1
|
Jeeva P, Muthusamy A, Kesavan swaminathan J. Deciphering Structural Dynamics of Atherosclerosis Proteins: Insights from Crataegus oxyacantha Phytochemicals that Interceded Functional and Structural Changes in Targeted Atherosclerotic Proteins. ACS OMEGA 2024; 9:48159-48172. [PMID: 39676950 PMCID: PMC11635474 DOI: 10.1021/acsomega.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 12/17/2024]
Abstract
Atherosclerosis (ASC) is characterized by foam cell-mediated plaque formation, vascular endothelial inflammation, and lipidosis and is the rudimentary cause of cardiovascular diseases. This is the pre-eminent global factor of mortality. This etiological paradigm is significantly influenced by several proteins, where 23 pivotal proteins involved in ASC were meticulously gleaned on the basis of literature studies. The crux of the present study was aimed to probe the drugability of four active phytochemicals from Crataegus oxyacantha (COC): epicatechin, gallate, tyramine, and vitexin against the selected 23 proteins. The molecular docking analysis was judiciously administered via Glide, the binding free energy was calculated in detail utilizing the prime molecular mechanics-generalized Born surface area (MM-GBSA) module, and a deeper comprehensive investigation of protein-ligand dynamic associations was elucidated through Desmond. Drawing from the upper echelons of our docking results, the molecular dynamics simulation outcomes revealed that the macrophage migration inhibitory factor and prethrombin-1 showed persistent binding nature with gallate. The bioactive compound known as gallate sourced from COC shows the best molecular association with pivotal proteins involved in ASC and has a promising therapeutic potential for drug development endeavors.
Collapse
Affiliation(s)
- Praveen Jeeva
- Department
of Bioinformatics, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Anusuyadevi Muthusamy
- Department
of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | | |
Collapse
|
2
|
Zeng W, Chu TTW, Fok BSP, Ho WKK, Chan JCN, Tomlinson B. Effects of Hawthorn Fruit Extract Drink in Chinese Patients With Mild Hypertension and/or Hyperlipidaemia: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Dose Response 2024; 22:15593258241303136. [PMID: 39583031 PMCID: PMC11583496 DOI: 10.1177/15593258241303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Objectives: The purpose of this study was to examine the effect of hawthorn extract drink in mildly hypertensive and/or hyperlipidaemic Chinese patients. Methods: We performed a randomized double-blind placebo-controlled crossover study. Subjects who were randomly divided into 2 groups and asked to consume either hawthorn fruit extract drink or placebo with the same sugar content for 8-weeks with crossover to the alternative drink separated by a 4-weeks washout period. Adverse effects, lipid profile, fasting plasma glucose and blood pressure were recorded. Results: In 61 participants, body weight increased by mean (95% CI) 0.42 kg (-0.85, 1.69 kg) with the hawthorn drink and 0.94 kg (0.52, 1.36 kg) with placebo (P > .05). Systolic blood pressure and plasma total cholesterol increased significantly with both treatments and cholesterol sub-fractions showed no significant changes. Significant increases were seen in fasting plasma glucose with placebo. The increase in plasma glucose was reversed during the 4-week washout period. Conclusions: Although our results didn't show significant effects of hawthorn drink compared to placebo, there was a trend toward fewer adverse metabolic effects. A longer study with hawthorn fruit extract without additional calories would be useful to determine if beneficial effects occur in patients with mild hyperlipidaemia or hypertension.
Collapse
Affiliation(s)
- Weiwei Zeng
- Shenzhen Longgang Second People's Hospital, Shenzhen, China
| | - Tanya T. W. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Benny S. P. Fok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Walter K. K. Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| |
Collapse
|
3
|
Quan W, Sun T, Hu B, Luo Q, Zhong Y, Chen W, Tuo Q. Dipsacoside B Attenuates Atherosclerosis by Promoting Autophagy to Inhibit Macrophage Lipid Accumulation. Biomolecules 2024; 14:1226. [PMID: 39456159 PMCID: PMC11506285 DOI: 10.3390/biom14101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and foam cell formation in the arterial wall. Promoting macrophage autophagy has emerged as a promising therapeutic strategy against atherosclerosis. Dipsacoside B (DB) is an oleanane-type pentacyclic triterpenoid saponin extracted from Lonicerae flos with potential anti-atherosclerotic properties. In this study, we investigated the effects of DB on atherosclerosis progression in ApoE-/- mice fed a high-fat diet and explored the underlying mechanisms in oxidized low-density lipoprotein (ox-LDL)-induced foam cells. DB treatment significantly reduced atherosclerotic lesion size, improved plaque stability, and regulated lipid metabolism without impairing liver and kidney function in ApoE-/- mice. In vitro studies revealed that DB dose-dependently inhibited ox-LDL internalization and intracellular lipid accumulation in RAW264.7 macrophages. Mechanistically, DB induced autophagy, as evidenced by increased autophagosome formation and upregulated expression of autophagy markers LC3-II and p62 both in vivo and in vitro. Inhibition of autophagy by chloroquine abolished the antiatherosclerotic and pro-autophagic effects of DB. Furthermore, DB treatment increased LC3-II and p62 mRNA levels, suggesting transcriptional regulation of autophagy. Collectively, our findings demonstrate that DB exerts anti-atherosclerotic effects by inhibiting foam cell formation via autophagy induction, providing new insights into the pharmacological actions of DB and its potential as a therapeutic agent against atherosclerosis.
Collapse
Affiliation(s)
- Wenjuan Quan
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
- Department of Critical Care Medicine, Changde Hospital of Hunan University of Chinese Medicine, Changde 415000, China
| | - Taoli Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
| | - Bo Hu
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Yancheng Zhong
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| |
Collapse
|
4
|
Netala VR, Teertam SK, Li H, Zhang Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024; 13:1471. [PMID: 39273041 PMCID: PMC11394358 DOI: 10.3390/cells13171471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a major global health concern, representing a leading cause of morbidity and mortality. This review provides a comprehensive examination of CVDs, encompassing their pathophysiology, diagnostic biomarkers, advanced imaging techniques, pharmacological treatments, surgical interventions, and the emerging role of herbal remedies. The review covers various cardiovascular conditions such as coronary artery disease, atherosclerosis, peripheral artery disease, deep vein thrombosis, pulmonary embolism, cardiomyopathy, rheumatic heart disease, hypertension, ischemic heart disease, heart failure, cerebrovascular diseases, and congenital heart defects. The review presents a wide range of cardiac biomarkers such as troponins, C-reactive protein, CKMB, BNP, NT-proBNP, galectin, adiponectin, IL-6, TNF-α, miRNAs, and oxylipins. Advanced molecular imaging techniques, including chest X-ray, ECG, ultrasound, CT, SPECT, PET, and MRI, have significantly enhanced our ability to visualize myocardial perfusion, plaque characterization, and cardiac function. Various synthetic drugs including statins, ACE inhibitors, ARBs, β-blockers, calcium channel blockers, antihypertensives, anticoagulants, and antiarrhythmics are fundamental in managing CVDs. Nonetheless, their side effects such as hepatic dysfunction, renal impairment, and bleeding risks necessitate careful monitoring and personalized treatment strategies. In addition to conventional therapies, herbal remedies have garnered attention for their potential cardiovascular benefits. Plant extracts and their bioactive compounds, such as flavonoids, phenolic acids, saponins, and alkaloids, offer promising cardioprotective effects and enhanced cardiovascular health. This review underscores the value of combining traditional and modern therapeutic approaches to improve cardiovascular outcomes. This review serves as a vital resource for researchers by integrating a broad spectrum of information on CVDs, diagnostic tools, imaging techniques, pharmacological treatments and their side effects, and the potential of herbal remedies.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Li Q, Hao Z, Xu H, Wang X. Investigation on the lipid-lowering effect and mechanism by combining turmeric with hawthorn in C57BL/6 obese mice. J Food Sci 2024; 89:4493-4504. [PMID: 38804852 DOI: 10.1111/1750-3841.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Study on the hypolipidemic effect of turmeric combined with hawthorn on C57BL/6 obese mice and its possible mechanism. C57 mice were fed with 60% high-fat diet for 8 weeks to establish an obesity model, and 4 mice were slaughtered to verify whether the modeling was successful. The successful mice were divided into model group (HFD), positive group (high fat feed group [HFD] + simvastatin group [SIM]), turmeric group (HFD + TUR), hawthorn group (HFD + HAW), and para-medicine group (HFD + para-drug group [DOU]) for 4 weeks by gavage intervention. Different intervention groups had certain lipid-lowering effects, and the para-medicine group showed significant differences (p < 0.05, p < 0.01, p < 0.001) in reducing serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, glutamic acid transaminase (ALT), glutamic acid transaminase (AST), and increasing high-density lipoprotein cholesterol. In the para-medicine group, the protein expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, platelet-reactive protein receptor 36, and CCAAT/enhancer binding protein α were significantly downregulated, and the protein expression of carnitine palmitoyl transferase1 and peroxisome proliferator-activated receptor α protein expression (p < 0.01, p < 0.001), thus suggesting that turmeric and hawthorn are superior to turmeric and hawthorn alone in enhancing lipid metabolism-related mechanisms. Combined effects of turmeric and hawthorn improve lipid metabolism in mice, protect the liver, and improve the protein expression of liver-related genes. This study can lay the theoretical basis for the future association of medicinal food products and the development of related weight loss products.
Collapse
Affiliation(s)
- Qiang Li
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Huajian Xu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Xueyan Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Li JN, Wang MY, Tan YR, Wang LL. Multidirectional Intervention of Chinese Herbal Medicine in the Prevention and Treatment of Atherosclerosis: From Endothelial Protection to Immunomodulation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:925-947. [PMID: 38798151 DOI: 10.1142/s0192415x24500381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Atherosclerosis is a significant risk factor for developing cardiovascular disease and a leading cause of death worldwide. The occurrence of atherosclerosis is closely related to factors such as endothelial injury, lipid deposition, immunity, and inflammation. Conventional statins, currently used in atherosclerosis treatment, have numerous adverse side effects that limit their clinical utility, prompting the urgent need to identify safer and more effective therapeutic alternatives. Growing evidence indicates the significant potential of Chinese herbs in atherosclerosis treatment. Herbal monomer components, such as natural flavonoid compounds extracted from herbs like Coptis chinensis and Panax notoginseng, have been utilized for their lipid-lowering and inflammation-inhibiting effects in atherosclerosis treatment. These herbs can be used as single components in treating diseases and with other Chinese medicines to form herbal combinations. This approach targets the disease mechanism in multiple ways, enhancing the therapeutic effects. Thus, this review examines the roles of Chinese herbal medicine monomers and Chinese herbal compounds in inhibiting atherosclerosis, including regulating lipids, improving endothelial function, reducing oxidative stress, regulating inflammation and the immune response, and apoptosis. By highlighting these roles, our study offers new perspectives on atherosclerosis treatment with Chinese herbs and is anticipated to contribute to advancements in related research fields.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Meng-Yu Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Yu-Rong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Li-Li Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
7
|
Ahmadipour B, Kalantar M, Abaszadeh S, Hassanpour H. Antioxidant and antihyperlipidemic effects of hawthorn extract (Crataegus oxyacantha) in broiler chickens. Vet Med Sci 2024; 10:e1414. [PMID: 38504617 PMCID: PMC10951631 DOI: 10.1002/vms3.1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND One of the main problems in the poultry industry is excess body fat, and the anti-fat effect of Cratagus extract has been confirmed in several studies. OBJECTIVES The present study was carried out to investigate the effects of hawthorn extract (Crataegus oxyacantha) on growth performance, haematological variables and hepatic gene expression in broiler chickens reared at high altitude (2100 m). METHODS A total of 225-day-old chicks (Ross 308) were randomly distributed into three treatments. Experimental treatments were prepared by adding 0.0, 0.2 and 0.4 mL of hawthorn extract per litre of consumption of water. RESULTS The results showed that weight gain and feed conversion ratio were significantly improved and abdominal fat decreased by consumption of two levels of Crateagus extract when compared to the control (p < 0.05). Consumption of hawthorn extract decreased circulatory levels of malondialdehyde, triacylglycerol, total cholesterol and low-density lipoproteins cholesterol but increased ferric reducing antioxidant power and high-density lipoproteins cholesterol (p < 0.05). Hawthorn extract caused an up-regulation of catalase, superoxide dismutase1, glutathione peroxidase1 and peroxisome proliferator-activated receptor alpha but reduced the expression of key lipogenic enzymes (p < 0.05). CONCLUSIONS Overall, consumption of 0.4 mL hawthorn extract per litre of drinking water, improved growth performance, suppressed lipogenesis and enhanced antioxidant response.
Collapse
Affiliation(s)
- Behnam Ahmadipour
- Department of Animal ScienceFaculty of AgricultureShahrekord UniversityShahrekordIran
| | - Majid Kalantar
- Department of Animal ScienceQom's Agricultural Research and Education CenterAgricultural Research, Education, and Extension Organization, Jihad‐e‐Keshavarzi MinistryQomIran
| | - Samira Abaszadeh
- Department of Animal ScienceFaculty of AgricultureShahrekord UniversityShahrekordIran
| | - Hossein Hassanpour
- Department of Basic SciencesFaculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| |
Collapse
|
8
|
Gao L, Zhong L, Huang R, Yue J, Li L, Nie L, Wu A, Huang S, Yang C, Cao G, Meng Z, Zang H. Identification and determination of different processed products and their extracts of Crataegi Fructus by infrared spectroscopy combined with two-dimensional correlation analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123922. [PMID: 38295589 DOI: 10.1016/j.saa.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
The fruit of Crataegus sp. is known as "Shanzha (SZ)" in China and is widely used in the food, beverage, and traditional Chinese medicine (TCM) industries. SZ usually requires thermal processing to reduce the irritation of its acidity to the gastric mucosa. Different processed products of SZ resulting from thermal processing have different or even opposite functions in clinical applications. In addition, 5-hydroxymethylfurfural (5-HMF) intermediates produced during thermal processing are carcinogenic to humans. Therefore, the aim of this study was to explore a rapid and accurate method by Fourier transform infrared spectroscopy (FT-IR) for the identification of different processed products and the determination of 5-HMF in extracts. In qualitative identification, a three-stage infrared spectroscopy identification method (raw spectra, the second derivative spectra, and two-dimensional correlation (2DCOS) spectra) was developed to distinguish different processed products of SZ step by step. In quantitative determination, partial least squares regression combined with different variable selection methods, especially the 2DCOS method, was applied to determine the 5-HMF content. The results show that temperature-induced 2DCOS synchronous spectra can effectively identify different processed products of SZ by shape, intensity, and position of auto-peaks or cross-peaks, and the variables selected by power spectra from concentration-induced 2DCOS synchronous spectra have better prediction ability for 5-HMF compared to full variables. The above results demonstrate that 2D-COS analysis is a potential tool in qualitative and quantitative analysis, which can improve sample identification accuracy and determination capabilities. This study not only establishes a rapid and accurate method for the identification of different processed products but also provides a practical reference for food safety and the efficient use of TCM.
Collapse
Affiliation(s)
- Lele Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liang Zhong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ruiqi Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jianan Yue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shouyao Huang
- Shandong Yifang Pharmaceutical Co., Ltd., Linyi 276000, China
| | - Chunguo Yang
- Shandong Yifang Pharmaceutical Co., Ltd., Linyi 276000, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China.
| |
Collapse
|
9
|
Song J, Kim DY, Lee HS, Rhee SY, Lim H. Efficacy of Crataegus Extract Mixture on Body Fat and Lipid Profiles in Overweight Adults: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:494. [PMID: 38398818 PMCID: PMC10892674 DOI: 10.3390/nu16040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A Crataegus Extract Mixture (CEM) is a combination of extracts from Crataegus pinnatifida leaves and Citrus unshiu peels, well-known herbs used for treating obesity and dyslipidemia. We aimed to investigate the efficacy and safety of a CEM on the body fat and lipid profiles in overweight adults. A 12-week, randomized, double-blind, placebo-controlled, parallel-group trial was conducted on 105 subjects aged 20-60 years with body mass indexes between 25 and 30 kg/m2. Eligible subjects were randomly assigned in a 1:1:1 ratio to receive either a high dose of the CEM (400 mg tid), a low dose of the CEM (280 mg tid), or a placebo. Body fat was evaluated using dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), and anthropometric measurements. The blood lipid and adipokine profiles were measured before and after the administration. After 12 weeks, the reductions in the fat percentages measured by DXA and BIA were significantly greater in the CEM groups than in the placebo group. The CEM also significantly decreased the body weights, body mass indexes, and blood leptin levels. An additional per-protocol analysis revealed that the high dose of the CEM also lowered the blood levels of triglycerides and very low-density lipoprotein cholesterol. No adverse events occurred after the CEM treatment. Our results suggest that CEMs are safe and effective for reducing the body fat and body weight and regulating the blood lipid and leptin levels in overweight or mildly obese individuals.
Collapse
Affiliation(s)
- Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Do-Yeon Kim
- Research Institute of Medical Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (D.-Y.K.); (H.S.L.)
| | - Han Songyi Lee
- Research Institute of Medical Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (D.-Y.K.); (H.S.L.)
| | - Sang Youl Rhee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyunjung Lim
- Research Institute of Medical Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (D.-Y.K.); (H.S.L.)
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Rajabi-Estarabadi A, Hartman CL, Iglesia S, Kononov T, Zahr AS. Effectiveness and tolerance of multicorrective topical treatment for infraorbital dark circles and puffiness. J Cosmet Dermatol 2024; 23:486-495. [PMID: 38112168 DOI: 10.1111/jocd.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Treatment of infraorbital dark circles and under-eye puffiness is challenging due to its multifactorial nature and lack of broadly applicable, effective treatments. A daily skincare treatment option that is multimodal, effective, and tolerable across a broad patient population is an unmet need. AIM A multicorrective topical eye cream (MTEC) formulated with Tetrahexyldecyl (THD) ascorbate (vitamin C), prebiotic Inula Helenium, bioavailable peptides, botanical extracts, chrysin, and caffeine is hypothesized to improve the appearance of infraorbital dark circles and under-eye puffiness by targeting microvasculature congestion and permeability, melanin accumulation and hemoglobin degradation-related pigmentation, and skin health. METHODS An IRB approved, open-label, 12-week clinical study set out to evaluate the efficacy and tolerability of the MTEC across a broad patient population including varying ethnicities and Fitzpatrick Skin Types (FST). Female subjects (n = 40) ages 35-60 years old, with moderate-to-severe under-eye dark circles, moderate under-eye puffiness, and mild-to-moderate fine lines were enrolled into the study. Objective (Chromameter, VISIA® imaging, and Laser Doppler) and subjective assessments (clinical grading and self-assessment questionnaire) were conducted at baseline and post-baseline timepoints. RESULTS Thirty-seven subjects completed the study, and the MTEC efficaciously demonstrated short-term and long-term improvements in objective and subjective assessments across a broad patient population. Specifically, the MTEC demonstrated significant improvement of infraorbital dark circles, mainly by the reduction in microvasculature congestion and permeability, melanin, and hemoglobin degradation-related pigmentation. CONCLUSION Topical application of the MTEC may offer an effective and tolerable treatment option for infraorbital dark circles and puffiness.
Collapse
|
11
|
Kong DZ, Sun P, Lu Y, Yang Y, Min DY, Zheng SC, Yang Y, Zhang Z, Yang GL, Jiang JW. Yi Mai granule improve energy supply of endothelial cells in atherosclerosis via miRNA-125a-5p regulating mitochondrial autophagy through Pink1-Mfn2-Parkin pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117114. [PMID: 37678420 DOI: 10.1016/j.jep.2023.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi Mai granule (YMG) consists of two classic Chinese medicine formulas used to treat cardiovascular disease for centuries. The Pink1-Mfn2-Parkin pathway, a well-recognized mechanism that mediates mitochondrial autophagy, plays a big part in mitochondrial quality control and the maintenance of heart function. However, the effects of YMG on endothelial dysfunction and mitochondrial autophagy remain unknown. AIM OF THE STUDY Here, we focused on the therapeutic effects of YMG in improving mitochondrial autophagy and the mechanism of YMG against cardiovascular disease. MATERIALS AND METHODS In this study, rats were fed high-fat diet (HFD) for 21 weeks and were given high, medium, and low doses of YMG in stomach. The open field test was used to evaluate the rats' behavior. Atherosclerotic plaques, blood lipids, and cytokine levels were measured. Mitochondrial autophagy changes were observed by Transmission electron microscope (TEM). Human umbilical vein endothelial cells (HUVECs) were injured by angiotensinⅡ(AngⅡ) and were given high, medium, and low doses of YMG medicated serum in cell culture medium. Pink1-Mfn2-Parkin expression and miRNA 125a-5p expression were measured by RT-PCR and Western blot. RESULTS We demonstrated that the atherosclerosis model group tended to exhibit reduced vitality behaviors. We proved that the atherosclerosis model group showed obvious atherosclerotic plaques, endothelial cells destruction, and high level of blood lipid and cytokines (including hs-CRP, ET). Mitochondria were reduced, and mitophagy was inhibited in aortic cells of the model group. MiRNA-125a-5p was up-regulated; at the same time, Pink1-Mfn2-Parkin-mediated mitochondrial autophagy was prevented. We also proved that AngⅡinjured HUVEC showed obviously low mRNA levels of Pink1, Mfn2, and Parkin. Interestingly, we found that miRNA-125a-5p was significantly down regulated in Ang II-induced HUVECs. In addition, miRNA-125a-5p significantly reduced the protective effect of YiMai Granules against Ang II injury. CONCLUSION Our finding indicated that Pink1-Mfn2-Parkin-mediated mitochondrial autophagy plays a crucial role in alleviating atherosclerosis. YMG alleviated atherosclerosis by potentially activating mitochondrial autophagy may via miRNA-125a-5p, regulating Pink1-Mfn2-Parkin pathway, and regulating proinflammatory factors, vasoconstriction cytokine, and blood lipids.
Collapse
Affiliation(s)
- De Zhao Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, PR China; The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China; Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yi Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Ye Yang
- Beijing University of Chinese Medicine, Beijing, China.
| | - Dong Yu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Si Cheng Zheng
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Yi Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhe Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Guan Lin Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Jun Wen Jiang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China; Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
12
|
Su W, Xie X, Zhao J, Fan Q, Dong N, Li Q, Du Y, Wu S. Comparative efficacy of Chinese patent medicines in patients with carotid atherosclerotic plaque: a Bayesian network meta- analysis. Chin Med 2023; 18:152. [PMID: 37986011 PMCID: PMC10662928 DOI: 10.1186/s13020-023-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Traditional Chinese patent medicines (TCPMs) have been widely used to treat carotid atherosclerotic plaque (CAP) in China. However, systematic evaluation of the clinical efficacy of TCPMs for CAP is still unknown, and the comparative efficacy of different TCPMs is unclear. OBJECTIVES This study aims to compare and rank the effectiveness and safety of different TCPMs in treating CAP using a Bayesian network meta- analysis (NMA). METHODS This NMA was performed according to the Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) Extension Statement. Eight databases were searched from their inception to August 2023 for randomized controlled trials (RCTs). The articles regarding eligibility and extracted data were screened independently by two authors. The Cochrane Risk of Bias tool was used to evaluate quality and bias. The change of carotid artery intimal- medial thickness (IMT), carotid maximal plaque area, carotid atherosclerotic plaque Course score, serum lipid levels, CRP, and adverse events rate (AER) were used as outcomes. Data from each RCTs were first pooled using random- effect pairwise meta- analyses and illustrated as odds ratios (ORs) or standardized mean differences (SMDs) with 95% confidence interval (CI). NMAs were performed using Stata17.0 software and the GeMTC package of R software to evaluate the comparative effectiveness of TCPMs, and displayed as ORs or SMDs with 95% CI. A Bayesian hierarchical random- effects model was used to conduct NMAs using the Markov Chain Monte Carlo algorithm. The GRADE partially contextualised framework was applied for NMA result interpretation. RESULTS NMA included 27 RCT trials with 4131 patients and nine types of TCPMs. Pairwise meta- analyses indicated that Conventional Western medicine (CWM) + TCPM was superior to CWM in reducing the IMT (SMD: - 1.26; 95% CI - 1.59 to - 0.93), the carotid maximal plaque area (SMD - 1.27; 95% CI - 1.71, - 0.82) and the carotid atherosclerotic plaque Course score (SMD - 0.72; 95% CI 95% CI - 1.20, - 0.25). NMAs demonstrated that CWM + Jiangzhiling pill (JZL) with SUCRA 70.6% exhibited the highest effective intervention for reducing IMT. CWM + SXBX (Shexiang baoxin pill) was superior to other TCPMs in reducing the carotid maximal plaque area (83.0%), the atherosclerotic plaque Course score (92.5%), TC (95.6%) and LDL (92.6%) levels. CWM + NXT (Naoxintong capsule), CWM + XS (Xiaoshuang granules/enteric capsule), and CWM + ZBT (Zhibitai) were superior to other CPMs in improving TG (90.1%), HDL (86.1%), and CRP (92.6%), respectively. No serious adverse events were reported. CONCLUSIONS For CAP patients, CWM + XSBX was among the most effective in reducing carotid maximal plaque area, atherosclerotic plaque Course score, TC and LDL levels, and CWM + JZL was the most effective in reducing IMT. Overall, CWM + XSBX may be considered an effective intervention for the treatment of CAP. This study provides reference and evidence for the clinical optimization of TCPM selection in CAP treatment. More adequately powered, well- designed clinical trials to increase the quality of the available evidence are still needed in the future due to several limitations.
Collapse
Affiliation(s)
- Wenquan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaolong Xie
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jiping Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qinhua Fan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Naijia Dong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qingxiao Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yawei Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
13
|
Fogacci F, Degli Esposti D, Di Micoli A, Fiorini G, Veronesi M, Borghi C, Cicero AFG. Effect of dietary supplementation with Diuripres® on blood pressure, vascular health, and metabolic parameters in individuals with high-normal blood pressure or stage I hypertension: The CONDOR randomized clinical study. Phytother Res 2023; 37:4851-4861. [PMID: 37448322 DOI: 10.1002/ptr.7951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Our aim was to evaluate if a nutritional intervention with a dietary supplement (Diuripres®) containing magnesium, standardized extract of orthosiphon, hawthorn, and hibiscus could positively affect blood pressure (BP), vascular health, and metabolic parameters in 60 individuals with high-normal BP or stage I hypertension. Participants followed a low-fat low-sodium Mediterranean diet for 4 weeks before being randomly allocated to 8-week treatment with two pills each day of either Diuripres® or placebo. Diuripres® significantly decreased systolic BP compared to placebo after 4 weeks (3.1 ± 0.8 mmHg; p < 0.05) and more consistently after 8 weeks (3.4 ± 0.9 mmHg; p < 0.05). At 8-week follow-up, after correction for multiple testing, dietary supplementation with Diuripres® was associated with significant improvements in diastolic BP (-3.1 ± 0.6 mmHg; p < 0.05), aortic BP (-4.3 ± 0.4 mmHg; p < 0.05), and high-sensitivity C-reactive protein (hs-CRP; 0.04 ± 0.01 mg/dL; p < 0.05) in comparison with baseline. The reductions in diastolic BP (--3.8 ± 0.7 mmHg; p < 0.05), aortic BP (-5.2 ± 1.0 mmHg; p < 0.05), and hs-CRP (-0.03 ± 0.01 mg/dL; p < 0.05) were also significant compared to placebo. Therefore, our study shows that dietary supplementation with Diuripres® may be useful in individuals with high-normal BP or stage I hypertension.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Italian Nutraceutical Society (SINut), Bologna, Italy
| | - Daniela Degli Esposti
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Di Micoli
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Fiorini
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Veronesi
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Borghi
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Triki R, Boughediri K, Chelaghmia ML, Kechrid Z. The therapeutic potential of “Crataegus azarolus” on zinc, lipid profile, and antioxidant status in streptozotocin-induced diabetic rats with zinc-deficient diet. COMPARATIVE CLINICAL PATHOLOGY 2023; 33:7-19. [DOI: 10.1007/s00580-023-03517-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/31/2023] [Indexed: 01/04/2025]
|
15
|
Mirzai S, Laffin LJ. Supplements for Lipid Lowering: What Does the Evidence Show? Curr Cardiol Rep 2023; 25:795-805. [PMID: 37300664 DOI: 10.1007/s11886-023-01903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE In this review, the regulation, proposed hypolipidemic mechanism, and efficacy of common dietary supplements (DSs) marketed for cardiovascular health are discussed. RECENT FINDINGS Data demonstrate modest but inconsistent lipid-lowering effects with common DSs such as probiotics, soluble fibers, plant sterols, green tea, berberine, guggul, niacin, and garlic. Furthermore, data is limited regarding turmeric, hawthorn, and cinnamon. Red yeast rice has shown to be a beneficial DS, but its safety and efficacy are dependent upon its production quality and monacolin K content, respectively. Finally, soy proteins and omega-3 fatty acid-rich foods can have significant health benefits if used to displace other animal products as part of a healthier diet. Despite the rising use of DSs, data demonstrate unpredictable results. Patients should be educated on the difference between these DSs and evidence-based lipid-lowering medications proven to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Saeid Mirzai
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Luke J Laffin
- Section of Preventive Cardiology and Rehabilitation, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code JB1, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
Gao L, Zhong L, Wei Y, Li L, Wu A, Nie L, Yue J, Wang D, Zhang H, Dong Q, Zang H. A new perspective in understanding the processing mechanisms of traditional Chinese medicine by near-infrared spectroscopy with Aquaphotomics. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Jing Y, Yan M, Liu D, Tao C, Hu B, Sun S, Zheng Y, Wu L. Research progress on the structural characterization, biological activity and product application of polysaccharides from Crataegus pinnatifida. Int J Biol Macromol 2023; 244:125408. [PMID: 37343606 DOI: 10.1016/j.ijbiomac.2023.125408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Crataegus pinnatifida is a plant of the Crataegus genus in the Rosaceae family and is commonly used as a food and medicinal resource. Crataegus pinnatifida polysaccharide, as one of the main active ingredients of Crataegus pinnatifida, has a variety of beneficial biological activities, such as antioxidant, hypoglycemic activity, lipid-lowering, intestinal flora regulation, promotion immune regulation, and antitumor activities. However, the extraction methods of Crataegus pinnatifida polysaccharides lack innovation, the primary structure is relatively limited, and the biological activity mechanism needs to be further explored. Therefore, this review summarizes the research status of the extraction, purification, structural characterization, biological activity, and product application of Crataegus pinnatifida polysaccharides. The purpose of this study is to generate support for further development and application of polysaccharides from Crataegus pinnatifida.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Dongbo Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Cheng Tao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
18
|
Wang Y, Guo Y, Liu H, Du X, Shi L, Wang W, Zhang S. Hawthorn fruit extract protect against MC-LR-induced hepatotoxicity by attenuating oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1239-1250. [PMID: 36880395 DOI: 10.1002/tox.23760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Microcystins (MCs) is a class of cyclic heptapeptide compounds with biological activity. There is no effective treatment for liver injury caused by MCs. Hawthorn is a medicinal and edible plant traditional Chinese medicine with hypolipidemic, reducing inflammation and oxidative stress in the liver. This study discussed the protective effect of hawthorn fruit extract (HFE) on liver damage caused by MC-LR and the underlying molecular mechanism. After MC-LR exposure, pathological changes were observed and hepatic activity of ALT, AST and ALP were increased obviously, but they were remarkably restored with HFE administration. In addition, MC-LR could significantly reduce SOD activity and increase MDA content. Importantly, MC-LR treatment resulted in mitochondrial membrane potential decreased, and Cytochrome C release, eventually leading to cell apoptosis rate increase. HFE pretreatment could significantly alleviate the above abnormal phenomena. To examine the mechanism of protection, the expression of critical molecules in the mitochondrial apoptosis pathway was examined. The levels of Bcl-2 was inhibited, and the levels of Bax, Caspase-9, Cleaved Caspase-9, and Cleaved caspase-3 were upregulated after MC-LR treatment. HFE reduced MC-LR-induced apoptosis via reversing the expression of key proteins and genes in the mitochondrial apoptotic pathway. Hence, HFE could alleviate MC-LR induced hepatotoxicity by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. Oligomeric Proanthocyanidins: An Updated Review of Their Natural Sources, Synthesis, and Potentials. Antioxidants (Basel) 2023; 12:antiox12051004. [PMID: 37237870 DOI: 10.3390/antiox12051004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
Collapse
Affiliation(s)
- Fanxuan Nie
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiamin Cui
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
20
|
Lien HM, Lin HT, Huang SH, Chen YR, Huang CL, Chen CC, Chyau CC. Protective Effect of Hawthorn Fruit Extract against High Fructose-Induced Oxidative Stress and Endoplasmic Reticulum Stress in Pancreatic β-Cells. Foods 2023; 12:foods12061130. [PMID: 36981057 PMCID: PMC10047983 DOI: 10.3390/foods12061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023] Open
Abstract
Hyperglycemia has deleterious effects on pancreatic β-cells, causing dysfunction and insulin resistance that lead to diabetes mellitus (DM). The possible causes of injury can be caused by glucose- or fructose-induced oxidative and endoplasmic reticulum (ER) stress. Hawthorn (Crataegus pinnatifida) fruit has been widely used as a hypolipidemic agent in traditional herbal medicine. The study aimed to investigate whether high fructose-induced pancreatic β-cell dysfunction could be reversed through amelioration of ER stress by the treatment of polyphenol-enriched extract (PEHE) from hawthorn fruit. The extract was partitioned using ethyl acetate as a solvent from crude water extract (WE) of hawthorn fruits, followed by column fractionation. The results showed that the contents of total polyphenols, flavonoids and triterpenoids in PEHE could be enhanced by 2.2-, 7.7- and 1.1-fold, respectively, in comparison to the original obtained WE from hawthorn fruit. In ER stress studies, a sharp increase in the inhibitory activity on the gene expression levels of GRP79, ATF6, IRE1α and CHOP involved in ER stress was evident when dosages of PEHE at 50–100 μg/mL were used against high-fructose (150 mM)-treated cells. HPLC–MS/MS analysis showed that polyphenols and flavonoids collectively accounted for 87.03% of the total content of PEHE.
Collapse
Affiliation(s)
- Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
- SYi Biotek, 2F, No. 26, Keyuan Rd., Xitun District, Taichung 40763, Taiwan
- Correspondence: (H.-M.L.); (C.-C.C.)
| | - Hsin-Tang Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145, Xingda Road, Taichung 40227, Taiwan
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
| | - Yìng-Ru Chen
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
| | - Chao-Lu Huang
- SYi Biotek, 2F, No. 26, Keyuan Rd., Xitun District, Taichung 40763, Taiwan
| | - Chia-Chang Chen
- SYi Biotek, 2F, No. 26, Keyuan Rd., Xitun District, Taichung 40763, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Shalu District, Taichung 43302, Taiwan
- Correspondence: (H.-M.L.); (C.-C.C.)
| |
Collapse
|
21
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
22
|
Li R, Luan F, Zhao Y, Wu M, Lu Y, Tao C, Zhu L, Zhang C, Wan L. Crataegus pinnatifida: A botanical, ethnopharmacological, phytochemical, and pharmacological overview. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115819. [PMID: 36228891 DOI: 10.1016/j.jep.2022.115819] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus pinnatifida belongs to the Rosaceae family and extensively distribute in North China, Europe, and North America. Its usage was first described in "Xinxiu Ben Cao." The dried fruits of Crataegus pinnatifida Bunge or Crataegus pinnatifida var. major N. E. Br., also known as "Shanzha," is a famous medicine and food homology herb with a long history of medicinal usage in China. C. pinnatifida has the functions for digestive promotion, cardiovascular protection, and lipid reduction. It was traditionally used to treat indigestion, cardiodynia, thoracalgia, hernia, postpartum blood stagnation, and hemafecia. In recent years, C. pinnatifida has attracted worldwide attention as an important medicinal and economical crop due to its multiple and excellent health-promoting effects on cardiovascular, nervous, digestive, endocrine systems, and morbigenous microorganisms of the human body due to its medicinal and nutritional values. AIM OF THE REVIEW The current review aims to provide a comprehensive analysis of the geographical distribution, traditional usage, phytochemical components, pharmacological actions, clinical settings, and toxicities of C. pinnatifida. Moreover, the connection between the claimed biological activities and the traditional usage, along with the future perspectives for ongoing research on this plant, were also critically summarized. MATERIALS AND METHODS We collected the published literature on C. pinnatifida using a variety of scientific databases, including Web of Science, ScienceDirect, PubMed, Wiley, Springer, Taylor & Francis, ACS Publications, Google Scholar, Baidu Scholar, CNKI, The Plant List Database, and other literature sources (Ph.D. and MSc dissertations) from 2012 to 2022. RESULTS In the last decade, over 250 phytochemical compounds containing lignans, phenylpropanoids, flavonoids, triterpenoids, and their glycosides, as well as other compounds, have been isolated and characterized from different parts, including the fruit, leaves, and seeds of C. pinnatifida. Among these compounds, flavonoids and triterpenoids were major bioactive components of C. pinnatifida. They exhibited a broad spectrum of pharmacological actions with low toxicity in vitro and in vivo, such as cardiovascular protection, neuroprotection, anti-inflammatory, antioxidant, antibacterial, antiviral, anti-diabetes, anti-cancer, anti-mutagenic, anti-osteoporosis, anti-aging, anti-obesity, and hepatoprotection and other actions. CONCLUSION A long history of traditional uses and abundant pharmacochemical and pharmacological investigations have demonstrated that C. pinnatifida is an important medicine and food homology herb, which displays outstanding therapeutic potential, especially in the digestive system and cardiovascular disease. Nevertheless, the current studies on the active ingredients or crude extracts of C. pinnatifida and the possible mechanism of action are unclear. More evidence-based scientific studies are required to verify the traditional uses of C. pinnatifida. Furthermore, more efforts must be paid to selecting index components for quality control research and toxicity and safety studies of C. pinnatifida.
Collapse
Affiliation(s)
- Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Mengyao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yang Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chengtian Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lv Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chi Zhang
- Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China.
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
23
|
Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Li H, Gao L, Shao H, Li B, Zhang C, Sheng H, Zhu L. Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis. J Food Biochem 2022; 46:e14457. [PMID: 36200679 DOI: 10.1111/jfbc.14457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
Collapse
Affiliation(s)
- Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Evaluation of hawthorns maturity level by developing an automated machine learning-based algorithm. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
27
|
Wang C, Pang W, Du X, Zhai J, Zhong M, Zhuang M, An J, Cao L, Zhang L, Zheng W, Zhang J. Efficacy and safety of zhibitai in the treatment of hyperlipidemia: A systematic review and meta-analysis. Front Pharmacol 2022; 13:974995. [PMID: 36120312 PMCID: PMC9479062 DOI: 10.3389/fphar.2022.974995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: To evaluate the efficacy and safety of Zhibitai (ZBT) in the treatment of patients with hyperlipidemia (HLP). Methods: A search of 8 electronic databases was conducted to find randomized controlled trials (RCTs), to evaluate the efficacy and safety of ZBT for the treatment of HLP. The risk of bias in randomized controlled trials was assessed by using the Cochrane Collaboration Risk of Bias tool for randomized controlled trials 2.0 (RoB 2.0). The primary outcomes were the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). The total effective rate served as the secondary outcome. The incidence of adverse events was considered the safety outcome. Review Manager 5.4 was used to conduct meta-analyses. Data were pooled by random-effects or fixed-effects model to obtain the mean difference (MD), risk ratio (RR), odds ratio (OR), and 95% confidence interval (CI). Results: There were 28 eligible RCTs with a total of 2,952 participants. Overall, we verified that ZBT plus conventional therapy (CT) was superior to CT for the treatment of HLP [TC: MD = −0.50, 95% CI (−0.80, −0.19); TG: MD = −0.38, 95% CI (−0.49, −0.27); LDL-C: MD = −0.50, 95% CI (−0.69, −0.31); HDL-C: MD = 0.17, 95% CI (0.11, 0.24); total effective rate: OR = 4.26, 95% CI (2.28, 7.95)]. There were no significant differences in the primary outcomes between ZBT alone vs. CT (p > 0.05). For safety, the ZBT group (with CT or alone) outperformed the CT group [ZBT alone: RR = 0.51, 95% CI (0.32, 0.81); ZBT plus CT: RR = 0.51, 95% CI (0.30, 0.89)]. For each outcome, the subgroups and the sensitivity analysis matched the overall results. Conclusion: ZBT may be safe and beneficial to HLP patients, especially for serum lipid management. ZBT can be used along with CT for the treatment of HLP. However, it is necessary to conduct more rigorous RCTs to confirm these findings. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022316251].
Collapse
Affiliation(s)
- Chunyang Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentai Pang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuechen Du
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiani Zhai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyuan Zhong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Zhuang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiali An
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lujia Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Zhang
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenke Zheng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Wenke Zheng, ; Junhua Zhang,
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Wenke Zheng, ; Junhua Zhang,
| |
Collapse
|
28
|
Zhou P, Kang JL, Cheng QQ, Chen MT, Xie Y, Zhou H. Therapeutic potential of traditional Chinese medicine against atherosclerosis: Targeting trimethylamine N-oxide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154305. [PMID: 35792446 DOI: 10.1016/j.phymed.2022.154305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies have shown that plasma trimethylamine-N-oxide (TMAO) level is highly correlated with the risk of atherosclerosis (AS), and the elevated level is significantly positively correlated with the incidence of AS. PURPOSE The purpose of this article is to offer a useful summary of the correlation between TMAO and AS, and the effect of herbal monomers, herbal extracts, and formulas on anti-atherosclerosis mediated by TMAO. METHOD The data contained in this article comes from PubMed, Web of Science, and China National Knowledge Infrastructure. RESULTS This review discusses the main mechanism of AS induced by TMAO, including endothelial dysfunction, macrophage foaming, platelet reactivity, and cholesterol metabolism, and summarizes 6 herb monomers, 5 herb extracts, and 2 formulas that have been tested for their anti-TMAO activity. CONCLUSION The current understanding of possible ways to reduce TMAO generation is discussed, with the effect and potential of herb monomers, herb extracts, and formulas highlighted.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China
| | - Qi-Qing Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese medicine, Shenzhen, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR China.
| |
Collapse
|
29
|
Moldovan R, Mitrea DR, Florea A, Chiş IC, Suciu Ş, David L, Moldovan BE, Mureşan LE, Lenghel M, Ungur RA, Opriş RV, Decea N, Clichici SV. Effects of Gold Nanoparticles Functionalized with Bioactive Compounds from Cornus mas Fruit on Aorta Ultrastructural and Biochemical Changes in Rats on a Hyperlipid Diet-A Preliminary Study. Antioxidants (Basel) 2022; 11:antiox11071343. [PMID: 35883833 PMCID: PMC9311980 DOI: 10.3390/antiox11071343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cornus mas L. extract (CM) presents hypolipidemic, antioxidant and anti-inflammatory activity. Gold nanoparticles (AuNPs) are considered potent delivery systems and may be used to release pharmaceutical compounds at the level of injury. In our study, we used gold nanoparticles functionalized with bioactive compounds from Cornus mas L. (AuNPsCM) in an experimental model of a high-fat diet (HFD), and we assessed their effects on aorta wall but also in the serum, as compared to Cornus mas (CM) administration. Sprague Dawley female rats were fed for 9 months with an HFD. During the last month of the experiment, we randomly allocated the animals into three groups that received, by oral gavage: saline solution, CM solution (0.158 mg/mL polyphenols) or AuNPsCM solution (260 μg Au/kg/day), while a Control group received a standard diet and saline solution. At the end of the experiment, we performed an ultrasonography of the aorta and left ventricle and a histology and transmission electron microscopy of the aorta walls; we investigated the oxidative stress and inflammation in aorta homogenates and in serum and, in addition, the lipid profile. AuNPsCM presented better effects in comparison with the natural extract (CM) on lipid peroxidation (p < 0.01) and TNF-alpha (p < 0.001) in aorta homogenates. In serum, both CM and AuNPsCM decreased the triglycerides (p < 0.001) and C-reactive protein (CM, p < 0.01; AuNPsCM, p < 0.001) and increased the antioxidant protection (p < 0.001), in comparison with the HFD group. In intima, AuNPsCM produced ultrastructural lesions, with the disorganization of intima and subendothelial connective layer, whereas CM administration preserved the intima normal aspect, but with a thinned subendothelial connective layer. AuNPsCM oral administration presented certain antioxidant, anti-inflammatory and hypolipidemic effects in an experimental model of HFD, but with a negative impact on the ultrastructure of aorta walls, highlighted by the intima disorganization.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Irina-Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Şoimiţa Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania;
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Rodica Ana Ungur
- Department of Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Răzvan Vlad Opriş
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Simona Valeria Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| |
Collapse
|
30
|
Cui Y, Du K, Hou S, Yang R, Qi L, Li J, Chang Y. A comprehensive strategy integrating metabolomics with multiple chemometric for discovery of function related active markers for assessment of foodstuffs: A case of hawthorn (Crataegus cuneata) fruits. Food Chem 2022; 383:132464. [DOI: 10.1016/j.foodchem.2022.132464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/05/2023]
|
31
|
Molecular Mechanism of Crataegi Folium and Alisma Rhizoma in the Treatment of Dyslipidemia Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4891370. [PMID: 35722157 PMCID: PMC9200514 DOI: 10.1155/2022/4891370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Background Dyslipidemia has become a critical global issue for public health, with elevating prevalence and morbidity closely related to many cardiovascular diseases (CVD) with high incidence rates. Crataegi Folium (known as Shanzhaye in China, SZ, the leaves of Crataegus pinnatifida Bge. var. major N.E. Br. or Crataegus pinnatifida Bge) and Alisma rhizoma (known as Zexie in China, ZX, the dried tuber of Alisma orientale (Sam.) Juzep or Alisma plantago-aquatica Linn), a classic combination of herbs, have been widely used to treat dyslipidemia. However, the therapeutic mechanism of this pair still remains unclear. Hence, this study aimed to elucidate the molecular mechanism of the Shanzhaye-Zexie herb pair (SZHP) in the treatment of dyslipidemia with the use of a network pharmacology analysis approach. Methods Active compounds, targets of the SZHP, and targets for dyslipidemia were screened based on the public database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed on the database for annotation, visualization, and integrated discovery (DAVID 6.8). The compound-target-disease-pathway network was visualized using the Cytoscape software, and SYBYL was used for molecular docking. Results Twelve active compounds in the SZHP were screened out, which were closely connected to 186 dyslipidemia-related targets. The network analysis revealed that sitosterol, stigmasterol, isorhamnetin, kaempferol, and quercetin might be candidate agents and CCND1, CASP3, HIF1A, and ESR1 genes were potential drug targets. GO analysis revealed 856 biological processes (BP), 139 molecular functions (MF), and 89 cellular components (CC). The KEGG pathway enrichment analysis indicated that the lipid level and atherosclerosis might influence the treatment of dyslipidemia. Molecular docking showed that quercetin bound well to CCND1, HIF1A, MYC, AKT1, and EGFR genes. These findings were in accord with the prediction obtained through the network pharmacology approach. Conclusions This study revealed the primary pharmacological effects and relevant mechanisms of the SZHP in treating dyslipidemia. Our findings may facilitate the development of the SZHP or its active compounds as an alternative therapy for dyslipidemia. Still, more pharmacological experiments are needed for verification.
Collapse
|
32
|
Anxiolytic and antidepressants' effect of Crataegus pinnatifida (Shan Zha): biochemical mechanisms. Transl Psychiatry 2022; 12:208. [PMID: 35589704 PMCID: PMC9117595 DOI: 10.1038/s41398-022-01970-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
Depression and anxiety disorders are highly prevalent. Selective serotonin reuptake inhibitors (SSRIs) are the current first-line treatment for depression, but they have pronounced limitations. Traditional Chinese medicine can serve as a safe and effective alternative to conventional drugs, particularly since many herbal remedies have already been approved for human use as food additives, making the transition from bench to bedside more efficient. We previously demonstrated that a novel herbal treatment (NHT) induces anxiolytic- and antidepressant-like effects. NHT consists of four herbs: Crataegus pinnatifida (Shan Zha), Triticum aestivum (Fu Xiao Mai), Lilium brownii (Baihe), and the fruit of Ziziphus jujuba (Da Zao). In the current study, we examined the antidepressant-like and anxiolytic-like activities of each individual herb on stressed mice and compared those to the effects of NHT and escitalopram. We show here that Shan Zha is sufficient to produce an anxiolytic and antidepressant-like effect similar to NHT or the escitalopram through activation of 5-HT1A receptor and an elevation in BDNF levels in the hippocampus and Pre-frontal cortex (PFC). Chronic treatment with Shan Zha did not alter serotonin transporter levels in the PFC, as opposed to escitalopram treatment. These results were confirmed in vitro, as none of the herbs blocked SERT activity in Xenopus oocytes. Notably, Shan Zha is sold as a nutritional supplement; thus, its transition to clinical trials can be easier. Once its efficacy and safety are substantiated, Shan Zha may serve as an alternative to conventional antidepressants.
Collapse
|
33
|
Du L, Wang Q, Ji S, Sun Y, Huang W, Zhang Y, Li S, Yan S, Jin H. Metabolomic and Microbial Remodeling by Shanmei Capsule Improves Hyperlipidemia in High Fat Food-Induced Mice. Front Cell Infect Microbiol 2022; 12:729940. [PMID: 35573781 PMCID: PMC9094705 DOI: 10.3389/fcimb.2022.729940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia refers to a chronic disease caused by systemic metabolic disorder, and its pathophysiology is very complex. Shanmei capsule (SM) is a famous preparation with a long tradition of use for anti-hyperlipidemia treatment in China. However, the regulation mechanism of SM on hyperlipidemia has not been elucidated so far. In this study, a combination of UPLC-Q-TOF/MS techniques and 16S rDNA gene sequencing was performed to investigate the effects of SM treatment on plasma metabolism-mediated change and intestinal homeostasis. The results indicated that SM potently ameliorated high-fat diet-induced glucose and lipid metabolic disorders and reduced the histopathological injury. Pathway analysis indicated that alterations of differential metabolites were mainly involved in glycerophospholipid metabolism, linolenic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism. These changes were accompanied by a significant perturbation of intestinal microbiota characterized by marked increased microbial richness and changed microbiota composition. There were many genera illustrating strong correlations with hyperlipidemia-related markers (e.g., weight gains, GLU, and total cholesterol), including the Lachnospiraceae NK4A136 group and the Lachnospiraceae NK4B4 group. Overall, this study initially confirmed that hyperlipidemia is associated with metabolic disturbance and intestinal microbiota disorders, and SM can be employed to help decrease hyperlipidemia risk, including improving the abnormal metabolic profile and maintaining the gut microbial environment.
Collapse
Affiliation(s)
- Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjing Huang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiping Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| |
Collapse
|
34
|
Secreted frizzled-related protein 4 exerts anti-atherosclerotic effects by reducing inflammation and oxidative stress. Eur J Pharmacol 2022; 923:174901. [PMID: 35364070 DOI: 10.1016/j.ejphar.2022.174901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Atherosclerosis and its sequelae, such as coronary artery disease (CAD), are the most common diseases worldwide and the leading causes of morbidity and mortality in most countries. Our previous studies have shown that circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with CAD. However, the role of SFRP4 in the development of atherosclerosis remains unclear; thus, the purpose of this study was to determine the effect of SFRP4 on high-fat diet (HFD)-induced atherosclerosis and explore the possible mechanisms. In this study, we found for the first time that administration of recombinant SFRP4 alleviates atherosclerosis in ApoE-/- mice by reducing inflammation and oxidative stress. In addition, the anti-atherosclerotic effect of SFRP4 was associated with inhibition of the Wnt/β-catenin signaling pathway, and Wnt1 overexpression abolished the anti-atherosclerotic effects of SFRP4. Taken together, our results highlight the potential beneficial effect of SFRP4 as a therapeutic agent for atherosclerosis and CAD.
Collapse
|
35
|
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev 2022; 38:e3502. [PMID: 34614543 DOI: 10.1002/dmrr.3502] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MS) is a chronic non-infective syndrome characterised clinically by a set of vascular risk factors that include insulin resistance, hypertension, abdominal obesity, impaired glucose metabolism, and dyslipidaemia. These risk factors are due to a pro-inflammatory state, oxidative stress, haemodynamic dysfunction, and ischaemia, which overlap in 'dysmetabolic' patients. This review aimed to evaluate the relationship between the traditional components of MS with cardiovascular disease (CVD), inflammation, and oxidative stress. MEDLINE-PubMed, EMBASE, and Cochrane databases were searched. Chronic low-grade inflammatory states and metaflammation are often accompanied by metabolic changes directly related to CVD incidence, such as diabetes mellitus, hypertension, and obesity. Moreover, the metaflammation is characterised by an increase in the serum concentration of pro-inflammatory cytokines, mainly interleukin-1 β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), originating from the chronically inflamed adipose tissue and associated with oxidative stress. The increase of reactive oxygen species overloads the antioxidant systems causing post-translational alterations of proteins, lipids, and DNA leading to oxidative stress. Hyperglycaemia contributes to the increase in oxidative stress and the production of advanced glycosylation end products (AGEs) which are related to cellular and molecular dysfunction. Oxidative stress and inflammation are associated with cellular senescence and CVD. CVD should not be seen only as being triggered by classical MS risk factors. Atherosclerosis is a multifactorial pathological process with several triggering and aetiopathogenic mechanisms. Its medium and long-term repercussions, however, invariably constitute a significant cause of morbidity and mortality. Implementing preventive and therapeutic measures against oxy-reductive imbalances and metaflammation states has unquestionable potential for favourable clinical outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- João Leonardo Silveira Rossi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - University of Marília, Marília, São Paulo, Brazil
- School of Food and Technology of Marilia, Marilia, São Paulo, Brazil
| | - Renan Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, Texas, USA
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
36
|
Ding C, Shen H, Tian Z, Kang M, Ma J, He Q, Wang J, Zhang Y, Deng Y, Wang D. Protective effect of hawthorn vitexin on the ethanol-injured DNA of BRL-3A hepatocytes. Medicine (Baltimore) 2021; 100:e28228. [PMID: 34918685 PMCID: PMC10545377 DOI: 10.1097/md.0000000000028228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Vitexin is a natural active ingredient in hawthorn leaves, which has a wide range of anti-tumor effects. This study was conducted to assess the protective effect of hawthorn vitexin on the ethanol-injured DNA of hepatocytes in vitro and to explore its mechanism. The effect of different concentrations of hawthorn vitexin on ethanol-injured hepatocytes was detected via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method to study the protective effect of hawthorn vitexin on ethanol-injured DNA damage in hepatocytes. Single-cell gel electrophoresis was used to observe the effect of hawthorn vitexin on ethanol-induced DNA damage in hepatocytes, and the Olive tail moment was measured. Cell physiological and biochemical indexes, such as superoxide dismutase activity, malonaldehyde content, and glutathione peroxidase activity, were detected with kits. The mRNA expression of the superoxide dismutase gene was measured via real-time quantitative polymerase chain reaction. It was showed that 0.2, 0.4, and 0.8 mg mL-1 hawthorn vitexin could significantly repair hepatocyte growth and ethanol-induced DNA damage. This effect was closely related to the improvement in superoxide dismutase, malonaldehyde, and glutathione peroxidase. Hawthorn vitexin could be used to repair ethanol-injured hepatocytes through antioxidation effects, and showed potential for the treatment of liver injury.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Henglun Shen
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Qing He
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Jinglong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Yingxia Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Yanmei Deng
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Deya Wang
- College of Life Science, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
37
|
Exploring the Therapeutic Mechanisms of Huzhang-Shanzha Herb Pair against Coronary Heart Disease by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5569666. [PMID: 34887932 PMCID: PMC8651359 DOI: 10.1155/2021/5569666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Background Coronary heart disease (CHD) seriously affects human health, and its pathogenesis is closely related to atherosclerosis. The Huzhang (the root of Polygonum cuspidatum)–Shanzha (the fruit of Crataegus sp.), a classic herb pair, has been widely used for the treatment of CHD. In recent years, Huzhang–Shanzha herb pair (HSHP) was found to have a wide range of effects in CHD; however, its therapeutic specific mechanisms remain to be further explored. The aim of this study was to elucidate the molecular mechanism of HSHP in the treatment of CHD using a network pharmacology analysis approach. Methods The Batman-TCM database was used to explore bioactive compounds and corresponding targets of HSHP. CHD disease targets were extracted from Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Then, the protein-protein interaction (PPI) network was constructed using the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Finally, molecular docking of the active components was assessed to verify the potential targets of HSHP to treat CHD by the AutoDock Vina and PyMOL software. Results Totally, 243 active components and 2459 corresponding targets of LDP were screened out. Eighty-five common targets of HSHP and CHD were identified. The results of the network analysis showed that resveratrol, anthranone, emodin, and ursolic acid could be defined as four therapeutic components. TNF, ESR1, NFКB1, PPARG, INS, TP53, NFКBIA, AR, PIK3R1, PIK3CA, PTGS2, and NR3C1 might be the 12 key targets. These targets were mainly involved in the regulation of biological processes, such as inflammatory responses and lipid metabolism. Enrichment analysis showed that the identified genes were mainly involved in fluid shear force, insulin resistance (IR), inflammation, and lipid metabolism pathways to contribute to CHD. This suggests that resveratrol, anthranone, emodin, and ursolic acid from HSHP can be the main therapeutic components of atherosclerosis. Conclusion Using network pharmacology, we provide new clues on the potential mechanism of action of HSHP in the treatment of CHD, which may be closely related to the fluid shear force, lipid metabolism, and inflammatory response.
Collapse
|
38
|
Wu M, Yang S, Liu G, Gu C, Ren P, Zhao R, Zhao Y, Xing Y, Liu L, Liang J. Treating unstable angina with detoxifying and blood-activating formulae: A randomized controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114530. [PMID: 34416295 DOI: 10.1016/j.jep.2021.114530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/17/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Detoxifying and blood-activating Chinese medicine granule formula, which includes 15 g of Polygonum cuspidatum Sieb. et Zucc. (Polygonum cuspidatum) and 10 g of Crataegus pinnatifida Bunge (Hawthorn), can relieve the symptoms and serve as supplementary treatment for unstable angina. AIM OF THE STUDY This study aimed to explore the role of detoxifying and blood-activating formulae in the treatment of unstable angina and the potential mechanism involved. MATERIALS AND METHODS A total of 144 participants with unstable angina were randomly divided into experimental and control groups. Both groups were treated with standardized Western medicine; the experimental group was additionally treated with detoxifying and blood-activating Chinese medicine granules, which included 15 g of P. cuspidatum and 10 g of C. pinnatifida for 4 weeks. The primary endpoint was the frequency of weekly angina pectoris attacks before and after treatment. The secondary endpoints, also observed before and after treatment, included blood glucose, blood lipids, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, and adiponectin levels, as well as the ratio of pro/anti-inflammatory factors and evaluation scales of symptoms and syndromes in Chinese and Western medicine. RESULTS In both experimental and control groups, the frequency of weekly angina pectoris attacks was lower after treatment (P < 0.01), but with no significant intergroup difference (P = 0.10). After intervention, the hs-CRP, TNF-α, and IL-6 levels decreased, while the IL-10 and adiponectin levels significantly increased in the experimental group (P < 0.05 or 0.01). The ratios of the inflammatory factors significantly decreased after treatment, particularly in the experimental group (P < 0.01). Symptoms and syndromes were also ameliorated in the experimental group (P < 0.01), showing a significant difference from the control group (P < 0.01). CONCLUSIONS Detoxifying and blood-activating formulae can reduce the frequency and relieve symptoms of unstable angina, and this mechanism may be related to a regulation of the balance of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Guijian Liu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chun Gu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Peng Ren
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China.
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China.
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jiaqi Liang
- Department of Cardiovascular, Beijing Longfu Hospital, Beijing, China.
| |
Collapse
|
39
|
Li J, Li Z, Raghavan G, Song F, Song C, Liu M, Pei Y, Fu W, Ning W. Fuzzy logic control of relative humidity in microwave drying of hawthorn. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Liu C, He Q, Zeng L, Shen L, Luo Q, Zhang W, Zhou X, Wan J. Digestion-Promoting Effects and Mechanisms of Dashanzha Pill Based on Raw and Charred Crataegi Fructus. Chem Biodivers 2021; 18:e2100705. [PMID: 34710267 DOI: 10.1002/cbdv.202100705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that a high-fat diet (HFD) can influence endoplasmic reticulum (ER) stress and gut microbiota. Crataegi Fructus is a traditional Chinese herb widely used in formulas for dyspepsia, with Dashanzha Pill composed of raw Crataegi Fructus (DR) being a representative drug. Processing products of Crataegi Fructus, however, have a stronger pro-digestive effect, and we hypothesized that Dashanzha Pill composed of charred Crataegi Fructus (DC) is more effective. We found that the contents of glucose 1-phosphate and luteolin in DR and DC were substantially different via ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry. DC outperformed DR in improving histopathological changes, increasing gastrin and motilin, and decreasing vasoactive intestinal peptides in rats with HFD induced dyspepsia. Fecal microbiota analysis revealed that DC could restore the disturbed intestinal microbiota composition, including that of Bacteroides, Akkermansia, and Intestinimonas to normal levels. Furthermore, DC significantly reduced the mRNA and protein levels of glucose-regulated protein 78, protein kinase R-like ER kinase, and eukaryotic initiation factor 2α. Taken together, DC outperformed DR in relieving dyspepsia by regulating gut microbiota and alleviating ER stress.
Collapse
Affiliation(s)
- Cui Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Qian He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Linlin Zeng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Ling Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Qiaomei Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Wentao Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Xia Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Jun Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| |
Collapse
|
41
|
Sabbaghzadegan S, Golsorkhi H, Soltani MH, Kamalinejad M, Bahrami M, Kabir A, Dadmehr M. Potential protective effects of Aloe vera gel on cardiovascular diseases: A mini-review. Phytother Res 2021; 35:6101-6113. [PMID: 34355443 DOI: 10.1002/ptr.7219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
Cardiovascular diseases (CVDs) comprise the most prevalent causes of morbidity and mortality in both men and women worldwide. CVDs are associated with several risk factors such as hyperlipidemia, diabetes mellitus, hypertension, obesity, tobacco smoking and an unhealthy diet. Currently, in addition to the use of related pharmacological treatments in the management of CVDs, the investigation of other suitable healthcare approaches for these disorders such as the identification of herbal medicines has been considered in the scientific communities. Aloe vera (L.) Burm.f. is a perennial medicinal plant. The innermost leaf layer of this plant contains transparent gel, which is used as food. Pre-clinical studies have shown several biological activities of A. vera gel (AVG), including antidiabetic, lipid-lowering, antioxidant, antiinflammatory, hepatoprotective, and immunomodulatory effects. Other pharmacological activities of AVG such as anti-fibrotic, anti-hypertensive, and anti-atherosclerotic effects have been reported. Moreover, several clinical studies have demonstrated the ameliorating effects of AVG on some markers of CVDs risk factors. Thus, this study was conducted to review clinical trials besides in vitro and in vivo studies on the cardiac beneficial effects of AVG. However, further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
- Saeideh Sabbaghzadegan
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haide Golsorkhi
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Kamalinejad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Dadmehr
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Structural conversion of pectin fractions during heat processing in relation to the ability of inhibiting lipid digestion: A case study of hawthorn pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
44
|
Nguyen QTN, Fang M, Zhang M, Do NQ, Kim M, Zheng SD, Hwang E, Yi TH. Crataegus laevigata Suppresses LPS-Induced Oxidative Stress during Inflammatory Response in Human Keratinocytes by Regulating the MAPKs/AP-1, NFκB, and NFAT Signaling Pathways. Molecules 2021; 26:869. [PMID: 33562140 PMCID: PMC7914440 DOI: 10.3390/molecules26040869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Crataegus laevigata belongs to the family Rosaceae, which has been widely investigated for pharmacological effects on the circulatory and digestive systems. However, there is limited understanding about its anti-oxidative stress and anti-inflammatory effects on skin. In this study, 70% ethanol C. laevigata berry extract (CLE) was investigated on lipopolysaccharide (LPS)-stimulated keratinocytes. The LPS-induced overproduction of reactive oxygen species (ROS) was suppressed by the treatment with CLE. In response to ROS induction, the overexpression of inflammatory regulating signaling molecules including mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), and nuclear factor of activated T-cells (NFAT) were reduced in CLE-treated human keratinocytes. Consequently, CLE significantly suppressed the mRNA levels of pro-inflammatory chemokines and interleukins in LPS-stimulated cells. Our results indicated that CLE has protective effects against LPS-induced injury in an in vitro model and is a potential alternative agent for inflammatory treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eunson Hwang
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; (Q.T.N.N.); (M.F.); (M.Z.); (N.Q.D.); (M.K.); (S.D.Z.)
| | - Tae Hoo Yi
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; (Q.T.N.N.); (M.F.); (M.Z.); (N.Q.D.); (M.K.); (S.D.Z.)
| |
Collapse
|
45
|
Abstract
Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.
Collapse
|
46
|
Zhang Y, Li C, Huang Y, Zhao S, Xu Y, Chen Y, Jiang F, Tao L, Shen X. EOFAZ inhibits endothelial‑to‑mesenchymal transition through downregulation of KLF4. Int J Mol Med 2020; 46:300-310. [PMID: 32319539 PMCID: PMC7255478 DOI: 10.3892/ijmm.2020.4572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/11/2020] [Indexed: 01/09/2023] Open
Abstract
Essential oil from Alpinia zerumbet rhizome (EOFAZ), which is termed Yan shanjiang in China, is extensively used as an herbal medicine in the Guizhou area and has been shown to protect against the damaging effects of cardiovascular injury in vitro and in vivo. In the present study, it was hypothesized that the protective effects of EOFAZ on transforming growth factor (TGF)-β1-induced endothelial-to-mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs) were mediated by inhibition of Krüppel-like factor 4 (KLF4). Cell motility was assessed using wound healing and Transwell assays. The expression of endothelial markers and mesenchymal markers were determined by reverse transcription-quantitative PCR, immunofluorescence staining and western blotting, and additionally, phosphorylated NF-κB p65 expression was determined by western blotting. Furthermore, the involvement of KLF4 in EndMT was determined using RNA interference to knockdown the expression of KLF4. TGF-β1 treatment significantly promoted EndMT, as evidenced by downregu-lation of vascular endothelial-cadherin and upregulation of α-smooth muscle actin in HUVECs, and by enhancing cell migration. Small interfering RNA-mediated knockdown of KLF4 reversed TGF-β1-induced EndMT. Additionally, treatment with EOFAZ inhibited TGF-β1-induced EndMT in a dose-dependent manner. These results suggest that TGF-β1 may induce EndMT through upregulation of KLF4, and this may be reversed by EOFAZ. Therefore, EOFAZ was shown to inhibit TGF-β1-induced EndMT through regulation of KLF4.
Collapse
Affiliation(s)
- Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Chen Li
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yongpan Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Shuang Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yan Chen
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Feng Jiang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Ling Tao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|