1
|
Ferrara A, D'Auria G, Barile D, Baller MI, Nitride C, Mamone G, Ferranti P. The valorization of grape pomace from Montepulciano winemaking: A new source of functional ingredients for sustainable food industry. Food Res Int 2025; 200:115443. [PMID: 39779098 DOI: 10.1016/j.foodres.2024.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The winemaking process generates huge amounts of waste every year. Fermented grape pomace, the major by-waste product, holds significant value due to its chemical composition and technological properties. In this study a multi-omics approach was employed for the detailed molecular characterization of fermented grape pomace from Montepulciano grape, a widely used Italian red grape variety. Grape pomace samples, including both seeds and skins, were analyzed after 0, 6 and 9 days fermentation time. Anthocyanins and flavonols were the predominant polyphenols in the skin fraction, which resulted stable to the pomace drying process. In vitro gastrointestinal digestion analysis using the validated Infogest protocol showed a 60 % increased bioaccessibility of these compounds. Proteomics and lipidomics of the seed fraction underscored its richness in protein/peptides and lipid suggesting potential technological and functional bioactivity. Although no significant difference was observed in the seed protein fraction between intermediate (6 days) and final (9 days) fermentation time, this latter exhibited a higher number of potentially bioactive peptides compared to the former. Additionally, glycomic analysis of grape pomace uncovered novel oligosaccharides which may represent high-value ingredients for the food industry. This multi-analytical approach indicated that incorporating grape pomace and/or its fractions into food production could support the dietary transition towards sustainable and healthy nutrition.
Collapse
Affiliation(s)
- Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy
| | - Giovanni D'Auria
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Mara I Baller
- Department of Food Science and Technology, University of California Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy
| | - Gianfranco Mamone
- Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy; Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy.
| |
Collapse
|
2
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
3
|
Nandi S, Sikder R, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Zhakipbekov K, Acharya K, Habtemariam S, Arslan Ateşşahin D, Goloshvili T, Ahmed Aldahish A, Sharifi‐Rad J, Calina D. Updated aspects of alpha-Solanine as a potential anticancer agent: Mechanistic insights and future directions. Food Sci Nutr 2024; 12:7088-7107. [PMID: 39479710 PMCID: PMC11521658 DOI: 10.1002/fsn3.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Anish Nag
- Department of Life SciencesCHRIST (Deemed to be University)BangaloreKarnatakaIndia
| | - Somanjana Khatua
- Department of Botany, Faculty of ScienceUniversity of AllahabadPrayagrajUttar PradeshIndia
| | - Surjit Sen
- Department of BotanyFakir Chand CollegeKolkataIndia
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical PharmacyAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | | | - Dilek Arslan Ateşşahin
- Department of Plant and Animal Production, Baskil Vocational SchoolFırat UniversityElazıgTurkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic ResourcesInstitute of Botany, Ilia State UniversityTbilisiGeorgia
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaKingdom of Saudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
4
|
Cherene MB, Taveira GB, Almeida-Silva F, da Silva MS, Cavaco MC, da Silva-Ferreira AT, Perales JEA, de Oliveira Carvalho A, Venâncio TM, da Motta OV, Rodrigues R, Castanho MARB, Gomes VM. Structural and Biochemical Characterization of Three Antimicrobial Peptides from Capsicum annuum L. var. annuum Leaves for Anti-Candida Use. Probiotics Antimicrob Proteins 2024; 16:1270-1287. [PMID: 37365421 DOI: 10.1007/s12602-023-10112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum. The antifungal potential was tested against Candida species. Three AMPs from C. annuum leaves were isolated and characterized: a protease inhibitor, a defensin-like protein, and a lipid transporter protein, respectively named CaCPin-II, CaCDef-like, and CaCLTP2. All three peptides had a molecular mass between 3.5 and 6.5 kDa and caused morphological and physiological changes in four different species of the genus Candida, such as pseudohyphae formation, cell swelling and agglutination, growth inhibition, reduced cell viability, oxidative stress, membrane permeabilization, and metacaspase activation. Except for CaCPin-II, the peptides showed low or no hemolytic activity at the concentrations used in the yeast assays. CaCPin-II inhibited α-amylase activity. Together, these results suggest that these peptides have the potential as antimicrobial agents against species of the genus Candida and can serve as scaffolds for the development of synthetic peptides for this purpose.
Collapse
Affiliation(s)
- Milena Bellei Cherene
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marco Calvinho Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Olney Vieira da Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
5
|
Mustapha T, B S, Zubair T, Patil RB, Bhongade BA, Sangshetti JN, Mali A, Babalola BJ, Moin AT, Islam T. In vitro and in silico investigation of effects of antimicrobial peptides from Solanaceae plants against rice sheath blight pathogen Rhizoctinia solani. PLoS One 2024; 19:e0302440. [PMID: 38870165 PMCID: PMC11175423 DOI: 10.1371/journal.pone.0302440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/01/2024] [Indexed: 06/15/2024] Open
Abstract
Rhizoctonia solani, the causative agent of sheath blight disease in rice, poses a significant threat to agricultural productivity. Traditional management approaches involving chemical fungicides have been effective but come with detrimental consequences for the ecosystem. This study aimed to investigate sustainable alternatives in the form of antifungal peptides derived from Solanaceous plant species as potential agents against R. solani. Peptide extracts were obtained using an optimized antimicrobial peptide (AMP) extraction method and desalted using the solid-phase extraction technique. The antifungal potential of peptide-rich extracts from Solanum tuberosum and Capsicum annum was assessed through in vitro tests employing the agar well diffusion method. Furthermore, peptide-protein docking analysis was performed on HPEPDOCK and HDOCK server; and molecular dynamics simulations (MDS) of 100 ns period were performed using the Gromacs 2020.4. The results demonstrated significant inhibition zones for both extracts at concentrations of 100 mg/mL. Additionally, the extracts of Solanum tuberosum and Capsicum annum had minimum inhibitory concentrations of 50 mg/mL and 25 mg/mL, respectively with minimum fungicidal concentrations of 25 mg/mL. Insights into the potential mechanisms of key peptides inhibiting R. solani targets were gleaned from in-silico studies. Notably, certain AMPs exhibited favorable free energy of binding against pathogenicity-related targets, including histone demethylase, sortin nexin, and squalene synthase, in protein-peptide docking simulations. Extended molecular dynamics simulations lasting 100 ns and MM-PBSA calculations were performed on select protein-peptide complexes. AMP10 displayed the most favorable binding free energy against all target proteins, with AMP3, AMP12b, AMP6, and AMP15 also exhibiting promising results against specific targets of R. solani. These findings underscore the potential of peptide extracts from S. tuberosum and C. annum as effective antifungal agents against rice sheath blight caused by R. solani.
Collapse
Affiliation(s)
- Tijjani Mustapha
- Department of Biological Sciences, Federal University, Dutse, Nigeria
| | - Shefin B
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Trivandrum, India
| | | | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Bhoomendra A. Bhongade
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Jaiprakash N. Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, (MS), India
| | - Aniket Mali
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | | | - Abu Tayab Moin
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
6
|
Rasheed Tantray Y, Jan I, Mohiuddin I, Gorla P, Anand C, Chandra Arya J, Ahmad Bhat S, Kumar V, Narasimhaji CV, Nagayya S, Acharya R. A Review on the Traditional Applications, Phytochemistry, and Pharmacology of the Genus Physochlaina G. Don. Chem Biodivers 2024; 21:e202400394. [PMID: 38530746 DOI: 10.1002/cbdv.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Physochlaina is a genus of flowering plants belonging to the family Solanaceae and consists of 10 species distributed in various Asian countries. The species of the genus have been traditionally used to cure a variety of illnesses due to their highly valuable medicinal properties, including cancer, asthma, cough, weakness, stomachache, diarrhea, swelling, spasms, toothache, boils, ulcers, rheumatic pain, chronic bronchitis, gastric problems, abdominal pain, palpitation, and insomnia. The species have gained significant attention due to their remarkable ethnopharmacological and ethnomedicinal significance. The researchers have isolated so far 71 biologically active secondary metabolites from different Physochlaina species, which include flavonoids, alkaloids, coumarins, phenolic acids, iridoids, and sterols. These compounds exhibit diverse biological activities, such as antibacterial, anti-oxidant, anti-inflammatory, cytotoxic, and anticancer properties. The present review has been compiled with the intention of providing a comprehensive overview of the botany, distribution, traditional uses, phytochemical profile, and biological activities of the genus Physochlaina for future exploration of plant-based drugs and therapeutic approaches. The present review contributes to understanding the significant pharmacological potential of Physochlaina species and unraveling their chemical composition, highlighting their relevance in developing therapeutic agents. Till date, numerous pharmacological properties and isolated phytochemicals of Physochlaina species that support the species traditional and ethnobotanical history have been documented in a number of scientific publications. However, greater emphasis should be paid to in vivo investigations on various extracts and their phytoconstituents as well as mechanistic analysis to help drug developers better understand how to use Physochlaina species as significant therapeutic resources for herbal formulations using various techniques.
Collapse
Affiliation(s)
| | - Ishrat Jan
- Government Degree College for Women, Baramulla, Jammu and Kashmir, 193101, India
| | - Irshad Mohiuddin
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Preeti Gorla
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Charul Anand
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | | | | | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | | | | | - Rabinarayan Acharya
- Central Council of Research for Ayurvedic Sciences, New Delhi, 110058, India
| |
Collapse
|
7
|
Ou X, Sun L, Chen Y, Zhao Z, Jian W. Characteristics of NAC transcription factors in Solanaceae crops and their roles in responding to abiotic and biotic stresses. Biochem Biophys Res Commun 2024; 709:149840. [PMID: 38564941 DOI: 10.1016/j.bbrc.2024.149840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.
Collapse
Affiliation(s)
- Xiaogang Ou
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lixinyu Sun
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yu Chen
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhengwu Zhao
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wei Jian
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
8
|
Jia Z, Zhu X, Zhou Y, Wu J, Cao M, Hu C, Yu L, Xu R, Chen Z. Polypeptides from traditional Chinese medicine: Comprehensive review of perspective towards cancer management. Int J Biol Macromol 2024; 260:129423. [PMID: 38232868 DOI: 10.1016/j.ijbiomac.2024.129423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Cancer has always been a focus of global attention, and the difficulty of treatment and poor prognosis have always plagued humanity. Conventional chemotherapeutics and treatment with synthetic disciplines will cause adverse side effects and drug resistance. Therefore, searching for a safe, valid, and clinically effective drug is necessary. At present, some natural compounds have proved to have the potential to fight cancer. Polypeptides obtained from traditional Chinese medicine are good anti-cancer ingredients. The anticancer activity has been fully demonstrated in vivo and in vitro. However, most of the functional studies on traditional Chinese medicine polypeptides are at the stage of basic experimental research, and fewer of them have been applied to clinical trials. Hence, this review mainly discusses the chemical structure, extraction, separation and purification methods, the anti-cancer mechanism, and structure-activity relationships of traditional Chinese medicine polypeptides. It provides theoretical support for strengthening the rapid separation and purification and the overall efficacy and mechanism of action, as well as the industrialization and clinical application of traditional Chinese medicine polypeptides.
Collapse
Affiliation(s)
- Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
9
|
Demarbaix T, Daele UV, Meirte J, Anthonissen M, Maertens K, Moortgat P. Possible benefits of food supplementation or diet in scar management: A scoping review. Scars Burn Heal 2024; 10:20595131241282105. [PMID: 39280762 PMCID: PMC11402062 DOI: 10.1177/20595131241282105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Aim The evidence regarding a potential role of food supplementation as an adjunct therapy in scar aftercare is limited. In this scoping review we aim to provide an overview of the possible beneficial role of supplementations in aftercare settings. Method After formulating the research question and accompanying key words, a comprehensive search for relevant publications was performed using PubMed and Web of Science. Two authors independently identified and checked each study against the inclusion criteria. All data was collected and summarized for further discussion. Results After screening, 11 studies were included in the qualitative synthesis. Four studies including human subjects showed a promising connection between scar improvement and supplementation of vitamin D, omega-3 fatty-acids or a Solanaceae-free diet and lower omega-6 fatty-acid intake. Most of the studies were performed on in-vitro models. Preliminary evidence confirmed the beneficial role of vitamin D. Curcumin- and quercetin-supplementation were linked to decreased fibroblast proliferation. Vitamin C enhanced collagen production in healthy as well as keloidal dermal fibroblasts. Chitin stimulated cell-proliferation in human fibroblasts and keratinocytes. Conclusion The findings suggest early potential benefits of additional food supplementation in scar management for scars but provide no clear evidence. To establish guidelines or gather more evidence on food supplementation, studies involving human subjects (in vivo) are essential. The intricacies associated with nutritional studies in vivo present multifaceted challenges. It should be emphasized that substantial additional evidence is required before aspects such as timing and dosage of supplementation could be addressed for clinical application. Lay Summary Aim: This scoping review looks at whether taking food supplements might help with scar care alongside standard scar management following burn injury. Little information is thought to be available on this subject. An up-to-date review of the literature was undertaken to assimilate the body of evidence and determine if a consensus could be drawn.Method: A specific research question was designed and search conducted in scientific databases like PubMed and Web of Science. Two of our team members carefully selected and reviewed each study to determine which studies met the inclusion or exclusion criteria. All studies that met the inclusion criteria were then reviewed and the information collated to enable conclusions to be drawn.Results: Eleven studies met the inclusion criteria and were used to formulate the conclusions drawn. Four studies showed that taking vitamin D, omega-3 fatty acids, a diet without certain vegetables (Solanaceae), and eating less omega-6 fatty acids might help improve scars. It is important to note that most studies (seven out of 11) were carried out in a laboratory and not with real people. These lab studies showed that vitamin D might be helpful. Supplements like curcumin and quercetin seemed to slow down the growth of skin cells like fibroblasts and keratinocytes. Vitamin C aided collagen synthesis, which is important for healthy skin, in both normal and keloid scar cells. Another substance, chitin, was also found to help skin cells and keratinocytes grow better.Conclusion: Our findings point to some early possible benefits of taking extra nutrient supplements for managing scars but do not provide clear evidence. More research is required to enable the development of supplement recommendation and guidelines to be produced. Future research should focus on human trials but do keep in mind that carrying out supplement studies with people is more complicated. The evidence provided by this scoping review is insufficient to recommend the intake of any supplements or the imposition of dietary restrictions for the purpose of managing scars.
Collapse
Affiliation(s)
- Thibau Demarbaix
- OSCARE, Organisation for Burns, Scar Aftercare and Research, Antwerp, Belgium
| | - Ulrike Van Daele
- OSCARE, Organisation for Burns, Scar Aftercare and Research, Antwerp, Belgium
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, University of Antwerp, Antwerp, Belgium
| | - Jill Meirte
- OSCARE, Organisation for Burns, Scar Aftercare and Research, Antwerp, Belgium
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, University of Antwerp, Antwerp, Belgium
| | - Mieke Anthonissen
- OSCARE, Organisation for Burns, Scar Aftercare and Research, Antwerp, Belgium
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Koen Maertens
- OSCARE, Organisation for Burns, Scar Aftercare and Research, Antwerp, Belgium
- Vrije Universiteit Brussel, Clinical and Lifespan Psychology, Brussels, Belgium
| | - Peter Moortgat
- OSCARE, Organisation for Burns, Scar Aftercare and Research, Antwerp, Belgium
| |
Collapse
|
10
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
11
|
Fig latex inhibits the growth of pathogenic bacteria invading human diabetic wounds and accelerates wound closure in diabetic mice. Sci Rep 2022; 12:21852. [PMID: 36528674 PMCID: PMC9759588 DOI: 10.1038/s41598-022-26338-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Impaired wound healing is one of the most critical complications associated with diabetes mellitus. Infections and foot ulcers are major causes of morbidity for diabetic patients. The current treatment of diabetic foot ulcers, commonly used antibiotics, is associated with the development of bacterial resistance. Hence, novel and more effective natural therapeutic antibacterial agents are urgently needed and should be developed against the pathogenic bacteria inhabiting diabetic wounds. Therefore, the current study aimed to investigate the impact of fig latex on pathogenic bacteria and its ability to promote the healing process of diabetic wounds. The pathogenic bacteria were isolated from patients with diabetic foot ulcers admitted to Assiut University Hospital. Fig latex was collected from trees in the Assiut region, and its chemical composition was analyzed using GC‒MS. The antibacterial efficacy of fig latex was assessed on the isolated bacteria. An in vivo study to investigate the effect of fig latex on diabetic wound healing was performed using three mouse groups: nondiabetic control mice, diabetic mice and diabetic mice treated with fig latex. The influence of fig latex on the expression levels of β-defensin-1, PECAM-1, CCL2 and ZO-1 and collagen formation was investigated. The GC‒MS analysis demonstrated the presence of triterpenoids, comprising more than 90% of the total latex content. Furthermore, using a streptozotocin-induced diabetic mouse model, topical treatment of diabetic wound tissues with fig latex was shown to accelerate and improve wound closure by increasing the expression levels of β-defensin-1, collagen, and PECAM-1 compared to untreated diabetic wounds. Additionally, fig latex decreased the expression levels of ZO-1 and CCL2.
Collapse
|
12
|
Winkiel MJ, Chowański S, Słocińska M. Anticancer activity of glycoalkaloids from Solanum plants: A review. Front Pharmacol 2022; 13:979451. [PMID: 36569285 PMCID: PMC9767987 DOI: 10.3389/fphar.2022.979451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of death worldwide. For this reason, new compounds that have chemotherapeutic potential have been identified. One such group of substances is Solanaceae glycoalkaloids (GAs). They are natural compounds produced by plants widely used in traditional medicine for healing many disorders. Among others, GAs exhibit significant antitumor properties, for example, a strong inhibitory effect on cancer cell growth. This activity can result in the induction of tumor cell apoptosis, which can occur via different molecular pathways. The molecular mechanisms of the action of GAs are the subject of intensive research, as improved understanding could lead to the development of new cancer therapies. The genetic basis for the formation of neoplasms are mutations in protooncogenes, suppressors, and apoptosis-controlling and repair genes; therefore, substances with antineoplastic properties may affect the levels of their expression or the levels of their expression products. Therapeutic compounds can be applied separately or in combination with other drugs to increase the efficiency of cancer therapy; they can act on the cell through various mechanisms at different stages of carcinogenesis, inducing the process of apoptosis, blocking cell proliferation and migration, and inhibiting angiogenesis. This review summarizes the newest studies on the anticancer properties of solanine (SN), chaconine (CH), solasonine (SS), solamargine (SM), tomatine (TT) and their extracts from Solanum plants.
Collapse
|
13
|
Rossato Viana A, Bianchin Bottari N, Santos D, Bolson Serafin M, Garlet Rossato B, Moresco RN, Wolf K, Ourique A, Hörner R, de Moraes Flores ÉM, Chitolina Schetinger MR, Stefanello Vizzotto B, Maria Fontanari Krause L. Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:972-987. [PMID: 36208226 DOI: 10.1080/15287394.2022.2130844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer and infectious diseases are among the leading causes of death in the world. Despite the diverse array of treatments available, challenges posed by resistance, side effects, high costs, and inaccessibility persist. In the Solanaceae plant family, few studies with Vassobia breviflora species relating to biological activity are known, but promising results have emerged. The phytochemicals present in the ethyl acetate fraction were obtained using ESI-MS-QTOF, and the antioxidants assays 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), plasma ferric reduction capacity (FRAP), and total antioxidant capacity (TAC). Cytotoxic activity was evaluated by MTT, Neutral Red, and lactate dehydrogenase (LDH) released. The production of reactive oxygen species, nitric oxide, and purinergic enzymes was also investigated. Antibacterial activity was measured through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activity, in addition to genotoxicity in plasmid DNA. Five major masses were identified D-glucopyranose II, allyl disulfide, γ-lactones, pharbilignoside, and one mass was not identified. V. breviflora exhibited relevant antioxidant and cytotoxic activity against the HeLa cell line and enhanced expression effect in modulation of purinergic signaling. Antibacterial activities in the assays in 7 ATCC strains and 8 multidrug-resistant clinical isolates were found. V. breviflora blocked biofilm formation in producing bacteria at the highest concentrations tested. However, there was no plasmid DNA cleavage at the concentrations tested. Data demonstrated that V. breviflora exhibited an antioxidant effect through several methods and proved to be a promising therapeutic alternative for use against tumor cells via purinergic signaling and multidrug-resistant microorganisms, presenting an anti-biofilm effect.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Daniel Santos
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Marissa Bolson Serafin
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Bruna Garlet Rossato
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Rafael Noal Moresco
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Katianne Wolf
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Aline Ourique
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Rosmari Hörner
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | | | | | | | | |
Collapse
|
14
|
Ao Z, Huang Z, Liu H. Spicy Food and Chili Peppers and Multiple Health Outcomes: Umbrella Review. Mol Nutr Food Res 2022; 66:e2200167. [PMID: 36111960 PMCID: PMC10078540 DOI: 10.1002/mnfr.202200167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Spicy foods and chili peppers contain the primary ingredient capsaicin, which has potential health benefits. However, their efficacy in some health outcomes is also fiercely disputed, and some side effects have been confirmed. To assess the quality and strength of the associations between spicy food and chili pepper consumption and different health outcomes. An umbrella review is performed in humans. Eleven systematic reviews and meta-analyses with a total of 27 findings are identified. The health effect of consuming spicy food and chili peppers is unclear. Furthermore, the characteristics and context of different world regions and populations should be carefully considered. Direct correlations exist in esophageal cancer, gastric cancer, and gallbladder cancer. However, negative connections are reported in metabolism, mortality, and cardiovascular disease. Dose-response analysis reveals a significant nonlinear relationship between gastric cancer risk and capsaicin intake. The consumption of spicy foods and chili peppers is typically safe. However, high-quality proof is available to confirm this conclusion.
Collapse
Affiliation(s)
- Zhimin Ao
- Department of Integrated Traditional and Western MedicineWest China HospitalSichuan UniversityChengdu610041China
| | - Zongyue Huang
- Department of Integrated Traditional and Western MedicineWest China HospitalSichuan UniversityChengdu610041China
- Department of Acupuncture and Moxibustion, The Sixth Medical Center of PLA General HospitalDepartment of Acupuncture and Moxibustion, The Sixth Medical Center of PLA General HospitalBeijing100853China
| | - Hong Liu
- Department of Integrated Traditional and Western MedicineWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
15
|
Chidambaram K, Alqahtani T, Alghazwani Y, Aldahish A, Annadurai S, Venkatesan K, Dhandapani K, Thilagam E, Venkatesan K, Paulsamy P, Vasudevan R, Kandasamy G. Medicinal Plants of Solanum Species: The Promising Sources of Phyto-Insecticidal Compounds. J Trop Med 2022; 2022:4952221. [PMID: 36187457 PMCID: PMC9519333 DOI: 10.1155/2022/4952221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/14/2022] [Accepted: 07/31/2022] [Indexed: 12/02/2022] Open
Abstract
Several medicinal plants have the potential to be a promising alternative pharmacological therapy for a variety of human illnesses. Many insects, including mosquitoes, are important vectors of deadly pathogens and parasites, which in the world's growing human and animal populations can cause serious epidemics and pandemics. Medicinal plants continue to provide a large library of phytochemicals, which can be used to replace chemically synthesized insecticides, and utilization of herbal product-based insecticides is one of the best and safest alternatives for mosquito control. Identifying new effective phyto-derived insecticides is important to counter increasing insect resistance to synthetic compounds and provide a safer environment. Solanum genus (Solanaceae family or nightshades) comprises more than 2500 species, which are widely used as food and traditional medicine. All research publications on insecticidal properties of Solanaceae plants and their phytoconstituents against mosquitoes and other insects published up to July 2020 were systematically analyzed through PubMed/MEDLINE, Scopus, EBSCO, Europe PMC, and Google Scholar databases, with focus on species containing active phytoconstituents that are biodegradable and environmentally safe. The current state of knowledge on larvicidal plants of Solanum species, type of extracts, target insect species, type of effects, name of inhibiting bioactive compounds, and their lethal doses (LC50 and LC90) were reviewed in this study. These studies provide valuable information about the activity of various species of Solanum and their phytochemical diversity, as well as a roadmap for optimizing select compounds for botanical repellents against a variety of vectors that cause debilitating and life-threatening human diseases.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Al-Qara, Abha, Saudi Arabia
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, A-Qara, Abha, Saudi Arabia
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Ellappan Thilagam
- Department of Pharmacognosy, JKKMMRF's Annai JKK Sampoorani Ammal College of Pharmacy, Namakkal 638183, Tamilnadu, Tamil Nadu 638183, India
| | - Krishnaraju Venkatesan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | | | - Rajalakshimi Vasudevan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
16
|
Romero-Luna HE, Colina J, Guzmán-Rodríguez L, Sierra-Carmona CG, Farías-Campomanes ÁM, García-Pinilla S, González-Tijera MM, Malagón-Alvira KO, Peredo-Lovillo A. C apsicum fruits as functional ingredients with antimicrobial activity: an emphasis on mechanisms of action. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 60:1-11. [PMID: 36091639 PMCID: PMC9441016 DOI: 10.1007/s13197-022-05578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022]
Abstract
Capsicum spp. fruits (CFs) are a basic ingredient in the diet and have been used as active ingredients in the pharmaceutical, cosmetic, and food products, due to their antioxidant, anti-inflammatory, antiseptic, and antimicrobial properties. The antimicrobial activity is the most studied property due to its effectiveness against pathogenic species, however, few studies have focused on the mechanisms of action involved. Therefore, this review discusses the effects generated by the CFs compounds on the viability and metabolism of microorganisms, highlighting the mechanisms by which these compounds exert their antimicrobial effects. The information provided shows that CFs are mainly source of capsaicinoids and phenolic compounds responsible for the inhibition of bacteria, yeasts, and fungi, through an increase in the permeabilization of the membrane and cell wall. Also, these compounds show an antiviral effect associated with the inactivation of virus binding proteins, preventing their replication and infection. Despite this, there is still a lack of information about the mechanisms that regulate the interactions between CFs compounds and food-important-microorganisms. Therefore, future research should focus on new antimicrobial compounds from CFs for their subsequent use against novel infectious agents, mainly virus of importance in health such as SARS-CoV-2.
Collapse
Affiliation(s)
- Haydee Eliza Romero-Luna
- Instituto Tecnológico Superior de Xalapa, Tecnológico Nacional de México, Reserva Territorial S/N, Sección 5, Santa Bárbara, CP 91096 Xalapa-Enríquez, Veracruz México
| | - Jhoana Colina
- Ingeniería de Alimentos, Fundación Universitaria Agraria de Colombia, Calle 170 #54a-10, CP 111156 Bogotá, Colombia
| | - Lorena Guzmán-Rodríguez
- Instituto Tecnológico Superior de Xalapa, Tecnológico Nacional de México, Reserva Territorial S/N, Sección 5, Santa Bárbara, CP 91096 Xalapa-Enríquez, Veracruz México
| | - Celia Gabriela Sierra-Carmona
- Instituto Tecnológico Superior de Xalapa, Tecnológico Nacional de México, Reserva Territorial S/N, Sección 5, Santa Bárbara, CP 91096 Xalapa-Enríquez, Veracruz México
| | | | - Santiago García-Pinilla
- Ingeniería de Alimentos, Fundación Universitaria Agraria de Colombia, Calle 170 #54a-10, CP 111156 Bogotá, Colombia
| | - María Margarita González-Tijera
- Instituto Tecnológico Superior de Xalapa, Tecnológico Nacional de México, Reserva Territorial S/N, Sección 5, Santa Bárbara, CP 91096 Xalapa-Enríquez, Veracruz México
| | - Karen Otilia Malagón-Alvira
- Ingeniería de Alimentos, Fundación Universitaria Agraria de Colombia, Calle 170 #54a-10, CP 111156 Bogotá, Colombia
| | - Audry Peredo-Lovillo
- Facultad de Ciencias Químicas, Universidad Veracruzana, Oriente 6 1009, Rafael Alvardo, CP 94340 Orizaba, Veracruz México
| |
Collapse
|
17
|
Bakare OO, Gokul A, Fadaka AO, Wu R, Niekerk LA, Barker AM, Keyster M, Klein A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules 2022; 27:3703. [PMID: 35744828 PMCID: PMC9229691 DOI: 10.3390/molecules27123703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
The quest for an extraordinary array of defense strategies is imperative to reduce the challenges of microbial attacks on plants and animals. Plant antimicrobial peptides (PAMPs) are a subset of antimicrobial peptides (AMPs). PAMPs elicit defense against microbial attacks and prevent drug resistance of pathogens given their wide spectrum activity, excellent structural stability, and diverse mechanism of action. This review aimed to identify the applications, features, production, expression, and challenges of PAMPs using its structure-activity relationship. The discovery techniques used to identify these peptides were also explored to provide insight into their significance in genomics, transcriptomics, proteomics, and their expression against disease-causing pathogens. This review creates awareness for PAMPs as potential therapeutic agents in the medical and pharmaceutical fields, such as the sensitive treatment of bacterial and fungal diseases and others and their utilization in preserving crops using available transgenic methods in the agronomical field. PAMPs are also safe to handle and are easy to recycle with the use of proteases to convert them into more potent antimicrobial agents for sustainable development.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 121001, Ogun State, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Bio labels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
18
|
Añibarro-Ortega M, Pinela J, Alexopoulos A, Petropoulos SA, Ferreira ICFR, Barros L. The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:131-172. [PMID: 35659351 DOI: 10.1016/bs.afnr.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Solanaceae family is considered one of the most important families among plant species because, on one hand encompasses many staple food crops of the human diet while, on the other hand, it includes species rich in powerful secondary metabolites that could be valorized in medicine or drug formulation as well as nutraceuticals and food supplements. The main genera are Solanum, Capsicum, Physalis, and Lycium which comprise several important cultivated crops (e.g., tomato, pepper, eggplant, tomatillo, and goji berry), as well as genera notable for species with several pharmaceutical properties (e.g., Datura, Nicotiana, Atropa, Mandragora, etc.). This chapter discusses the nutritional value of the most important Solanaceae species commonly used for their edible fruit, as well as those used in the development of functional foods, food supplements, and nutraceuticals due to their bioactive constituents. The toxic and poisonous effects are also discussed aiming to highlight possible detrimental consequences due to irrational use. Finally, considering the high amount of waste and by-products generated through the value chain of the main crops, the sustainable management practices implemented so far are presented with the aim to increase the added-value of these crops.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| | - Alexios Alexopoulos
- Laboratory of Agronomy, Department of Agriculture, University of the Peloponnese, Kalamata, Messinia, Greece
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
19
|
Ateeq M, Adeel MM, Kanwal A, Tahir ul Qamar M, Saeed A, Khaliq B, Saeed Q, Atiq MN, Bilal M, Alharbi M, Alshammari A, Akrem A. In Silico Analysis and Functional Characterization of Antimicrobial and Insecticidal Vicilin from Moth Bean ( Vigna aconitifolia (Jacq.) Marechal) Seeds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103251. [PMID: 35630727 PMCID: PMC9145308 DOI: 10.3390/molecules27103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed β-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 μg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 μg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.
Collapse
Affiliation(s)
- Muhammad Ateeq
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Muzammal Adeel
- Hubei Provincial Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Ayesha Kanwal
- College of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.H.); (A.A.)
| | - Ahsan Saeed
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Binish Khaliq
- Department of Botany, Faculty of Life Science, University of Okara, Okara 56300, Pakistan;
| | - Qamar Saeed
- Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Nauman Atiq
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Muhammad Bilal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road Thokar Niaz Baig, Lahore 53700, Pakistan;
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Correspondence: (M.H.); (A.A.)
| |
Collapse
|
20
|
Fathi F, Ghobeh M, Tabarzad M. Anti-Microbial Peptides: Strategies of Design and Development and Their Promising Wound-Healing Activities. Mol Biol Rep 2022; 49:9001-9012. [DOI: 10.1007/s11033-022-07405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
|
21
|
Ajose DJ, Oluwarinde BO, Abolarinwa TO, Fri J, Montso KP, Fayemi OE, Aremu AO, Ateba CN. Combating Bovine Mastitis in the Dairy Sector in an Era of Antimicrobial Resistance: Ethno-veterinary Medicinal Option as a Viable Alternative Approach. Front Vet Sci 2022; 9:800322. [PMID: 35445101 PMCID: PMC9014217 DOI: 10.3389/fvets.2022.800322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Bovine mastitis (BM) is the traditional infectious condition in reared cattle which may result in serious repercussions ranging from animal welfare to economic issues. Owing to the high costs associated with preventative practices and therapeutic measures, lower milk output, and early culling, bovine mastitis is accountable for most of the financial losses suffered in cattle farming. Streptococcus agalactiae, Staphylococcus aureus, Streptococcus dysgalactiae and coliform bacteria are the predominant pathogens for bovine mastitis. In addition, the occurrence of BM has been linked to lactation stage and poor management, in the latter case, the poor stabling conditions around udder hygiene. BM occurs throughout the world, with varying rates of Streptococcus agalactiae infection in different regions. Despite the modern techniques, such as the appropriate milking practices that are applied, lower levels of pathogen vulnerability may help to prevent the development of the disease, BM treatment is primarily reliant on antibiotics for both prophylactic and therapeutic purposes. Nevertheless, as a result of the proliferation of bacterial agents to withstand the antibiotic effects, these therapies have frequently proven ineffectual, resulting in persistent BM. Consequently, alternative medicines for the management of udder inflammation have been researched, notably natural compounds derived from plants. This review focuses on BM in terms of its risk factors, pathogenesis, management, the molecular identification of causative agents, as well as the application of ethno-veterinary medicine as an alternative therapy.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Kotsoana Peter Montso
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| |
Collapse
|
22
|
Pesticidal Activity of Sundarban Mangrove Plant Extracts against Sitophilus Pests and Identification of Active Constituents Using LC-MS. Adv Pharmacol Pharm Sci 2021; 2021:1540336. [PMID: 34957401 PMCID: PMC8695028 DOI: 10.1155/2021/1540336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/30/2023] Open
Abstract
Plants act as a rich source of novel natural pesticides. In the backdrop of the recent revival of interest in developing plant-based insecticides, this study was carried out to investigate the pesticidal activity of Sundarban mangrove plants. A total of nine different plant parts from five plants, namely, Aegiceras corniculatum, Excoecaria agallocha, Heritiera fomes, Xylocarpus moluccensis, and Xylocarpus granatum, were extracted with methanol and tested for insecticidal activity against two common stored product pests Sitophilus oryzae and Sitophilus zeamais using direct contact feeding deterrent wafer disc method. Three bark extracts from A. corniculatum, E. agallocha, and H. fomes showed potent and statistically significant insecticidal activity against both S. oryzae and S. zeamais pests (80–100% mortality). All the active bark extracts were further fractionated using C-18 solid-phase extraction (SPE) columns and tested for their insecticidal activity against S. oryzae pest to identify the active fraction. Only the SPE4 fraction (100% MeOH) from all the three active plants showed the activity against S. oryzae pest with a lethal concentration 50% (LC50) value of 0.5, 1.0, and 1.5 mg/disc for A. corniculatum, E. agallocha, and H. fomes, respectively. The active fraction of A. corniculatum was further profiled for identification of active compounds using LC-ESI-MS and identified (along with some unknown peaks) two previously reported compounds at m/z 625.17630 (isorhamnetin 3-O-rutinoside) and 422.25346 (paspaline) as major constituents. Insecticidal activities of these plants are reported in this study for the first time and would be useful in promoting research aiming for the development of new biopesticides from mangrove plants.
Collapse
|
23
|
Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules 2021; 26:molecules26226990. [PMID: 34834081 PMCID: PMC8623412 DOI: 10.3390/molecules26226990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing global burden of cancer poses a major challenge to public health and demands a robust approach to access promising anticancer therapeutics. In parallel, nanotechnology approaches with various pharmacological properties offer efficacious clinical outcomes. The use of new artificial variants of nanosponges (NS) as a transporter of chemotherapeutic drugs to target cells has emerged as a very promising tool. Therefore, in this research, ethylcellulose (EC) NS were prepared using the ultrasonication assisted-emulsion solvent evaporation technique. Withaferin-A (WFA), an active ingredient in Withania somnifera, has been implanted into the nanospongic framework with enhanced anticancer properties. Inside the polymeric structure, WFA was efficiently entrapped (85 ± 11%). The drug (WFA) was found to be stable within polymeric nanosponges, as demonstrated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies. The WFA-NS had a diameter of 117 ± 4 nm and zeta potential of −39.02 ± 5.71 mV with a polydispersity index (PDI) of 0.419 ± 0.073. In addition, scanning electron microscopy (SEM) revealed the porous surface texture of WFA-NS. In vitro anticancer activity (SRB assay) results showed that WFA–NS exhibited almost twice the anticancer efficacy against MCF-7 cells (IC50 = 1.57 ± 0.091 µM), as quantified by flow cytometry and comet tests. Moreover, fluorescence microscopy with DAPI staining and analysis of DNA fragmentation revealed apoptosis as a mechanism of cancer cell death. The anticancer activity of WFA-NS was further determined in vivo and results were compared to cisplatin. The anticancer activity of WFA-NS was further investigated in vivo, and the data were consistent to those obtained with cisplatin. At Day 10, WFA-NS (10 mg/kg) significantly reduced tumour volume to 72 ± 6%, which was comparable to cisplatin (10 mg/kg), which reduced tumour volume to 78 ± 8%. Finally, the outcomes of molecular modeling (in silico) also suggested that WFA established a stable connection with nanosponges, generating persistent hydrophobic contacts (polar and nonpolar) and helping with the attractive delayed-release features of the formulation. Collectively, all the findings support the use of WFA in nanosponges as a prototype for cancer treatment, and opened up new avenues for increasing the efficacy of natural product-derived medications.
Collapse
|
24
|
Algradi AM, Liu Y, Yang BY, Kuang HX. Review on the genus Brugmansia: Traditional usage, phytochemistry, pharmacology, and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113910. [PMID: 33571613 DOI: 10.1016/j.jep.2021.113910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Brugmansia belongs to the Solanaceae family and contains approximately 7-8 species distributed in America, Europe, Africa, and Asia. The genus Brugmansia plants are used in the traditional medicine of different parts of the world for the treatment of inflammations, rheumatic arthritis, wounds, skin infections, headache, asthma, colic, aches, and so on. AIM OF THE REVIEW To the best of our knowledge, this is the first review study that focuses on the phytochemistry, pharmacology, toxicity, and traditional uses of Brugmansia species in order to understand the link between the traditional uses, phytochemistry, and modern therapeutic uses, and provide a scientific fundamental for further research in the phytochemical and pharmacological activities of their species. MATERIALS AND METHODS The information reported in this study was retrieved from the scientific database such as ScienceDirect, PubMed, Springer, CNKI, Wiley, Google Scholar, and Baidu Scholar, up until May 2020. The key search word was "Brugmansia." Additionally, information was derived by search on the reference lists of included articles and Ph.D. dissertations. RESULTS As traditional uses, Brugmansia species are used against a wide range of diseases such as body pain, inflammatory conditions, skin infection, wound, and other diseases. Also, these species are used as a hallucinogen, protection from evil, and magical rituals. Phytochemical investigations have led to reporting approximately 189 chemical compounds in this genus. Among these components, tropane alkaloids, terpenes, and flavonoids are the most representative components of Brugmansia species. The plant extracts and chemical constituents of Brugmansia species exhibit a broad spectrum of biological and pharmacological activities, including anti-inflammatory, cytotoxic, antioxidant, antibacterial, antispasmodic, anti-asthmatic, antinociceptive, antiprotozoal activities, and so on. CONCLUSION This review summarized and analyzed the information of traditional uses, phytochemical, pharmacological activities, and toxicity of the genus Brugmansia plants, which show their species have interesting chemical constituents with different biological activities. The traditional uses of some species from this genus have been estimated by pharmacological activities, such as the anti-inflammatory, antispasmodic, antiasthma, antinociceptive, anti-addictive, and antiprotozoal activity. However, the traditional uses of many species have not been confirmed, also the secondary metabolites of the many species have not yet been determined and have never been pharmacologically estimated. Considerably more research is needed to assert the ethnopharmacological uses, determine the chemical constituents, toxicity, and pharmacological activities of the genus Brugmansia species. The present review will be helpful for further research in the phytochemistry and pharmacology of Brugmansia species.
Collapse
Affiliation(s)
- Adnan Mohammed Algradi
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
25
|
Pappalardo I, Santarsiero A, De Luca M, Acquavia MA, Todisco S, Caddeo C, Bianco G, Infantino V, Martelli G, Vassallo A. Exploiting the Anti-Inflammatory Potential of White Capsicum Extract by the Nanoformulation in Phospholipid Vesicles. Antioxidants (Basel) 2021; 10:antiox10111683. [PMID: 34829554 PMCID: PMC8614711 DOI: 10.3390/antiox10111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022] Open
Abstract
The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.
Collapse
Affiliation(s)
- Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- ALMACABIO Srl, C/so Italia 27, 39100 Bolzano, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Maria De Luca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- KAMABIO Srl, Via Al Boschetto 4/B, 39100 Bolzano, Italy
| | - Maria Assunta Acquavia
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- Thema Informatik Srl, Via Ressel 2/F, 39100 Bolzano, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- Correspondence: ; Tel.: +39-0706-758-462
| | - Giuliana Bianco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- Spinoff TNcKILLERS s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
26
|
Inhibition of Serine Protease, α-Amylase and Growth of Phytopathogenic Fungi by Antimicrobial Peptides from Capsicum chinense Fruits. Probiotics Antimicrob Proteins 2021; 15:502-515. [PMID: 34671924 DOI: 10.1007/s12602-021-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Plant fungal diseases cause major problems for the global economy. Antimicrobial peptides have aroused great interest in the control of phytopathogens, as they are natural molecules and have a broad spectrum of inhibitory activity. Herein, we have tried to identify and characterize antimicrobial peptides present in fruits of Capsicum chinense and to evaluate their enzymatic and antifungal activities. The retained fraction obtained in the anion exchange chromatography with strong antifungal activity was subjected to molecular exclusion chromatography and obtained four fractions named G1, G2, G3, and G4. The 6.0-kDa protein band of G2 showed similarity with protease inhibitors type II, and it was able to inhibit 100% of trypsin and α-amylase activities. The protein band with approximately 6.5 kDa of G3 showed similarity with sequences of protease inhibitors from genus Capsicum and showed growth inhibition of 48% for Colletotrichum lindemuthianum, 49% for Fusarium lateritium, and 51% for F. solani and F. oxysporum. Additionally, G3 causes morphological changes, membrane permeabilization, and ROS increase in F. oxysporum cells. The 9-kDa protein band of G4 fraction was similar to a nsLTP type 1, and a protein band of 6.5 kDa was similar to a nsLTP type 2. The G4 fraction was able to inhibit 100% of the activities of glycosidases tested and showed growth inhibition of 35 and 50% of F. oxysporum and C. lindemuthianum, respectively. C. chinense fruits have peptides with antifungal activity and enzyme inhibition with biotechnological potential.
Collapse
|
27
|
Culver KD, Allen JL, Shaw LN, Hicks LM. Too Hot to Handle: Antibacterial Peptides Identified in Ghost Pepper. JOURNAL OF NATURAL PRODUCTS 2021; 84:2200-2208. [PMID: 34445876 PMCID: PMC8600445 DOI: 10.1021/acs.jnatprod.1c00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capsicum spp. (hot peppers) demonstrate a range of interesting bioactive properties spanning anti-inflammatory, antioxidant, and antimicrobial activities. While several species within the genus are known to produce antimicrobial peptides (AMPs), AMP sequence mining of genomic data indicates this space remains largely unexplored. Herein, in silico AMP predictions were paired with peptidomics to identify novel AMPs from the interspecific hybrid ghost pepper (Capsicum chinense × frutescens). AMP prediction algorithms revealed 115 putative AMPs within the Capsicum chinense genome, of which 14 were identified in the aerial tissue peptidome. PepSAVI-MS, de novo sequencing, and complementary approaches were used to fully molecularly characterize two novel AMPs, CC-AMP1 and CC-AMP2, including elucidation of a pyroglutamic acid post-translational modification of CC-AMP1 and disulfide bond connectivity of both. Both CC-AMP1 and CC-AMP2 have little homology with known AMPs and exhibited low μM antimicrobial activity against Gram-negative bacteria, including Escherichia coli. These findings demonstrate the complementary nature of peptidomics, bioactivity-guided discovery, and bioinformatics-based investigations to characterize plant AMP profiles.
Collapse
Affiliation(s)
- Kevin D. Culver
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessie L. Allen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
28
|
Lai X, Yang P, Wang K, Yang Q, Yu D. MGRNN: Structure Generation of Molecules Based on Graph Recurrent Neural Networks. Mol Inform 2021; 40:e2100091. [PMID: 34411448 DOI: 10.1002/minf.202100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 11/11/2022]
Abstract
Molecular structure generation is a critical problem for materials science and has attracted growing attention. The problem is challenging since it requires to generate chemically valid molecular structures. Inspired by the recent work in deep generative models, we propose a graph recurrent neural network model for drug molecular structure generation, briefly called MGRNN (Molecular Graph Recurrent Neural Networks). MGRNN combines the advantages of both iterative molecular generation algorithm and the efficiency of the training strategies. Moreover, MGRNN shows: (i) efficient computation for training; (ii) high model robustness for data; and (iii) an iterative sampling process, which allows to use chemical domain expertise for valency checking. Experimental results show that MGRNN is able to generate 69 % chemically valid molecules even without chemical knowledge and 100 % valid molecules with chemical rules.
Collapse
Affiliation(s)
- Xin Lai
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peisong Yang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kunfeng Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Hawkey AB, Hoeng J, Peitsch MC, Levin ED, Koshibu K. Subchronic effects of plant alkaloids on anxiety-like behavior in zebrafish. Pharmacol Biochem Behav 2021; 207:173223. [PMID: 34197843 DOI: 10.1016/j.pbb.2021.173223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Zebrafish provide a valuable emerging complementary model for neurobehavioral research. They offer a powerful way to screen for the potential therapeutic effects of neuroactive drugs. A variety of behavioral tests for zebrafish have been developed and validated for assessing neurobehavioral function. The novel tank diving test is a straightforward, reproducible way of measuring anxiety-like behavior in zebrafish. When introduced into a novel tank, zebrafish normally dive to the bottom of the tank and then gradually explore the higher levels of the water column as time progresses. Buspirone is an effective anxiolytic drug in humans, which has been found, with acute administration, to reduce this anxiety-like response in zebrafish. The current study used the zebrafish model to evaluate the potential anxiolytic effects of alkaloids, commonly found in Solanaceae plants, with known neuropharmacology relevant to mood regulation. In line with previous findings, acute treatment with anxiolytic positive controls buspirone and the plant alkaloid nicotine reduced the anxiety-like diving response in the zebrafish novel tank diving test. Further, both buspirone and nicotine continued to produce anxiolytic-like effects in zebrafish after 5 days of exposure. In the same treatment paradigm, the effects of five other alkaloids-cotinine, anatabine, anabasine, harmane, and norharmane-were investigated. Cotinine, the major metabolite of nicotine, also caused anxiolytic-like effects, albeit at a dose higher than the effective dose of nicotine. Nicotine's anxiolytic-like effect was not shared by the other nicotinic alkaloids, anabasine and anatabine, or by the naturally present monoamine oxidase inhibitors harmane and norharmane. We conclude that nicotine uniquely induces anxiolytic-like effects after acute and subchronic treatment in zebrafish. The zebrafish model with the novel tank diving test could be a useful complement to rodent models for screening candidate compounds for anxiolytic effects in nonclinical studies.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kyoko Koshibu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
30
|
Figueiredo GG, Coronel OA, Trabuco AC, Bazán DE, Russo RR, Alvarenga NL, Aquino VH. Steroidal saponins from the roots of Solanum sisymbriifolium Lam. (Solanaceae) have inhibitory activity against dengue virus and yellow fever virus. ACTA ACUST UNITED AC 2021; 54:e10240. [PMID: 34008751 PMCID: PMC8130103 DOI: 10.1590/1414-431x2020e10240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023]
Abstract
Dengue is the most important arthropod-borne viral disease worldwide. Infection with any of the four dengue virus (DENV) serotypes can be asymptomatic or lead to disease with clinical symptoms ranging from undifferentiated and self-limiting fever to severe dengue disease, which can be fatal in some cases. Currently, no specific antiviral compound is available for treating DENV. The aim of this study was to identify compounds in plants from Paraguayan folk medicine with inhibitory effects against DENV. We found high virucidal activity (50% maximal effective concentration (EC50) value of 24.97 µg/mL) against DENV-2 in the ethanolic extract of the roots of Solanum sisymbriifolium Lam. (Solanaceae) without an evident cytotoxic effect on Vero E6 cells. Three saponins isolated from the root extract showed virucidal effects (EC50 values ranging from 24.9 to 35.1 µg/mL) against DENV-2. Additionally, the saponins showed inhibitory activity against yellow fever virus (EC50 values ranging from 126 to 302.6 µg/mL), the prototype virus of the Flavivirus genus, suggesting that they may also be effective against other members of this genus. Consequently, these saponins may be lead compounds for the development of antiviral agents.
Collapse
Affiliation(s)
- G G Figueiredo
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O A Coronel
- Department of Phytochemistry, Faculty of Chemical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - A C Trabuco
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D E Bazán
- Department of Phytochemistry, Faculty of Chemical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - R R Russo
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - N L Alvarenga
- Department of Phytochemistry, Faculty of Chemical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - V H Aquino
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
31
|
Yeşil Y, İnal İ. Ethnomedicinal Plants of Hasankeyf (Batman-Turkey). Front Pharmacol 2021; 11:624710. [PMID: 33776756 PMCID: PMC7990790 DOI: 10.3389/fphar.2020.624710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Hasankeyf is an ancient city, dating back to more than 10,000 years, in the Southeast Anatolia Region of Turkey. The area is separated by the Tigris River on both sides and located in the Batman province. However, as a result of a dam project, in February 2020, this ancient city and some of its surrounding villages were totally flooded. The residents were moved to new settlements. This study aimed to prevent the possible loss of ethnomedicinal knowledge of plants due to migration as well as to pass on this knowledge to the future generations. The field studies were conducted between March 2017 and November 2019 in the city center and 22 rural settlements of Hasankeyf. Also, the areas where intensive migration was experienced were visited frequently. Interviews were conducted with a total of 131 participants (76 women and 55 men) while gathering plants with them. Information was collected through interviews and questionnaires. The results were analyzed by quantitative indices of information consensus factor (FIC) and use value (UV). A total of 94 plant taxa belonging to 40 families were identified in the study area. The most common medicinal plant families are Lamiaceae (13), Asteraceae (8), Rosaceae (6), Malvaceae (6), Amaryllidaceae (5), Brassicaceae (4), and Solanaceae (4). The most common preparations were infusion, fresh application, and crushing. The taxa having the highest count of use value (UV) were Teucrium polium, Matricaria aurea, Urtica dioica, Mentha longifolia, and Quercus brantii. Besides, the recorded ailments were grouped into categories based on information provided by the interviewees. The most important use categories among the informants were diabetes, gastrointestinal disorders, respiratory disorders, and dermatological disorders. The present study represents the first medical-ethnobotanical documentation and analysis of the traditional use of medicinal plants in Hasankeyf.
Collapse
Affiliation(s)
- Yeter Yeşil
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Istanbul University, Istanbul, Turkey
| | - İlyas İnal
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Aguieiras MCL, Resende LM, Souza TAM, Nagano CS, Chaves RP, Taveira GB, Carvalho AO, Rodrigues R, Gomes VM, Mello ÉO. Potent Anti-Candida Fraction Isolated from Capsicum chinense Fruits Contains an Antimicrobial Peptide That is Similar to Plant Defensin and is Able to Inhibit the Activity of Different α-Amylase Enzymes. Probiotics Antimicrob Proteins 2021; 13:862-872. [PMID: 33454869 DOI: 10.1007/s12602-020-09739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Antimicrobial peptides (AMPs) are molecules present in several life forms, possess broad-spectrum of inhibitory activity against pathogenic microorganisms, and are a promising alternative to combat the multidrug resistant pathogens. The aim of this work was to identify and characterize AMPs from Capsicum chinense fruits and to evaluate their inhibitory activities against yeasts of the genus Candida and α-amylases. Initially, after protein extraction from fruits, the extract was submitted to anion exchange chromatography resulting two fractions. Fraction D1 was further fractionated by molecular exclusion chromatography, and three fractions were obtained. These fractions showed low molecular mass peptides, and in fraction F3, only two protein bands of approximately 6.5 kDa were observed. Through mass spectrometry, we identified that the lowest molecular mass protein band of fraction F3 showed similarity with AMPs from plant defensin family. We named this peptide CcDef3 (Capsicum chinense defensin 3). The antifungal activity of these fractions was analyzed against yeasts of the genus Candida. At 200 μg/mL, fraction F1 inhibited the growth of C. tropicalis by 26%, fraction F2 inhibited 35% of the growth of C. buinensis, and fraction F3 inhibited all tested yeasts, exhibiting greater inhibition activity on the growth of the yeast C. albicans (86%) followed by C. buinensis (69%) and C. tropicalis (21%). Fractions F1 and F2 promoted membrane permeabilization of all tested yeasts and increased the endogenous induction of reactive oxygen species (ROS) in C. buinensis and C. tropicalis, respectively. We also observed that fraction F3 at a concentration of 50 µg/mL inhibited the α-amylase activities of Tenebrio molitor larvae by 96% and human salivary by 100%. Thus, our results show that fraction F3, which contains CcDef3, is a very promising protein fraction because it has antifungal potential and is able to inhibit the activity of different α-amylase enzymes.
Collapse
Affiliation(s)
- Mariana C L Aguieiras
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Larissa M Resende
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Thaynã A M Souza
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Celso S Nagano
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Renata P Chaves
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Gabriel B Taveira
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - André O Carvalho
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento E Genética Vegetal, Centro de Ciências E Tecnologias Agropecuárias, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene M Gomes
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil.
| | - Érica O Mello
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|