1
|
Halman A, Conyers R, Moore C, Khatri D, Sarris J, Perkins D. Harnessing Pharmacogenomics in Clinical Research on Psychedelic-Assisted Therapy. Clin Pharmacol Ther 2025; 117:106-115. [PMID: 39345195 DOI: 10.1002/cpt.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Psychedelics have recently re-emerged as potential treatments for various psychiatric conditions that impose major public health costs and for which current treatment options have limited efficacy. At the same time, personalized medicine is increasingly being implemented in psychiatry to provide individualized drug dosing recommendations based on genetics. This review brings together these topics to explore the utility of pharmacogenomics (a key component of personalized medicine) in psychedelic-assisted therapies. We summarized the literature and explored the potential implications of genetic variability on the pharmacodynamics and pharmacokinetics of psychedelic drugs including lysergic acid diethylamide (LSD), psilocybin, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), ibogaine and 3,4-methylenedioxymethamphetamine (MDMA). Although existing evidence is limited, particularly concerning pharmacodynamics, studies investigating pharmacokinetics indicate that genetic variants in drug-metabolizing enzymes, such as cytochrome P450, impact the intensity of acute psychedelic effects for LSD and ibogaine, and that a dose reduction for CYP2D6 poor metabolizers may be appropriate. Furthermore, based on the preclinical evidence, it can be hypothesized that CYP2D6 metabolizer status might contribute to altered acute psychedelic experiences with 5-MeO-DMT and psilocybin when combined with monoamine oxidase inhibitors. In conclusion, considering early evidence that genetic factors can influence the effects of certain psychedelics, we suggest that pharmacogenomic testing should be further investigated in clinical research. This is necessary to evaluate its utility in improving the safety and therapeutic profile of psychedelic therapies and a potential future role in personalizing psychedelic-assisted therapies, should these treatments become available.
Collapse
Affiliation(s)
- Andreas Halman
- Psychae Therapeutics, Melbourne, Victoria, Australia
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel Conyers
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Moore
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dhrita Khatri
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jerome Sarris
- Psychae Therapeutics, Melbourne, Victoria, Australia
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
- The Florey Institute of Neuroscience and Mental Health & The Department of Psychiatry, Melbourne University, Melbourne, Victoria, Australia
| | - Daniel Perkins
- Psychae Therapeutics, Melbourne, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Koch E, Pardiñas AF, O'Connell KS, Selvaggi P, Camacho Collados J, Babic A, Marshall SE, Van der Eycken E, Angulo C, Lu Y, Sullivan PF, Dale AM, Molden E, Posthuma D, White N, Schubert A, Djurovic S, Heimer H, Stefánsson H, Stefánsson K, Werge T, Sønderby I, O'Donovan MC, Walters JTR, Milani L, Andreassen OA. How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry. Biol Psychiatry 2024; 96:543-551. [PMID: 38185234 DOI: 10.1016/j.biopsych.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings. This narrative review summarizes strategies for obtaining the key elements-well-powered samples from large biobanks integrated with electronic health records and health registry data using novel artificial intelligence algorithms-to predict outcomes in severe mental disorders and translate these models into clinical management and treatment approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For the clinical translation of these strategies, we discuss a precision medicine platform for improved management of mental disorders. We use cases to illustrate how precision medicine interventions could be brought into psychiatry to improve the clinical outcomes of mental disorders.
Collapse
Affiliation(s)
- Elise Koch
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - José Camacho Collados
- CardiffNLP, School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | | | | | - Erik Van der Eycken
- Global Alliance of Mental Illness Advocacy Networks-Europe, Brussels, Belgium
| | - Cecilia Angulo
- Global Alliance of Mental Illness Advocacy Networks-Europe, Brussels, Belgium
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden; Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, California; Departments of Radiology, Psychiatry, and Neurosciences, University of California, San Diego, La Jolla, California
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nathan White
- CorTechs Laboratories, Inc., San Diego, California
| | | | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; The Norwegian Centre for Mental Disorders Research Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hakon Heimer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Nordic Society of Human Genetics and Precision Medicine, Copenhagen, Denmark
| | | | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ida Sønderby
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia; Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Roth M, King L, St Cyr K, Mohsin U, Balderson K, Rhind S, Goldman A, Richardson D. Evaluating the prospective utility of pharmacogenetics reporting among Canadian Armed Forces personnel receiving pharmacotherapy: a preliminary assessment towards precision psychiatric care. BMJ Mil Health 2024; 170:440-445. [PMID: 37657847 DOI: 10.1136/military-2023-002447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023]
Abstract
Pharmacological interventions for treating posttraumatic stress disorder in Canadian Armed Forces (CAF) members and Veterans often achieve modest results. The field of pharmacogenetics, or the study of how genes influence an individual's response to different medications, offers insight into how prior knowledge of gene-drug interactions may potentially improve the trial-and-error process of drug selection in pharmacotherapy, thereby improving treatment effects and remission rates. Given the relative recency of pharmacogenetics testing and sparse research in military samples, we used pharmacogenetics testing in a small pilot group (n=23) of CAF members and Veterans who were already engaged in pharmacotherapy for a service-related mental health condition to better understand the associated opportunities and challenges of pharmacogenetics testing in this population. Our preliminary evaluation involved: (1) reporting the prevalence of pharmacogenetics testing 'bin' status according to participants' reports ('green', 'yellow' or 'red'; intending to signal 'go', 'caution' or 'stop', regarding the potential for gene-drug interactions); (2) calculating the percentage of currently prescribed psychotropic medications that were assessed and included in the reports; (3) evaluating whether prescribers used pharmacogenetics testing information according to clinical notes and (4) collecting informal feedback from participating psychiatrists. While pharmacogenetics testing appeared to provide valuable information for a number of clients, a major limitation was the number of commonly prescribed medications not included in the reports.
Collapse
Affiliation(s)
- Maya Roth
- Operational Stress Injury Clinic-Greater Toronto Site, St. Joseph's Health Care, London, Toronto, Ontario, Canada
- MacDonald Franklin Operational Stress Injury Research Centre, London, Ontario, Canada
| | - L King
- Operational Stress Injury Clinic - Parkwood Main Site, SJHC, London, Ontario, Canada
| | - K St Cyr
- MacDonald Franklin Operational Stress Injury Research Centre, London, Ontario, Canada
- University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - U Mohsin
- University of Toronto, Toronto, Ontario, Canada
| | - K Balderson
- Operational Stress Injury Clinic - Parkwood Main Site, SJHC, London, Ontario, Canada
| | - S Rhind
- Defence Research and Development Canada, Toronto, Ontario, Canada
| | - A Goldman
- DNA Labs Canada Inc, Toronto, Ontario, Canada
| | - D Richardson
- MacDonald Franklin Operational Stress Injury Research Centre, London, Ontario, Canada
- Operational Stress Injury Clinic - Parkwood Main Site, SJHC, London, Ontario, Canada
| |
Collapse
|
4
|
Belančić A, Pavešić Radonja A, Ganoci L, Vitezić D, Božina N. Challenging pharmacotherapy management of a psychotic disorder due to a delicate pharmacogenetic profile and drug-drug interactions: a case report and literature review. Croat Med J 2024; 65:383-395. [PMID: 39219201 PMCID: PMC11399719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
This report presents challenging psychopharmacotherapy management of a psychotic disorder in a patient with a delicate pharmacogenetic profile and drug-drug interactions. A 31-year old woman diagnosed with schizophrenia in 2017 was referred by her psychiatrist to a clinical pharmacologist for interpretation of a pharmacogenetic test and advice regarding optimal psychopharmacotherapy. In spite of adherence to aripiprazole, olanzapine, risperidone, and levomepromazine, and rational anxiolytic therapy, she still experienced anxiety, anhedonia, loss of appetite, sleeping problems, and auditory hallucinations with commands to harm herself. Due to a lack of alternative therapeutic steps, low aripiprazole serum concentrations, and a lack of explanation for pharmacotherapy unresponsiveness, pharmacogenetic testing was performed. The patient was defined as CYP2D6 *1/*1, CYP1A2 *1F/*1F, CYP3A4 *1/*1B, CYP3A5 *1/*3, and having increased activity of the enzymes UGT1A4 and UGT2B7, intermediate activity of ABCB1 transporter, and low activity of COMT. Carbamazepine was discontinued, aripiprazole was increased to a maximum of 30 mg/day orally with long-acting injection (400 mg monthly), and olanzapine was increased to a daily dose of 35 mg orally. These changes led to an optimal therapeutic drug concentration and improved clinical status. At the last follow-up, the patient was without severe auditory hallucinations, became more engaged in daily life, had more interaction with others, had found a job, and even had started an emotional relationship. In psychiatry, pharmacogenetic testing is an important tool for guiding pharmacological therapy, particularly in patients with an unsatisfactory clinical response and a lack of alternative therapeutic steps for pharmacotherapy unresponsiveness.
Collapse
Affiliation(s)
- Andrej Belančić
- Andrej Belančić, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia,
| | | | | | | | | |
Collapse
|
5
|
Okpete UE, Byeon H. Challenges and prospects in bridging precision medicine and artificial intelligence in genomic psychiatric treatment. World J Psychiatry 2024; 14:1148-1164. [PMID: 39165556 PMCID: PMC11331387 DOI: 10.5498/wjp.v14.i8.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Precision medicine is transforming psychiatric treatment by tailoring personalized healthcare interventions based on clinical, genetic, environmental, and lifestyle factors to optimize medication management. This study investigates how artificial intelligence (AI) and machine learning (ML) can address key challenges in integrating pharmacogenomics (PGx) into psychiatric care. In this integration, AI analyzes vast genomic datasets to identify genetic markers linked to psychiatric conditions. AI-driven models integrating genomic, clinical, and demographic data demonstrated high accuracy in predicting treatment outcomes for major depressive disorder and bipolar disorder. This study also examines the pressing challenges and provides strategic directions for integrating AI and ML in genomic psychiatry, highlighting the importance of ethical considerations and the need for personalized treatment. Effective implementation of AI-driven clinical decision support systems within electronic health records is crucial for translating PGx into routine psychiatric care. Future research should focus on developing enhanced AI-driven predictive models, privacy-preserving data exchange, and robust informatics systems to optimize patient outcomes and advance precision medicine in psychiatry.
Collapse
Affiliation(s)
- Uchenna Esther Okpete
- Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae 50834, South Korea
| | - Haewon Byeon
- Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae 50834, South Korea
- Department of Medical Big Data, Inje University, Gimhae 50834, South Korea
| |
Collapse
|
6
|
Xu L, Li L, Wang Q, Pan B, Zheng L, Lin Z. Effect of pharmacogenomic testing on the clinical treatment of patients with depressive disorder: A randomized clinical trial. J Affect Disord 2024; 359:117-124. [PMID: 38762035 DOI: 10.1016/j.jad.2024.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Pharmacotherapy is one of the primary treatment modalities for depression. However, there is considerable variability in the individual response to antidepressant medications. Personalized medicine guided by pharmacogenomic testing may hold promise in addressing this issue. METHODS In this study, 665 depressive patients were randomly enrolled into two groups: the pharmacogenomic testing group (n = 333) and the control group (n = 332). In the testing group, participants underwent pharmacogenomic testing, and clinicians customized the treatment plan with the result, while the control group relied solely on clinicians' experience. The primary outcomes were the proportion of remission and response, assessed with Hamilton Depression Rating Scale (HDRS). The secondary outcomes included changes in HDRS scores over time and frequency of adverse drug reactions by the participants. RESULTS At week 8, the pharmacogenomic testing group showed significantly higher remission rates (24.0 % v.s. 15.1 %; RR = 1.117; P = 0.007) and response rates (39.3 % v.s. 25.7 %; RR = 1.225; P < 0.001) compared to the control group. By week 12, the pharmacogenomic testing group continued to demonstrate significant advantages in remission (31.0 % v.s. 20.0 %; RR = 1.159; P = 0.003) and response (48.7 % v.s. 37.3 %; RR = 1.224; P = 0.006). Additionally, adverse drug reactions were less frequent in the pharmacogenomic testing group. LIMITATIONS This study is not blind to clinicians and it's a single-center study. CONCLUSIONS Pharmacogenomic testing-guided drug therapy can provide greater assistance in the treatment of depression.
Collapse
Affiliation(s)
- Lei Xu
- Department of Geriatric Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liyin Li
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiutang Wang
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Pan
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leilei Zheng
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Koch E, Kämpe A, Alver M, Sigurðarson S, Einarsson G, Partanen J, Smith RL, Jaholkowski P, Taipale H, Lähteenvuo M, Steen NE, Smeland OB, Djurovic S, Molden E, Sigurdsson E, Stefánsson H, Stefánsson K, Palotie A, Milani L, O'Connell KS, Andreassen OA. Polygenic liability for antipsychotic dosage and polypharmacy - a real-world registry and biobank study. Neuropsychopharmacology 2024; 49:1113-1119. [PMID: 38184734 PMCID: PMC11109158 DOI: 10.1038/s41386-023-01792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of antipsychotics and antipsychotic polypharmacy, using real-world registry and biobank data from five independent Nordic cohorts of a total of N = 21,572 individuals with psychotic disorders (schizophrenia, bipolar disorder, and other psychosis). Within regression models, a polygenic risk score (PRS) for schizophrenia was studied in relation to standardized antipsychotic dose as well as antipsychotic polypharmacy, defined based on longitudinal prescription registry data as well as health records and self-reported data. Meta-analyses across the five cohorts showed that PRS for schizophrenia was significantly positively associated with prescribed (standardized) antipsychotic dose (beta(SE) = 0.0435(0.009), p = 0.0006) and antipsychotic polypharmacy defined as taking ≥2 antipsychotics (OR = 1.10, CI = 1.05-1.21, p = 0.0073). The direction of effect was similar in all five independent cohorts. These findings indicate that genotypes may aid clinically relevant decisions on individual patients´ antipsychotic treatment. Further, the findings illustrate how real-world data have the potential to generate results needed for future precision medicine approaches in psychiatry.
Collapse
Affiliation(s)
- Elise Koch
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Anders Kämpe
- Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | | | - Juulia Partanen
- Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Robert L Smith
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Taipale
- Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Stockholm, Sweden
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Engilbert Sigurdsson
- Faculty of Medicine, University of Iceland and Department of Psychiatry, Landspitali, National University Hospital, Reykjavík, Iceland
| | | | | | - Aarno Palotie
- Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Nachnani R, Knehans A, Neighbors JD, Kocis PT, Lee T, Tegeler K, Trite T, Raup-Konsavage WM, Vrana KE. Systematic review of drug-drug interactions of delta-9-tetrahydrocannabinol, cannabidiol, and Cannabis. Front Pharmacol 2024; 15:1282831. [PMID: 38868665 PMCID: PMC11167383 DOI: 10.3389/fphar.2024.1282831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 06/14/2024] Open
Abstract
Background The recent exponential increase in legalized medical and recreational cannabis, development of medical cannabis programs, and production of unregulated over-the-counter products (e.g., cannabidiol (CBD) oil, and delta-8-tetrahydrocannabinol (delta-8-THC)), has the potential to create unintended health consequences. The major cannabinoids (delta-9-tetrahydrocannabinol and cannabidiol) are metabolized by the same cytochrome P450 (CYP) enzymes that metabolize most prescription medications and xenobiotics (CYP3A4, CYP2C9, CYP2C19). As a result, we predict that there will be instances of drug-drug interactions and the potential for adverse outcomes, especially for prescription medications with a narrow therapeutic index. Methods We conducted a systematic review of all years to 2023 to identify real world reports of documented cannabinoid interactions with prescription medications. We limited our search to a set list of medications with predicted narrow therapeutic indices that may produce unintended adverse drug reactions (ADRs). Our team screened 4,600 reports and selected 151 full-text articles to assess for inclusion and exclusion criteria. Results Our investigation revealed 31 reports for which cannabinoids altered pharmacokinetics and/or produced adverse events. These reports involved 16 different Narrow Therapeutic Index (NTI) medications, under six drug classes, 889 individual subjects and 603 cannabis/cannabinoid users. Interactions between cannabis/cannabinoids and warfarin, valproate, tacrolimus, and sirolimus were the most widely reported and may pose the greatest risk to patients. Common ADRs included bleeding risk, altered mental status, difficulty inducing anesthesia, and gastrointestinal distress. Additionally, we identified 18 instances (58%) in which clinicians uncovered an unexpected serum level of the prescribed drug. The quality of pharmacokinetic evidence for each report was assessed using an internally developed ten-point scale. Conclusion Drug-drug interactions with cannabinoids are likely amongst prescription medications that use common CYP450 systems. Our findings highlight the need for healthcare providers and patients/care-givers to openly communicate about cannabis/cannabinoid use to prevent unintended adverse events. To that end, we have developed a free online tool (www.CANN-DIR.psu.edu) to help identify potential cannabinoid drug-drug interactions with prescription medications.
Collapse
Affiliation(s)
- Rahul Nachnani
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| | - Amy Knehans
- Department of Library, Penn State University College of Medicine, Hershey, PA, United States
| | - Jeffrey D. Neighbors
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| | - Paul T. Kocis
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Department of Pharmacy, Penn State University College of Medicine, Hershey, PA, United States
| | - Tzuo Lee
- PA Options for Wellness, Harrisburg, PA, United States
| | - Kayla Tegeler
- PA Options for Wellness, Harrisburg, PA, United States
| | - Thomas Trite
- PA Options for Wellness, Harrisburg, PA, United States
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Shnayder NA, Grechkina VV, Trefilova VV, Kissin MY, Narodova EA, Petrova MM, Al-Zamil M, Garganeeva NP, Nasyrova RF. Ethnic Aspects of Valproic Acid P-Oxidation. Biomedicines 2024; 12:1036. [PMID: 38790997 PMCID: PMC11117587 DOI: 10.3390/biomedicines12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Mikhail Ya. Kissin
- Department of Psychiatry and Addiction, I.P. Pavlov First St. Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
10
|
Loftus J, Levy HP, Stevenson JM. Documentation of results and medication prescribing after combinatorial psychiatric pharmacogenetic testing: A case for discrete results. Genet Med 2024; 26:101056. [PMID: 38153010 DOI: 10.1016/j.gim.2023.101056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023] Open
Abstract
PURPOSE Combinatorial pharmacogenetic (PGx) panels intended to aid psychiatric prescribing are available to clinicians. Here, we evaluated the documentation of PGx panel results and subsequent prescribing patterns within a tertiary health care system. METHODS We performed a query of psychiatry service note text in our electronic health record using 71 predefined PGx terms. Patients who underwent combinatorial PGx testing were identified, and documentation of test results was analyzed. Prescription data following testing were examined for the frequency of prescriptions influenced by genes on the panel along with the medical specialties involved. RESULTS A total of 341 patients received combinatorial PGx testing, and documentation of results was found to be absent or incomplete for 198 patients (58%). The predominant method of documentation was through portable document formats uploaded to the electronic health record's "Media" section. Among patients with at least 1 year of follow-up, a large majority (194/228, 85%) received orders for medications affected by the tested genes, including 132 of 228 (58%) patients receiving at least 1 non-psychiatric medication influenced by the test results. CONCLUSION Results from combinatorial PGx testing were poorly documented. Medications affected by these results were often prescribed after testing, highlighting the need for discrete results and clinical decision support.
Collapse
Affiliation(s)
- John Loftus
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Howard P Levy
- Maryland Primary Care Physicians, Hanover, MD; Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James M Stevenson
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
11
|
Boivin NR, Jusufi H. Pharmacogenomics and major depressive disorder: time to take a stance? Pharmacogenet Genomics 2024; 34:88-89. [PMID: 38179699 DOI: 10.1097/fpc.0000000000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
|
12
|
Civardi SC, Besana F, Carnevale Miacca G, Mazzoni F, Arienti V, Politi P, Brondino N, Olivola M. Risk factors for suicidal attempts in a sample of outpatients with treatment-resistant depression: an observational study. Front Psychiatry 2024; 15:1371139. [PMID: 38585482 PMCID: PMC10995380 DOI: 10.3389/fpsyt.2024.1371139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Treatment-resistant depression (TRD) is commonly defined as the failure of at least two trials with antidepressant drugs, given at the right dose and for an appropriate duration. TRD is associated with increased mortality, compared to patients with a simple major depressive episode. This increased rate was mainly attributed to death from external causes, including suicide and accidents. The aim of our study is to identify socio-demographic and psychopathological variables associated with suicidal attempts in a sample of outpatients with TRD. Material and methods We performed a monocentric observational study with a retrospective design including a sample of 63 subjects with TRD referred to an Italian outpatient mental health centre. We collected socio-demographic and psychopathological data from interviews and clinical records. Results 77.8% of the sample (N=49) were females, the mean age was 49.2 (15.9). 33.3% (N=21) of patients had attempted suicide. 54% (N=34) of patients had a psychiatric comorbidity. Among the collected variables, substance use (p=0.031), psychiatric comorbidities (p=0.049) and high scores of HAM-D (p=0.011) were associated with the occurrence of suicide attempts. In the regression model, substance use (OR 6.779), psychiatric comorbidities (OR 3.788) and HAM-D scores (OR 1.057) were predictive of suicide attempts. When controlling for gender, only substance use (OR 6.114) and HAM-D scores (OR 1.057) maintained association with suicide attempts. Conclusion The integrated treatment of comorbidities and substance abuse, which involves different mental health services, is fundamental in achieving the recovery of these patients. Our study supports the importance of performing a careful clinical evaluation of patients with TRD in order to identify factors associated with increased risk of suicide attempts.
Collapse
Affiliation(s)
| | - Filippo Besana
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | - Filippo Mazzoni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Vincenzo Arienti
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Mental Health and Addictions, Azienda Socio-Sanitaria Territoriale (ASST), Pavia, Pavia, Italy
| | - Natascia Brondino
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Mental Health and Addictions, Azienda Socio-Sanitaria Territoriale (ASST), Pavia, Pavia, Italy
| | - Miriam Olivola
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Mental Health and Addictions, Azienda Socio-Sanitaria Territoriale (ASST), Pavia, Pavia, Italy
| |
Collapse
|
13
|
Spencer EA. Choosing the Right Therapy at the Right Time for Pediatric Inflammatory Bowel Disease: Does Sequence Matter. Gastroenterol Clin North Am 2023; 52:517-534. [PMID: 37543397 DOI: 10.1016/j.gtc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Despite the enlarging therapeutic armamentarium, IBD is still plagued by a therapeutic ceiling. Precision medicine, with the selection of the "rights," may present a solution, and this review will discuss the critical process of pairing the right patient with right therapy at the right time. Firstly, the review will discuss the shift to and evidence behind early effective therapy. Then, it delves into promising future strategies of patient profiling to identify a patients' biological pathway(s) and prognosis. Finally, the review lays out practical considerations that drive treatment selection, particularly the impact of the therapeutic sequence.
Collapse
Affiliation(s)
- Elizabeth A Spencer
- Division of Pediatric Gastroenterology & Nutrition, Department of Pediatrics, Icahn School of Medicine, Mount Sinai, 17 East 102nd Street, 5th Floor, New York, NY 10029, USA.
| |
Collapse
|
14
|
Pjevac M, Redenšek Trampuž S, Blagus T, Dolžan V, Bon J. Case report: application of pharmacogenetics in the personalized treatment of an elderly patient with a major depressive episode. Front Psychiatry 2023; 14:1250253. [PMID: 37608991 PMCID: PMC10440381 DOI: 10.3389/fpsyt.2023.1250253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Background Pharmacogenetic analyses can predict interpersonal differences in response to psychopharmacotherapy, which greatly facilitates the selection of the most effective medication at optimal doses. By personalizing therapy in this way, we can minimize adverse drug reactions (ADR) and prevent polypharmacy. Most psychotropic medications are metabolized by the cytochrome P450 enzymes CYP2D6, CYP2C19, and CYPA3A4, which influence drug metabolism and concentration, affecting both efficacy and the occurrence of ADR. The relationships between genetic variations and enzymatic activity allow pharmacogenetic analysis to provide important data for optimal drug selection. The following case report illustrates the impact of pharmacogenetic analysis on the course of pharmacologic treatment in an elderly patient with a major depressive episode. Methods We present a case of a 79-year-old patient treated for severe depression with psychotic symptoms. We collected data on treatment selection and response to treatment before and after pharmacogenetic analysis. For pharmacogenetic analysis, common functional variants in CYP1A2, CYP3A4, CYP2B6, CYP2C19, and CYP2D6 were genotyped, and corresponding evidence-based treatment recommendations were prepared. Results The patient suffered from lack of efficacy and serious ADR of several medications, resulting in worsening depression and treatment resistance over the course of several months of treatment. Pharmacogenetic analysis provided important insights into the patient's pharmacokinetic phenotype and allowed us to personalize treatment and achieve remission of the depressive episode. Conclusion In the case presented, we have shown how consideration of pharmacogenetic characteristics in an individual patient can improve treatment outcome and patient well-being. Knowledge of the patient's pharmacogenetic characteristics helped us to personalize treatment, resulting in complete remission of psychopathology. Due to the complexity of psychiatric disorders, the efficacy of combinations of different medications, which are often required in individual patients, cannot be clearly explained. Therefore, it is of great importance to conduct further pharmacokinetic and pharmacogenetic studies to better assess gene-drug interactions in psychopharmacotherapy.
Collapse
Affiliation(s)
- Milica Pjevac
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Bollinger A, Stäuble CK, Jeiziner C, Wiss FM, Hersberger KE, Lampert ML, Meyer zu Schwabedissen HE, Allemann SS. Genotyping of Patients with Adverse Drug Reaction or Therapy Failure: Database Analysis of a Pharmacogenetics Case Series Study. Pharmgenomics Pers Med 2023; 16:693-706. [PMID: 37426898 PMCID: PMC10327911 DOI: 10.2147/pgpm.s415259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Pharmacogenetics (PGx) is an emerging aspect of personalized medicine with the potential to increase efficacy and safety of pharmacotherapy. However, PGx testing is still not routinely integrated into clinical practice. We conducted an observational case series study where PGx information from a commercially available panel test covering 30 genes was integrated into medication reviews. The aim of the study was to identify the drugs that are most frequently object of drug-gene-interactions (DGI) in the study population. Patients and Methods In out-patient and in-patient settings, we recruited 142 patients experiencing adverse drug reaction (ADR) and/or therapy failure (TF). Collected anonymized data from the individual patient was harmonized and transferred to a structured database. Results The majority of the patients had a main diagnosis of a mental or behavioral disorder (ICD-10: F, 61%), of musculoskeletal system and connective tissue diseases (ICD-10: M, 21%), and of the circulatory system (ICD-10: I, 11%). The number of prescribed medicines reached a median of 7 per person, resulting in a majority of patients with polypharmacy (≥5 prescribed medicines, 65%). In total, 559 suspected DGI were identified in 142 patients. After genetic testing, an association with at least one genetic variation was confirmed for 324 suspected DGI (58%) caused by 64 different drugs and 21 different genes in 141 patients. After 6 months, PGx-based medication adjustments were recorded for 62% of the study population, whereby differences were identified in subgroups. Conclusion The data analysis from this study provides valuable insights for the main focus of further research in the context of PGx. The results indicate that most of the selected patients in our sample represent suitable target groups for PGx panel testing in clinical practice, notably those taking drugs for mental or behavioral disorder, circulatory diseases, immunological diseases, pain-related diseases, and patients experiencing polypharmacy.
Collapse
Affiliation(s)
- Anna Bollinger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Céline K Stäuble
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | - Chiara Jeiziner
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Florine M Wiss
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | - Kurt E Hersberger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus L Lampert
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | | | - Samuel S Allemann
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Kohler CG, Wolf DH, Abi-Dargham A, Anticevic A, Cho YT, Fonteneau C, Gil R, Girgis RR, Gray DL, Grinband J, Javitch JA, Kantrowitz JT, Krystal JH, Lieberman JA, Murray JD, Ranganathan M, Santamauro N, Van Snellenberg JX, Tamayo Z, Gur RC, Gur RE, Calkins ME. Illness Phase as a Key Assessment and Intervention Window for Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:340-350. [PMID: 37519466 PMCID: PMC10382701 DOI: 10.1016/j.bpsgos.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
The phenotype of schizophrenia, regardless of etiology, represents the most studied psychotic disorder with respect to neurobiology and distinct phases of illness. The early phase of illness represents a unique opportunity to provide effective and individualized interventions that can alter illness trajectories. Developmental age and illness stage, including temporal variation in neurobiology, can be targeted to develop phase-specific clinical assessment, biomarkers, and interventions. We review an earlier model whereby an initial glutamate signaling deficit progresses through different phases of allostatic adaptation, moving from potentially reversible functional abnormalities associated with early psychosis and working memory dysfunction, and ending with difficult-to-reverse structural changes after chronic illness. We integrate this model with evidence of dopaminergic abnormalities, including cortical D1 dysfunction, which develop during adolescence. We discuss how this model and a focus on a potential critical window of intervention in the early stages of schizophrenia impact the approach to research design and clinical care. This impact includes stage-specific considerations for symptom assessment as well as genetic, cognitive, and neurophysiological biomarkers. We examine how phase-specific biomarkers of illness phase and brain development can be incorporated into current strategies for large-scale research and clinical programs implementing coordinated specialty care. We highlight working memory and D1 dysfunction as early treatment targets that can substantially affect functional outcome.
Collapse
Affiliation(s)
- Christian G. Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H. Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Alan Anticevic
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Youngsun T. Cho
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Clara Fonteneau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Ragy R. Girgis
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - David L. Gray
- Cerevel Therapeutics Research and Development, East Cambridge, Massachusetts
| | - Jack Grinband
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Jonathan A. Javitch
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York
| | - Joshua T. Kantrowitz
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- New York State Psychiatric Institute, New York
- Nathan Kline Institute, Orangeburg, New York
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jeffrey A. Lieberman
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Nicole Santamauro
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Zailyn Tamayo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica E. Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Teng Y, Sandhu A, Liemburg EJ, Naderi E, Alizadeh BZ. The Progress and Pitfalls of Pharmacogenetics-Based Precision Medicine in Schizophrenia Spectrum Disorders: A Systematic Review and Meta-Analysis. J Pers Med 2023; 13:jpm13030471. [PMID: 36983653 PMCID: PMC10052041 DOI: 10.3390/jpm13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The inadequate efficacy and adverse effects of antipsychotics severely affect the recovery of patients with schizophrenia spectrum disorders (SSD). We report the evidence for associations between pharmacogenetic (PGx) variants and antipsychotics outcomes, including antipsychotic response, antipsychotic-induced weight/BMI gain, metabolic syndrome, antipsychotic-related prolactin levels, antipsychotic-induced tardive dyskinesia (TD), clozapine-induced agranulocytosis (CLA), and drug concentration level (pharmacokinetics) in SSD patients. Through an in-depth systematic search in 2010–2022, we identified 501 records. We included 29 meta-analyses constituting pooled data from 298 original studies over 69 PGx variants across 39 genes, 4 metabolizing phenotypes of CYP2D9, and 3 of CYP2C19. We observed weak unadjusted nominal significant (p < 0.05) additive effects of PGx variants of DRD1, DRD2, DRD3, HTR1A, HTR2A, HTR3A, and COMT (10 variants) on antipsychotic response; DRD2, HTR2C, BDNF, ADRA2A, ADRB3, GNB3, INSIG2, LEP, MC4R, and SNAP25 (14 variants) on weight gain; HTR2C (one variant) on metabolic syndrome; DRD2 (one variant) on prolactin levels; COMT and BDNF (two variants) on TD; HLA-DRB1 (one variant) on CLA; CYP2D6 (four phenotypes) and CYP2C19 (two phenotypes) on antipsychotics plasma levels. In the future, well-designed longitudinal naturalistic multi-center PGx studies are needed to validate the effectiveness of PGx variants in antipsychotic outcomes before establishing any reproducible PGx passport in clinical practice.
Collapse
Affiliation(s)
- Yuxin Teng
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Amrit Sandhu
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Edith J. Liemburg
- Department of Psychiatry, Rob Giel Research Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Elnaz Naderi
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Psychiatry, Rob Giel Research Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence: ; Tel.: +31-0361-1987
| |
Collapse
|
18
|
Tsermpini EE, Serretti A, Dolžan V. Precision Medicine in Antidepressants Treatment. Handb Exp Pharmacol 2023; 280:131-186. [PMID: 37195310 DOI: 10.1007/164_2023_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precision medicine uses innovative approaches to improve disease prevention and treatment outcomes by taking into account people's genetic backgrounds, environments, and lifestyles. Treatment of depression is particularly challenging, given that 30-50% of patients do not respond adequately to antidepressants, while those who respond may experience unpleasant adverse drug reactions (ADRs) that decrease their quality of life and compliance. This chapter aims to present the available scientific data that focus on the impact of genetic variants on the efficacy and toxicity of antidepressants. We compiled data from candidate gene and genome-wide association studies that investigated associations between pharmacodynamic and pharmacokinetic genes and response to antidepressants regarding symptom improvement and ADRs. We also summarized the existing pharmacogenetic-based treatment guidelines for antidepressants, used to guide the selection of the right antidepressant and its dose based on the patient's genetic profile, aiming to achieve maximum efficacy and minimum toxicity. Finally, we reviewed the clinical implementation of pharmacogenomics studies focusing on patients on antidepressants. The available data demonstrate that precision medicine can increase the efficacy of antidepressants and reduce the occurrence of ADRs and ultimately improve patients' quality of life.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Zhou Y, Koutsilieri S, Eliasson E, Lauschke VM. A paradigm shift in pharmacogenomics: From candidate polymorphisms to comprehensive sequencing. Basic Clin Pharmacol Toxicol 2022; 131:452-464. [PMID: 35971800 PMCID: PMC9805052 DOI: 10.1111/bcpt.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/09/2023]
Abstract
Genetic factors have long been recognized as important determinants of interindividual variability in drug efficacy and toxicity. However, despite the increasing number of established gene-drug associations, candidate polymorphisms can only explain a fraction of the genetically encoded functional variability in drug disposition. Advancements in genetic profiling methods now allow to analyse the landscape of human pharmacogenetic variations comprehensively, which opens new opportunities to identify novel factors that could explain the "missing heritability." Here, we provide an updated overview of the landscape of pharmacogenomic variability based on recent analyses of population-scale sequencing projects. We then summarize the current state-of-the-art how the functional consequences of variants with unknown effects can be quantitatively estimated while discussing challenges and peculiarities that are specific to pharmacogenes. In the last sections, we discuss the importance of considering ethnogeographic diversity to provide equitable benefits of pharmacogenomics and summarize current roadblocks for the implementation of sequencing-based guidance of clinical decision-making. Based on the current state of the field, we conclude that testing is likely to gradually shift from the interrogation of selected candidate polymorphisms to comprehensive sequencing, which allows to consider the full spectrum of pharmacogenomic variations for a true personalization of genomic prescribing.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | | | - Erik Eliasson
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany,University of TübingenTübingenGermany
| |
Collapse
|
20
|
Jukic M, Milosavljević F, Molden E, Ingelman-Sundberg M. Pharmacogenomics in treatment of depression and psychosis: an update. Trends Pharmacol Sci 2022; 43:1055-1069. [PMID: 36307251 DOI: 10.1016/j.tips.2022.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
Genetic factors can, to a certain extent, successfully predict the therapeutic effects, metabolism, and adverse reactions of drugs. This research field, pharmacogenomics, is well developed in oncology and is currently expanding in psychiatry. Here, we summarize the latest development in pharmacogenomic psychiatry, where results of several recent large studies indicate a true benefit and cost-effectiveness of pre-emptive genotyping for more successful psychotherapy. However, it is apparent that we still lack knowledge of many additional heritable genetic factors of importance for explanation of the interindividual differences in response to psychiatric drugs. Thus, more effort to further develop pharmacogenomic psychiatry should be invested to achieve a broader clinical implementation.
Collapse
Affiliation(s)
- Marin Jukic
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Filip Milosavljević
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Skryabin V, Rozochkin I, Zastrozhin M, Lauschke V, Franck J, Bryun E, Sychev D. Meta-analysis of pharmacogenetic clinical decision support systems for the treatment of major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2022; 23:45-49. [PMID: 36273107 DOI: 10.1038/s41397-022-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
The study aimed to conduct a meta-analysis of studies comparing pharmacogenetically guided dosing of antidepressants with empiric standard of care. Publications referring to genotype-guided antidepressant therapy were identified via PubMed, Google Scholar, Scopus, Web of Science, Embase, and Cochrane databases from the inception of the databases to 2021. In addition, bibliographies of all articles were manually searched for additional references not identified in primary searches. Studies comparing clinical outcomes between two groups of patients who received antidepressant treatment were included in meta-analysis. Analysis of the data revealed statistically significant differences between the experimental group receiving pharmacogenetically guided dosing and the empirically treated controls. Specifically, genotype-guided treatment significantly improved response and remission of patients after both eight and twelve weeks of therapy, whereas no effect on the development of adverse drug reactions was observed. This meta-analysis indicates that the use of preemptive genotyping to guide dosing of antidepressants might increase treatment efficacy.
Collapse
|
22
|
Lin SK. Racial/Ethnic Differences in the Pharmacokinetics of Antipsychotics: Focusing on East Asians. J Pers Med 2022; 12:1362. [PMID: 36143147 PMCID: PMC9504618 DOI: 10.3390/jpm12091362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Empirical clinical studies have suggested that East Asian patients may require lower dosages of psychotropic drugs, such as antipsychotics, lithium, and antidepressants, than non-Asians. Both the pharmacokinetic and pharmacodynamic properties of a drug can affect the clinical response of an illness. The levels of antipsychotics used for the treatment of schizophrenia may affect patient clinical responses; several factors can affect these levels, including patient medication adherence, body weight (BW) or body mass index, smoking habits, and sex. The cytochrome P450 (CYP) system is a major factor affecting the blood levels of antipsychotics because many antipsychotics are metabolized by this system. There were notable genetic differences between people of different races. In this study, we determined the racial or ethnic differences in the metabolic patterns of some selected antipsychotics by reviewing therapeutic drug monitoring studies in East Asian populations. The plasma concentrations of haloperidol, clozapine, quetiapine, aripiprazole, and lurasidone, which are metabolized by specific CYP enzymes, were determined to be higher, under the same daily dose, in East Asian populations than in Western populations.
Collapse
Affiliation(s)
- Shih-Ku Lin
- Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; ; Tel.: +886-2-27263141 (ext. 1263)
- Department of Psychiatry, Psychiatry Center, Taipei City Hospital, Taipei 110, Taiwan
| |
Collapse
|
23
|
Tron C, Bouvet R, Verdier MC, Lamoureux F, Hennart B, Dubourg C, Bellissant E, Galibert MD. A Robust and Fast/Multiplex Pharmacogenetics Assay to Simultaneously Analyze 17 Clinically Relevant Genetic Polymorphisms in CYP3A4, CYP3A5, CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, and VKORC1 Genes. Pharmaceuticals (Basel) 2022; 15:ph15050637. [PMID: 35631462 PMCID: PMC9145594 DOI: 10.3390/ph15050637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of pharmacogenetics, the trend is to analyze a panel of several actionable genetic polymorphisms. It may require the use of high-throughput sequencing which demands expensive reagents/instruments and specific skills to interpret results. As an alternative, the aim of this work was to validate an easy, fast, and inexpensive multiplex pharmacogenetics assay to simultaneously genotype a panel of 17 clinically actionable variants involved in drug pharmacokinetics/pharmacodynamics. We designed primers to perform a multiplex PCR assay using a single mix. Primers were labeled by two fluorescent dye markers to discriminate alleles, while the size of the PCR fragments analyzed by electrophoresis allowed identifying amplicon. Polymorphisms of interest were CYP3A4*22, CYP3A5*3, CYP1A2*1F, CYP2C9*2-*3, CYP2C19*2-*3-*17, VKORC1-1639G > A, ABCB1 rs1045642-rs1128503-rs2229109-rs2032582, and CYP2D6*3-*4-*6-*9. The assay was repeatable and a minimum quantity of 10 ng of DNA/ sample was needed to obtain accurate results. The method was applied to a validation cohort of 121 samples and genotyping results were consistent with those obtained with reference methods. The assay was fast and cost-effective with results being available within one working-day. This robust assay can easily be implemented in laboratories as an alternative to cumbersome simplex assays or expensive multiplex approaches. Together it should widespread access to pharmacogenetics in clinical routine practice.
Collapse
Affiliation(s)
- Camille Tron
- Pharmacology Department, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Univ Rennes, F-35000 Rennes, France; (M.-C.V.); (E.B.)
- Correspondence: ; Tel.: +33-2-99-28-42-80
| | - Régis Bouvet
- Department of Molecular Genetics and Genomics, Rennes Hospital University, F-35000 Rennes, France; (R.B.); (C.D.); (M.-D.G.)
| | - Marie-Clémence Verdier
- Pharmacology Department, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Univ Rennes, F-35000 Rennes, France; (M.-C.V.); (E.B.)
| | | | - Benjamin Hennart
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France;
| | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes Hospital University, F-35000 Rennes, France; (R.B.); (C.D.); (M.-D.G.)
- CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Univ Rennes, F-35000 Rennes, France
| | - Eric Bellissant
- Pharmacology Department, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Univ Rennes, F-35000 Rennes, France; (M.-C.V.); (E.B.)
| | - Marie-Dominique Galibert
- Department of Molecular Genetics and Genomics, Rennes Hospital University, F-35000 Rennes, France; (R.B.); (C.D.); (M.-D.G.)
- CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Univ Rennes, F-35000 Rennes, France
| |
Collapse
|
24
|
Alarcan H, Guilhaumou R, Quaranta S. Traitements psychiatriques et pharmacogénétique. ACTUALITES PHARMACEUTIQUES 2022. [DOI: 10.1016/j.actpha.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Real-World Impact of a Pharmacogenomics-Enriched Comprehensive Medication Management Program. J Pers Med 2022; 12:jpm12030421. [PMID: 35330421 PMCID: PMC8949247 DOI: 10.3390/jpm12030421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of clinical decision support systems (CDSS) and other methods for personalizing medicine now allows evaluation of their real-world impact on healthcare delivery. For example, addressing issues associated with polypharmacy in older patients using pharmacogenomics (PGx) and comprehensive medication management (CMM) is thought to hold great promise for meaningful improvements across the goals of the Quadruple Aim. However, few studies testing these tools at scale, using relevant system-wide metrics, and under real-world conditions, have been published to date. Here, we document a reduction of ~$7000 per patient in direct medical charges (a total of $37 million over 5288 enrollees compared to 22,357 non-enrolled) in Medicare Advantage patients (≥65 years) receiving benefits through a state retirement system over the first 32 months of a voluntary PGx-enriched CMM program. We also observe a positive shift in healthcare resource utilization (HRU) away from acute care services and toward more sustainable and cost-effective primary care options. Together with improvements in medication risk assessment, patient/provider communication via pharmacist-mediated medication action plans (MAP), and the sustained positive trends in HRU, we suggest these results validate the use of a CDSS to unify PGx and CMM to optimize care for this and similar patient populations.
Collapse
|
26
|
Lopes JL, Harris K, Karow MB, Peterson SE, Kluge ML, Kotzer KE, Lopes GS, Larson NB, Bielinski SJ, Scherer SE, Wang L, Weinshilboum RM, Black JL, Moyer AM. Targeted Genotyping in Clinical Pharmacogenomics: What Is Missing? J Mol Diagn 2022; 24:253-261. [PMID: 35041929 PMCID: PMC8961466 DOI: 10.1016/j.jmoldx.2021.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Clinical pharmacogenomic testing typically uses targeted genotyping, which only detects variants included in the test design and may vary among laboratories. To evaluate the potential patient impact of genotyping compared with sequencing, which can detect common and rare variants, an in silico targeted genotyping panel was developed based on the variants most commonly included in clinical tests and applied to a cohort of 10,030 participants who underwent sequencing for CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP3A5, DPYD, SLCO1B1, TPMT, UGT1A1, and VKORC1. The results of in silico targeted genotyping were compared with the clinically reported sequencing results. Of the 10,030 participants, 2780 (28%) had at least one potentially clinically relevant variant/allele identified by sequencing that would not have been detected in a standard targeted genotyping panel. The genes with the largest number of participants with variants only detected by sequencing were SLCO1B1, DPYD, and CYP2D6, which affected 13%, 6.3%, and 3.5% of participants, respectively. DPYD (112 variants) and CYP2D6 (103 variants) had the largest number of unique variants detected only by sequencing. Although targeted genotyping detects most clinically significant pharmacogenomic variants, sequencing-based approaches are necessary to detect rare variants that collectively affect many patients. However, efforts to establish pharmacogenomic variant classification systems and nomenclature to accommodate rare variants will be required to adopt sequencing-based pharmacogenomics.
Collapse
Affiliation(s)
- Jaime L. Lopes
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kimberley Harris
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mary Beth Karow
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sandra E. Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michelle L. Kluge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Katrina E. Kotzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Guilherme S. Lopes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - John L. Black
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ann M. Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota,Address correspondence to Ann M. Moyer, M.D., Ph.D., Mayo Clinic, 200 First St SW, Rochester, MN 55905.
| |
Collapse
|
27
|
Metabolizing status of CYP2C19 in response and side effects to medications for depression: Results from a naturalistic study. Eur Neuropsychopharmacol 2022; 56:100-111. [PMID: 35152032 DOI: 10.1016/j.euroneuro.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide. Polymorphisms in cytochrome P450 genes (CYP450) were demonstrated to play a significant role in antidepressant response and side effects, but their effect in real-world clinical practice is poorly known. We determined the metabolic status of CYP2C19 based on the combination of *1, *2, *3 and *17 alleles extracted from genome-wide data in 1239 patients with MDD, pharmacologically treated in a naturalistic setting. Symptom improvement and side effects were assessed using the Montgomery and Åsberg Depression Rating Scale and the Udvalg for Kliniske Undersøgelse scale, respectively. We tested if symptom improvement, response and side effects were associated with CYP2C19 metabolic status adjusting for potential confounders. We considered patients treated with drugs for depression having CYP2C19 genotyping recommended by guidelines (T1 Drugs); secondarily, with all psychotropic drugs having CYP2C19 as relevant metabolic path (T2 Drugs). In the group treated with T1 drugs (n = 540), poor metabolizers (PMs) showed higher response and higher symptom improvement compared to normal metabolizers (p = 0.023 and p = 0.009, respectively), but also higher risk of autonomic and neurological side effects (p = 0.022 and p = 0.022 respectively). In patients treated with T2 drugs (n = 801), similar results were found. No associations between metabolizer status and other types of side effects were found (psychic and other side effects). Our study suggests potential advantages of CYP2C19 pharmacogenetic testing to guide treatment prescription, that may not be limited to the drugs currently recommended by guidelines.
Collapse
|
28
|
The Value of Pharmacogenetics to Reduce Drug-Related Toxicity in Cancer Patients. Mol Diagn Ther 2022; 26:137-151. [PMID: 35113367 PMCID: PMC8975257 DOI: 10.1007/s40291-021-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Many anticancer drugs cause adverse drug reactions (ADRs) that negatively impact safety and reduce quality of life. The typical narrow therapeutic range and exposure-response relationships described for anticancer drugs make precision dosing critical to ensure safe and effective drug exposure. Germline mutations in pharmacogenes contribute to inter-patient variability in pharmacokinetics and pharmacodynamics of anticancer drugs. Patients carrying reduced-activity or loss-of-function alleles are at increased risk for ADRs. Pretreatment genotyping offers a proactive approach to identify these high-risk patients, administer an individualized dose, and minimize the risk of ADRs. In the field of oncology, the most well-studied gene-drug pairs for which pharmacogenetic dosing recommendations have been published to improve safety are DPYD-fluoropyrimidines, TPMT/NUDT15-thiopurines, and UGT1A1-irinotecan. Despite the presence of these guidelines, the scientific evidence showing the benefits of pharmacogenetic testing (e.g., improved safety and cost-effectiveness) and the development of efficient multi-gene genotyping panels, routine pretreatment testing for these gene-drug pairs has not been implemented widely in the clinic. Important considerations required for widespread clinical implementation include pharmacogenetic education of physicians, availability or allocation of institutional resources to build an efficient clinical infrastructure, international standardization of guidelines, uniform adoption of guidelines by regulatory agencies leading to genotyping requirements in drug labels, and development of cohesive reimbursement policies for pretreatment genotyping. Without clinical implementation, the potential of pharmacogenetics to improve patient safety remains unfulfilled.
Collapse
|
29
|
Alkelai A, Greenbaum L, Docherty AR, Shabalin AA, Povysil G, Malakar A, Hughes D, Delaney SL, Peabody EP, McNamara J, Gelfman S, Baugh EH, Zoghbi AW, Harms MB, Hwang HS, Grossman-Jonish A, Aggarwal V, Heinzen EL, Jobanputra V, Pulver AE, Lerer B, Goldstein DB. The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Mol Psychiatry 2022; 27:1435-1447. [PMID: 34799694 DOI: 10.1038/s41380-021-01383-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ayan Malakar
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shannon L Delaney
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - James McNamara
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Anthony W Zoghbi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
- New York State Psychiatric Institute, Office of Mental Health, New York, NY, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hann-Shyan Hwang
- Department of Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Anat Grossman-Jonish
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vaidehi Jobanputra
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Geng TT, Jafar TH. Hypertension Pharmacogenomics in CKD: The Clinical Relevance and Public Health Implications. KIDNEY360 2022; 3:204-207. [PMID: 35373121 PMCID: PMC8967644 DOI: 10.34067/kid.0007792021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 04/11/2023]
Affiliation(s)
- Ting-Ting Geng
- Department of Epidemiology and Biostatistics, Huazhong University of Science and Technology, Wuhan, China
| | - Tazeen H. Jafar
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
31
|
Del Toro-Pagán NM, Matos A, Bardolia C, Michaud V, Turgeon J, Amin NS. Pharmacist assessment of drug-gene interactions and drug-induced phenoconversion in major depressive disorder: a case report. BMC Psychiatry 2022; 22:46. [PMID: 35057765 PMCID: PMC8772164 DOI: 10.1186/s12888-021-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Response to antidepressant therapy is highly variable among individuals. Pharmacogenomic (PGx) testing presents an opportunity to guide drug selection while optimizing therapy outcomes and/or decreasing the risk for toxicity. CASE PRESENTATION A patient with multiple comorbidities, including severe major depressive disorder (MDD), experienced adverse drug events and undesirable response to multiple antidepressant medications (i.e., bupropion, escitalopram, and venlafaxine). A clinical pharmacist assessed significant drug-gene, drug-drug, and drug-drug-gene interactions as well as other clinical factors to provide recommendations for antidepressant therapy optimization. CONCLUSION This case highlights the importance of PGx testing and the key role of pharmacists in identifying and mitigating drug-related problems and optimizing drug therapy in patients with MDD.
Collapse
Affiliation(s)
- N. M. Del Toro-Pagán
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, 228 Strawbridge Drive, Moorestown, NJ 08057 USA
| | - A. Matos
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, 228 Strawbridge Drive, Moorestown, NJ 08057 USA
| | - C. Bardolia
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, 228 Strawbridge Drive, Moorestown, NJ 08057 USA
| | - V. Michaud
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Lake Nona, FL USA ,grid.14848.310000 0001 2292 3357Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - J. Turgeon
- Precision Pharmacotherapy Research & Development Institute, Tabula Rasa HealthCare, Lake Nona, FL USA ,grid.14848.310000 0001 2292 3357Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - N. S. Amin
- Office of Translational Research and Residency Programs, Tabula Rasa HealthCare, 228 Strawbridge Drive, Moorestown, NJ 08057 USA
| |
Collapse
|
32
|
Stäuble CK, Lampert ML, Allemann S, Hatzinger M, Hersberger KE, Meyer Zu Schwabedissen HE, Imboden C, Mikoteit T. Pharmacist-guided pre-emptive pharmacogenetic testing in antidepressant therapy (PrePGx): study protocol for an open-label, randomized controlled trial. Trials 2021; 22:919. [PMID: 34906208 PMCID: PMC8670138 DOI: 10.1186/s13063-021-05724-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background It is known that only 50% of patients diagnosed with major depressive disorders (MDD) respond to the first-line antidepressant treatment. Accordingly, there is a need to improve response rates to reduce healthcare costs and patient suffering. One approach to increase rates of treatment response might be the integration of pharmacogenetic (PGx) testing to stratify antidepressant drug selection. The goal of PGx assessments is to identify patients who have an increased risk to experience adverse drug reactions or non-response to specific drugs. Especially for antidepressants, there is compiling evidence on PGx influencing drug exposure as well as response. Methods This study is an open-label, randomized controlled trial conducted in two study centers in Switzerland: (1) the Psychiatric Clinic of Solothurn and (2) the Private Clinic Wyss in Münchenbuchsee. Adult inpatients diagnosed with a unipolar moderate or severe depressive episode are recruited at clinic admission and are included in the study. If the adjustment to a new antidepressant pharmacotherapy is necessary, the participants are randomized to either Arm A (intervention group) or Arm B (control group). If no new antidepressant pharmacotherapy is introduced the participants will be followed up in an observational arm. The intervention is the service of pharmacist-guided pre-emptive PGx testing to support clinical decision making on antidepressant selection and dosing. As a comparison, in the control group, the antidepressant pharmacotherapy is selected by the treating physician according to current treatment guidelines (standard of care) without the knowledge of PGx test results and support of clinical pharmacists. The primary outcome of this study compares the response rates under antidepressant treatment after 4 weeks between intervention and control arm. Discussion The findings from this clinical trial are expected to have a direct impact on inter-professional collaborations for the handling and use of PGx data in psychiatric practice. Trial registration ClinicalTrials.govNCT04507555. Registered on August 11, 2020. Swiss National Clinical Trials Portal SNCTP000004015. Registered August 18, 2020.
Collapse
Affiliation(s)
- Céline K Stäuble
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | - Markus L Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | - Samuel Allemann
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Solothurner Spitäler AG and Faculty of Medicine, University of Basel, Solothurn, Switzerland
| | - Kurt E Hersberger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler AG and Faculty of Medicine, University of Basel, Solothurn, Switzerland
| |
Collapse
|
33
|
Meshkat S, Rodrigues NB, Di Vincenzo JD, Ceban F, Jaberi S, McIntyre RS, Lui LMW, Rosenblat JD. Pharmacogenomics of ketamine: A systematic review. J Psychiatr Res 2021; 145:27-34. [PMID: 34844049 DOI: 10.1016/j.jpsychires.2021.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Ketamine is a dissociative anesthetic used worldwide for anesthesia, pain management, treatment resistant depression (TRD) and suicidality. Predictors of antidepressant response and adverse effects to ketamine remain poorly understood due to contradictory results. The objective of the systematic review herein is to identify and evaluate the extant literature assessing pharmacogenomic predictors of ketamine clinical benefits and adverse effects. Electronic databases were searched from inception to July 2021 to identify relevant articles. Twelve articles involving 1,219 participants with TRD, 75 who underwent elective surgeries and received ketamine as an anesthetic, 49 with pain, and 68 healthy participants met the inclusion criteria and enrolled to this review. While identified articles reported mixed results, three predictors emerged: 1) Val66Met (rs6265) brain derived neurotrophic factor (BDNF; Met allele) was associated with reduced antidepressant and anti-suicidal effects, 2) CYP2B6*6 (e.g., CYB2B6 metabolizer) was associated with more severe dissociative effects and 3) NET allelic (rs28386840) variant were associated with greater cardiovascular complications (e.g., moderate to severe treatment emergent hypertension). Several important limitations were identified, most notably the small sample sizes and heterogeneity of study design and results. Taken together, preliminary evidence suggests the potential for pharmacogenomic testing to inform clinical practices; however, further research is needed to better determine genetic variants of greatest importance and the clinical validity of pharmacogenomics to help guide ketamine treatment planning.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Nelson B Rodrigues
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Saja Jaberi
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
The use of pharmacogenetic testing in psychiatry. J Am Assoc Nurse Pract 2021; 33:849-851. [PMID: 34747904 DOI: 10.1097/jxx.0000000000000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Psychiatric pharmacogenetic testing is commonly used by providers in primary care and mental health settings. The purpose of this article is to describe the extent to which psychiatric pharmacogenetic testing supports clinical practice. human leukocyte antigen (HLA)-A and HLA-B should be tested before initiating carbamazepine and oxcarbazepine due to risk of serious skin reactions. For psychotropic medications metabolized through the liver, limited evidence suggests testing for variation in metabolism through CYP2D6 and CYP2D19. For specific medication and genotype-phenotype variations, guidance through the Clinical Pharmacogenetics Implementation Consortium (CPIC) or the International Society of Psychiatric Genetics (ISPG) should be reviewed. Commercial tests interpret this information differently and should not be used for broad guidance. Clinicians should follow current guidelines from professional bodies such as CPIC or ISPG and test for HLA-A or HLA-B before initiating carbamazepine or oxcarbazepine. Evidence is limited for psychiatric pharmacogenetic testing. Clinicians should continue to follow best practice and clinical practice guidelines.
Collapse
|
35
|
Pardiñas AF, Owen MJ, Walters JTR. Pharmacogenomics: A road ahead for precision medicine in psychiatry. Neuron 2021; 109:3914-3929. [PMID: 34619094 DOI: 10.1016/j.neuron.2021.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
Psychiatric genomics is providing insights into the nature of psychiatric conditions that in time should identify new drug targets and improve patient care. Less attention has been paid to psychiatric pharmacogenomics research, despite its potential to deliver more rapid change in clinical practice and patient outcomes. The pharmacogenomics of treatment response encapsulates both pharmacokinetic ("what the body does to a drug") and pharmacodynamic ("what the drug does to the body") effects. Despite early optimism and substantial research in both these areas, they have to date made little impact on clinical management in psychiatry. A number of bottlenecks have hampered progress, including a lack of large-scale replication studies, inconsistencies in defining valid treatment outcomes across experiments, a failure to routinely incorporate adverse drug reactions and serum metabolite monitoring in study designs, and inadequate investment in the longitudinal data collections required to demonstrate clinical utility. Nonetheless, advances in genomics and health informatics present distinct opportunities for psychiatric pharmacogenomics to enter a new and productive phase of research discovery and translation.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
36
|
Dmitrzak-Weglarz M, Szczepankiewicz A, Rybakowski J, Kapelski P, Bilska K, Skibinska M, Reszka E, Lesicka M, Jablonska E, Wieczorek E, Pawlak J. Expression Biomarkers of Pharmacological Treatment Outcomes in Women with Unipolar and Bipolar Depression. PHARMACOPSYCHIATRY 2021; 54:261-268. [PMID: 34470067 DOI: 10.1055/a-1546-9483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study aimed to find the expression biomarkers of pharmacological treatment response in a naturalistic hospital setting. Through gene expression profiling, we were able to find differentially-expressed genes (DEGs) in unipolar (UD) and bipolar (BD) depressed women. METHODS We performed gene expression profiling in hospitalized women with unipolar (n=24) and bipolar depression (n=32) who achieved clinical improvement after pharmacological treatment (without any restriction). To identify DEGs in peripheral blood mononuclear cells (PBMCs), we used the SurePrint G3 Microarray and GeneSpring software. RESULTS After pharmacological treatment, UD and BD varied in the number of regulated genes and ontological pathways. Also, the pathways of neurogenesis and synaptic transmission were significantly up-regulated. Our research focused on DEGs with a minimum fold change (FC) of more than 2. For both types of depression, 2 up-regulated genes, OPRM1 and CELF4 (p=0.013), were significantly associated with treatment response (defined as a 50% reduction on the Hamilton Depression Rating Scale [HDRS]). We also uncovered the SHANK3 (p=0.001) gene that is unique for UD and found that the RASGRF1 (p=0.010) gene may be a potential specific biomarker of treatment response for BD. CONCLUSION Based on transcriptomic profiling, we identified potential expression biomarkers of treatment outcomes for UD and BD. We also proved that the Ras-GEF pathway associated with long-term memory, female stress response, and treatment response modulation in animal studies impacts treatment efficacy in patients with BD. Further studies focused on the outlined genes may help provide predictive markers of treatment outcomes in UD and BD.
Collapse
Affiliation(s)
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| |
Collapse
|
37
|
Ivashchenko DV, Yudelevich DA, Buromskaya NI, Shimanov PV, Deitch RV, Akmalova KA, Kachanova AA, Dorina IV, Nastovich MI, Grishina EA, Savchenko LM, Shevchenko YS, Sychev DA. CYP2D6 phenotype and ABCB1 haplotypes are associated with antipsychotic safety in adolescents experiencing acute psychotic episodes. Drug Metab Pers Ther 2021; 0:dmdi-2021-0124. [PMID: 34388331 DOI: 10.1515/dmdi-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To identify possible associations of CYP2D6, CYP3A4/5, and ABCB1 gene polymorphisms with the efficacy and safety of antipsychotics in adolescents with acute psychotic episodes. METHODS We examined the associations of pharmacogenetic factors with the efficacy and safety of antipsychotics in 101 adolescents with acute psychotic episodes. The diagnosis on admission was "Brief psychotic disorder" (F23.0-23.9 by ICD-10). All patients were administered antipsychotics for 14 days. Treatment efficacy and safety were assessed using the PANSS, CGAS, CGI-S(I), UKU SERS, BARS, and SAS scales. Pharmacokinetic genotyping was performed for the CYP2D6*4, *10, ABCB1 1236C>T, 2677G>T, and 3435C>T genes. RESULTS CYP2D6 intermediate metabolisers had "Micturition disturbances" more often than extensive metabolisers (24.2 vs. 7.4%; p=0.026). "Wild" homozygote ABCB1 3435C>T CC was associated with more prominent akathisia. Haplotype analysis of three ABCB1 polymorphisms revealed that the "wild" alleles "C-G-C" (ABCB1 1236-2677-3435) were associated with higher risk of "Reduced salivation" (OR=2.95; 95% CI=1.35-6.45; p=0.0078). CONCLUSIONS CYP2D6 intermediate metabolism was associated with the risk of urinary difficulties under treatment with antipsychotics. We found that "wild" homozygotes ABCB1 1236C>T, 2677G>T, and 3435C>T were predictors of adverse drug effects caused by treatment with antipsychotics.
Collapse
Affiliation(s)
- Dmitriy V Ivashchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Department of Psychiatry, PIUV - Branch of Russian Medical Academy of Continuous Professional Education, Penza, Russia
| | - Daria A Yudelevich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina I Buromskaya
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Pavel V Shimanov
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Roman V Deitch
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Kristina A Akmalova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Anastasia A Kachanova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Dorina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina I Nastovich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena A Grishina
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Lyudmila M Savchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Yuriy S Shevchenko
- Department of Addictions Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy A Sychev
- Child Psychiatry and Psychotherapy Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
38
|
Ivashchenko DV, Yudelevich DA, Buromskaya NI, Shimanov PV, Deitch RV, Akmalova KA, Kachanova AA, Dorina IV, Nastovich MI, Grishina EA, Savchenko LM, Shevchenko YS, Sychev DA. CYP2D6 phenotype and ABCB1 haplotypes are associated with antipsychotic safety in adolescents experiencing acute psychotic episodes. Drug Metab Pers Ther 2021; 37:47-53. [PMID: 35385893 DOI: 10.1515/dmpt-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To identify possible associations of CYP2D6, CYP3A4/5, and ABCB1 gene polymorphisms with the efficacy and safety of antipsychotics in adolescents with acute psychotic episodes. METHODS We examined the associations of pharmacogenetic factors with the efficacy and safety of antipsychotics in 101 adolescents with acute psychotic episodes. The diagnosis on admission was "Brief psychotic disorder" (F23.0-23.9 by ICD-10). All patients were administered antipsychotics for 14 days. Treatment efficacy and safety were assessed using the PANSS, CGAS, CGI-S(I), UKU SERS, BARS, and SAS scales. Pharmacokinetic genotyping was performed for the CYP2D6*4, *10, ABCB1 1236C>T, 2677G>T, and 3435C>T genes. RESULTS CYP2D6 intermediate metabolisers had "Micturition disturbances" more often than extensive metabolisers (24.2 vs. 7.4%; p=0.026). "Wild" homozygote ABCB1 3435C>T CC was associated with more prominent akathisia. Haplotype analysis of three ABCB1 polymorphisms revealed that the "wild" alleles "C-G-C" (ABCB1 1236-2677-3435) were associated with higher risk of "Reduced salivation" (OR=2.95; 95% CI=1.35-6.45; p=0.0078). CONCLUSIONS CYP2D6 intermediate metabolism was associated with the risk of urinary difficulties under treatment with antipsychotics. We found that "wild" homozygotes ABCB1 1236C>T, 2677G>T, and 3435C>T were predictors of adverse drug effects caused by treatment with antipsychotics.
Collapse
Affiliation(s)
- Dmitriy V Ivashchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia.,Department of Psychiatry, PIUV - Branch of Russian Medical Academy of Continuous Professional Education, Penza, Russia
| | - Daria A Yudelevich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina I Buromskaya
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Pavel V Shimanov
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Roman V Deitch
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Kristina A Akmalova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Anastasia A Kachanova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Dorina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina I Nastovich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena A Grishina
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Lyudmila M Savchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Yuriy S Shevchenko
- Department of Addictions Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy A Sychev
- Child Psychiatry and Psychotherapy Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia.,Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
39
|
Mulder TAM, van Eerden RAG, de With M, Elens L, Hesselink DA, Matic M, Bins S, Mathijssen RHJ, van Schaik RHN. CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Front Genet 2021; 12:711943. [PMID: 34306041 PMCID: PMC8296839 DOI: 10.3389/fgene.2021.711943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug metabolizing enzyme in the liver, responsible for the oxidative metabolism of ∼50% of clinically prescribed drugs. Therefore, genetic variation in CYP3A4 could potentially affect the pharmacokinetics, toxicity and clinical outcome of drug treatment. Thus far, pharmacogenetics for CYP3A4 has not received much attention. However, the recent discovery of the intron 6 single-nucleotide polymorphism (SNP) rs35599367C > T, encoding the CYP3A4∗22 allele, led to several studies into the pharmacogenetic effect of CYP3A4∗22 on different drugs. This allele has a relatively minor allele frequency of 3-5% and an effect on CYP3A4 enzymatic activity. Thus far, no review summarizing the data published on several drugs is available yet. This article therefore addresses the current knowledge on CYP3A4∗22. This information may help in deciding if, and for which drugs, CYP3A4∗22 genotype-based dosing could be helpful in improving drug therapy. CYP3A4∗22 was shown to significantly influence the pharmacokinetics of several drugs, with currently being most thoroughly investigated tacrolimus, cyclosporine, and statins. Additional studies, focusing on toxicity and clinical outcome, are warranted to demonstrate clinical utility of CYP3A4∗22 genotype-based dosing.
Collapse
Affiliation(s)
- Tessa A M Mulder
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Laure Elens
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Zanardi R, Manfredi E, Montrasio C, Colombo C, Serretti A, Fabbri C. Pharmacogenetic-Guided Treatment of Depression: Real-World Clinical Applications, Challenges, and Perspectives. Clin Pharmacol Ther 2021; 110:573-581. [PMID: 34047355 DOI: 10.1002/cpt.2315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Depression is a leading cause of disability worldwide and, despite the availability of numerous antidepressants, the lack of standardized criteria to apply personalized prescription is still a major issue. Pharmacogenetic (PGx) markers in cytochrome P450 (CYP450) genes are already usable to guide antidepressant choice/titration according to clinical guidelines; they are an important step toward personalized psychiatry as they can reduce the time to identify an effective and tolerated treatment. Clinical application is still limited due to the financial and organizational challenges, but the number of services providing genotyping of pharmacogenes is increasing, with encouraging projections of cost-effectiveness. Critical aspects that emerged from the available studies are the importance of integration of genotyping results in electronic medical records, standardization, and regular updates of decision support systems, training and collaboration of different professionals, need of longer follow-ups to estimate cost-effectiveness, and importance of avoiding inequalities in access to genotyping. Diversities exist among the groups of patients to whom genotyping is offered (pre-emptive or reactive testing) and the type of clinical services (e.g., hospitals and primary care), currently without a consensus on which is the best approach. Future studies should aim to clarify these issues, as well as consider and compare PGx applications among different countries and healthcare systems. Finally, the extension of genotyping outside pharmacokinetic genes should be considered as a key step to improve the clinical impact of PGx, as this could significantly increase the variance explained in treatment outcomes.
Collapse
Affiliation(s)
- Raffaella Zanardi
- Department of Clinical Neurosciences, Mood Disorder Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Elena Manfredi
- Department of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Mood Disorder Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Clinical Neurosciences, University Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
41
|
Acceptability of Pharmacogenetic Testing among French Psychiatrists, a National Survey. J Pers Med 2021; 11:jpm11060446. [PMID: 34064030 PMCID: PMC8223981 DOI: 10.3390/jpm11060446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Psychiatric disorder management is based on the prescription of psychotropic drugs. Response to them remains often insufficient and varies from one patient to another. Pharmacogenetics explain part of this variability. Pharmacogenetic testing is likely to optimize the choice of treatment and thus improve patients’ care, even if concerns and limitations persist. This practice of personalized medicine is not very widespread in France. We conducted a national survey to evaluate the acceptability of this tool by psychiatrists and psychiatry residents in France, and to identify factors associated with acceptability and previous use. The analysis included 397 observations. The mean acceptability score was 10.70, on a scale from 4 to 16. Overall acceptability score was considered as low for 3.0% of responders, intermediate for 80.1% and high for 16.9%. After regression, the remaining factors influencing acceptability independently of the others were prescription and training history and theoretical approach. The attitude of our population seems to be rather favorable, however, obvious deficiencies have emerged regarding perceived skills and received training. Concerns about the cost and delays of tests results also emerged. According to our survey, one of the keys to overcoming the barriers encountered in the integration of pharmacogenetics seems to be the improvement of training and the provision of information to practitioners.
Collapse
|
42
|
Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of Pharmacogenetics in Adverse Drug Reactions: An Update towards Personalized Medicine. Front Pharmacol 2021; 12:651720. [PMID: 33995067 PMCID: PMC8120428 DOI: 10.3389/fphar.2021.651720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Adverse drug reactions (ADRs) are an important and frequent cause of morbidity and mortality. ADR can be related to a variety of drugs, including anticonvulsants, anaesthetics, antibiotics, antiretroviral, anticancer, and antiarrhythmics, and can involve every organ or apparatus. The causes of ADRs are still poorly understood due to their clinical heterogeneity and complexity. In this scenario, genetic predisposition toward ADRs is an emerging issue, not only in anticancer chemotherapy, but also in many other fields of medicine, including hemolytic anemia due to glucose-6-phosphate dehydrogenase (G6PD) deficiency, aplastic anemia, porphyria, malignant hyperthermia, epidermal tissue necrosis (Lyell's Syndrome and Stevens-Johnson Syndrome), epilepsy, thyroid diseases, diabetes, Long QT and Brugada Syndromes. The role of genetic mutations in the ADRs pathogenesis has been shown either for dose-dependent or for dose-independent reactions. In this review, we present an update of the genetic background of ADRs, with phenotypic manifestations involving blood, muscles, heart, thyroid, liver, and skin disorders. This review aims to illustrate the growing usefulness of genetics both to prevent ADRs and to optimize the safe therapeutic use of many common drugs. In this prospective, ADRs could become an untoward "stress test," leading to new diagnosis of genetic-determined diseases. Thus, the wider use of pharmacogenetic testing in the work-up of ADRs will lead to new clinical diagnosis of previously unsuspected diseases and to improved safety and efficacy of therapies. Improving the genotype-phenotype correlation through new lab techniques and implementation of artificial intelligence in the future may lead to personalized medicine, able to predict ADR and consequently to choose the appropriate compound and dosage for each patient.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela T Locati
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Federico Romani
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| | | | - Carlo Pappone
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| |
Collapse
|
43
|
Molden E, Jukić MM. CYP2D6 Reduced Function Variants and Genotype/Phenotype Translations of CYP2D6 Intermediate Metabolizers: Implications for Personalized Drug Dosing in Psychiatry. Front Pharmacol 2021; 12:650750. [PMID: 33967790 PMCID: PMC8100508 DOI: 10.3389/fphar.2021.650750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic differences in cytochrome P450 (CYP)-mediated metabolism have been known for several decades. The clinically most important polymorphic CYP enzyme is CYP2D6, which plays a key role in the metabolism of many antidepressants and antipsychotics, along with a range of non-psychiatric medications. Dose individualization based on CYP2D6 genotype to improve the effect and safety of drug treatment has been an ambition for a long time. Clinical use of CYP2D6 genotyping is steadily increasing; however, for pre-emptive genotyping to be successful in predicting individual dose requirements, high precision of genotype-to-phenotype translations are required. Recently, guidelines for assigning CYP2D6 enzyme activity scores of CYP2D6 variant alleles, and subsequent diplotype-to-phenotype translations, were published by the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group. Consensus on assigning activity scores of CYP2D6 variant alleles and translating diplotype scores into CYP2D6 poor, intermediate, normal, or ultrarapid metabolizer groups were obtained by consulting 37 international experts. While assigning enzyme activities of non-functional (score 0) and fully functional (score 1) alleles are straightforward, reduced function variant alleles are more complex. In this article, we present data showing that the assigned activity scores of reduced function variant alleles in current guidelines are not of sufficient precision; especially not for CYP2D6*41, where the guideline activity score is 0.5 compared to 0.05–0.15 in pharmacogenetic studies. Due to these discrepancies, CYP2D6 genotypes with similar guidelinediplotype scores exhibit substantial differences in CYP2D6 metabolizer phenotypes. Thus, it is important that the guidelines are updated to be valid in predicting individual dose requirements of psychiatric drugs and others metabolized by CYP2D6.
Collapse
Affiliation(s)
- Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Departement of Pharmacy, University of Oslo, Oslo, Norway
| | - Marin M Jukić
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Biomedicum 5B, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Kastrinos A, Campbell-Salome G, Shelton S, Peterson EB, Bylund CL. PGx in psychiatry: Patients' knowledge, interest, and uncertainty management preferences in the context of pharmacogenomic testing. PATIENT EDUCATION AND COUNSELING 2021; 104:732-738. [PMID: 33414028 PMCID: PMC9620865 DOI: 10.1016/j.pec.2020.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Pharmacogenomic testing (PGx) is expanding into psychiatric care. PGx could potentially offer a unique benefit to psychiatric patients, providing information about patients' reaction to medications that could reduce the time and financial burdens of drug optimization. The aims of this study were to: (1) examine psychiatry patients' familiarity and interest in PGx, and (2) explore how Uncertainty Management Theory relates to PGx testing in psychiatry. METHOD We surveyed psychiatric patients, measuring their PGx familiarity and interest, attitudes toward PGx testing, and preference for managing illness uncertainty. RESULTS We analyzed data from 598 patients. Patients' familiarity of PGx was low, but interest was high. Thirty percent of patients were familiar with the test from communication with their healthcare provider or their own online health information seeking. A preference for seeking information was a significant positive predictor of testing interest (p < .001). CONCLUSION Psychiatric patients were interested in PGx testing, regardless of their uncertainty management preferences. PRACTICE IMPLICATIONS This study is one of the first to examine psychiatric patients' perspectives on PGx testing in mental health care. Our findings show that psychiatric patients are interested in the test and are familiar enough with PGx to be included in future research on the topic.
Collapse
Affiliation(s)
- Amanda Kastrinos
- College of Journalism and Communications, University of Florida, Gainesville, United States.
| | - Gemme Campbell-Salome
- College of Journalism and Communications, University of Florida, Gainesville, United States
| | - Summer Shelton
- Department of Communication, Media, & Persuasion, Idaho State University, Pocatello, United States
| | | | - Carma L Bylund
- College of Journalism and Communications, University of Florida, Gainesville, United States
| |
Collapse
|
45
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|