ROC) curve analysis to evaluate its predictive value for Aβ positron emission tomography (Aβ-PET) positivity in patients with AD. RESULTS Our results showed that the miRNA-485-3p concentration in salivary EE-EV isolated from patients with AD was significantly increased compared with that in the healthy controls (p<0.0001). In the analysis of all participants, the miRNA-485-3p concentration was significantly increased in Aβ-PET-positive participants compared to Aβ-PET-negative participants (p<0.0001). Further analysis using only AD patients also showed that the miRNA-485-3p concentration was significantly increased in Aβ-PET-positive AD patients vs. Aβ-PET-negative AD patients (p=0.0063). The ROC curve analysis for differentiating Aβ-PET-positive and negative participants showed that the area under the curve for miRNA-485-3p was 0.9217. CONCLUSION These findings suggested that the miRNA-485-3p concentration in salivary EE-EV was closely related to Aβ deposition in the brain and had high diagnostic accuracy for predicting Aβ-PET positivity.
Collapse
Affiliation(s)
- In Soo Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Ju-Ye Ro
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Byeong-Gyu Park
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Seo Hyun Kim
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Jong-Yeop Im
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Jun-Young Lee
- Borame Medical Center 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, South Korea
| | - Soo Jin Yoon
- Daejeon Eulji Medical Center, 95, Dunsanseo-ro, Seo-gu, Daejeon 35233, South Korea
| | - Heeyoung Kang
- Gyeongsang National University Hospital, 501, Jinju-daero, Jinju 52828, South Korea
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam 1081, Netherlands
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea.
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea; BIORCHESTRA US., Inc., 1 Kendall square, Building 200, Suite 2-103, Cambridge, MA, 02139, United States.
| |
Collapse
|
30
|
Wyse BA, Salehi R, Russell SJ, Sangaralingam M, Jahangiri S, Tsang BK, Librach CL. Obesity and PCOS radically alters the snRNA composition of follicular fluid extracellular vesicles. Front Endocrinol (Lausanne) 2023; 14:1205385. [PMID: 37404312 PMCID: PMC10315679 DOI: 10.3389/fendo.2023.1205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The ovarian follicle consists of the oocyte, somatic cells, and follicular fluid (FF). Proper signalling between these compartments is required for optimal folliculogenesis. The association between polycystic ovarian syndrome (PCOS) and extracellular vesicular small non-coding RNAs (snRNAs) signatures in follicular fluid (FF) and how this relates to adiposity is unknown. The purpose of this study was to determine whether FF extracellular vesicle (FFEV)-derived snRNAs are differentially expressed (DE) between PCOS and non-PCOS subjects; and if these differences are vesicle-specific and/or adiposity-dependent. Methods FF and granulosa cells (GC) were collected from 35 patients matched by demographic and stimulation parameters. FFEVs were isolated and snRNA libraries were constructed, sequenced, and analyzed. Results miRNAs were the most abundant biotype present, with specific enrichment in exosomes (EX), whereas in GCs long non-coding RNAs were the most abundant biotype. In obese PCOS vs. lean PCOS, pathway analysis revealed target genes involved in cell survival and apoptosis, leukocyte differentiation and migration, JAK/STAT, and MAPK signalling. In obese PCOS FFEVs were selectively enriched (FFEVs vs. GCs) for miRNAs targeting p53 signalling, cell survival and apoptosis, FOXO, Hippo, TNF, and MAPK signalling. Discussion We provide comprehensive profiling of snRNAs in FFEVs and GCs of PCOS and non-PCOS patients, highlighting the effect of adiposity on these findings. We hypothesize that the selective packaging and release of miRNAs specifically targeting anti-apoptotic genes into the FF may be an attempt by the follicle to reduce the apoptotic pressure of the GCs and stave off premature apoptosis of the follicle observed in PCOS.
Collapse
Affiliation(s)
- Brandon A. Wyse
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
| | - Reza Salehi
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Sahar Jahangiri
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
| | - Benjamin K. Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L. Librach
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, DAN Women & Babies Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
31
|
Zhang J, Ma H, Yang G, Ke J, Sun W, Yang L, Kuang S, Li H, Yuan W. Differentially expressed miRNA profiles of serum-derived exosomes in patients with sudden sensorineural hearing loss. Front Neurol 2023; 14:1177988. [PMID: 37332997 PMCID: PMC10273844 DOI: 10.3389/fneur.2023.1177988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives This study aimed to compare the expressed microRNA (miRNA) profiles of serum-derived exosomes of patients with sudden sensorineural hearing loss (SSNHL) and normal hearing controls to identify exosomal miRNAs that may be associated with SSNHL or serve as biomarkers for SSNHL. Methods Peripheral venous blood of patients with SSNHL and healthy controls was collected to isolate exosomes. Nanoparticle tracking analysis, transmission electron microscopy, and Western blotting were used to identify the isolated exosomes, after which total RNA was extracted and used for miRNA transcriptome sequencing. Differentially expressed miRNAs (DE-miRNAs) were identified based on the thresholds of P < 0.05 and |log2fold change| > 1 and subjected to functional analyses. Finally, four exosomal DE-miRNAs, including PC-5p-38556_39, PC-5p-29163_54, PC-5p-31742_49, and hsa-miR-93-3p_R+1, were chosen for validation using quantitative real-time polymerase chain reaction (RT-qPCR). Results Exosomes were isolated from serum and identified based on particle size, morphological examination, and expression of exosome-marker proteins. A total of 18 exosomal DE-miRNAs, including three upregulated and 15 downregulated miRNAs, were found in SSNHL cases. Gene ontology (GO) functional annotation analysis revealed that target genes in the top 20 terms were mainly related to "protein binding," "metal ion binding," "ATP binding," and "intracellular signal transduction." Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these target genes were functionally enriched in the "Ras," "Hippo," "cGMP-PKG," and "AMPK signaling pathways." The expression levels of PC-5p-38556_39 and PC-5p-29163_54 were significantly downregulated and that of miR-93-3p_R+1 was highly upregulated in SSNHL. Consequently, the consistency rate between sequencing and RT-qPCR was 75% and sequencing results were highly reliable. Conclusion This study identified 18 exosomal DE-miRNAs, including PC-5p-38556_39, PC-5p-29163_54, and miR-93-3p, which may be closely related to SSNHL pathogenesis or serve as biomarkers for SSNHL.
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
- School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Haizhu Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
| | - Guijun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
| | - Jing Ke
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
- School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wenfang Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
| | - Li Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
| | - Shaojing Kuang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
| | - Hai Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanhan County People's Hospital, Dazhou, Sichuan, China
| | - Wei Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
- School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Bocchini M, Tazzari M, Ravaioli S, Piccinini F, Foca F, Tebaldi M, Nicolini F, Grassi I, Severi S, Calogero RA, Arigoni M, Schrader J, Mazza M, Paganelli G. Circulating hsa-miR-5096 predicts 18F-FDG PET/CT positivity and modulates somatostatin receptor 2 expression: a novel miR-based assay for pancreatic neuroendocrine tumors. Front Oncol 2023; 13:1136331. [PMID: 37287922 PMCID: PMC10242108 DOI: 10.3389/fonc.2023.1136331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/25/2023] [Indexed: 06/09/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) are rare diseases encompassing pancreatic (PanNETs) and ileal NETs (SINETs), characterized by heterogeneous somatostatin receptors (SSTRs) expression. Treatments for inoperable GEP-NETs are limited, and SSTR-targeted Peptide Receptor Radionuclide Therapy (PRRT) achieves variable responses. Prognostic biomarkers for the management of GEP-NET patients are required. 18F-FDG uptake is a prognostic indicator of aggressiveness in GEP-NETs. This study aims to identify circulating and measurable prognostic miRNAs associated with 18F-FDG-PET/CT status, higher risk and lower response to PRRT. Methods Whole miRNOme NGS profiling was conducted on plasma samples obtained from well-differentiated advanced, metastatic, inoperable G1, G2 and G3 GEP-NET patients enrolled in the non-randomized LUX (NCT02736500) and LUNET (NCT02489604) clinical trials prior to PRRT (screening set, n= 24). Differential expression analysis was performed between 18F-FDG positive (n=12) and negative (n=12) patients. Validation was conducted by Real Time quantitative PCR in two distinct well-differentiated GEP-NET validation cohorts, considering the primary site of origin (PanNETs n=38 and SINETs n=30). The Cox regression was applied to assess independent clinical parameters and imaging for progression-free survival (PFS) in PanNETs. In situ RNA hybridization combined with immunohistochemistry was performed to simultaneously detect miR and protein expression in the same tissue specimens. This novel semi-automated miR-protein protocol was applied in PanNET FFPE specimens (n=9). In vitro functional experiments were performed in PanNET models. Results While no miRNAs emerged to be deregulated in SINETs, hsa-miR-5096, hsa-let-7i-3p and hsa-miR-4311 were found to correlate with 18F-FDG-PET/CT in PanNETs (p-value:<0.005). Statistical analysis has shown that, hsa-miR-5096 can predict 6-month PFS (p-value:<0.001) and 12-month Overall Survival upon PRRT treatment (p-value:<0.05), as well as identify 18F-FDG-PET/CT positive PanNETs with worse prognosis after PRRT (p-value:<0.005). In addition, hsa-miR-5096 inversely correlated with both SSTR2 expression in PanNET tissue and with the 68Gallium-DOTATOC captation values (p-value:<0.05), and accordingly it was able to decrease SSTR2 when ectopically expressed in PanNET cells (p-value:<0.01). Conclusions hsa-miR-5096 well performs as a biomarker for 18F-FDG-PET/CT and as independent predictor of PFS. Moreover, exosome-mediated delivery of hsa-miR-5096 may promote SSTR2 heterogeneity and thus resistance to PRRT.
Collapse
Affiliation(s)
- Martine Bocchini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marcella Tazzari
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Piccinini
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Ilaria Grassi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Raffaele Adolfo Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Joerg Schrader
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Paganelli
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
33
|
Shimada Y, Yoshioka Y, Kudo Y, Mimae T, Miyata Y, Adachi H, Ito H, Okada M, Ohira T, Matsubayashi J, Ochiya T, Ikeda N. Extracellular vesicle-associated microRNA signatures related to lymphovascular invasion in early-stage lung adenocarcinoma. Sci Rep 2023; 13:4823. [PMID: 36964242 PMCID: PMC10038982 DOI: 10.1038/s41598-023-32041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
Lymphovascular invasion (LVI) is a fundamental step toward the spread of cancer. Extracellular vesicles (EVs) promote cellular communication by shuttling cargo, such as microRNAs (miRNAs). However, whether EV-associated miRNAs serve as biomarkers for LVI remains unclear. This study aimed to identify EV-associated miRNAs related to LVI and validate the miRNA levels from patients with early-stage lung adenocarcinoma (LADC). Blood samples were collected from patients undergoing pulmonary resection for stage I LADC before surgery. The patients were classified into three groups according to the presence of LVI and postoperative recurrence. Serum-derived EVs in the derivation cohort were used for small RNA sequencing, while the selected LVI miRNA candidates were validated via real-time quantitative polymerase chain reaction using 44 patient and 16 healthy donor samples as the validation cohorts. Five miRNAs (miR-99b-3p, miR-26a-5p, miR-93-5p, miR-30d-5p, and miR-365b-3p) were assessed, and miR-30d-5p (p = 0.036) levels were significantly downregulated in the LVI-positive group. miR-30d-5p levels in healthy donors were lower than those in LADC patients. Patients with high miR-30d-5p levels had favorable survival compared to those with low miR-30d-5p levels. miR-30d-5p level in EVs may serve as a promising biomarker for detecting LVI in patients with early-stage LADC.
Collapse
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yusuke Yoshioka
- Department of molecular and cellular medicine, Tokyo Medical University, Tokyo, Japan
| | - Yujin Kudo
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Adachi
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ohira
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jun Matsubayashi
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Department of molecular and cellular medicine, Tokyo Medical University, Tokyo, Japan
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
34
|
Roi A, Boia S, Rusu LC, Roi CI, Boia ER, Riviș M. Circulating miRNA as a Biomarker in Oral Cancer Liquid Biopsy. Biomedicines 2023; 11:biomedicines11030965. [PMID: 36979943 PMCID: PMC10046112 DOI: 10.3390/biomedicines11030965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Oral cancer is currently challenging the healthcare system, with a high incidence among the population and a poor survival rate. One of the main focuses related to this malignancy is the urge to implement a viable approach for improving its early diagnosis. By introducing the use of liquid biopsy and the identification of potential biomarkers, aiming for a noninvasive approach, new advancements offer promising perspectives in the diagnosis of oral cancer. The present review discusses the potential of circulating miRNAs as oral cancer biomarkers identified in body fluids such as serum, plasma, and saliva samples of oral cancer patients. Existing results reveal an important implication of different miRNA expressions involved in the initiation, development, progression, and metastasis rate of oral malignancy. Liquid biomarkers can play a crucial role in the development of the concept of personalized medicine, providing a wide range of clinical applications and future targeted therapies.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ciprian Ioan Roi
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| | - Eugen Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mircea Riviș
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| |
Collapse
|
35
|
Sinha N, Puri V, Kumar V, Nada R, Rastogi A, Jha V, Puri S. Urinary exosomal miRNA-663a shows variable expression in diabetic kidney disease patients with or without proteinuria. Sci Rep 2023; 13:4516. [PMID: 36934129 PMCID: PMC10024703 DOI: 10.1038/s41598-022-26558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/16/2022] [Indexed: 03/20/2023] Open
Abstract
Heterogeneity in the Diabetic Kidney Disease (DKD) diagnosis makes its rational therapeutics challenging. Although albuminuria characterizes DKD, reports also indicate its prevalence among non-proteinuric. Recent understanding of disease progression has thus inclined the focus on proximal tubular cell damage besides the glomeruli. A non-invasive approach exploiting exosomal miRNA derived from human kidney proximal tubular cell line was, hence, targeted. Upon miRNA profiling, three miRNAs, namely, hsa-miR-155-5p, hsa-miR-28-3p, and hsa-miR-425-5p were found to be significantly upregulated, while hsa-miR-663a was downregulated under diabetic conditions. Among these, hsa-miR-663a downregulation was more pronounced in non-proteinuric than proteinuric DKD subjects and was thus selected for the bioinformatics study. Ingenuity Pathway Analysis (IPA) narrowed on to IL-8 signaling and inflammatory response as the most enriched 'canonical pathway' and 'disease pathway' respectively, during DKD. Further, the putative gene network generated from these enriched pathways revealed experimentally induced diabetes, renal tubular injury, and decreased levels of albumin as part of mapping under 'disease and function'. Genes target predictions and annotations by IPA reiterated miR-663a's role in the pathogenesis of DKD following tubular injury. Overall, the observations might offer an indirect reflection of the underlying mechanism between patients who develop proteinuria and non-proteinuria.
Collapse
Affiliation(s)
- Nisha Sinha
- Centre for Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- The George Institute for Global Health, New Delhi, India.
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
36
|
Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines 2023; 11:biomedicines11030652. [PMID: 36979630 PMCID: PMC10044752 DOI: 10.3390/biomedicines11030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the crucial regulatory functions of gene expression at post-transcriptional level, detectable in cell and tissue extracts, and body fluids. For their stability in body fluids and accessibility to sampling, circulating miRNAs and changes of their concentration may represent suitable disease biomarkers, with diagnostic and prognostic relevance. A solid literature now describes the profiling of circulating miRNA signatures for several tumor types. Among body fluids, saliva accurately reflects systemic pathophysiological conditions, representing a promising diagnostic resource for the future of low-cost screening procedures for systemic diseases, including cancer. Here, we provide a review of literature about miRNAs as potential disease biomarkers with regard to ovarian cancer (OC), with an excursus about liquid biopsies, and saliva in particular. We also report on salivary miRNAs as biomarkers in oncological conditions other than OC, as well as on OC biomarkers other than miRNAs. While the clinical need for an effective tool for OC screening remains unmet, it would be advisable to combine within a single diagnostic platform, the tools for detecting patterns of both protein and miRNA biomarkers to provide the screening robustness that single molecular species separately were not able to provide so far.
Collapse
|
37
|
Miyamoto K, Saiki S, Matsumoto H, Suzuki A, Yamashita Y, Iseki T, Ueno SI, Shiina K, Kataura T, Kamagata K, Imamichi Y, Sasazawa Y, Fujimaki M, Akamatsu W, Hattori N. Systemic Metabolic Alteration Dependent on the Thyroid-Liver Axis in Early PD. Ann Neurol 2023; 93:303-316. [PMID: 36128871 PMCID: PMC10092289 DOI: 10.1002/ana.26510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a common neurodegenerative disease characterized by initial involvement of the olfactory bulb/amygdala or autonomic nerves followed by nigral degeneration. Although autonomic innervation strictly regulates multiorgan systems, including endocrine functions, circulation, and digestion, how dysautonomia in PD affects systemic metabolism has not been identified. In this study, we tried to estimate the pathogenic linkage of PD by nuclear medicine techniques, trans-omic analysis of blood samples, and cultured cell experiments. METHODS Thyroid mediastinum ratio of 123 I-metaiodobenzylguanidine (MIBG) scintigraphy was measured in 1,158 patients with PD. Furthermore, serum exosome miRNA transcriptome analysis and plasma metabolome analysis followed by trans-omic analysis were performed in patients with de novo PD and age-matched healthy control persons. Additionally, thyroid hormone was administered to skeletal muscle and liver derived cells to evaluate the effect of hypothyroidism for these organs. RESULTS Sympathetic denervation of thyroid correlating with its cardiac denervation was confirmed in 1,158 patients with PD by MIBG scintigraphy. Among patients with drug-naïve PD, comprehensive metabolome analysis revealed decreased levels of thyroxine and insufficient fatty acid β-oxidation, which positively correlate with one another. Likewise, both plasma metabolome data and transcriptome data of circulating exosomal miRNAs, revealed specific enrichment of the peroxisome proliferator-activated receptor (PPARα) axis. Finally, association of thyroid hormone with PPARα-dependent β-oxidation regulation was confirmed by in vitro experiments. INTERPRETATION Our findings suggest that interorgan communications between the thyroid and liver are disorganized in the early stage of PD, which would be a sensitive diagnostic biomarker for PD. ANN NEUROL 2023;93:303-316.
Collapse
Affiliation(s)
- Kengo Miyamoto
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Matsumoto
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan.,Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Ayami Suzuki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuri Yamashita
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatou Iseki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Shiina
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsushi Kataura
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motoki Fujimaki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Schiller EA, Cohen K, Lin X, El-Khawam R, Hanna N. Extracellular Vesicle-microRNAs as Diagnostic Biomarkers in Preterm Neonates. Int J Mol Sci 2023; 24:2622. [PMID: 36768944 PMCID: PMC9916767 DOI: 10.3390/ijms24032622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Neonates born prematurely (<37 weeks of gestation) are at a significantly increased risk of developing inflammatory conditions associated with high mortality rates, including necrotizing enterocolitis, bronchopulmonary dysplasia, and hypoxic-ischemic brain damage. Recently, research has focused on characterizing the content of extracellular vesicles (EVs), particularly microRNAs (miRNAs), for diagnostic use. Here, we describe the most recent work on EVs-miRNAs biomarkers discovery for conditions that commonly affect premature neonates.
Collapse
Affiliation(s)
- Emily A. Schiller
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Koral Cohen
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xinhua Lin
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Rania El-Khawam
- Department of Pediatrics, Division of Neonatology, New York University Langone Long Island Hospital, Mineola, NY 11501, USA
| | - Nazeeh Hanna
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Pediatrics, Division of Neonatology, New York University Langone Long Island Hospital, Mineola, NY 11501, USA
| |
Collapse
|
39
|
Gheytanchi E, Tajik F, Razmi M, Babashah S, Cho WCS, Tanha K, Sahlolbei M, Ghods R, Madjd Z. Circulating exosomal microRNAs as potential prognostic biomarkers in gastrointestinal cancers: a systematic review and meta-analysis. Cancer Cell Int 2023; 23:10. [PMID: 36670440 PMCID: PMC9862982 DOI: 10.1186/s12935-023-02851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent reports suggested that circulating exosomal microRNAs (exomiRs) may serve as non-invasive prediction biomarkers in gastrointestinal (GI) cancers, yet their clinicopathological and prognostic values need to be more clarified. Hence, the present meta-analysis was aimed to quantitatively assess the evidence regarding the association between circulating exomiRs and prognosis in GI cancer patients. METHODS A comprehensive search was carried out in prominent literature databases, including PubMed, ISI Web of Science, Scopus, and Embase. Odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) were gathered to evaluate the strength of the association. The quality assessment was investigated through the Newcastle-Ottawa Scale (NOS) and publication bias via Eggers' test and funnel plots. RESULTS A total of 47 studies, comprising of 4881 patients, were considered eligible for this meta-analysis. Both up-regulated and down-regulated circulating exomiRs are significantly associated with differentiation (HR = 1.353, P = 0.015; HR = 1.504, P = 0.016), TNM stage (HR = 2.058, P < 0.001; HR = 2.745, P < 0.001), lymph node metastasis (HR = 1.527, P = 0.004; HR = 2.009, P = 0.002), distant metastasis (HR = 2.006, P < 0.001; HR = 2.799, P = 0.002), worse overall survival (OS) (HR = 2.053, P < 0.001; HR = 1.789, P = 0.001) and poorer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR = 2.086, P < 0.001; HR = 1.607, P = 0.001) in GI cancer patients, respectively. In addition, subgroup analyses based on seven subcategories indicated the robustness of the association. The majority of findings were lack of publication bias except for the association between up-regulated exomiRs and OS or DFS/RFS/PFS and for the down-regulated exomiRs and TNM stage. CONCLUSION This study supports that up- and down-regulated circulating exomiRs are associated with poorer survival outcomes and could be served as potential prognostic biomarkers in GI cancers. Given the limitations of the current findings, such as significant heterogeneity, more investigations are needed to fully clarify the exomiRs prognostic role.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Razmi
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Babashah
- grid.412266.50000 0001 1781 3962Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - William Chi Shing Cho
- grid.415499.40000 0004 1771 451XDepartment of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Kiarash Tanha
- grid.411746.10000 0004 4911 7066Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- grid.411746.10000 0004 4911 7066Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Shi Y, Shao X, Sun M, Ma J, Li B, Zou N, Li F. MiR-140 is involved in T-2 toxin-induced matrix degradation of articular cartilage. Toxicon 2023; 222:106987. [PMID: 36462649 DOI: 10.1016/j.toxicon.2022.106987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
T-2 toxin is one of the most toxic mycotoxins contaminating various grains. It is considered an environmental risk factor for Kashin-Beck disease (KBD), an endemic degenerative osteochondrosis. Currently, the underlying molecular mechanisms of articular cartilage damage caused by T-2 toxin have not been elucidated. Studies have shown that miR-140 is essential for cartilage formation, and extracellular matrix (EMC) synthesis and degradation. The objective of this study was to investigate the mechanism of miR-140 involvement in T-2 toxin-induced articular cartilage damage. Two treatment groups, each containing wild-type mice and miR-140 knockout mice were administered with T-2 toxin (200 ng/g BW/day) or a normal diet for 1 month, 3 months, and 6 months. Results showed that T-2 toxin caused articular cartilage and growth plate damage in mice. The expression of miR-140 decreased in articular cartilage of wild-type mice treated with T-2 toxin, and miR-140 deficiency aggravated T-2 toxin-induced knee cartilage damage. T-2 toxin-caused the reduction of miR-140 expression was consistent with collagen type II (COL2A1), aggrecan (ACAN), and SRY-box containing gene 9 (SOX9) and opposite to matrix metalloproteinase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), and v-ral simian leukemia viral oncogene homolog A (RALA). In addition, we collected finger joints cartilage and knee joints cartilage from KBD patients and controls for paraffin embedding and sectioning. Results found that the expression of miR-140 in the articular cartilage of the KBD group was lower than that of the control group. The expression of COL2A1, ACAN, and SOX9 decreased, whereas ADAMTS-5, MMP13, and RALA increased in the articular cartilage of the KBD group. These results revealed that miR-140 might be involved in T-2 toxin-induced degradation of the ECM of articular cartilage. Moreover, the occurrence of KBD might be related to the decreased expression of miR-140 in articular cartilage.
Collapse
Affiliation(s)
- Yaning Shi
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Xinhua Shao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Mengyi Sun
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jing Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Bingsu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Ning Zou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China.
| | - Fuyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
41
|
The Contribution of Tumor Derived Exosomes to Cancer Cachexia. Cells 2023; 12:cells12020292. [PMID: 36672227 PMCID: PMC9856599 DOI: 10.3390/cells12020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Cancer cachexia is defined as unintentional weight loss secondary to neoplasia and is associated with poor prognosis and outcomes. Cancer cachexia associated weight loss affects both lean tissue (i.e., skeletal muscle) and adipose tissue. Exosomes are extracellular vesicles that originate from multivesicular bodies that contain intentionally loaded biomolecular cargo. Exosome cargo includes proteins, lipids, mitochondrial components, and nucleic acids. The cargo carried in exosomes is thought to alter cell signaling when it enters into recipient cells. Virtually every cell type secretes exosomes and exosomes are known to be present in nearly every biofluid. Exosomes alter muscle and adipose tissue metabolism and biological processes, including macrophage polarization and apoptosis which contribute to the development of the cachexia phenotype. This has led to an interest in the role of tumor cell derived exosomes and their potential role as biomarkers of cancer cell development as well as their contribution to cachexia and disease progression. In this review, we highlight published findings that have studied the effects of tumor derived exosomes (and extracellular vesicles) and their cargo on the progression of cancer cachexia. We will focus on the direct effects of tumor derived exosomes and their cellular cross talk on skeletal muscle and adipose tissue, the primary sites of weight loss due to cancer cachexia.
Collapse
|
42
|
Miyazaki K, Wada Y, Okuno K, Murano T, Morine Y, Ikemoto T, Saito Y, Ikematsu H, Kinugasa Y, Shimada M, Goel A. An exosome-based liquid biopsy signature for pre-operative identification of lymph node metastasis in patients with pathological high-risk T1 colorectal cancer. Mol Cancer 2023; 22:2. [PMID: 36609320 PMCID: PMC9817247 DOI: 10.1186/s12943-022-01685-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND According to current guidelines, more than 70% of patients with invasive submucosal colorectal cancer (T1 CRC) undergo a radical operation with lymph node dissection, even though only ~ 10% have lymph node metastasis (LNM). Hence, there is imperative to develop biomarkers that can help robustly identify LNM-positive patients to prevent such overtreatments. Given the emerging interest in exosomal cargo as a source for biomarker development in cancer, we examined the potential of exosomal miRNAs as LNM prediction biomarkers in T1 CRC. METHODS We analyzed 200 patients with high-risk T1 CRC from two independent cohorts, including a training (n = 58) and a validation cohort (n = 142). Cell-free and exosomal RNAs from pre-operative serum were extracted, followed by quantitative reverse-transcription polymerase chain reactions for a panel of miRNAs. RESULTS A panel of four miRNAs (miR-181b, miR-193b, miR-195, and miR-411) exhibited robust ability for detecting LNM in the exosomal vs. cell-free component. We subsequently established a cell-free and exosomal combination signature, successfully validated in two independent clinical cohorts (AUC, 0.84; 95% CI 0.70-0.98). Finally, we developed a risk-stratification model by including key pathological features, which reduced the false positive rates for LNM by 76% without missing any true LNM-positive patients. CONCLUSIONS Our novel exosomal miRNA-based liquid biopsy signature robustly identifies T1 CRC patients at risk of LNM in a preoperative setting. This could be clinically transformative in reducing the significant overtreatment burden of this malignancy.
Collapse
Affiliation(s)
- Katsuki Miyazaki
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuma Wada
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Keisuke Okuno
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.265073.50000 0001 1014 9130Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuro Murano
- grid.497282.2Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Yuji Morine
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Hiroaki Ikematsu
- grid.497282.2Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Yusuke Kinugasa
- grid.265073.50000 0001 1014 9130Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Shimada
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Ajay Goel
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.410425.60000 0004 0421 8357City of Hope Comprehensive Cancer Center, Duarte, CA USA
| |
Collapse
|
43
|
Crossland RE, Albiero A, Sanjurjo‐Rodríguez C, Reis M, Resteu A, Anderson AE, Dickinson AM, Pratt AG, Birch M, McCaskie AW, Jones E, Wang X. MicroRNA profiling of low concentration extracellular vesicle RNA utilizing NanoString nCounter technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e72. [PMID: 38938446 PMCID: PMC11080777 DOI: 10.1002/jex2.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EV) and the microRNAs that they contain are increasingly recognised as a rich source of informative biomarkers, reflecting pathological processes and fundamental biological pathways and responses. Their presence in biofluids makes them particularly attractive for biomarker identification. However, a frequent caveat in relation to clinical studies is low abundance of EV RNA content. In this study, we used NanoString nCounter technology to assess the microRNA profiles of n = 64 EV low concentration RNA samples (180-49125 pg), isolated from serum and cell culture media using precipitation reagent or sequential ultracentrifugation. Data was subjected to robust quality control parameters based on three levels of limit of detection stringency, and differential microRNA expression analysis was performed between biological subgroups. We report that RNA concentrations > 100 times lower than the current NanoString recommendations can be successfully profiled using nCounter microRNA assays, demonstrating acceptable output ranges for imaging parameters, binding density, positive/negative controls, ligation controls and normalisation quality control. Furthermore, despite low levels of input RNA, high-level differential expression analysis between biological subgroups identified microRNAs of biological relevance. Our results demonstrate that NanoString nCounter technology offers a sensitive approach for the detection and profiling of low abundance EV-derived microRNA, and may provide a solution for research studies that focus on limited sample material.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anna Albiero
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Clara Sanjurjo‐Rodríguez
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Physiotherapy, Medicine and Biomedical Sciences department, University of A Coruña; University Hospital Complex from A Coruña (Sergas, CHUACInstitute of Biomedical Research of A Coruña (INIBIC)‐Centre of Advanced Scientific Researches (CICA)A CoruñaSpain
| | - Monica Reis
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Centre for Regenerative Medicine, Institute for Regeneration and RepairThe University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Amy E. Anderson
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Arthur G. Pratt
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal Services DirectorateNewcastle upon Tyne Hospitals NHS Foundation TrustUK
| | - Mark Birch
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Andrew W. McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| | - Xiao‐nong Wang
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
44
|
Cabiati M, Randazzo E, Guiducci L, Falleni A, Cecchettini A, Casieri V, Federico G, Del Ry S. Evaluation of Exosomal Coding and Non-Coding RNA Signature in Obese Adolescents. Int J Mol Sci 2022; 24:ijms24010139. [PMID: 36613584 PMCID: PMC9820564 DOI: 10.3390/ijms24010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes may contribute to the pathogenesis of obesity through their action as communication mediators. As we have previously demonstrated, in obese adolescents, some circulating miRNAs modified the C-type natriuretic peptide (CNP) expression and were associated with changes in metabolic functions. At present no data are available on miRNA transport by exosomes in this condition. To verify and compare the presence and the expression of CNP/NPR-B/NPR-C, and some miRNAs (miR-33a-3p/miR-223-5p/miR-142-5p/miRNA-4454/miRNA-181a-5p/miRNA-199-5p), in circulating exosomes obtained from the same cohort of obese (O, n = 22) and normal-weight adolescents (N, n = 22). For the first time, we observed that exosomes carried CNP and its specific receptors only randomly both in O and N, suggesting that exosomes are not important carriers for the CNP system. On the contrary, exosomal miRNAs resulted ubiquitously and differentially expressed in O and N. O showed a significant decrease (p < 0.01) in the expression of all miRNAs except for miR-4454 and miR-142-5p. We have found significant correlations among miRNAs themselves and with some inflammatory/metabolic factors of obesity. These relationships may help in finding new biomarkers, allowing us to recognize, at an early stage, obese children and adolescents at high risk to develop the disease complications in adult life.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, 56124 Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Letizia Guiducci
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, 56124 Pisa, Italy
| | - Alessandra Falleni
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonella Cecchettini
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, 56124 Pisa, Italy
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Valentina Casieri
- Scuola Superiore Sant’Anna, Unit of Translational Critical Care Medicine, 56126 Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, 56124 Pisa, Italy
- Scuola Superiore Sant’Anna, Unit of Translational Critical Care Medicine, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3152793; Fax: +39-050-3152166
| |
Collapse
|
45
|
TRIANTAFYLLOU ALEXANDRA, DOVROLIS NIKOLAOS, ZOGRAFOS ELENI, THEODOROPOULOS CHARALAMPOS, ZOGRAFOS GEORGEC, MICHALOPOULOS NIKOLAOSV, GAZOULI MARIA. Circulating miRNA Expression Profiling in Breast Cancer Molecular Subtypes: Applying Machine Learning Analysis in Bioinformatics. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:739-749. [PMID: 36340453 PMCID: PMC9628143 DOI: 10.21873/cdp.10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIM Breast cancer is a leading worldwide cause of female cancer-related morbidity and mortality. Since molecular characteristics increasingly guide disease management, demystifying breast tumor miRNA signature emerges as an essential step toward personalized care. This study aimed to investigate the variations in circulating miRNA expression profiles between breast cancer subtypes and healthy controls and to identify relevant target genes and molecular functions. MATERIALS AND METHODS MiRNA expression was tested by miScript™ miRNA PCR Array Human Cancer Pathway Finder kit, and subsequently, a machine learning approach was applied for miRNA profiling of the various breast cancer molecular subtypes. RESULTS Serum samples from patients with primary breast cancer (n=66) and healthy controls (n=16) were analyzed. MiR-21 was the single common molecule among all breast cancer subtypes. Furthermore, several miRNAs were found to be differentially expressed explicitly in the different subtypes; luminal A (miR-23b, miR-142, miR-29a, miR-181d, miR-16, miR-29b, miR-155, miR-181c), luminal B (miR-148a, let-7d, miR-92a, miR-34c, let-7b, miR-15a), HER2+ (miR-125b, miR-134, miR-98, miR-143, miR-138, miR-135b) and triple negative breast cancer (miR-17, miR-150, miR-210, miR-372, let-7f, miR-191, miR-133b, miR-146b, miR-7). Finally, miRNA-associated target genes and molecular functions were identified. CONCLUSION Applying a machine learning approach to delineate miRNA signatures of various breast cancer molecular subtypes allows further understanding of molecular disease characteristics that can prove clinically relevant.
Collapse
Affiliation(s)
- ALEXANDRA TRIANTAFYLLOU
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - NIKOLAOS DOVROLIS
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - ELENI ZOGRAFOS
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - CHARALAMPOS THEODOROPOULOS
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - GEORGE C. ZOGRAFOS
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - NIKOLAOS V. MICHALOPOULOS
- 1st Propaedeutic Surgical Department, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - MARIA GAZOULI
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
47
|
Abdelrahman A, Negroni C, Sahm F, Adams CL, Urbanic-Purkart T, Khalil M, Vergura R, Morelli C, Hanemann CO. miR-497 and 219 in blood aid meningioma classification. J Neurooncol 2022; 160:137-147. [PMID: 36076132 DOI: 10.1007/s11060-022-04126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The current WHO classification and methylation status help predict meningioma recurrence and prognosis. However, up to date, there is no circulating biomarker showing clinical value in meningioma diagnosis or classification. Circulating miRNAs showed the potential to be used as cancer biomarkers in various tumours. This research evaluated specific miRNAs, miR-497 and miR-219, as convenient and efficient predictors of meningioma grades. METHODS We studied serum and exosomal levels of miR-497 in 74 meningioma samples (WHO grade I = 25, WHO grade II = 25, and WHO grade III = 24) and 53 healthy controls. The serum level of miR-219 was studied in 56 meningioma samples WHO grade I = 22, WHO grade II = 14, and WHO grade III = 20). We used qPCR for miRNA quantification. We also tested two different normalisers, endogenous and external, and evaluated their impact on the diagnostic value of miR-497. RESULTS The serum and exosomal levels of miR-497 distinguished meningioma from the control samples. Moreover, miR-497 was a suitable identifier for meningioma grade. When we combined miR-497 and miR-219, the efficacy of the combined biomarker was higher than miR-497 or miR-219 when used individually in meningioma classification. Both miR-497 and miR-219 showed a noticeable change with the methylation class of meningioma. CONCLUSION This study shows that serum miR-497 is an effective and easy-to-measure biomarker for meningioma diagnosis and classification. Moreover, when we combined miR-497 and miR-219, the combined biomarker showed enhanced accuracy in meningioma classification. Furthermore, this is the first study to evaluate the correlation between serum circulating miRNA and the methylation status in meningioma.
Collapse
Affiliation(s)
- Ahmed Abdelrahman
- Peninsula Medical School, Faculty of Health, Medicine, Dentistry and Human Sciences, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Caterina Negroni
- Peninsula Medical School, Faculty of Health, Medicine, Dentistry and Human Sciences, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69126, Heidelberg, Germany
| | - Claire L Adams
- Peninsula Medical School, Faculty of Health, Medicine, Dentistry and Human Sciences, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Tadeja Urbanic-Purkart
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | | | | | - Clemens Oliver Hanemann
- Peninsula Medical School, Faculty of Health, Medicine, Dentistry and Human Sciences, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| |
Collapse
|
48
|
Reis-Ferreira A, Neto-Mendes J, Brás-Silva C, Lobo L, Fontes-Sousa AP. Emerging Roles of Micrornas in Veterinary Cardiology. Vet Sci 2022; 9:533. [PMID: 36288146 PMCID: PMC9607079 DOI: 10.3390/vetsci9100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Over the last years, the importance of microRNAs (miRNAs) has increasingly been recognised. Each miRNA is a short sequence of non-coding RNA that influences countless genes' expression and, thereby, contributes to several physiological pathways and diseases. It has been demonstrated that miRNAs participate in the development of many cardiovascular diseases (CVDs). This review synopsises the most recent studies emphasising miRNA's influence in several CVDs affecting dogs and cats. It provides a concise outline of miRNA's biology and function, the diagnostic potential of circulating miRNAs as biomarkers, and their role in different CVDs. It also discusses known and future roles for miRNAs as potential clinical biomarkers and therapeutic targets. So, this review gives a comprehensive outline of the most relevant miRNAs related to CVDs in Veterinary Medicine.
Collapse
Affiliation(s)
- Ana Reis-Ferreira
- Hospital Veterinário do Porto, Travessa Silva Porto 174, 4250-475 Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Joana Neto-Mendes
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Luís Lobo
- Hospital Veterinário do Porto, Travessa Silva Porto 174, 4250-475 Porto, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Centro de Estudos de Ciência Animal, Campus Agrário de Vairão, 4480-009 Vila do Conde, Portugal
| | - Ana Patrícia Fontes-Sousa
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Departamento de Imuno-Fisiologia e Farmacologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UPVET, Hospital Veterinário da Universidade do Porto, Rua Jorge de Viterbo Ferreira 132, 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Tumor-Intrinsic PD-L1 Exerts an Oncogenic Function through the Activation of the Wnt/β-Catenin Pathway in Human Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231911031. [PMID: 36232331 PMCID: PMC9569632 DOI: 10.3390/ijms231911031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) strongly inhibits T cell activation, thereby aiding tumors in escaping the immune response. PD-L1 inhibitors have proven to be effective in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). Yet, the knowledge regarding the biological function of tumor-intrinsic PD-L1 in lung cancer remains obscure. In our study, we set the goal of determining the function of PD-L1 using overexpression and knockdown strategies. PD-L1 silencing resulted in decreased migratory and invasive ability of tumor cells, together with attenuated colony-forming capacity. Ectopic expression of PD-L1 showed the opposite effects, along with increased activities of MAPK and Wnt/β-catenin pathways, and the upregulation of Wnt/β-catenin target genes. Additionally, overexpression of PD-L1 was associated with dysregulated cellular and exosomal miRNAs involved in tumor progression and metastasis. In primary lung tumors, immunohistochemistry revealed that both PD1 and PD-L1 were highly expressed in squamous cell carcinoma (SCC) compared to adenocarcinoma (p = 0.045 and p = 0.036, respectively). In SCC, PD1 expression was significantly associated with tumor grading (p = 0.016). Taken together, our data suggest that PD-L1 may exert an oncogenic function in NSCLC through activating Wnt/β-catenin signaling, and may act as a potential diagnostic marker for lung SCC.
Collapse
|
50
|
Niedra H, Peculis R, Litvina HD, Megnis K, Mandrika I, Balcere I, Romanovs M, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Liutkeviciene R, Vilkevicute A, Konrade I, Rovite V. Genome wide analysis of circulating miRNAs in growth hormone secreting pituitary neuroendocrine tumor patients’ plasma. Front Oncol 2022; 12:894317. [PMID: 36158656 PMCID: PMC9500360 DOI: 10.3389/fonc.2022.894317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Circulating plasma miRNAs have been increasingly studied in the field of pituitary neuroendocrine tumor (PitNET) research. Our aim was to discover circulating plasma miRNAs species associated with growth hormone (GH) secreting PitNETs versus assess how the plasma levels of discovered miRNA candidates are impacted by SSA therapy and whether there is a difference in their levels between GH secreting PitNETs versus other PitNET types and healthy individuals. Design We compared plasma miRNA content and levels before and after surgery focusing on GH secreting PitNET patients. Selected miRNA candidates from our data and literature were then tested in a longitudinal manner in somatostatin analogues (SSA) treatment group. Additionally, we validated selected targets in an independent GH secreting PitNET group. Methods miRNA candidates were discovered using the whole miRNA sequencing approach and differential expression analysis. Selected miRNAs were then analyzed using real-time polymerase chain reaction (qPCR). Results Whole miRNA sequencing discovered a total of 16 differentially expressed miRNAs (DEMs) in GH secreting PitNET patients’ plasma 24 hours after surgery and 19 DEMs between GH secreting PitNET patients’ plasma and non-functioning (NF) PitNET patients’ plasma. Seven miRNAs were selected for further testing of which miR-625-5p, miR-503-5p miR-181a-2-3p and miR-130b-3p showed a significant downregulation in plasma after 1 month of SSA treatment. mir-625-5p was found to be significantly downregulated in plasma of GH secreting PitNET patients vs. NF PitNET patients. miR-625-5p alongside miR-130b-3p were also found to be downregulated in GH PitNETs compared to healthy individuals. Conclusions Our study suggests that expression of plasma miRNAs miR-625-5p, miR-503-5p miR-181a-2-3p and miR-130b-3p in GH secreting PitNETs is affected by SSA treatment. Additionally, miR-625-5p can distinguish GH secreting PitNETs from other PitNET types and healthy controls warranting further research on these miRNAs for treatment efficacy.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Helena Daiga Litvina
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inga Balcere
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Mihails Romanovs
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
| | - Liva Steina
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Austra Breiksa
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Jurijs Nazarovs
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | - Rasa Liutkeviciene
- Institute of Neuroscience, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkevicute
- Institute of Neuroscience, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ilze Konrade
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Vita Rovite
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
- *Correspondence: Vita Rovite,
| |
Collapse
|