1
|
Qi H, Ma QH, Feng W, Chen SM, Wu CS, Wang Y, Wang TX, Hou YL, Jia ZH. Glycyrrhetinic acid blocks SARS-CoV-2 infection by activating the cGAS-STING signalling pathway. Br J Pharmacol 2024; 181:3976-3992. [PMID: 38922702 DOI: 10.1111/bph.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Traditional Chinese medicine (TCM) played an important role in controlling the COVID-19 pandemic, but the scientific basis and its active ingredients are still weakly studied. This study aims to decipher the underlying anti-SARS-CoV-2 mechanisms of glycyrrhetinic acid (GA). EXPERIMENTAL APPROACH GA's anti-SARS-CoV-2 effect was verified both in vitro and in vivo. Homogeneous time-resolved fluorescence assays, biolayer interferometry technology, and molecular docking were employed to examine interactions of GA with human stimulator of interferon genes (hSTING). Immunofluorescence staining, western blot, and RT-qPCR were used to investigate nuclear translocation of interferon regulatory factor 3 (IRF3) and levels of STING target genes. Pharmacokinetics of GA was studied in mice. KEY RESULTS GA could directly bind to Ser162 and Tyr240 residues of hSTING, thus up-regulating downstream targets and activation of the STING signalling pathway. Such activation is crucial for limiting the replication of SARS-CoV-2 Omicron in Calu-3 cells and protecting against lung injury induced by SARS-CoV-2 Omicron infection in K18-ACE2 transgenic mice. Immunofluorescence staining and western blot indicated that GA increased levels of phosphorylated STING, phosphorylated TANK-binding kinase-1, and cyclic GMP-AMP synthase (cGAS). Importantly, GA increased nuclear translocation of IRF3. Pharmacokinetic analysis of GA in mice indicated it can be absorbed into circulation and detected in the lung at a stable level. CONCLUSION AND IMPLICATIONS Activation of the cGAS-STING pathway through the GA-STING-IRF3 axis is essential for the antiviral activity of GA in mice, providing new insights into the potential translation of GA for treating SARS-CoV-2 in patients.
Collapse
Affiliation(s)
- Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Qin-Hai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Si-Mian Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Cai-Sheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yanan Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Tong-Xing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yun-Long Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Zhen-Hua Jia
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| |
Collapse
|
2
|
Brill EN, Link NG, Jackson MR, Alvi AF, Moehlenkamp JN, Beard MB, Simons AR, Carson LC, Li R, Judd BT, Brasseale MN, Berkman EP, Park RK, Cordova-Hernandez S, Hoff RY, Yager CE, Modelski MC, Nenadovich M, Sisodia D, Reames CJ, Geranios AG, Berthrong ST, Wilson AM, Tietje AH, Stobart CC. Evaluation of the Therapeutic Potential of Traditionally-Used Natural Plant Extracts to Inhibit Proliferation of a HeLa Cell Cancer Line and Replication of Human Respiratory Syncytial Virus (hRSV). BIOLOGY 2024; 13:696. [PMID: 39336123 PMCID: PMC11429219 DOI: 10.3390/biology13090696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Traditional approaches employing natural plant products to treat a wide array of ailments have been documented and described for thousands of years. However, there remains limited scientific study of the therapeutic potential or effectiveness of ethnobotanical applications. Increases in the incidence of cancer and emerging infectious diseases demonstrate a growing need for advances in the development of therapeutic options. In this study, we evaluate the therapeutic potential of aqueous extracts prepared from four plants, purple aster (Symphyotrichum novae-angliae (L.) Nemsom), common sage (Salvia lyrata (L.)), northern spicebush (Lindera benzoin (L.) Blume), and lamb's ear (Stachys byzantina (K.) Koch)) traditionally used in Native American medicine in Indiana, USA. Using a combination of cytotoxicity assays, immunofluorescence microscopy, and antiviral assays, we found that sage and spicebush extracts exhibit cytotoxic and antiproliferative effects on HeLa cell proliferation and that sage, spicebush, and aster extracts were capable of significantly inhibiting human respiratory syncytial virus (hRSV), a major respiratory pathogen of infants and the elderly. Chemical analysis of the four extracts identified four major compounds which were subsequently evaluated to identify the responsible constituents in the extracts. While none of the identified compounds were shown to induce significant impacts on HeLa cell proliferation, two of the compounds, (1S)-(-)-Borneol and 5-(hydroxymethyl)-furfural, identified in sage and spicebush, respectively, were shown to have antiviral activities. Our data suggest that several of the extracts tested exhibited either anti-proliferative or antiviral activity supporting future further analysis.
Collapse
Affiliation(s)
- Ellie N. Brill
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Natalie G. Link
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Morgan R. Jackson
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Alea F. Alvi
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Jacob N. Moehlenkamp
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Morgan B. Beard
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Adam R. Simons
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Linden C. Carson
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Ray Li
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Breckin T. Judd
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Max N. Brasseale
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Emily P. Berkman
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Riley K. Park
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Sedna Cordova-Hernandez
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Rebecca Y. Hoff
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Caroline E. Yager
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Meredith C. Modelski
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Dhruvi Sisodia
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Clayton J. Reames
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Andreas G. Geranios
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Sean T. Berthrong
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Anne M. Wilson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA;
| | - Ashlee H. Tietje
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
- Interdisciplinary Program in Public Health, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| |
Collapse
|
3
|
Hose L, Schürmann M, Sudhoff H. Upregulation of key factors of viral entry of corona- and influenza viruses upon TLR3-signaling in cells from the respiratory tract and clinical treatment options by 1,8-Cineol. Phytother Res 2024; 38:4453-4466. [PMID: 39020450 DOI: 10.1002/ptr.8280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
At the end of the 2019 coronavirus pandemic (COVID-19), highly contagious variants of coronaviruses had emerged. Together with influenza viruses, different variants of the coronavirus currently cause most colds and require appropriate drug treatment. We have investigated the expression of important factors for the replication of these viruses, namely transmembrane protease serine subtype 2 (TMPRSS2), neuropilin1 (NRP1), and angiotensin converting enzyme 2 (ACE2) or tumor necrosis factor-α (TNF-α) after toll like receptor-3 (TLR-3) stimulation using RT-qPCR and flow cytometry (FC) analysis. As model served primary fibroblasts derived from the lung and nasal cavity, as well as epidermal stem cells and fully matured respiratory epithelium. The stimulated cell cultures were treated with pharmaceuticals (Dexamethasone and Enzalutamide) and the outcome was compared with the phytomedicine 1,8-Cineol. The stimulation of TLR3 is sufficient to induce the expression of exactly those targets that were highly expressed in the corresponding culture type, specifically ACE2 and TMPRSS2 in respiratory epithelial stem cells and NRP1 in fibroblast cells. It seems this self-perpetuating cycle of infection-driven upregulation of key viral replication factors by the innate immune system represents an evolutionary advantage for viruses using these transcripts as viral replication factors. Likewise, to the standard pharmaceuticals with proven clinical efficiency, 1,8-Cineol was able to disrupt this self-perpetuating cycle. Considering the minor side effects and negligible pharmacological interactions with other drugs, it is conceivable that an adjuvant or combinatorial therapy with 1,8-Cineol for respiratory diseases caused by corona- or influenza viruses would be beneficial.
Collapse
Affiliation(s)
- Leonie Hose
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Mustafa Din W, Arham AF, Md. Yusoff Y. Set of data on consumers' perceived safety and efficacy towards natural health products to control or cure Covid-19 viruses in Malaysia. Data Brief 2024; 54:110548. [PMID: 38912420 PMCID: PMC11190492 DOI: 10.1016/j.dib.2024.110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
This study evaluated the level of knowledge of effects, knowledge of safe use, information complexity of natural health products and consumers' perceived safety and efficacy toward natural health products used to control or cure Covid-19 viruses in Malaysia. The validated questionnaires were used to survey randomly selected stakeholders in Malaysia, who were asked to participate voluntarily in an online survey from 1st September 2020 to 31st December 2020. 723 respondents of adults above 18 years old returned completed questionnaires. The survey used for data collection consisted of 5 questions on knowledge of effects, 4 questions on knowledge for safe-use, 9 questions on perception towards safety and efficacy and 4 questions on the information complexity of natural health products. Besides that, 8 questions are being asked on the demography of respondents at the very end of the survey. The Statistical Package for the Social Sciences (SPSS) version 26 was used to analyse the data. The mean score, correlation and regression values were the focus of this study. The findings provide various opportunities to investigate Malaysian consumers' perceptions which facilitates the development of regulation and strategic plans related to health, and encourage additional research by other researchers interested in the measures and data given.
Collapse
Affiliation(s)
- Wardah Mustafa Din
- School of Liberal Studies, Universiti Kebangsaan Malaysia, 43650 Bangi, Malaysia
| | - Ahmad Firdhaus Arham
- School of Liberal Studies, Universiti Kebangsaan Malaysia, 43650 Bangi, Malaysia
| | - Yusnaini Md. Yusoff
- School of Liberal Studies, Universiti Kebangsaan Malaysia, 43650 Bangi, Malaysia
| |
Collapse
|
5
|
Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, Syed Mohamed AF, Lam KW, Ibrahim S. Inhibitory effect of food-functioned phytochemicals on dysregulated inflammatory pathways triggered by SARS-CoV-2: a mechanistic review. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38619217 DOI: 10.1080/10408398.2024.2341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Shah Alam, Malaysia
| | - Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | | | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
6
|
Bhat SA, Zargar MI, Wani SUD, Mohiuddin I, Masoodi MH, Shakeel F, Ali M, Mehdi S. In-vitro evaluation of Indigofera heterantha extracts for antibacterial, antifungal and anthelmintic activities. J Pharm Health Care Sci 2024; 10:7. [PMID: 38268049 PMCID: PMC10809583 DOI: 10.1186/s40780-024-00328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Multidrug-resistant bacterial strains cause several serious infections that can be fatal, such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae (often referred to as ESKAPE pathogens). Since ancient times, several indigenous medical systems in India have utilized diverse medicinal plants (approximately 80,000 species) as conventional treatments for a variety of illnesses. A member of the Fabaceae family, also referred to as "Himalayan indigo," Indigofera heterantha Wall, is well known for its therapeutic properties. METHODS The present study investigated the antibacterial, antifungal and antihelmintic properties of the roots, bark, leaves, and flowers of I. heterantha from the Kashmir Himalayas. The effectiveness of the extracts against bacteria, fungi, and earthworms. Three of the tested organisms for bacteria were ESKAPE pathogens, as they are responsible for creating fatal bacterial infections. The antifungal potency of I. heterantha aqueous and methanolic extracts was evaluated using the Agar Well Diffusion Assay. The antihelmintic activity was carried out on an adult Pheretima posthuma Indian earth worm, which shares physiological and anatomical similarities with human intestinal roundworm parasites. RESULTS The methanolic extracts of root and bark have shown prominent activity against all bacterial strains, whereas aqueous extracts of flower, root, and leaves have shown promising activity against Staphylococcus aureus. The aqueous extract demonstrated good activity against S. cerevisiae at a concentration of 200 mg/ml with a zone of inhibition of 16 mm, while the methanolic extract displayed comparable activity against the fungal strains. The remaining two strains, P. crysogenum and A. fumigatus, were only moderately active in response to the extracts. All the extracts have shown anthelmintic activity except aqueous flower. CONCLUSION These results will pave the way for the bioassay-guided isolation of bioactive constituents that may act as hits for further development as potential antibacterial agents against drug-resistant microbial and helminthic infections.
Collapse
Affiliation(s)
- Showkat Ahmad Bhat
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India.
| | - Ishfaq Mohiuddin
- Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagar, Nagamagala, Bellur, Karnataka, 571418, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, Mysuru, 570015, India
| |
Collapse
|
7
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
8
|
Singh M, Lo SH, Dubey R, Kumar S, Chaubey KK, Kumar S. Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19. Indian J Microbiol 2023; 63:429-446. [PMID: 38031604 PMCID: PMC10682353 DOI: 10.1007/s12088-023-01121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human virus that burst at Wuhan in China and spread quickly over the world, leading to millions of deaths globally. The journey of this deadly virus to different mutant strains is still ongoing. The plethora of drugs and vaccines have been tested to cope up this pandemic. The herbal plants and different spices have received great attention during pandemic, because of their anti-inflammatory, and immunomodulatory properties in treating viruses and their symptoms. Also, it has been shown that nano-formulation of phytochemicals has potential therapeutic effect against COVID-19. Furthermore, the plant derived compound nano-formulation specifically increases its antiviral property by enhancing its bioavailability, solubility, and target-specific delivery system. This review highlights the potentiality of herbal plants and their phytochemical against SARS-CoV-2 utilizing different mechanisms such as blocking the ACE-2 receptors, inhibiting the main proteases, binding spike proteins and reducing the cytokine storms.
Collapse
Affiliation(s)
- Mansi Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406 India
| | - Shih-Hsiu Lo
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing Street, Taipei, 11031 Taiwan
| | - Sudhashekhar Kumar
- Department of Physiology, School of Medical Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand 248007 India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, UP 281401 India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
9
|
Sharma D, Joshi M, Apparsundaram S, Goyal RK, Patel B, Dhobi M. Solanum nigrum L. in COVID-19 and post-COVID complications: a propitious candidate. Mol Cell Biochem 2023; 478:2221-2240. [PMID: 36689040 PMCID: PMC9868520 DOI: 10.1007/s11010-022-04654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. COVID-19 has changed the world scenario and caused mortality around the globe. Patients who recovered from COVID-19 have shown neurological, psychological, renal, cardiovascular, pulmonary, and hematological complications. In some patients, complications lasted more than 6 months. However, significantly less attention has been given to post-COVID complications. Currently available drugs are used to tackle the complications, but new interventions must address the problem. Phytochemicals from natural sources have been evaluated in recent times to cure or alleviate COVID-19 symptoms. An edible plant, Solanum nigrum, could be therapeutic in treating COVID-19 as the AYUSH ministry of India prescribes it during the pandemic. S. nigrum demonstrates anti-inflammatory, immunomodulatory, and antiviral action to treat the SARS-CoV-2 infection and its post-complications. Different parts of the plant represent a reduction in proinflammatory cytokines and prevent multi-organ failure by protecting various organs (liver, kidney, heart, neuro, and lung). The review proposes the possible role of the plant S. nigrum in managing the symptoms of COVID-19 and its post-COVID complications based on in silico docking and pharmacological studies. Further systematic and experimental studies are required to validate our hypothesis.
Collapse
Affiliation(s)
- Divya Sharma
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Mit Joshi
- Institute of Pharmacy, Nirma University, 382481, Ahmedabad, Gujarat, India
| | - Subbu Apparsundaram
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector-9, Gandhinagar-382007, Gujarat, India.
| | - Mahaveer Dhobi
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India.
| |
Collapse
|
10
|
Mandal A, Hazra B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res 2023; 37:4353-4374. [PMID: 37439007 DOI: 10.1002/ptr.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis C virus (HCV), a global malady, causes acute and chronic hepatitis leading to permanent liver damage, hepatocellular carcinoma, and death. Modern anti-HCV therapies are efficient, but mostly inaccessible for residents of underdeveloped regions. To innovate more effective treatments at affordable cost, medicinal plant-based products need to be explored. The aim of this article is to review plant constituents in the light of putative anti-HCV mechanisms of action, and discuss existing problems, challenges, and future directions for their potential application in therapeutic settings. One hundred sixty literatures were collected by using appropriate search strings via scientific search engines: Google Scholar, PubMed, ScienceDirect, and Scopus. Bibliography was prepared using Mendeley desktop software. We found a substantial number of plants that were reported to inhibit different stages of HCV life cycle. Traditional medicinal plants such as Phyllanthus amarus Schumach. and Thonn., Eclipta alba (L.) Hassk., and Acacia nilotica (L.) Delile exhibited strong anti-HCV activities. Again, several phytochemicals such as epigallocatechin-3-gallate, honokilol, punicalagin, and quercetin have shown broad-spectrum anti-HCV effect. We have presented promising phytochemicals like silymarin, curcumin, glycyrrhizin, and camptothecin for nanoparticle-based hepatocyte-targeted drug delivery. Nevertheless, only a few animal studies have been performed to validate the anti-HCV effect of these plant products. Again, insufficient clinical evaluation of the safety and effectiveness of herbal medications remain a problem. Selected plants products could be developed as novel therapeutics for HCV patients only after scrupulous evaluation of their safety and efficacy in a clinical set-up.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Birati, Kolkata, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
11
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
12
|
Lionis C, Petelos E, Linardakis M, Diamantakis A, Symvoulakis E, Karkana MN, Kampa M, Pirintsos SA, Sourvinos G, Castanas E. A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients. Diseases 2023; 11:105. [PMID: 37606476 PMCID: PMC10443288 DOI: 10.3390/diseases11030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION The need for effective therapeutic regimens for non-critically ill patients during the COVID-19 pandemic remained largely unmet. Previous work has shown that a combination of three aromatic plants' essential oils (CAPeo) (Thymbra capitata (L.) Cav., Origanum dictamnus L., Salvia fruticose Mill.) has remarkable in vitro antiviral activity. Given its properties, it was urgent to explore its potential in treating mild COVID-19 patients in primary care settings. METHODS A total of 69 adult patients were included in a clinical proof-of-concept (PoC) intervention study. Family physicians implemented the observational study in two arms (intervention group and control group) during three study periods (IG2020, n=13, IG2021/22, n=25, and CG2021/22, n=31). The SARS-CoV-2 infection was confirmed by real-time PCR. The CAPeo mixture was administered daily for 14 days per os in the intervention group, while the control group received usual care. RESULTS The PoC study found that the number and frequency of general symptoms, including general fatigue, weakness, fever, and myalgia, decreased following CAPeo administration. By Day 7, the average presence (number) of symptoms decreased in comparison with Day 1 in IG (4.7 to 1.4) as well as in CG (4.0 to 3.1), representing a significant decrease in the cumulative presence in IC (-3.3 vs. -0.9, p < 0.001; η2 = 0.20) on Day 7 and on Day 14 (-4.2 vs. -2.9, p = 0.027; η2 = 0.08). DISCUSSION/CONCLUSIONS Our findings suggest that CAPeo possesses potent antiviral activity against SARS-CoV-2 in addition tο its effect against influenza A and B and human rhinovirus HRV14 strains. The early and effective impact on alleviating key symptoms of COVID-19 may suggest this mixture can act as a complementary natural agent for patients with mild COVID-19.
Collapse
Affiliation(s)
- Christos Lionis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.P.); (M.L.); (A.D.); (E.S.); (M.-N.K.)
- Department of Health, Medicine and Care, General Practice, Linköping University, SE-581 85 Linköping, Sweden
| | - Elena Petelos
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.P.); (M.L.); (A.D.); (E.S.); (M.-N.K.)
- Department of Health Services Research, CAPHRI-Care and Public Health Research Institute, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.P.); (M.L.); (A.D.); (E.S.); (M.-N.K.)
| | - Athanasios Diamantakis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.P.); (M.L.); (A.D.); (E.S.); (M.-N.K.)
| | - Emmanouil Symvoulakis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.P.); (M.L.); (A.D.); (E.S.); (M.-N.K.)
| | - Maria-Nefeli Karkana
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.P.); (M.L.); (A.D.); (E.S.); (M.-N.K.)
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (M.K.); (E.C.)
| | - Stergios A. Pirintsos
- Department of Biology, School of Sciences and Technology, University of Crete, 71003 Heraklion, Greece;
- Botanical Garden, University of Crete, 71003 Rethymnon, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (M.K.); (E.C.)
| |
Collapse
|
13
|
Tiwari D, Kewlani P, Gaira KS, Bhatt ID, Sundriyal RC, Pande V. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model. Sci Rep 2023; 13:10888. [PMID: 37407604 DOI: 10.1038/s41598-023-37495-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
The present study uses a systematic approach to explore the phytochemical composition of medicinal plants from Uttarakhand, Western Himalaya. The phytochemical composition of medicinal plants was analyzed based on (i) the presence of different chemical groups and (ii) bioactive compounds. The Generalized Additive Model (GAM) analysis was used to predict the occurrence of chemical groups and active compounds across different eco-climatic zones and the elevation in Uttarakhand. A total of 789 medicinal plants represented by 144 taxonomic families were screened to explore the phytochemical diversity of the medicinal plants of Uttarakhand. These medicinal plant species are signified in different life forms such as herbs (58.86%), shrubs (18.24%), trees (17.48%), ferns (2.38%), and climbers (2.13%). The probability of occurrence of the chemical groups found in tropical, sub-tropical, and warm temperate eco-climatic zones, whereas active compounds have a high Probability towards alpine, sub-alpine, and cool temperate zones. The GAM predicted that the occurrence of species with active compounds was declining significantly (p < 0.01), while total active compounds increased across elevation (1000 m). While the occurrence of species with the chemical group increased, total chemical groups were indicated to decline with increasing elevation from 1000 m (p < 0.000). The current study is overwhelmed to predict the distribution of phytochemicals in different eco-climatic zones and elevations using secondary information, which offers to discover bioactive compounds of the species occurring in the different eco-climatic habitats of the region and setting the priority of conservation concerns. However, the study encourages the various commercial sectors, such as pharmaceutical, nutraceutical, chemical, food, and cosmetics, to utilize unexplored species. In addition, the study suggests that prioritizing eco-climatic zones and elevation based on phytochemical diversity should be a factor of concern in the Himalayan region, especially under the climate change scenario.
Collapse
Affiliation(s)
- Deepti Tiwari
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Pushpa Kewlani
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Kailash S Gaira
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok, Sikkim, India
| | - Indra D Bhatt
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India.
| | - R C Sundriyal
- Department of Forestry and Natural Resources, HNB Garhwal University, Srinagar, Garhwal, 249169, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
14
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
15
|
The Use of D-Optimal Mixture Design in Optimizing Formulation of a Nutraceutical Hard Candy. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7510452. [PMID: 36968159 PMCID: PMC10033211 DOI: 10.1155/2023/7510452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023]
Abstract
The aim of this study was to optimize the formulation of hard candy with antiviral herbal extracts and flowered with Citrus limon peel essential oils. To substitute water fraction, the D-optimal mixture design was used. The optimized mixture fractions of the best hard candy formulation contain Curcuma longa extract (10%), Artemisia herba-alba Asso extract (3.33%), Glycyrrhiza glabra extract (1.66%), and Zingiber officinale extract (1.66%) and flowered by 20 μL/100 gram of Citrus limon essential oils. The effect of the addition had been investigated on the sensory, physicochemical, and phytochemical of the hard candy according to the optimal formulation. The main component of Citrus limon essential oil is limonene (52.47%), which has a pleasant lemon fragrance. The mixture of herbal extract added increased the total phenols, the flavonoid, and the ash content of the formulated hard candy (
mg GAE/g,
mg CE/g, and
, respectively). The measurement of the DPPH free radical activity reveals a good antioxidant activity (26.4%). Furthermore, the sensory analysis has shown a good appreciation. Thus, formulated hard candy is a sensorially and therapeutically interesting product.
Collapse
|
16
|
Çalhan SD, Meryemoğlu B, Eroğlu P, Saçlı B, Kalderis D. Subcritical Water Extraction of Onosma mutabilis: Process Optimization and Chemical Profile of the Extracts. Molecules 2023; 28:molecules28052314. [PMID: 36903560 PMCID: PMC10005700 DOI: 10.3390/molecules28052314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The aboveground and root parts of Onosma mutabilis were extracted using subcritical water and the process was optimized with response surface methodology. The composition of the extracts was determined by chromatographic methods and compared to that of conventional maceration of the plant. The optimum total phenolic contents for the aboveground part and the roots were 193.9 and 174.4 μg/g, respectively. These results were achieved at a subcritical water temperature of 150 °C, an extraction time of 180 min, and a water/plant ratio of 0.1, for both parts of the plant. Principal component analysis revealed that the roots contained mainly phenols, ketones, and diols, with the aboveground part mostly alkenes and pyrazines, whereas the extract from maceration contained mainly terpenes, esters, furans, and organic acids. The quantification of selected phenolic substances showed that subcritical water extraction compared favorably to maceration, especially with respect to pyrocatechol (1062 as compared to 10.2 μg/g) and epicatechin (1109 as compared to 23.4 μg/g). Furthermore, the roots of the plant contained twice as much of these two phenolics compared to the aboveground part. Subcritical water extraction of O. mutabilis is an environmentally friendly method that can extract selected phenolics at higher concentrations compared to maceration.
Collapse
Affiliation(s)
- Selda Doğan Çalhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey
- Correspondence: (S.D.Ç.); (D.K.)
| | - Bahar Meryemoğlu
- Central Research Laboratory, Cukurova University, Adana 01330, Turkey
| | - Pelin Eroğlu
- Department of Chemistry, Science Faculty, Mersin University, Mersin 33110, Turkey
| | - Barış Saçlı
- Department of Chemistry, Science Faculty, Mersin University, Mersin 33110, Turkey
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73100 Chania, Greece
- Correspondence: (S.D.Ç.); (D.K.)
| |
Collapse
|
17
|
Chen J, Ding Z. Advances in natural product anti-coronavirus research (2002-2022). Chin Med 2023; 18:13. [PMID: 36782317 PMCID: PMC9924896 DOI: 10.1186/s13020-023-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
COVID-19 is a severe acute respiratory syndrome caused by coronavirus that has triggered acute respiratory infections in countries around the world. In the last 20 years, there have been several outbreaks of coronaviruses, which have had a tremendous impact on productive life and globalization. Since coronaviruses are mutagenic and highly susceptible to mutation, there are no specific drugs against coronaviruses. Medicines made from natural products gains worldwide attention, and the mechanism and effectiveness of natural products for the treatment of coronavirus-related diseases have received much attention after the global pandemic of COVID-19 in 2020. The vitro research results and clinical data from various countries have shown protective effects of good effects against coronaviruses. This review summarizes representative natural products for the treatment of coronavirus-related diseases in the past 20 years, and demonstrates the promising prospects of natural products against coronavirus-related diseases by listing herbal formulas, Chinese patent medicines and natural small molecule compounds and their therapeutic mechanisms, providing references for subsequent related studies.
Collapse
Affiliation(s)
- Jiaxin Chen
- grid.254147.10000 0000 9776 7793School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Zuoqi Ding
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China. .,Editorial Board of Chinese Journal of Natural Medicines, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Benarous L, Benarous K, Muhammad G, Ali Z. Deep learning application detecting SARS-CoV-2 key enzymes inhibitors. CLUSTER COMPUTING 2023; 26:1169-1180. [PMID: 35874186 PMCID: PMC9295888 DOI: 10.1007/s10586-022-03656-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 05/14/2023]
Abstract
The fast spread of the COVID-19 over the world pressured scientists to find its cures. Especially, with the disastrous results, it engendered from human life losses to long-term impacts on infected people's health and the huge financial losses. In addition to the massive efforts made by researchers and medicals on finding safe, smart, fast, and efficient methods to accurately make an early diagnosis of the COVID-19. Some researchers focused on finding drugs to treat the disease and its symptoms, others worked on creating effective vaccines, while several concentrated on finding inhibitors for the key enzymes of the virus, to reduce its spreading and reproduction inside the human body. These enzymes' inhibitors are usually found in aliments, plants, fungi, or even in some drugs. Since these inhibitors slow and halt the replication of the virus in the human body, they can help fight it at an early stage saving the patient from death risk. Moreover, if the human body's immune system gets rid of the virus at the early stage it can be spared from the disastrous sequels it may leave inside the patient's body. Our research aims to find aliments and plants that are rich in these inhibitors. In this paper, we developed a deep learning application that is trained with various aliments, plants, and drugs to detect if a component contains SARS-CoV-2 key inhibitor(s) intending to help them find more sources containing these inhibitors. The application is trained to identify various sources rich in thirteen coronavirus-2 key inhibitors. The sources are currently just aliments, plants, and seeds and the identification is done by their names.
Collapse
Affiliation(s)
- Leila Benarous
- LIM Laboratory (Laboratoire d’informatique Et de Mathématique), Department of Computer Science, Faculty of Science, University of Amar Telidji, Laghouat, Algeria
- LISSI-Tinc-NET Laboratory, University of Paris-Est Creteil, 94400 Vitry-sur-Seine, France
| | - Khedidja Benarous
- Science Fundamental Laboratory, Department of Biology, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Ghulam Muhammad
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Zulfiqar Ali
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ UK
| |
Collapse
|
19
|
Gupta P, Rani V. The Surging Mechanistic Role of Angiotensin Converting Enzyme 2 in Human Pathologies: A Potential Approach for Herbal Therapeutics. Curr Drug Targets 2023; 24:1046-1054. [PMID: 37861036 DOI: 10.2174/0113894501247616231009065415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.
Collapse
Affiliation(s)
- Priyadarshini Gupta
- Transcriptome laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, India
| | - Vibha Rani
- Transcriptome laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Aljowaie RM, Andleeb S, Kangal A, Al-Ghamdi AA, Rehman KU, Javed R, Mahmood A, Eisa YH. Prospect of herbal medication as prevention against COVID variants. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102360. [PMID: 36249917 PMCID: PMC9550285 DOI: 10.1016/j.jksus.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 05/28/2023]
Abstract
Personal immunity frolicked an essential role in combating COVID-19 impacts on human health individually and collectively in community. Literature represented the fact about food or nutritional supplements are certified to protect against diseases; this was the reason behind public trust on certain plants and other commercial products to boost up immunity against coronavirus disease. Present study was conducted to observe the attitude of common public towards natural herbs in treating various diseases and to assess the possible potential of herbal medication in prevention of negative impacts of different variants of COVID-19 on human health at herbal clinic named "Pakistan Matab". Results concluded that most of the patients (About 80%) avoided COVID-19 testing even on experiencing major symptoms and they preferred herbal medication. Patients who died by COVID-19 were also experiencing different diseases like liver and Kideny malfunctioning; old age was another significant factor in this case. About 90% of patients were COVID symptomatic and 10% were carrying other diseases during observational study period at herbal clinic. Study represented that patients who visited clinic, have a faith on herbal medication with about 60% of patients in favor of vaccine and allopathic medication in combination with herbal treatment. Study investigated that vaccine was only for one type of variant and use of herbal medicines could be better option to boost up immunity against various COVID variants.
Collapse
Affiliation(s)
- Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Shahla Andleeb
- Department of Environmental Sciences, GC Women University Sialkot, Pakistan
| | - Aleyna Kangal
- School of Arts and Sciences, New Brunswick-Piscataway Area Campus of Rutgers University, USA
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Khalil Ur Rehman
- Department of Environmental Sciences, GC Women University Sialkot, Pakistan
| | - Rimsha Javed
- Department of Environmental Sciences, GC Women University Sialkot, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, GC Women University Sialkot, Pakistan
| | - Yasmine Hamdy Eisa
- Public Health and Preventive Medicine, Department of Community Medicine, Faculty of Medicine, October 6 University, Giza, Egypt
| |
Collapse
|
21
|
Sharma A, Uniyal SK. A Paradigm Shift is Expected in Ethnobiology: Challenges and Opportunities Post-COVID-19. NATIONAL ACADEMY SCIENCE LETTERS. NATIONAL ACADEMY OF SCIENCES, INDIA 2023; 46:43-46. [PMID: 36532847 PMCID: PMC9734414 DOI: 10.1007/s40009-022-01194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Documentation of the folk knowledge of indigenous communities forms an integral part of the subject "ethnobiology". Pursuing leads obtained through ethnobiological documentation has played a key role in maintaining human health and wellbeing. The current pandemic that we are passing through is expected to strengthen the subject with many challenges and opportunities. In this paper, we highlight the avenues and the role of the subject in the times to come. We strongly believe a paradigm shift in ethnobiology is lurking around the corner.
Collapse
Affiliation(s)
- Alpy Sharma
- Environmental Technology Division, CSIR-Institute of the Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh India
| | - Sanjay Kr. Uniyal
- Environmental Technology Division, CSIR-Institute of the Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh India
| |
Collapse
|
22
|
Sruthi D, Dhanalakshmi M, Rao HCY, Parthasarathy R, Deepanraj SP, Jayabaskaran C. Curative Potential of High-Value Phytochemicals on COVID-19 Infection. BIOCHEMISTRY (MOSCOW) 2023; 88:64-72. [PMID: 37068882 PMCID: PMC9937517 DOI: 10.1134/s0006297923010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Medicinal plants and their therapeutically promising chemical compounds belonging to the valued category of 'traditional medicine' are potential remedies for various health problems. Due to their complex structure and enormous health benefits, the high-value plant-derived metabolites collectively termed as 'phytochemicals' have emerged as a crucial source for novel drug discovery and development. Indeed, several medicinal plants from diverse habitats are still in the 'underexplored' category in terms of their bioactive principles and therapeutic potential. COVID-19, infection caused by the SARS-CoV-2, first reported in November 2019, resulted in the alarming number of deaths (6.61 million), was further declared 'pandemic', and spread of the disease has continued till today. Even though the well-established scientific world has successfully implemented vaccines against COVID-19 within the short period of time, the focus on alternative remedies for long-term symptom management and immunity boosting have been increased. At this point, interventions based on traditional medicine, which include medicinal plants, their bioactive metabolites, extracts and formulations, attracted a lot of attention as alternative solutions for COVID-19 management. Here, we reviewed the recent research findings related to the effectiveness of phytochemicals in treatment or prevention of COVID-19. Furthermore, the literature regarding the mechanisms behind the preventive or therapeutic effects of these natural phytochemicals were also discussed. In conclusion, we suggest that the active plant-derived components could be used alone or in combination as an alternative solution for the management of SARS-CoV-2 infection. Moreover, the structure of these natural productomes may lead to the emergence of new prophylactic strategies for SARS-CoV-2-caused infection.
Collapse
Affiliation(s)
- Damodaran Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Menamadathil Dhanalakshmi
- Research and Development Centre, Bharathiar University, Marudhamalai Road, Coimbatore, Tamil Nadu, 641046, India
| | | | | | - Shashikala Paranthaman Deepanraj
- Department of Biological Sciences, Tata Institute for Genetics and Society, Instem building, National Centre for Biological Sciences Campus, Bengaluru, Karnataka, 560065, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| |
Collapse
|
23
|
Rizvi ZA, Babele P, Madan U, Sadhu S, Tripathy MR, Goswami S, Mani S, Dikshit M, Awasthi A. Pharmacological potential of Withania somnifera (L.) Dunal and Tinospora cordifolia (Willd.) Miers on the experimental models of COVID-19, T cell differentiation, and neutrophil functions. Front Immunol 2023; 14:1138215. [PMID: 36960064 PMCID: PMC10028191 DOI: 10.3389/fimmu.2023.1138215] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Amit Awasthi, ; Madhu Dikshit, ; ; Zaigham Abbas Rizvi,
| | - Prabhakar Babele
- NCD, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Upasna Madan
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sandeep Goswami
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Mani
- NCD, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Madhu Dikshit
- NCD, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
- Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- *Correspondence: Amit Awasthi, ; Madhu Dikshit, ; ; Zaigham Abbas Rizvi,
| | - Amit Awasthi
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Amit Awasthi, ; Madhu Dikshit, ; ; Zaigham Abbas Rizvi,
| |
Collapse
|
24
|
Rani J, Bhargav A, Khan FI, Ramachandran S, Lai D, Bajpai U. In silico prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12118-12134. [PMID: 34486935 PMCID: PMC8425474 DOI: 10.1080/07391102.2021.1968497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a colossal loss to human health and lives and has deeply impacted socio-economic growth. Remarkable efforts have been made by the scientific community in containing the virus by successful development of vaccines and diagnostic kits. Initiatives towards drug repurposing and discovery have also been undertaken. In this study, we compiled the known natural anti-viral compounds using text mining of the literature and examined them against four major structural proteins of SARS-CoV-2, namely, spike (S) protein, nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein. Following computational approaches, we identified fangchinoline and versicolactone C as the compounds to exhibit strong binding to the target proteins and causing structural deformation of three structural proteins (N, S and M). We recommend the inhibitory effects of these compounds from our study should be experimentally validated against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Anasuya Bhargav
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Srinivasan Ramachandran
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Srinivasan Ramchandran ;
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China,Dakun Lai
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,CONTACT Urmi Bajpai ;
| |
Collapse
|
25
|
Lancemaside A from Codonopsis lanceolata: Studies on Antiviral Activity and Mechanism of Action against SARS-CoV-2 and Its Variants of Concern. Antimicrob Agents Chemother 2022; 66:e0120122. [PMID: 36374087 PMCID: PMC9765103 DOI: 10.1128/aac.01201-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 μM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 μM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.
Collapse
|
26
|
The Potential of Stilbene Compounds to Inhibit M pro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Curr Issues Mol Biol 2022; 45:12-32. [PMID: 36661488 PMCID: PMC9857500 DOI: 10.3390/cimb45010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.
Collapse
|
27
|
Guerra Y, Celi D, Cueva P, Perez-Castillo Y, Giampieri F, Alvarez-Suarez JM, Tejera E. Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules. ACS OMEGA 2022; 7:44542-44555. [PMID: 36530229 PMCID: PMC9753184 DOI: 10.1021/acsomega.2c05766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules.
Collapse
Affiliation(s)
- Yasel Guerra
- Ingeniería
en Biotecnología, Facultad de Ingeniería y Ciencias
Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, Quito 170125, Ecuador
| | - Diana Celi
- Facultad
de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Paul Cueva
- Facultad
de Posgrado, Universidad de Las Américas, Quito 170125, Ecuador
| | - Yunierkis Perez-Castillo
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, Quito 170125, Ecuador
- Área
de Ciencias Aplicadas, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Francesca Giampieri
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Research
Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - José Miguel Alvarez-Suarez
- Departamento
de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170157, Ecuador
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Eduardo Tejera
- Ingeniería
en Biotecnología, Facultad de Ingeniería y Ciencias
Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, Quito 170125, Ecuador
| |
Collapse
|
28
|
Nasir Ahmed M, Hughes K. Role of ethno-phytomedicine knowledge in healthcare of COVID-19: advances in traditional phytomedicine perspective. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:96. [PMID: 35966214 PMCID: PMC9362587 DOI: 10.1186/s43088-022-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background Since the outbreak of the COVID-19 virus, ethnomedicinal plants have been used in diverse geographical locations for their purported prophylactic and pharmacological effects. Medicinal plants have been relied on by people around the globe for centuries, as 80% of the world’s population rely on herbal medicines for some aspect of their primary health care needs, according to the World Health Organization.
Main body This review portrays advances in traditional phytomedicine by bridging the knowledge of ethno-phytomedicine and COVID-19 healthcare. Ethnomedicinal plants have been used for symptoms related to COVID-19 as antiviral, anti-infective, anti-inflammatory, anti-oxidant, antipyretic, and lung–gut immune boosters. Traditionally used medicinal plants have the ability to inhibit virus entry and viral assembly, bind to spike proteins, membrane proteins, and block viral replications and enzymes. The efficacy of traditional medicinal plants in the terms of COVID-19 management can be evaluated by in vitro, in vivo as well as different in silico techniques (molecular docking, molecular dynamics simulations, machine learning, etc.) which have been applied extensively to the quest and design of effective biotherapeutics rapidly. Other advances in traditional phytomedicines against COVID-19 are controlled clinical trials, and notably the roles in the gut microbiome. Targeting the gut microbiome via medicinal plants as prebiotics is also found to be an alternative and potential strategy in the search for a COVID-19 combat strategy. Conclusions Since medicinal plants are the sources of modern biotherapeutics development, it is essential to build collaborations among ethnobotanists, scientists, and technologists toward developing the most efficient and the safest adjuvant therapeutics against the pandemic of the twenty-first century, COVID-19.
Collapse
|
29
|
Mathai RV, Jindal MK, Mitra JC, Sar SK. COVID-19 and medicinal plants: A critical perspective. FORENSIC SCIENCE INTERNATIONAL: ANIMALS AND ENVIRONMENTS 2022; 2:100043. [PMID: 35187518 PMCID: PMC8837494 DOI: 10.1016/j.fsiae.2022.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 12/03/2022]
Abstract
On a global scale, the Coronavirus pandemic (COVID-19) is having a direct and indirect effect on human lives, socioeconomic conditions, and the natural environment. The measures are taken to prevent the spread of coronavirus and slowdown of economic activities could have major short and long term effects on the natural ecosystem and climate in the coming days. Based on the current scientific studies, the present perspective intends to examine the possible direct and indirect impacts of the COVID-19 pandemic on the ecosystem particularly on medicinal plants. The natural compounds obtained from medicinal plants and herbal formulations provide rich sources of novel effective measures to control viral infections. The unpredictable COVID situation has affected the environment based on several aspects which may play a key role in impact on plants. The positive perspectives of the world pandemic are a significant improvement in quality of air, reduced carbon emission, increased water purity and reduction in other types of pollution. But at the same time, the negative consequences are much more, which mainly includes increased consumption of preventive medical equipment and medical wastes due to treatment and human immortality, which is continuously endangering the medicinal plants. These wastes may affect the natural cycling process and the natural habitat of the medicinal plants which are a promising solution for the prevention of viral diseases in the years to come. Hence, this perspective will be beneficial for the possible research studies and proper implementation of the strategies that might be support the global climate sustainability.
Collapse
Affiliation(s)
- Reena V Mathai
- Department of Chemistry, Dr. C. V. Raman University, Chhattisgarh 495113, India
| | | | | | - Santosh Kumar Sar
- Department of Applied Chemistry, Bhilai Institute of Technology, Durg, India
| |
Collapse
|
30
|
The Effect of Pomegranate Juice and Sumac Consumption in the Treatment of Outpatients with COVID-19. Mediators Inflamm 2022; 2022:6850342. [PMID: 36505757 PMCID: PMC9729036 DOI: 10.1155/2022/6850342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction COVID-19, an epidemic of coronavirus infection, has become a major global threat. The coronavirus mainly targets the human respiratory system, followed by cytokine storm, and altered immune responses associated with disease progression and adverse outcomes. Sumac and pomegranate juice are rich in bioactive compounds, which potentially have antiviral activities. This study is aimed at investigating the effect of a diet based on the use of sumac and pomegranate juice on the treatment of outpatients with COVID-19. Methods In this study, 182 outpatients with COVID-19 were randomly divided into two groups receiving a diet containing pomegranate juice and sumac along with standard treatment and the control group (group 2) receiving standard treatment. Results Consumption of a diet containing pomegranate juice and sumac in outpatients with COVID-19, who were receiving standard-of-care treatment, led to a significant decrease in fever, chills, cough, weakness, smell and taste disorders, shortness of breath, diarrhea, nausea and vomiting, and abdominal pain compared with outpatients with COVID-19 who received only standard treatment. Conclusion Clinical trials of outpatients have limitations such as patients' resilience to post-COVID-19 follow-up. However, the use of pomegranate juice and sumac can be efficacious in reducing COVID-19 symptoms. This trial is registered with IRCT20190406043175N3.
Collapse
|
31
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
32
|
Khowa T, Cimi A, Mukasi T. Socio-economic impact of COVID-19 on rural livelihoods in Mbashe Municipality. JAMBA (POTCHEFSTROOM, SOUTH AFRICA) 2022; 14:1361. [PMID: 36341278 PMCID: PMC9634653 DOI: 10.4102/jamba.v14i1.1361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022]
Abstract
The study sought to examine the impact of coronavirus disease 2019 on the socioeconomic livelihoods of rural communities by focusing on the Good Hope community under Mbashe Municipality. A qualitative research methodology was employed through in-depth interviews and focus group discussions. The study sought to examine the impact and survival strategies employed by the Good Hope community with the outbreak of the coronavirus, which has widely affected the world since 2019. The study further aimed to examine the role of the South African government in assisting rural communities since the outbreak of the coronavirus. Contribution The study's findings highlight the lack of proper intervention strategies employed by the government in assisting rural communities. Communities including Good Hope have been hard hit by the pandemic and continue to suffer under the implemented lockdown regulations imposed by all governments globally.
Collapse
Affiliation(s)
- Thandeka Khowa
- Department of Sociology, Faculty of Social Science, North-West University, Mafikeng, South Africa
| | - Anelisiwe Cimi
- Department of Human Settlements, Faculty of Social Sciences, University of Fort Hare, Alice, South Africa
| | - Tafadzwa Mukasi
- Department of Development Studies, Faculty of Management and Commerce, University of Fort Hare, Alice, South Africa
| |
Collapse
|
33
|
Simbala HEI, Nurkolis F, Mayulu N, Rotty LWA. Metabolites of Pinang Yaki (Areca vestiaria) Fruit Extract: A Metabolite Profiling Study. F1000Res 2022; 10:1021. [PMID: 38107666 PMCID: PMC10724647 DOI: 10.12688/f1000research.73758.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/19/2023] Open
Abstract
Background: Pinang yaki has bioactive compounds that have potential as a new herbal supplement. A better understanding of the bioactive compounds of pinang yaki using untargeted metabolomic profiling studies will provide clearer insight into the health benefits of pinang yaki and in particular its potential for the therapy and prevention of Covid-19. Methods: Fresh samples of pinang yaki ( Areca vestiaria) are obtained from forests in North Sulawesi Province, Indonesia. Samples were used for untargeted metabolomics analysis by UPLC-MS. Results: Based on an untargeted metabolomic profiling study of pinang yaki, 2504 compounds in ESI- and 2645 compounds in ESI+ were successfully obtained. After the analysis, 356 compounds in ESI- and 543 compounds in ESI+ were identified successfully. Major compounds Alpha-Chlorohydrin (PubChem ID: 7290) and Tagatose (PubChem ID: 439312) were found in ESI+ and ESI-. Discussion: The Top 10 metabolites from pinang yaki extract (ESI+) juga have been indicated in preventing SARS Cov2 infection and have exhibited good neuroprotective immunity. Benzothiazole (PubChem ID: 7222), L-isoleucine (PubChem ID: 6306), D-glucono-delta-lactone (PubChem ID: 736), Diethylpyrocarbonate (PubChem ID: 3051), Bis(2-Ethylhexyl) amine (PubChem ID: 7791), Cinnamic acid (PubChem ID: 444539), and Trigonelline (PubChem ID: 5570) also had potential effects as an antiviral, anti-inflammatory, and anti-Covid19. Conclusion: Untargeted metabolomic profiling showed many bioactive compounds contained in pinang yaki ( Areca vestiaria) extract. The top 10 compounds have been identified and explored for their potential benefits as anti-Covid19 supplement products. This is a preliminary study which still needs further research such as preclinical and clinical trials.
Collapse
Affiliation(s)
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, Yogyakarta, 55281, Indonesia
| | - Nelly Mayulu
- Food and Nutrition, Sam Ratulangi University, Manado, North Sulawesi, 95115, Indonesia
| | | |
Collapse
|
34
|
Kim TY, Kim JY, Kwon HC, Jeon S, Lee SJ, Jung H, Kim S, Jang DS, Lee CJ. Astersaponin I from Aster koraiensis is a natural viral fusion blocker that inhibits the infection of SARS-CoV-2 variants and syncytium formation. Antiviral Res 2022; 208:105428. [PMID: 36252824 PMCID: PMC9568284 DOI: 10.1016/j.antiviral.2022.105428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
The continuous emergence of SARS-CoV-2 variants prolongs COVID-19 pandemic. Although SARS-CoV-2 vaccines and therapeutics are currently available, there is still a need for development of safe and effective drugs against SARS-CoV-2 and also for preparedness for the next pandemic. Here, we discover that astersaponin I (AI), a triterpenoid saponin in Aster koraiensis inhibits SARS-CoV-2 entry pathways at the plasma membrane and within the endosomal compartments mainly by increasing cholesterol content in the plasma membrane and interfering with the fusion of SARS-CoV-2 envelope with the host cell membrane. Moreover, we find that this functional property of AI as a fusion blocker enables it to inhibit the infection with SARS-CoV-2 variants including the Alpha, Beta, Delta, and Omicron with a similar efficacy, and the formation of syncytium, a multinucleated cells driven by SARS-CoV-2 spike protein-mediated cell-to-cell fusion. Finally, we claim that the triterpene backbone as well as the attached hydrophilic sugar moieties of AI are structurally important for its inhibitory activity against the membrane fusion event. Overall, this study demonstrates that AI is a natural viral fusion inhibitor and proposes that it can be a broad-spectrum antiviral agent against current COVID-19 pandemic and future outbreaks of novel viral pathogens.
Collapse
Affiliation(s)
- Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Sol Ji Lee
- IBS Virus Facility, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Haejin Jung
- Flow Cytometry Core Facility, Research Solution Center, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
| |
Collapse
|
35
|
Altı Tıbbi Bitkinin Sitotoksik Etkileri ve SARS-CoV-2'ye Karşı Antiviral Etkinliğinin Araştırılması. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1165597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Today, the COVID-19 pandemic, which causes deaths in 224 countries around the world, continues to show its effect all over the world. However, unfortunately, there are few studies that determine the effect of natural products derived from plants on COVID-19. However, as it is known, the source of most drugs is plants and medicinal aromatic plants have been used frequently for therapeutic purposes since the existence of humanity. The aim of this study is to investigate the cytotoxic effects of six medicinal plants such as Licorice (Glycyrrhiza glabra), Saffron (Crocus sativus L.), Black Cumin (Nigella sativa L.), Laurel (Lauris nobilis), Buckwheat (Lavandula stoechas) and Zahter (Thymbra spicata L. var. spicata) and their antiviral activities against SARS-CoV-2 in vitro conditions.
Material and Method: This study was carried out in two stages. In the first stage, plants were collected and extracts were obtained. At the beginning of the second stage, cytotoxic effects on vero cells at non-cytotoxic broad-spectrum concentrations against SARS-CoV-2 in cell culture of six medicinal plants were investigated. In this step, the concentration of six ethnobotanically important medicinal plants that were not cytotoxic to SARS-CoV-2 was determined. In the continuation of the second stage, the plants were evaluated for the determination of viral replication inhibition and their antiviral effectiveness against SARS-CoV-2. In this step, in vitro antiviral effects of plants against SARS-CoV-2 were determined at a concentration that did not show cytotoxic effects..
Results: The concentration of six plants used in the study without cytotoxic effects was determined.. Among the plants examined, it was determined that the only plant that was effective against SARS-CoV-2 in vitro conditions was the licorice plant (Glycyrrhiza glabra). The licorice plant was found to inhibit SARS-CoV-2 in vitro at the 2nd dilution (1:4) after the initial concentration.
Conclusion: According to the findings obtained from our study, it was determined that the licorice plant was effective against the SARS-CoV-2 in vitro conditions. Supported by further studies, it can be thought that our findings may contribute to the fight against the COVID-19 pandemic.
Keywords: SARS-CoV-2, Antiviral Efficacy, Plant Extract, Licorice (Glycyrrhiza glabra), Saffron (Crocus sativus L.), Black Cumin (Nigella sativa L.), Laurel (Lauris nobilis), Buckwheat (Lavandula stoechas), Zahter (Thymbra spicata L. var. spicata).
Collapse
|
36
|
Hesperetin from Root Extract of Clerodendrum petasites S. Moore Inhibits SARS-CoV-2 Spike Protein S1 Subunit-Induced NLRP3 Inflammasome in A549 Lung Cells via Modulation of the Akt/MAPK/AP-1 Pathway. Int J Mol Sci 2022; 23:ijms231810346. [PMID: 36142258 PMCID: PMC9498987 DOI: 10.3390/ijms231810346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1β, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1β, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.
Collapse
|
37
|
Rathod NB, Elabed N, Özogul F, Regenstein JM, Galanakis CM, Aljaloud SO, Ibrahim SA. The Impact of COVID-19 Pandemic on Seafood Safety and Human Health. Front Microbiol 2022; 13:875164. [PMID: 35814679 PMCID: PMC9257084 DOI: 10.3389/fmicb.2022.875164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused several negative impacts on global human health and the world's economy. Food and seafood safety and security were among the principal challenges and causes of concern for the food industry and consumers during the spread of this global pandemic. This article focused on the effects of COVID-19 pandemic on potential safety issues with seafood products and their processing methods. Moreover, the potential impacts of coronavirus transmission through seafood on human health were evaluated. The role of authenticity, traceability, and antimicrobials from natural sources to preserve seafood and the possible interaction of functional foods on the human immune system are also discussed. Although seafood is not considered a principal vector of SARS-CoV-2 transmission, the possible infections through contaminated surfaces of such food products cannot be neglected. The positive effects of seafood consumption on possible immunity built up, and COVID-19 are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Charis M. Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Sulaiman Omar Aljaloud
- College of Sports Science and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, 171 Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, United States
| |
Collapse
|
38
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Zaman N, Parvaiz N, Farid R, Navid A, Abbas G, Azam SS. Senna makki and other active phytochemicals: Myths and realities behind covid19 therapeutic interventions. PLoS One 2022; 17:e0268454. [PMID: 35700199 PMCID: PMC9197063 DOI: 10.1371/journal.pone.0268454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/30/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to investigate the binding potential of chemical compounds of Senna in comparison with the experimentally tested active phytochemicals against SARS-CoV-2 protein targets to assist in prevention of infection by exploring multiple treatment options. The entire set of phytochemicals from both the groups were subjected to advanced computational analysis that explored functional molecular descriptors from a set of known medicinal-based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target proteins. Our findings manifest the importance of hydrophobic substituents in chemical structures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro drugs. Noteworthy improvement in end-point binding free energies and pharmacokinetic profiles of the proposed compounds was perceived in comparison to the control drug, vizimpro. Moreover, the identification of common drug targets namely; AKT1, PTGS1, TNF, and DPP4 between proposed active phytochemicals and Covid19 using network pharmacological analysis further substantiate the importance of medicinal scaffolds. The structural dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin, and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free assays are consistent with the computational analysis. Whereas, the secondary metabolites such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In conclusion, the results contravene fallacious efficacy claims of Senna tea interventions circulating on electronic/social media as Covid19 cure; thus emphasizing the importance of well-examined standardized data of the natural products in hand; thereby preventing unnecessary deaths under pandemic hit situations worldwide.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabia Farid
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Afifa Navid
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Abbas
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail: ,
| |
Collapse
|
40
|
Rahman MH, Roy B, Chowdhury GM, Hasan A, Saimun MSR. Medicinal plant sources and traditional healthcare practices of forest-dependent communities in and around Chunati Wildlife Sanctuary in southeastern Bangladesh. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2022; 5:207-241. [PMID: 37521586 PMCID: PMC9170557 DOI: 10.1007/s42398-022-00230-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Bangladesh's forest-dependent people rely on medicinal plants for traditional healthcare practices, as plant-based medicines are easily available and cost-effective. This study evaluated and documented ethnomedicinal practices for, and traditional knowledge of, utilising plants to cure ailments. Ethnobotanical indices quantified the use value (UV), frequency of citation, relative frequency of citation (RFC) and the informant consensus factor. Using a semi-structured questionnaire, the study interviewed 231 respondents from 18 villages in and around Chunati Wildlife Sanctuary (CWS). The study documented 134 medicinal plant species from 60 families; tree species were dominant (37.31%). Malvaceae (seven species), Rutaceae and Lamiaceae (six species each) families covered more species. Nearly half of the species (46.02%) were collected from CWS. Both above-ground and below-ground plant parts treated 71 types of ailments under 21 categories, with leaves (66 species) being the most widely used plant part. In total 33 species were used to treat dysentery, 25 species each for fever and jaundice, and 24 species for cuts and wounds. The average UV value was 0.24 and RFC value was 0.47%. Communities were found to utilise medicinal plants more at home than to sell at markets, substantially relying on medicinal plants to meet their domestic needs. Plants used for healthcare and cultural and religious beliefs have a strong connection that plays a vital role in plant conservation. This study identified 42 medicinal plant species that could be considered to treat COVID-19 patients in Bangladesh. The findings suggest that community awareness of sustainable harvesting and commercial cultivation could lead to conservation and use of these invaluable plant species for healthcare, new drugs discovery and sustainable forest management. Supplementary Information The online version contains supplementary material available at 10.1007/s42398-022-00230-z.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Laboratory of Tropical Forest Resources and Environments, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
- Bangladesh Institute of Social Research (BISR) Trust, House no. 6/14, Block no. A, Lalmatia, Dhaka, 1207 Bangladesh
| | - Bishwajit Roy
- Bangladesh Institute of Social Research (BISR) Trust, House no. 6/14, Block no. A, Lalmatia, Dhaka, 1207 Bangladesh
- Centre for Ecology, Evolution and Environmental Changes, Faculty of Science, University of Lisbon, Lisbon, 1749-016 Portugal
| | | | - Akib Hasan
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard de l’Université, Rouyn-Noranda, QC J9X 5E4 Canada
| | - Md. Shamim Reza Saimun
- Bangladesh Space Research and Remote Sensing Organization (SPARRSO), Dhaka, 1207 Bangladesh
| |
Collapse
|
41
|
Tsai PW, Hsieh CY, Ting JU, Ciou YR, Lee CJ, Hsieh CL, Lien TK, Hsueh CC, Chen BY. Synergistic deciphering of bioenergy production and electron transport characteristics to screen traditional Chinese medicine (TCM) for COVID-19 drug development. J Taiwan Inst Chem Eng 2022; 135:104365. [PMID: 35578714 PMCID: PMC9095373 DOI: 10.1016/j.jtice.2022.104365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022]
Abstract
Background Traditional Chinese medicine (TCM) has been used as an "immune booster” for disease prevention and clinical treatment since ancient China. However, many studies were focused on the organic herbal extract rather than aqueous herbal extract (AHE; decoction). Due to the COVID-19 pandemics, this study tended to decipher phytochemical contents in the decoction of herbs and derived bioactivities (e.g., anti-oxidant and anti-inflammatory properties). As prior works revealed, the efficacy of Parkinson's medicines and antiviral flavonoid herbs was strongly governed by their bioenergy-stimulating proficiency. Methods Herbal extracts were prepared by using a traditional Chinese decoction pot. After filtration and evaporation, crude extracts were used to prepare sample solutions for various bioassays. The phytochemical content and bioactivities of AHEs were determined via ELISA microplate reader. Microbial fuel cells (MFCs) were used as a novel platform to evaluate bioenergy contents with electron-transfer characteristics for antiviral drug development. Significant findings Regarding 18 TCM herbal extracts for the prevention of SARS and H1N1 influenza, comparison on total polyphenol, flavonoid, condensed tannins and polysaccharides were conducted. Moreover, considerable total flavonoid contents were detected for 11 herb extracts. These AEHs were not only rich in phytonutrient contents but also plentiful in anti-oxidant and anti-inflammatory activities. Herbs with high polyphenol content had higher antioxidant activity. Forsythia suspensa extract expressed the highest inhibition against nitric oxide production for anti-inflammation. MFC bioenergy-stimulating studies also revealed that top ranking COVID-19 efficacious herbs were both bioenergy driven and electron mediated. That is, electron transfer-controlled bioenergy extraction was significant to antiviral characteristics for anti-COVID-19 drug development.
Collapse
Affiliation(s)
- Po-Wei Tsai
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Cheng-Yang Hsieh
- PhD. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jasmine U Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, Philippines
| | - Yi-Ru Ciou
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chia-Jung Lee
- PhD. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chieh-Lun Hsieh
- PhD. Educational Management Major in P.E., Graduate School, Emilio Aguinaldo College, Metro Manila, Manila 1007, Philippines
| | - Tzu-Kuan Lien
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| |
Collapse
|
42
|
Liu Y, Yan H, Jia HB, Pan L, Liu JZ, Zhang YW, Wang J, Qin DG, Ma L, Wang T. Jiedu Huoxue Decoction for Cytokine Storm and Thrombosis in Severe COVID-19: A Combined Bioinformatics and Computational Chemistry Approach. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Jiedu Huoxue Decoction (JHD), a recommended traditional prescription for patients with severe COVID-19, has appeared in the treatment protocols in China. Based on bioinformatics and computational chemistry methods, including molecular docking, molecular dynamics (MD) simulation, and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) calculation, we aimed to reveal the mechanism of JHD in treating severe COVID-19. The compounds in JHD were obtained and screened on TCMSP, SwissADME, and ADMETLab platforms. The compound targets were obtained from TCMSP and STITCH, while COVID-19 targets were obtained from Genecards and NCBI. The protein-protein interaction network was constructed by using STRING. Gene Ontology (GO) and KEGG enrichment were performed with ClueGO and R language. AutoDock vina was employed for molecular docking. 100 ns MD simulation of the optimal docking complex was carried out with AmberTools 20. A total of 84 compounds and 29 potential targets of JHD for COVID-19 were collected. The key phytochemicals included quercetin, luteolin, β-sitosterol, puerarin, stigmasterol, kaempferol, and wogonin, which could regulate the immune system. The hub genes included IL6, IL10, VEGFA, IL1B, CCL2, HMOX1, DPP4, and ACE2. ACE2 and DPP4 were related to SARS-CoV-2 entering cells. GO and KEGG analysis showed that JHD could intervene in cytokine storm and endothelial proliferation and migration related to thrombosis. The molecular docking, 100 ns MD simulation, and MM/GBSA calculation confirmed that targets enriched in the COVID-19 pathway had high affinities with related compounds, and the conformations of the puerarin-ACE2, quercetin-EGFR, luteolin-EGFR, and quercetin-IL1B complexes were stable. In a word, JHD could treat COVID-19 by intervening in cytokine storm, thrombosis, and the entry of SARS-CoV-2, while regulating the immune system. These mechanisms were consistent with JHD's therapeutic concept of “detoxification” and “promoting blood circulation and removing blood stasis” in treating COVID-19. The research provides a theoretical basis for the development and application of JHD.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Han Yan
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Hui-bin Jia
- Department of Blood Transfusion, Liaocheng People’s Hospital, Liaocheng, China
| | - Li Pan
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Jia-zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau, China
| | - Ya-wen Zhang
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Jing Wang
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Dao-gang Qin
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Lei Ma
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Ting Wang
- Shandong Provincial Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
43
|
Fatima SW, Alam S, Khare SK. Molecular and structural insights of β-boswellic acid and glycyrrhizic acid as potent SARS-CoV-2 Envelope protein inhibitors. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100241. [PMID: 35403092 PMCID: PMC8840829 DOI: 10.1016/j.phyplu.2022.100241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
BACKGROUND Over million people have been infected with SARS-CoV-2 virus worldwide, with around 3% reported deaths till date. A few conventional antiviral treatments have been tried to mitigate the coronavirus. However, many alternative therapeutics are being evaluated worldwide. In the present study, we investigated traditional Indian medicinal compounds antiviral potencies as an effective drug for targeting SARS-CoV-2E. SARS-CoV-2 E protein plays a key role in coronavirus life cycle and is an interesting target for the development of anti-SARS-CoV-2 E drugs. METHODS Molecular docking studies of medicinal compounds possessing wide range of pharmacological and antiviral activities against enveloped viruses were evaluated with the computer-aided drug design screening software; PyRx. Twelve medicinal compounds isolated from plants were screened and visualized on Biovia Discovery-Studio. Moreover, SARS-CoV-2 E protein's secondary structural insights were deciphered using Swiss Model and ProFunc web server. RESULTS Glycyrrhizic acid, triterpene glycoside isolated from plants of Glycyrrhiza (licorice) showed interactions with envelope protein at chain A: Arg 61, chain B: Phe 23, chain B: Tyr 57, and chain C: Val 25. β- boswellic acid, an ayurvedic herb (pentacyclic terpenoid are produced by Boswellia) represented direct interactions and indirect binding with chain C. Their pharmacological aspects and drug-likeness properties were deduced by DruLiTo. Toxicological assessment, along with their ADME profiling, was validated using vNNADMET. The findings showed that ligands, β-boswellic acid, and glycyrrhizic acid possessed the best bindings, with the target having binding affinity (-9.1 kcal/mol) amongst compounds tested against SARS-CoV-2 E. In-vitro studies reveals the promising effect as potent SARS-CoV-2 E inhibitors. Functionality loss and structural disruptions with ∼90% were observed by UV-spectra and fluorescent based analyses. CONCLUSION The study demonstrated that β-boswellic acid, and glycyrrhizic acid are strong SARS-CoV-2 E protein inhibitors. In addition, the work linked GA antiviral activity to its effect on SARS-CoV- 2 E protein that can pave the way for designing antiviral therapeutics.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory,Department of Chemistry,Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shahenvaz Alam
- Enzyme and Microbial Biochemistry Laboratory,Department of Chemistry,Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory,Department of Chemistry,Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
44
|
Rudrapal M, Celik I, Chinnam S, Azam Ansari M, Khan J, Alghamdi S, Almehmadi M, Zothantluanga JH, Khairnar SJ. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J Biol Sci 2022; 29:3456-3465. [PMID: 35233172 PMCID: PMC8873046 DOI: 10.1016/j.sjbs.2022.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4'-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru 560054, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Um Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Nasik 422003, Maharashtra, India
| |
Collapse
|
45
|
Raj V, Lee JH, Shim JJ, Lee J. Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS-CoV-2 using computational and in vitro approaches. J Mol Liq 2022; 353:118775. [PMID: 35194277 PMCID: PMC8849861 DOI: 10.1016/j.molliq.2022.118775] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022]
Abstract
The widespread outbreak of the novel coronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the main health challenge worldwide. This pandemic has attracted the attention of the research communities in various fields, prompting efforts to discover rapid drug molecules for the treatment of the life-threatening COVID-19 disease. This study is aimed at investigating 4H-chromen-4-one scaffold-containing flavonoids that combat the SARS-CoV-2 virus using computational and in vitro approaches. Virtual screening studies of the molecule's library for 4H-chromen-4-one scaffold were performed with the recently reported coronavirus main protease (Mpro, also called 3CLpro) because it plays an essential role in the maturation and processing of the viral polyprotein. Based on the virtual screening, the top hit molecules such as isoginkgetin and afzelin molecules were selected for further estimating in vitro antiviral efficacies against SARS-CoV-2 in Vero cells. Additionally, these molecules were also docked with RNA-dependent RNA Polymerase (RdRp) to reveal the ligands-protein molecular interaction. In the in vitro study, isoginkgetin showed remarkable inhibition potency against the SARS-CoV-2 virus, with an IC50 value of 22.81 μM, compared to remdesivir, chloroquine, and lopinavir with IC50 values of 7.18, 11.63, and 11.49 μM, respectively. Furthermore, the complex stability of isoginkgetin with an active binding pocket of the SARS-CoV-2 Mpro and RdRp supports its inhibitory potency against the SARS-CoV-2. Thus, isoginkgetin is a potent leading drug candidate and needs to be used in in vivo trials for the treatment of SARS-CoV-2 infected patients.
Collapse
|
46
|
Calleja DJ, Lessene G, Komander D. Inhibitors of SARS-CoV-2 PLpro. Front Chem 2022; 10:876212. [PMID: 35559224 PMCID: PMC9086436 DOI: 10.3389/fchem.2022.876212] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of SARS-CoV-2 causing the COVID-19 pandemic, has highlighted how a combination of urgency, collaboration and building on existing research can enable rapid vaccine development to fight disease outbreaks. However, even countries with high vaccination rates still see surges in case numbers and high numbers of hospitalized patients. The development of antiviral treatments hence remains a top priority in preventing hospitalization and death of COVID-19 patients, and eventually bringing an end to the SARS-CoV-2 pandemic. The SARS-CoV-2 proteome contains several essential enzymatic activities embedded within its non-structural proteins (nsps). We here focus on nsp3, that harbours an essential papain-like protease (PLpro) domain responsible for cleaving the viral polyprotein as part of viral processing. Moreover, nsp3/PLpro also cleaves ubiquitin and ISG15 modifications within the host cell, derailing innate immune responses. Small molecule inhibition of the PLpro protease domain significantly reduces viral loads in SARS-CoV-2 infection models, suggesting that PLpro is an excellent drug target for next generation antivirals. In this review we discuss the conserved structure and function of PLpro and the ongoing efforts to design small molecule PLpro inhibitors that exploit this knowledge. We first discuss the many drug repurposing attempts, concluding that it is unlikely that PLpro-targeting drugs already exist. We next discuss the wealth of structural information on SARS-CoV-2 PLpro inhibition, for which there are now ∼30 distinct crystal structures with small molecule inhibitors bound in a surprising number of distinct crystallographic settings. We focus on optimisation of an existing compound class, based on SARS-CoV PLpro inhibitor GRL-0617, and recapitulate how new GRL-0617 derivatives exploit different features of PLpro, to overcome some compound liabilities.
Collapse
Affiliation(s)
- Dale J. Calleja
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Mohamed FF, Anhlan D, Schöfbänker M, Schreiber A, Classen N, Hensel A, Hempel G, Scholz W, Kühn J, Hrincius ER, Ludwig S. Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral Activity against SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:530. [PMID: 35631357 PMCID: PMC9146521 DOI: 10.3390/ph15050530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
For almost two years, the COVID-19 pandemic has constituted a major challenge to human health, particularly due to the lack of efficient antivirals to be used against the virus during routine treatment interventions. Multiple treatment options have been investigated for their potential inhibitory effect on SARS-CoV-2. Natural products, such as plant extracts, may be a promising option, as they have shown an antiviral activity against other viruses in the past. Here, a quantified extract of Hypericum perforatum was tested and found to possess a potent antiviral activity against SARS-CoV-2. The antiviral potency of the extract could be attributed to the naphtodianthrones hypericin and pseudohypericin, in contrast to other tested ingredients of the plant material, which did not show any antiviral activity. Hypericum perforatum and its main active ingredient hypericin were also effective against different SARS-CoV-2 variants (Alpha, Beta, Delta, and Omicron). Concerning its mechanism of action, evidence was obtained that Hypericum perforatum and hypericin may hold a direct virus-blocking effect against SARS-CoV-2 virus particles. Taken together, the presented data clearly emphasize the promising antiviral activity of Hypericum perforatum and its active ingredients against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Fakry F. Mohamed
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, 48149 Muenster, Germany; (F.F.M.); (D.A.); (M.S.); (A.S.); (E.R.H.)
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt
| | - Darisuren Anhlan
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, 48149 Muenster, Germany; (F.F.M.); (D.A.); (M.S.); (A.S.); (E.R.H.)
| | - Michael Schöfbänker
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, 48149 Muenster, Germany; (F.F.M.); (D.A.); (M.S.); (A.S.); (E.R.H.)
| | - André Schreiber
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, 48149 Muenster, Germany; (F.F.M.); (D.A.); (M.S.); (A.S.); (E.R.H.)
| | - Nica Classen
- Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, 48149 Muenster, Germany; (N.C.); (A.H.)
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, 48149 Muenster, Germany; (N.C.); (A.H.)
| | - Georg Hempel
- Division of Clinical Pharmacy, Institute of Pharmaceutical and Medical Chemistry, University of Muenster, 48149 Muenster, Germany;
| | | | - Joachim Kühn
- Division of Clinical Virology, Institute of Virology, University Hospital Muenster, 48151 Muenster, Germany;
| | - Eike R. Hrincius
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, 48149 Muenster, Germany; (F.F.M.); (D.A.); (M.S.); (A.S.); (E.R.H.)
| | - Stephan Ludwig
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, 48149 Muenster, Germany; (F.F.M.); (D.A.); (M.S.); (A.S.); (E.R.H.)
| |
Collapse
|
48
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
49
|
Farzana M, Shahriar S, Jeba FR, Tabassum T, Araf Y, Ullah MA, Tasnim J, Chakraborty A, Naima TA, Marma KKS, Rahaman TI, Hosen MJ. Functional food: complementary to fight against COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:33. [PMID: 35284580 PMCID: PMC8899455 DOI: 10.1186/s43088-022-00217-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Background The novel coronavirus has embarked on a global pandemic and severe mortality with limited access for its treatments and medications. For the lack of time, research, and enough efficacy, most vaccines are underdeveloped or unreachable to society. However, many recent studies suggest various alternative, complementary remedies for COVID-19, which are functional foods. This review provides an overview of how functional foods can play a great role through modulating the host immune system, generating antiviral activities, and synthesizing biologically active agents effective against the coronavirus. Main body This review article summarizes the natural defense mechanisms in tackling SARS-CoV-2 alongside conventional therapeutic options and their corresponding harmful side effects. By analyzing bioactive components of functional foods, we have outlined its different contributions to human health and its potential immunomodulatory and antiviral properties that can enhance resistivity to viral infection. Moreover, we have provided a myriad of accessible and cost-effective functional foods that could be further investigated to target specific key symptoms of COVID-19 infections. Finally, we have found various functional foods with potent bioactive compounds that can inhibit or prevent COVID-19 infections and disease progression. Short conclusion Numerous functional foods can help the body fight COVID-19 through several mechanisms such as the reduced release of pro-inflammatory cytokines, reduced expression of ACE2 receptors in cells, and inhibiting essential enzymes in SARS-CoV-2.
Collapse
Affiliation(s)
- Maisha Farzana
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Sagarika Shahriar
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Faria Rahman Jeba
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Tahani Tabassum
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Jarin Tasnim
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Taslima Anjum Naima
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
50
|
Dubey AK, Chaudhry SK, Singh HB, Gupta VK, Kaushik A. Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00712. [PMID: 35186674 PMCID: PMC8832856 DOI: 10.1016/j.btre.2022.e00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Optimized therapeutic bio-compounds supported by bio-acceptable nanosystems (i.e., precise nanomedicine) have ability to promote health via maintaining body structure, organ function, and controlling chronic and acute effects. Therefore, nano-nutraceuticals (designed to neutralize virus, inhibit virus bindings with receptors, and support immunity) utilization can manage COVID-19 pre/post-infection effects. To explore these approaches well, our mini-review explores optimized bio-active compounds, their ability to influence SARS-CoV-2 infection, improvement in performance supported by precise nanomedicine approach, and challenges along with prospects. Such optimized pharmacologically relevant therapeutic cargo not only affect SARS-CoV-2 but will support other organs which show functional alternation due to SARS-CoV-2 for example, neurological functions. Hence, coupling the nutraceuticals with the nano-pharmacology perspective of higher efficacy via targeted delivery action can pave a novel way for health experts to plan future research needed to manage post COVID-19 infection effect where a longer efficacy with no side-effects is a key requirement.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Tamil Nadu, 600036, India
- Institute of Scholars (InSc), Bengaluru, 560091, Karnataka, India
| | - Suman Kumar Chaudhry
- Department of Computer Science and Engineering, Tezpur University, Sonitpur, Assam, 784028, India
| | | | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|