1
|
Xu X, Li X, Chen S, Liang Y, Zhang C, Huang Y. Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry. Molecules 2024; 29:4886. [PMID: 39459254 PMCID: PMC11510267 DOI: 10.3390/molecules29204886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
To date, no study has focused on Uvaria macrophylla leaves with various traditional efficiencies. This paper therefore applied a database affinity ultra-high-performance liquid chromatography with quadrupole Orbitrap tandem mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) strategy to analyze the lyophilized aqueous extract of U. macrophylla leaves. Through database comparison and MS fragment elucidation, this study has putatively identified 41 constituents belonging to flavonoid, phenolic acid, steroid, and saccharide natural product classifications. Significantly, four groups of isomers (liquiritigenin vs. isoliquiritigenin vs. pinocembrin; oroxylin A vs. wogonin vs. galangin 3-methyl ether; isoquercitrin vs. hyperoside; protocatechuic acid vs. 2,5-dihydroxybenzoic acid) have been successfully distinguished from each other. All of 41 constituents were then subjected to a quantitative analysis based on linear regression equation established by the above UHPLC-Q-Orbitrap-MS/MS strategy and an ABTS+•-scavenging antioxidant assay. Finally, the chemical content was multiplied by the corresponding ABTS+•-scavenging percentage to calculate the antioxidant contribution. It was shown that the chemical contents of 41 constituents varied from 0.003 ± 0.000 to 14.418 ± 1.041 mg/g, and gallic acid showed the highest antioxidant contribution. Gallic acid is considered as a suitable antioxidant quality-marker (Q-marker) of U. macrophylla leaves. These findings have scientific implications for the resource development and quality control of U. macrophylla leaves.
Collapse
Affiliation(s)
- Xiaoqiong Xu
- College of Pharmacy, Gansu Medical University, Pingliang 744000, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Yongbai Liang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Chuanyang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Yuhan Huang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| |
Collapse
|
2
|
Ait Elallem K, Ben Bakrim W, Yasri A, Boularbah A. Growth, Biochemical Traits, Antioxidant Enzymes, and Essential Oils of Four Aromatic and Medicinal Plants Cultivated in Phosphate-Mine Residues. PLANTS (BASEL, SWITZERLAND) 2024; 13:2656. [PMID: 39339631 PMCID: PMC11435175 DOI: 10.3390/plants13182656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Revegetation emerges as a promising approach to alleviate the adverse impacts of mining residues. However, it is essential to evaluate the characteristics of these materials and select suitable plant species to ensure successful ecosystem restoration. This study aimed to investigate the effects of phosphate-mine residues (MR) on the growth, biochemical properties, and essential oil concentration of Rosmarinus officinalis L., Salvia Officinalis L., Lavandula dentata L., and Origanum majorana L. The results showed that R. officinalis L. appeared to be particularly well-suited to thriving in MR soil. Our finding also revealed that L. dentata L., O. majorana L., and S. officinalis L. grown in MR exhibited significantly lower growth performance (lower shoot length, smaller leaves, and altered root structure) and higher antioxidant activities, with an alterations of photosynthetic pigment composition. They showed a decrease in total chlorophylls when grown on MR (0.295, 0.453, and 0.562 mg g-1 FW, respectively) compared to the control (0.465, 0.807, and 0.808 mg g-1 FW, respectively); however, they produced higher essential oil content (1.8%, 3.06%, and 2.88%, respectively). The outcomes of this study could offer valuable insights for the advancement of revegetation technologies and the utilization of plant products derived from phosphate-mine residues.
Collapse
Affiliation(s)
- Khadija Ait Elallem
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Widad Ben Bakrim
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laâyoune 70000, Morocco
| | - Abdelaziz Yasri
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
- Institut National de la Recherche Agronomique (INRA), Rabat 10090, Morocco
| | - Ali Boularbah
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
- Center of Excellence for Soil and Fertilizer Research in Africa, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| |
Collapse
|
3
|
Bozaba TO, Kuru İS. The effect of the combined application of elicitors to Salvia virgata Jacq. under salinity stress on physiological and antioxidant defense. BMC PLANT BIOLOGY 2024; 24:788. [PMID: 39164648 PMCID: PMC11337643 DOI: 10.1186/s12870-024-05443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Salinity stress is one of the most important stress barriers to crop production worldwide. Developing and implementing new strategies against salinity stress is critical for increasing agricultural productivity and supporting sustainable farming. Elicitors such as nanoparticles and Salicylic acid have recently been used potentially for better product yield. Therefore, in our research the Salvia virgata plant was exposed to salinity (NaCl) stress, and zinc oxide nanoparticles (ZnONP), salicylic acid (SA), and the ZnONP + SA combination were applied to plants divided into different groups. While salinity stress decreased the amount of chlorophyll a, chlorophyll b, and carotenoid pigments, SA, ZnONP, and SA + ZnONP elicitors combined with salinity stress enhanced the content of all three pigments. While salt stress raised MDA, H2O2, total phenolic, total flavonoid, soluble sugar and proline content, elicitor applications enhanced proline, soluble sugar, total phenolic and total flavonoid content more. Additionally, the application of NaCl + SA + ZnONP increased proline content by 21.55% and sugar content by 15.73% compared to NaCl application, while decreasing MDA content by 42.28% and H2O2 levels by 42.34%, thereby alleviating the plant's salt stress. It was revealed that DPPH, ABTS, and CUPRAC antioxidant activity sequence used to determine the total antioxidant activity displayed similarities, and it was found as NaCI + ZnONP > NaCI + SA > NaCI + SA + ZnONP > NaCI > Control. Furthermore, all elicitor applications increased CAT, GR, APX, and SOD enzyme activities while reducing oxidative stress in S. virgata plants. When all the data were evaluated, it was confirmed that SA and ZnONP had a synergistic effect and that SA and ZnONP have the potential to support plant development and growth under salinity. SA and ZnONP applications may have the capacity to least the detrimental impacts of salinity stress on plants. However, further research is needed to investigate the effectiveness of SA and ZnONPs in ameliorating salinity or different stress factors in various other plants.
Collapse
Affiliation(s)
- Türkan Oktay Bozaba
- Institute of Graduate Studies, Department of Biology, Batman University, Batman, Turkey
| | - İbrahim Selçuk Kuru
- Department of Plant and Animal Production, Sason Vocational School, Batman University, Batman, Turkey.
| |
Collapse
|
4
|
Fanai S, Bakhshi D, Abbaszadeh B. Physiological and biochemical characteristics of milk thistle ( Silybum marianum (L.) Gaertn) as affected by some plant growth regulators. Food Sci Nutr 2024; 12:6022-6033. [PMID: 39139968 PMCID: PMC11317729 DOI: 10.1002/fsn3.4233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 08/15/2024] Open
Abstract
Milk thistle (Silybum marianum (L.) Gaertn) is a globally and widely used medicinal plant that contains silymarin. This plant has antioxidant, antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, and neuroprotective effects. Plant quality, yield, and phytochemicals, especially silymarin content, change under various conditions like drought stress. Therefore, this research studied plant growth regulators (PGRs) like salicylic acid, spermidine, and brassinosteroid to increase plant tolerance to drought stress. Experimental treatments include different levels of irrigation (25%, 50%, 75%, and 90% field capacity), and foliar spraying including salicylic acid (75 and 150 mg/L), spermine (70 and 140 mg/L), and brassinosteroid (1 and 1.2 μM), separately, and water as a control and a secondary factor. The results revealed that the highest amount of leaf phenolic compounds was observed in the highest drought stress level (25%) and 75 mg/L salicylic acid application. Furthermore, brassinosteroid at different concentrations and salicylic acid (75 mg/L) increased leaf flavonoid content compared to other treatments. In 50% field capacity, foliar application of salicylic acid (150 mg/L) significantly increased seed yield by approximately 75% compared to control under the same stress level. Brassinosteroid application (1 μM) under 75% field capacity significantly increased the seed's taxifolin amount by 159%. Additionally, salicylic acid noticeably increased the silychristin concentration. The concentration of silydianin in the seed has also been increased under drought stress and foliar spraying with PGRs. Compared to the control, using spermidine below 75% field capacity caused an increase in its concentrations by over seven times. The highest silybin A amount was obtained in 50% field capacity and foliar150 mg/L salicylic acid. Taxifolin, silychristin, silydianin, silybinin B, iso-silybinin A, and iso-silybinin B compounds were identified in the seed extract. Generally, foliar spraying using plant growth regulators increased the number of silymarin compounds under drought stress conditions and field cultivation conditions.
Collapse
Affiliation(s)
- Sahar Fanai
- Department of Horticultural ScienceUniversity Campus 2, University of GuilanRashtIran
| | - Davood Bakhshi
- Faculty of Agricultural Sciences, Department of Horticultural ScienceUniversity of GuilanRashtIran
| | - Bohloul Abbaszadeh
- Department of Research Center on Cultivation & Domestication of Medicinal PlantsAgricultural Research Education and Extension Organization (AREEO)KarajIran
| |
Collapse
|
5
|
Mansinhos I, Gonçalves S, Romano A. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1370810. [PMID: 39049861 PMCID: PMC11266143 DOI: 10.3389/fpls.2024.1370810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
The interest in medicinal and aromatic plants (MAPs) has increased significantly in recent years, driven by the growing demand for natural products. MAPs are a valuable source of secondary metabolites, which renders them useful to a number of industries, including cosmetics, pharmaceuticals, and food. The Lamiaceae family includes economically important MAPs that produce valuable secondary metabolites such as essential oils (EOs) and phenolic compounds (PCs). The quantity and quality of these secondary metabolites are affected by abiotic stress factors. In a climate change scenario, the Lamiaceae is one of the most affected families, especially due to its wide distribution in the Mediterranean region. In the present study, the most common climate-related environmental stress factors, namely, drought, salinity, temperature, light, and heavy metals, were reviewed and discussed in order to assess their impact on the chemical profiles of EOs and PCs, as well as on the biological properties (antioxidant, antibacterial, antimelanogenic, pest-repellent, and UV-protective) of Lamiaceae species. It can be posited that these stresses typically act as a catalyst for the secondary metabolism of these plants, resulting in increased production of EO compounds (e.g., 1,8-cineole, linalool, camphor, borneol, and limonene) and PCs (e.g., rosmarinic, caffeic, and salvianolic acids) and subsequent enhancement of their biological activities. In view of the industrial applications of these bioactive compounds, it is of interest to explore the changes in secondary metabolism induced by environmental factors as it is possible to increase the accumulation of valuable secondary metabolites.
Collapse
Affiliation(s)
| | - Sandra Gonçalves
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
6
|
Islam AKMS, Bhuiyan R, Nihad SAI, Akter R, Khan MAI, Akter S, Islam MR, Khokon MAR, Latif MA. Green synthesis and characterization of silver nanoparticles and its efficacy against Rhizoctonia solani, a fungus causing sheath blight disease in rice. PLoS One 2024; 19:e0304817. [PMID: 38889131 PMCID: PMC11185457 DOI: 10.1371/journal.pone.0304817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Rice (Oryza sativa) stands as a crucial staple food worldwide, especially in Bangladesh, where it ranks as the third-largest producer. However, intensified cultivation has made high-yielding rice varieties susceptible to various biotic stresses, notably sheath blight caused by Rhizoctonia solani, which inflicts significant yield losses annually. Traditional fungicides, though effective, pose environmental and health risks. To address this, nanotechnology emerges as a promising avenue, leveraging the antimicrobial properties of nanoparticles like silver nanoparticles (AgNPs). This study explored the green synthesis of AgNPs using Ipomoea carnea leaf extract and silver nitrate (AgNO3), and also examined their efficacy against sheath blight disease in rice. The biosynthesized AgNPs were characterized through various analytical techniques such as UV-vis spectrophotometer, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Particle size analyzer, Zeta potential, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM) for confirming their successful production and crystalline nature of nanoparticles. The results of UV-visible spectrophotometers revealed an absorption peak ranging from 421 to 434 nm, validated the synthesis of AgNPs in the solution. XRD, DLS, and TEM estimated AgNPs sizes were ~45 nm, 66.2nm, and 46.38 to 73.81 nm, respectively. SEM and FESEM demonstrated that the synthesized AgNPs were spherical in shape. In vitro assays demonstrated the significant inhibitory effects of AgNPs on mycelial growth of Rhizoctonia solani, particularly at higher concentrations and pH levels. Further greenhouse and field experiments validated the antifungal efficacy of AgNPs against sheath blight disease in rice, exhibiting comparable effectiveness to commercial fungicides. The findings highlight the potential of AgNPs as a sustainable and effective alternative for managing rice sheath blight disease, offering a safer solution amidst environmental concerns associated with conventional fungicides.
Collapse
Affiliation(s)
| | - Rejwan Bhuiyan
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | | | - Rumana Akter
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | | | - Shamima Akter
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Md. Rashidul Islam
- Department of Plant Pathology Division, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Mohammad Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| |
Collapse
|
7
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Kovács GP, Tóth Z. Emerging Trends in Non-Protein Amino Acids as Potential Priming Agents: Implications for Stress Management Strategies and Unveiling Their Regulatory Functions. Int J Mol Sci 2024; 25:6203. [PMID: 38892391 PMCID: PMC11172521 DOI: 10.3390/ijms25116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Plants endure the repercussions of environmental stress. As the advancement of global climate change continues, it is increasingly crucial to protect against abiotic and biotic stress effects. Some naturally occurring plant compounds can be used effectively to protect the plants. By externally applying priming compounds, plants can be prompted to trigger their defensive mechanisms, resulting in improved immune system effectiveness. This review article examines the possibilities of utilizing exogenous alpha-, beta-, and gamma-aminobutyric acid (AABA, BABA, and GABA), which are non-protein amino acids (NPAAs) that are produced naturally in plants during instances of stress. The article additionally presents a concise overview of the studies' discoveries on this topic, assesses the particular fields in which they might be implemented, and proposes new avenues for future investigation.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| |
Collapse
|
8
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
9
|
Ben Youssef R, Jelali N, Martínez-Andújar C, Abdelly C, Hernández JA. Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1268. [PMID: 38732483 PMCID: PMC11085932 DOI: 10.3390/plants13091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The current investigation aims to underline the impact of salicylic acid or calcium chloride seed pre-treatments on mineral status and oxidative stress markers, namely levels of electrolyte leakage (EL) and lipid peroxidation levels, measured as thiobarbituric reactive substances (TBARS), and the activity of some antioxidant enzymes in roots and leaves of plants in two barley species grown under various salt treatments. Overall, our results revealed that salinity inhibits essential nutrient absorption such as iron, calcium, magnesium and potassium and stimulates the absorption of sodium. Also, this environmental constraint induced oxidative stress in plants in comparison with the control conditions. This state of oxidative stress is reflected by an increase in TBARS content as well as the stimulation of EL values. In addition, salinity induced disturbances in the activity of antioxidant enzymes, which were mainly dependent on the applied salt concentration and the species. In addition, Hordeum marinum maintained high antioxidant enzyme activity and low levels of oxidative stress parameters, which reinforces its salt-tolerant character. Importantly, salicylic acid or calcium chloride seed priming alleviated the mineral imbalance and the oxidative damage induced by salinity. Moreover, seed priming improves iron, calcium magnesium and potassium content and limitsthe accumulation of sodium. Also, both treatments not only decrease TBARS levels and limit EL, but they also stimulate the antioxidant enzyme activities in the leaves and roots of the stressed plants as compared with stressed plants grown from non-primed seeds. Interestingly, the beneficial effects of the mentioned treatments were more notable on Hordeum vulgare species.
Collapse
Affiliation(s)
- Rim Ben Youssef
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria (CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (C.A.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1060, Tunisia
- Group of Fruit Trees Biotechnology, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain;
| | - Nahida Jelali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria (CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (C.A.)
| | - Cristina Martínez-Andújar
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain;
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria (CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (C.A.)
| | - José Antonio Hernández
- Group of Fruit Trees Biotechnology, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain
| |
Collapse
|
10
|
Ochatt SJ. Less Frequently Used Growth Regulators in Plant Tissue Culture. Methods Mol Biol 2024; 2827:109-143. [PMID: 38985266 DOI: 10.1007/978-1-0716-3954-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.
Collapse
Affiliation(s)
- Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
11
|
Li Q, Guan C, Zhao Y, Duan X, Yang Z, Zhu J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115500. [PMID: 37757624 DOI: 10.1016/j.ecoenv.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Zinc (Zn) is considered as one of the heavy metal pollutants in soil affecting agriculture. Salicylic acid (SA) is an important phytohormone that can mitigate effects against various abiotic stresses in plants, however, its exploration to improve Zn stress tolerance in alfalfa plants is still elusive. Thus, in the present study, exogenous SA treatment was conducted on alfalfa plants under Zn stress. The effects of exogenous SA on the physiological effects of alfalfa plants and the expression levels related genes were studied. This study tested the biomass, relative water content, chlorophyll levels, photosynthetic capacity, proline and soluble sugar contents, detected the activity of antioxidant enzymes (such as peroxidase and superoxide dismutase), glutathione biosynthesis, and endogenous SA levels, and quantified the genes associated with the antioxidant system and glutathione metabolism-mediated Zn stress. The results showed that exogenous SA could elevate the physiological adaptability of alfalfa plants through enhancing photosynthesis, proline and soluble sugar levels, stimulating antioxidant system and glutathione metabolism, and inducing the transcription level of related genes, thereby diminishing oxidative stress, inhibiting excessive Zn accumulation of alfalfa plants, increasing tolerance to Zn stress, and reducing the toxicity of Zn. Collectively, the application of SA alleviates Zn toxicity in alfalfa plants. The findings gave first insights into the regulatory mechanism of the Zn stress tolerance of alfalfa by exogenous SA and this might have positive implications for managing other plants which are suffering Zn stress.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yi Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xiaoye Duan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
12
|
Boukari N, Jelali N, Abdelly C, Hannoufa A. Priming seeds with salicylic acid modulates membrane integrity, antioxidant defense, and gene expression in Medicago sativa grown under iron deficiency and salinity. PHYSIOLOGIA PLANTARUM 2023; 175:e14026. [PMID: 37882313 DOI: 10.1111/ppl.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 10/27/2023]
Abstract
Exposure of plants to adverse environmental conditions reduces their growth and productivity. Currently, seed priming with phytohormones is considered one of the most reliable and cost-effective approaches that can help alleviate the toxic effects of environmental stress. In this context, the present study aims to investigate the effect of priming alfalfa seeds with salicylic acid (SA) on oxidative stress markers, including malonyldialdehyde, protein content, activities of antioxidant enzymes, and expression of genes encoding these enzymes in leaves and roots of alfalfa (Gabes ecotype) grown under saline stress, iron deficiency, or both. Our results showed that the application of salt stress and iron deficiency separately or simultaneously induces changes in the activities of antioxidant enzymes, but these are organ- and stress-dependent. The Gabes ecotype was able to increase the activities of these enzymes under salt stress to alleviate oxidative damage. Indeed, priming seeds with 100 μM SA significantly increases the enzymatic activities of APX, GPX, CAT, and SOD. Therefore, this concentration can be considered optimal for the induction of iron deficiency tolerance. Our results showed not only that Gabes ecotype was able to tolerate salt stress by maintaining high expression of the Fe-SOD isoform, but also that the pretreatment of seeds with 100 μM SA improved the tolerance of this ecotype to iron deficiency by stimulating Fe-SOD expression and inhibiting CAT and APXc.
Collapse
Affiliation(s)
- Nadia Boukari
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Nahida Jelali
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | | |
Collapse
|
13
|
Yadav P, Ansari MW, Kaula BC, Rao YR, Meselmani MA, Siddiqui ZH, Brajendra, Kumar SB, Rani V, Sarkar A, Rakwal R, Gill SS, Tuteja N. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111736. [PMID: 37211221 DOI: 10.1016/j.plantsci.2023.111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Babeeta C Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Yalaga Rama Rao
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Moaed Al Meselmani
- School of Biosciences, Alfred Denny Building, Grantham Centre, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, England, UK
| | | | - Brajendra
- Division of Soil Science, ICAR-IIRR, Hyderabad, Telangana, India
| | - Shashi Bhushan Kumar
- Department of Soil Science, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Varsha Rani
- Department of Crop Physiology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Abhijit Sarkar
- Department of Botany, University of GourBanga, Malda 732103, West Bengal, India
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
14
|
Islam S, Mohammad F, Siddiqui MH, Kalaji HM. Salicylic acid and trehalose attenuate salt toxicity in Brassica juncea L. by activating the stress defense mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121467. [PMID: 36963453 DOI: 10.1016/j.envpol.2023.121467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Two significant soil degradation processes that pose a hazard to our ecosystems are soil salinization and sodification. The information on potential of salicylic acid (SA) and trehalose (Tre) to induce abiotic stress signaling and triggers physio-biochemical responses in crop plants is limited. Therefore, the present study was aimed to investigate the efficacy of 5 μM SA and/or 10 mM Tre in improving the growth, photosynthesis, ion homeostasis, nutrient acquisition, antioxidant defense system and yield of mustard plants growing under sodium chloride (NaCl) stress (0, 50, 100 and 150 mM NaCl). The data showed that increasing NaCl stress concentration decreased growth, photosynthesis, membrane permeability, ion homeostasis and yield in a dose-dependent manner while increasing considerably enzymatic antioxidant enzyme activities, compatible solute accumulation, sodium ion and oxidative stress biomarkers linearly with increasing NaCl stress concentration. The spray of SA, Tre, and SA + Tre played diversified roles in enhancing NaCl stress tolerance in mustard at morpho-physiological and biochemical levels. The combined SA + Tre application proved best and completely neutralized the NaCl stress-induced suppression in growth, photosynthesis, ion homeostasis, nutrient acquisition and yield by significantly enhancing the activities of enzymatic antioxidants, compatible solutes accumulation, water status and membrane permeability, while reducing considerably osmotic stress, reactive oxygen species generation, lipid peroxidation, cell death and sodium uptake in mustard. The SA + Tre application enhanced relative water content by 23%, net photosynthetic rate by 48%, superoxide dismutase activity by 51% and seed yield per plant by 64%, while decreased superoxide anion content by 26%, sodium ion content by 36% and malondialdehyde content by 25% over 0 mM NaCl treatment. Our findings indicate that the co-application of SA + Tre can be a suitable approach to palliate the ill effect of NaCl stress in mustard plants.
Collapse
Affiliation(s)
- Shaistul Islam
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Firoz Mohammad
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
15
|
Smoleń S, Czernicka M, Kęska-Izworska K, Kowalska I, Grzebelus D, Pitala J, Halka M, Skoczylas Ł, Tabaszewska M, Liszka-Skoczylas M, Grzanka M, Ledwożyw-Smoleń I, Koronowicz A, Krzemińska J, Sularz O, Kiełbasa D, Neupauer J, Kováčik P. Transcriptomic and metabolic studies on the role of inorganic and organic iodine compounds in lettuce plants. Sci Rep 2023; 13:8440. [PMID: 37231053 PMCID: PMC10213046 DOI: 10.1038/s41598-023-34873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Iodine (I) is considered a beneficial element or even micronutrient for plants. The aim of this study was to determine the molecular and physiological processes of uptake, transport, and metabolism of I applied to lettuce plants. KIO3, KIO3 + salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid were applied. RNA-sequencing was executed using 18 cDNA libraries constructed separately for leaves and roots from KIO3, SA and control plants. De novo transcriptome assembly generated 1937.76 million sequence reads resulting in 27,163 transcripts with N50 of 1638 bp. 329 differentially expressed genes (DEGs) in roots were detected after application of KIO3, out of which 252 genes were up-regulated, and 77 were down-regulated. In leaves, 9 genes revealed differential expression pattern. DEGs analysis indicated its involvement in such metabolic pathways and processes as: chloride transmembrane transport, phenylpropanoid metabolism, positive regulation of defense response and leaf abscission, and also ubiquinone and other terpenoid-quinone biosynthesis, protein processing in endoplasmic reticulum, circadian rhythm including flowering induction as well as a putative PDTHA (i.e. Plant Derived Thyroid Hormone Analogs) metabolic pathway. qRT-PCR of selected genes suggested their participation in the transport and metabolism of iodine compounds, biosynthesis of primary and secondary metabolites, PDTHA pathway and flowering induction.
Collapse
Affiliation(s)
- Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland.
| | - Kinga Kęska-Izworska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Mariya Halka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Marlena Grzanka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Iwona Ledwożyw-Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Joanna Krzemińska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Olga Sularz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Daniel Kiełbasa
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Jakub Neupauer
- Department of Agrochemistry and Plant Nutrition, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia
| | - Peter Kováčik
- Department of Agrochemistry and Plant Nutrition, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia
| |
Collapse
|
16
|
He A, Ma Z, Li Y, Huang C, Yong JWH, Huang J. Spatiotemporal, physiological and transcriptomic dynamics of wild jujube seedlings under saline conditions. TREE PHYSIOLOGY 2023; 43:832-850. [PMID: 36617163 DOI: 10.1093/treephys/tpad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
Soil salinity is a major constraint limiting jujube production in China. Wild jujube (Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow) is widely used as the rootstock of jujube (Z. jujuba) to overcome the saline conditions. To understand the adaptive mechanism in wild jujube under saline conditions, we combined spatiotemporal and physiological assessments with transcriptomic analysis on wild jujube seedlings undergoing various salt treatments. These salt treatments showed dose and duration effects on biomass, photosynthesis, (K+) and (Na+) accumulation. Salt treatments induced higher levels of salicylic acid in roots and leaves, whereas foliar abscisic acid was also elevated after 8 days. The number of differential expression genes increased with higher doses and also longer exposure of NaCl treatments, with concomitant changes in the enriched Gene Ontology terms that were indicative of altered physiological activities. Gene co-expression network analysis identified the core gene sets associated with salt-induced changes in leaves, stems and roots, respectively. The nitrogen transporters, potassium transporters and a few transcription factors belonging to WRKY/MYB/bHLH families were clustered as the hub genes responding to salt treatments, which were related to elevated nitrogen and K+/Na+. Ectopic overexpression of two WRKY transcription factor genes (ZjWRKY6 and ZjWRKY65) conferred stronger salt-tolerance in Arabidopsis thaliana transformants by enhancing the activities of antioxidant enzymes, decreasing malondialdehyde accumulation and maintaining K+/Na+ homeostasis. This study provided evidence about the spatiotemporal, physiological and transcriptomic dynamics of wild jujube during salt stress and identified potential genes for further research to improve salt tolerance in jujube.
Collapse
Affiliation(s)
- Aobing He
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alaer 843300, China
| | - Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yunfei Li
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Chen Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Jian Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alaer 843300, China
| |
Collapse
|
17
|
Apon TA, Ahmed SF, Bony ZF, Chowdhury MR, Asha JF, Biswas A. Sett priming with salicylic acid improves salinity tolerance of sugarcane ( Saccharum officinarum L.) during early stages of crop development. Heliyon 2023; 9:e16030. [PMID: 37215815 PMCID: PMC10192769 DOI: 10.1016/j.heliyon.2023.e16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Sugarcane (Saccharum officinarum L.), a globally cultivated carbohydrate producing crop of industrial importance is being challenged by soil salinity due to its glycophytic nature. Water stress coupled with cellular and metabolic alterations resulting from excess sodium (Na+) ion accumulation is irreversibly damaging during early crop developmental stages that often results in complete crop failure. This study therefore aimed to explore the potential of salicylic acid as a sett priming material to mitigate the negative effects of salt stress on sugarcane during germination and early growth stages. Five doses of salicylic acid (0 [hydropriming] [control], 0.5 mM, 1 mM, 1.5 mM and 2 mM) were tested against three levels of salinity (0.5 dS m-1 [control], 4 dS m-1, and 8 dS m-1) within a polyhouse environment. Results revealed 11.2%, 18.5%, 25.4%, and 38.6%, average increase in final germination, germination energy, seedling length and seedling vigor index respectively with a subsequent reduction of 21% mean germination time. Investigations during early seedling growth revealed 21.6%, 17.5%, 27.0%, 39.9%, 10.7%, 11.5%, 17.5%, 47.9%, 35.3% and 20.5% overall increase in plant height, total leaf area, shoot dry matter, root dry matter, leaf greenness, relative water content, membrane stability index, proline content, total antioxidant activity and potassium (K+) ion accumulation respectively with a subsequent reduction of 24.9% Na+ ion accumulation and 35.8% Na+/K+ ratio due to salicylic acid priming. Germination, seedling growth and recovery of physiochemical traits were highly satisfactory in primed setts than non-primed ones even under 8 dS m-1 salinity level. This study should provide useful information for strategizing salinity management approaches for better productivity of sugarcane.
Collapse
Affiliation(s)
- Tasfiqure Amin Apon
- Pathology Division, Bangladesh Sugarcrop Research Institute (BSRI), Ishurdi, 6620, Pabna, Bangladesh
| | - Sheikh Faruk Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatul Ferdaous Bony
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Rizvi Chowdhury
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Jannatul Ferdoushi Asha
- Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur 5200, Bangladesh
| | - Arindam Biswas
- Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur, 1701, Bangladesh
| |
Collapse
|
18
|
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107673. [PMID: 37030249 DOI: 10.1016/j.plaphy.2023.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt; Photobiology Research Group, Sorbonne Université CNRS, 75005, Paris, France
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
19
|
Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, Ramesh M. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:447-458. [PMID: 37197003 PMCID: PMC10026785 DOI: 10.1007/s11240-023-02485-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites are bioactive scaffolds that are crucial for plant survival in the environment and to maintain a defense mechanism from predators. These compounds are generally present in plants at a minimal level and interestingly, they are found to have a wide variety of therapeutic values for humans. Several medicinal plants are used for pharmaceutical purposes due to their affordability, fewer adverse effects, and vital role in traditional remedies. Owing to this reason, these plants are exploited at a high range worldwide and therefore many medicinal plants are on the threatened list. There is a need of the hour to tackle this major problem, one effective approach called elicitation can be used to enhance the level of existing and novel plant bioactive compounds using different types of elicitors namely biotic and abiotic. This process can be generally achieved by in vitro and in vivo experiments. The current comprehensive review provides an overview of biotic and abiotic elicitation strategies used in medicinal plants, as well as their effects on secondary metabolites enhancement. Further, this review mainly deals with the enhancement of biomass and biosynthesis of different bioactive compounds by methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors of wide medicinal plants in in vitro by using different cultures. The present review was suggested as a significant groundwork for peers working with medicinal plants by applying elicitation strategies along with advanced biotechnological approaches.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Kannan Karthick
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Sung Hwan Choi
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| |
Collapse
|
20
|
Zheng Y, Wang X, Cui X, Wang K, Wang Y, He Y. Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1095363. [PMID: 36684767 PMCID: PMC9853409 DOI: 10.3389/fpls.2022.1095363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Recent changing patterns of global climate have turned out to be a severe hazard to the horticulture crops production. A wide range of biotic and abiotic stresses often affect plants due to their sessile nature. Horticultural crop losses are mainly caused by abiotic factors such as drought, salt, heat, cold, floods, and ultraviolet radiation. For coping up with these adversities, well-developed mechanisms have been evolved in plants, which play a role in perceiving stress signals and enabling optimal growth responses. Interestingly, the use of phytohormones for suppressing the impact of abiotic stress has gained much attention in recent decades. For circumvention of stress at various levels, including physiological, molecular, as well as biochemical, a sophisticated mechanism is reported to be provided by the phytohormones, thus labeling these phytohormones a significant role in plant growth and development. Phytohormones can improves tolerance against abiotic stresses by increasing seed germination, seedling growth, leaf photosynthesis, root growth, and antioxidant enzymes and reducing the accumulation of reactive oxygen species, malonaldehyde, and electrolyte leakage. Recent discoveries highlight the significant role of a variety of phytohormones including melatonin (MEL), Gamma-aminobutyric acid (GABA), jasmonic acid (JA), salicylic acid (SA), brassinosteroids (BRs), and strigolactones (SLs) in abiotic stress tolerance enhancement of horticultural plants. Thus, current review is aimed to summarize the developmental concepts regarding role of phytohormones in abiotic-stress mitigation, mainly in horticultural crops, along with the description of recent studies which identified the role of different phytohormones in stressed environments. Hence, such a review will help in paving the path for sustainable agriculture growth via involvement of phytohormones in enhancement of abiotic stress tolerance of horticultural crops.
Collapse
Affiliation(s)
- Yi Zheng
- School of Life Science, Changchun SCI-TECH University, Changchun, Jilin, China
| | - Xiaonan Wang
- School of Life Science, Changchun SCI-TECH University, Changchun, Jilin, China
| | - Xin Cui
- School of Life Science, Changchun SCI-TECH University, Changchun, Jilin, China
| | - Kefeng Wang
- School of Life Science, Changchun SCI-TECH University, Changchun, Jilin, China
| | - Yong Wang
- School of Life Science, Changchun SCI-TECH University, Changchun, Jilin, China
| | - Yuhui He
- School of Architecture and Urban Planning, Changchun University of Architecture and Civil Engineering, Changchun, Jilin, China
| |
Collapse
|
21
|
Anh DH, Dumri K, Yen LTH, Punyodom W. The earth-star basidiomycetous mushroom Astraeus odoratus produces polyhydroxyalkanoates during cultivation on malt extract. Arch Microbiol 2022; 205:34. [PMID: 36542149 DOI: 10.1007/s00203-022-03297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/20/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022]
Abstract
Polyhydroxyalkanoates (PHAs) including poly-3-hydroxybutyrate (P3HB) as secondary metabolisms were in vitro produced by the edible basidiomycetous mushroom Astraeus odoratus during its growth on malt agar extract. Various carbon and nitrogen sources containing cellulose, glucose, glycerol, rice straw powder, soybean meal and peptone were investigated for the growth of basidiomycetous mushrooms. During cultivation, the A. odoratus culture exudated the considerably extracellular fluid up to approx. 2.3 ml on 2% malt extract agar plate within 7 days. The chemical compounds of the exudated fluid were further investigated by Fourier-transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS); and its morphology of the lyophilized sample was observed by scanning electron microscope (SEM). FTIR results showed the characteristic bands of OH at 3445 cm-1, CH/CH2/symmetric CH3 (stretch) at 2923 and 2852 cm-1, C=O at 1730 cm-1, asymmetric CH3 (bend) at 1454 and 1414 cm-1, C-O of COO- at 1396 cm-1 and C-O-C at 1223, 1160, 1116, 1058 and 1019 cm-1 which were similar to the absorptive characteristics of P3HB. Methyl ester derivatives of GC/MS results identified 7 compounds including: 3-hydroxybutanoic (monomer of PHB), aminobenzoic, salicylic, hexadecenoic, octadecadienoic, octadecenoic and octadecanoic acids. SEM images revealed a fibriform and porous materials. Hence, the occurrence of PHAs was first described in a basidiomycetous mushroom A. odoratus. Thus, PHAs could be found not only in bacteria and but also in basidiomycetous mushroom, which can be promising target for bioplastics and green environmental studies.
Collapse
Affiliation(s)
- Dau Hung Anh
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.,Biogreen Material Research & Service Part., Ltd., Chiang Mai, 50140, Thailand
| | - Kanchana Dumri
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.,Biogreen Material Research & Service Part., Ltd., Chiang Mai, 50140, Thailand.,Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Keaw Road, Suthep, Chiang Mai, 50200, Thailand
| | - Le Thi Hoang Yen
- Laboratory of Fungi Technology, Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Keaw Road, Suthep, Chiang Mai, 50200, Thailand.
| |
Collapse
|
22
|
Najafi Vafa Z, Sohrabi Y, Mirzaghaderi G, Heidari G. The effect of rhizobia in improving the protective mechanisms of wheat under drought and supplementary irrigation conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1073240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IntroductionWheat (Triticum aestivum L.) is a strategic crop and one of the world's most essential cereals, providing most of the world's calories and protein needs. Drought stress is one of the main limitations for crop production such as wheat in arid and semi-arid regions. Plants can accumulate antioxidants, carbohydrates, and stress hormones that stimulate cell and molecular regeneration under stress conditions. Irrigation saves water, improves crop photosynthesis, and increases plant ability to absorb water and elements from soil. Therefore, irrigation at the right time or supplementary irrigation can help plant growth and crop yield under drought conditions. Appropriate nutrition with fertilizers increases plants' stress tolerance. Bio-fertilizers are restorative elements used in soil to improve tolerance to stresses such as drought stress. A well-known class of bio-fertilizers is plant growth promoting rhizobacteria (PGPR). These rhizosphere bacteria affect plant development and productivity by interacting with roots. Arbuscular mycorrhizal fungi (AMF) alleviate drought stress in plants by enhancing their ability to absorb water and nutrients from the soil. Seaweed extract bio-fertilizer is organic matter used to increase crop growth and soil fertility. This bio-fertilizer is utilized as growth stimulants and food supplements. Our research analyzed the effects of rhizobia and seaweed extracts on wheat's drought resistance mechanisms.Materials and methodsThis research was conducted in Iran in the crop years of 2017–2018 and 2018–2019 in the research farm of Kurdistan University Faculty of Agriculture located in Dehgolan with coordinates 47°18′ 55″ East and 35°19′ 10″ North with an altitude of 1866 meters above sea level, 45 kilometers east It was done on the wheat plant in Sanandaj city. The experiment was conducted in the form of a split-split plot in the form of a randomized complete block design with four replications. Irrigation treatments as the main factor (no irrigation or dry-land, one irrigation in the booting stage, two irrigations in the booting and spike stages), two wheat cultivars (Sardari and Sirvan) as secondary factors, and the application of biological fertilizers at eight levels including Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist and no application of biological fertilizers (control) as Sub-sub-factors were considered.Results and discussionAccording to the study, when bio-fertilizer was applied with once and twice supplementary irrigation levels, leaf relative water content (RWC) and soluble protein content (SPC) increased, while lack of irrigation increased malondialdehyde (MDA). In both years, bio-fertilizers, especially their combinations, increased the amount and activity of enzymatic and non-enzymatic antioxidants, including peroxidase (POD), superoxide dismutase (SOD), phenol (Phe), flavonoid (Fla), and anthocyanin (Anth). Also, it enhanced the inhibition of free radicals by 2-2-Diphenyl picryl hydrazyl (DPPH) and cleared active oxygen species. It was found that malondialdehyde (MDA) levels were very low in wheat under two times irrigation with averages of 3.3909 and 3.3865 μmol g−1 FW. The results indicated a significant positive relationship between non-enzymatic and enzymatic antioxidants such as Phe, Fla, Anth, DPPH, POD, and SOD enzymes and their role in improving stress under dry-land conditions, especially in the Sardari variety. Biological fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) increased wheat yield compared to the control. Furthermore, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract improved grain yield by 8.04% and 6.96% in the 1st and 2nd years, respectively. Therefore, appropriate combinations of microorganisms, beneficial biological compounds, and supplementary irrigation can reduce the adverse effects of drought stress in arid and semi-arid regions.
Collapse
|
23
|
Guo X, Ahmad N, Zhao S, Zhao C, Zhong W, Wang X, Li G. Effect of Salt Stress on Growth and Physiological Properties of Asparagus Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:2836. [PMID: 36365288 PMCID: PMC9657929 DOI: 10.3390/plants11212836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Salt stress could inhibit the growth and development of crops and negatively affect yield and quality. The objective of this study was to investigate the physiological responses of different asparagus cultivars to salt stress. Twenty days old seedlings ofasalt-tolerant Apollo andasalt-sensitive cultivar JL1 were subjected to 0 (CK) and120 mM NaCl stress for 20 d. Their changes in growth, ion contents, antioxidant enzyme activities and gene expression were analyzed. Salt stress significantly inhibited the growth of both cultivars, and JL1 showed a greater decrease than Apollo. The root development of Apollo was promoted by 120 mM NaCl treatment. The Na+ content in roots, stems, and leaves of both cultivars was increased under salt stress, while K+ content and K+/Na+ decreased. The salt-tolerant cultivar Apollo showed less extent of increase in Na+ and decrease in K+ content and kept a relatively high K+/Na+ ratio to compare with JL1. The contents of proline, soluble sugar and protein increased in Apollo, while thesesubstances changed differently in JL1 under salt stress. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were gradually increased under salt stress in Apollo, while the corresponding enzyme activities in JL1 were decreased at the late stage of salt stress. The expression of SOD, POD, and CAT genes of both cultivars changed in a similar way to the enzyme activities. Malondialdehyde (MDA) content was increased slightly in Apollo, while increased significantly in JL1. At the late stage of salt stress, Apollomaintained a relatively high K+/Na+, osmotic adjustment ability and antioxidant defense capability, and therefore exhibited higher tolerance to salt stress than that of JL1.
Collapse
Affiliation(s)
- Xin Guo
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan 250100, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| |
Collapse
|
24
|
Roumani A, Biabani A, Rahemi Karizaki A, Alamdari EG. Foliar salicylic acid application to mitigate the effect of drought stress on isabgol (Plantago ovata forssk). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC PLANT BIOLOGY 2022; 22:373. [PMID: 35896978 PMCID: PMC9327194 DOI: 10.1186/s12870-022-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.
Collapse
Affiliation(s)
- Mohammad Omidi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran.
| | - Azizollah Khandan-Mirkohi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Mohsen Kafi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Zabihollah Zamani
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Ladan Ajdanian
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Babaei
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
26
|
Effects of Combined Application of Salicylic Acid and Proline on the Defense Response of Potato Tubers to Newly Emerging Soft Rot Bacteria (Lelliottia amnigena) Infection. SUSTAINABILITY 2022. [DOI: 10.3390/su14148870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potato soft rot, caused by the pathogenic bacterium Lelliottia amnigena (Enterobacter amnigenus), is a serious and widespread disease affecting global potato production. Both salicylic acid (SA) and proline (Pro) play important roles in enhancing potato tuber resistance to soft rot. However, the combined effects of SA and Pro on defense responses of potato tubers to L. amnigena infection remain unknown. Hence, the combined effects of SA and Pro in controlling newly emerging potato soft rot bacteria were investigated. Sterilized healthy potato tubers were pretreated with 1.5 mM SA and 2.0 mM Pro 24 h before an inoculation of 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL−1). Rotting was noticed on the surfaces of the hole where the L. amnigena suspension was inoculated. Application of SA and Pro with L. amnigena lowered the activity of pectinase, protease, pectin lyase, and cellulase by 64.3, 77.8, 66.4 and 84.1%, and decreased malondialdehyde and hydrogen peroxide contents by 77.2% and 83.8%, respectively, compared to the control. The activities of NADPH oxidase, superoxide dismutase, peroxide, catalase, polyphenol oxidase, phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-coumaryl-CoA ligase and cinnamate-4-hydroxylase were increased in the potato tubers with combined treatments by 91.4, 92.4, 91.8, 93.5, 94.9, 91.3, 96.2, 94.7 and 97.7%, respectively, compared to untreated stressed tubers. Six defense-related genes, pathogenesis-related protein, tyrosine-protein kinase, Chitinase-like protein, phenylalanine ammonia-lyase, pathogenesis-related homeodomain protein, and serine protease inhibitor, were induced in SA + Pro treatment when compared with individual application of SA or Pro. This study indicates that the combined treatment of 1.5 mM SA and 2.0 mM Pro had a synergistic effect in controlling potato soft rot caused by a newly emerging bacterium.
Collapse
|
27
|
Aires ES, Ferraz AKL, Carvalho BL, Teixeira FP, Putti FF, de Souza EP, Rodrigues JD, Ono EO. Foliar Application of Salicylic Acid to Mitigate Water Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131775. [PMID: 35807727 DOI: 10.1590/1678-4499.20210320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Salicylic acid (SA) is an important plant regulator reported as a mitigator of water deficit in plants, however without a recommendation for use in field conditions. Thus, this research aims to validate the use of SA under field conditions in regions with low water availability. For that, we evaluated CO2 assimilation (A), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), and carboxylation efficiency (A/Ci) at 15, 30, and 45 days of continuous stress water deficit, as well as the application of salicylic acid (0.0; 0.5; 1.0; 1.5; 2.0 mM) in tomato plants subjected to continuous water deficit (45 days), in two years (2019 and 2020). The water deficit reduced the A, gs, E and A/Ci, while the foliar application of SA increased these parameters in all evaluated times, resulting in similar or even higher values than in plants without water deficit. Water deficit caused floral abortion in tomato plants, without the application of SA, reducing the number of fruit production. In contrast, plants that received about 1.3 mM of SA increased A and A/Ci and translocated the photo-assimilates, mainly to flowers and fruits, reducing floral abortion and increasing fruit production. Thus, foliar application of SA was efficient in mitigating the deleterious effects of water deficit in tomato plants regarding the gas exchange and fruit production.
Collapse
Affiliation(s)
- Eduardo Santana Aires
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Andrew Kim Lopes Ferraz
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Beatriz Lívero Carvalho
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Fabricio Palla Teixeira
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Fernando Ferrari Putti
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã 17602-496, Brazil
| | - Emanuele Possas de Souza
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - João Domingos Rodrigues
- Department of Botany, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Elizabeth Orika Ono
- Department of Botany, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| |
Collapse
|
28
|
Hassanpouraghdam MB, Vojodi Mehrabani L, Bonabian Z, Aazami MA, Rasouli F, Feldo M, Strzemski M, Dresler S. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO 2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. Int J Mol Sci 2022; 23:ijms23095093. [PMID: 35563484 PMCID: PMC9100700 DOI: 10.3390/ijms23095093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 01/04/2023] Open
Abstract
In the present study, the effects of foliar application of salicylic acid (100 μM), cerium oxide (50 mg L−1), and cerium oxide:salicylic acid nanoparticles (CeO2: SA-nanoparticles, 50 mg L−1 + 100 μM) on the growth and physiological responses of purslane (Portulaca oleracea L.) were examined in non-saline and saline conditions (50 and 100 mM NaCl salinity). Foliar applications mitigated salinity-induced adverse effects, and the highest plant height and N, P, Mg, and Mn content were recorded in the variant with non-saline × foliar use of CeO2: SA-nanoparticles. The highest values of fresh and dry weight were noted in the treatment with no-salinity × foliar use of CeO2:SA-nanoparticles. The highest number of sub-branches was observed in the foliar treatments with CeO2-nanoparticles and CeO2:SA-nanoparticles without salinity stress, while the lowest number was noted in the 100 mM NaCl treatment. Moreover, the foliar application of CeO2:SA-nanoparticles and cerium-oxide nanoparticles improved the total soluble solid content, K, Fe, Zn, Ca, chlorophyll a, and oil yield in the plants. The salinity of 0 and 50 mM increased the K content, 1000-seed weight, total soluble solid content, and chlorophyll b content. The use of 100 mM NaCl with no-foliar spray increased the malondialdehyde, Na, and H2O2 content and the Na+/K+ ratio. No-salinity and 50 mM NaCl × CeO2: SA-nanoparticle interactions improved the anthocyanin content in plants. The phenolic content was influenced by NaCl100 and the foliar use of CeO2:SA-nanoparticles. The study revealed that the foliar treatment with CeO2:SA-nanoparticles alleviated the side effects of salinity by improving the physiological responses and growth-related traits of purslane plants.
Collapse
Affiliation(s)
- Mohammad Bagher Hassanpouraghdam
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran; (M.A.A.); (F.R.)
- Correspondence: ; Tel.: +98-9145027100
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran; (L.V.M.); (Z.B.)
| | - Zahra Bonabian
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran; (L.V.M.); (Z.B.)
| | - Mohammad Ali Aazami
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran; (M.A.A.); (F.R.)
| | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran; (M.A.A.); (F.R.)
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (S.D.)
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (S.D.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
29
|
Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L. Appl Biochem Biotechnol 2022; 194:4400-4423. [PMID: 35320507 DOI: 10.1007/s12010-022-03853-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
Salinity is a major abiotic stress, limiting plant growth and agriculture productivity worldwide. Salicylic acid is known to alleviate the negative effects of salinity. The present study demonstrated the impact of SA on sorghum, a moderately salt-tolerant crop, grown for food, fodder, fiber, and fuel. A screen house experiment was conducted using sorghum genotypes Haryana Jowar HJ 513 and HJ 541 under 4 salt levels (0, 5.0, 7.5, and 10.0 dS m-1 NaCl) and 3 SA (0, 25, and 50 mg dm-3) levels with 12 combinations. The leaves were assayed for electrolyte leakage percentage (ELP), i.e., 88.7 % in HJ 541 and 87.2 % in HJ 513, and osmolyte content. Proline content, total soluble carbohydrate content, and glycine betaine content increased considerably. Photosynthetic rate, transpiration rate, and stomatal conductance declined at higher salt levels. The specific enzymatic activities of SOD, CAT, and POX increased 41.1 %, 122.0 %, and 72.8 %, respectively, in HJ 513 under salt stress. Combinations of salt treatment and SA decreased ELP and enhanced osmolyte concentration, rates of gaseous exchange attributes, and also the antioxidant enzymatic activity in salt-stressed leaves. The study established that the specific activity of antioxidative enzymes is enhanced further by addition of SA which may protect the cells from oxidative damage under salt stress, thus mitigating salt stress and enhancing the yield of sorghum. SA can ameliorate the salt stress in plants by affecting the metabolic or physiological frameworks. SA application is an effective management strategy towards mitigating salt stress in order to meet agricultural production and sustainability.
Collapse
|
30
|
Zhu F, Wang Z, Su W, Tong J, Fang Y, Luo Z, Yuan F, Xiang J, Chen X, Wang R. Study on the Role of Salicylic Acid in Watermelon-Resistant Fusarium Wilt under Different Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:293. [PMID: 35161274 PMCID: PMC8839013 DOI: 10.3390/plants11030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fusarium wilt disease is leading threat to watermelon yield and quality. Different cultivation cropping systems have been reported as safe and efficient methods to control watermelon Fusarium wilt. However, the role of salicylic acid (SA) in watermelon resistance to Fusarium wilt in these different cultivation systems remains unknown. METHODS in this experiment, we used RNA-seq and qRT-PCR to study the effect of SA biosynthesis on improving watermelon health, demonstrating how it may be responsible for Fusarium wilt resistance under continuous monocropping and oilseed rape rotation systems. RESULTS the results revealed that the expression of the CIPALs genes was key to SA accumulation in watermelon roots. We observed that the NPR family genes may play different roles in responding to the SA signal. Differentially expressed NPRs and WRKYs may interact with other phytohormones, leading to the amelioration of watermelon Fusarium wilt. CONCLUSIONS further understanding of gene expression patterns will pave the way for interventions that effectively control the disease.
Collapse
Affiliation(s)
- Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Zhiwei Wang
- Hunan Agricultural Equipment Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Wenjun Su
- Zhuzhou Institute of Agricultural Sciences, Zhuzhou 412007, China;
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Zhengliang Luo
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Fan Yuan
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| | - Jing Xiang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| | - Xi Chen
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| |
Collapse
|
31
|
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. PLANT CELL REPORTS 2022; 41:1-31. [PMID: 34351488 DOI: 10.1007/s00299-021-02759-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/20/2023]
Abstract
Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.
Collapse
Affiliation(s)
- Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
32
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
33
|
Modulation of salt-induced stress impact in Gladiolus grandiflorus L. by exogenous application of salicylic acid. Sci Rep 2021; 11:15597. [PMID: 34341425 PMCID: PMC8329058 DOI: 10.1038/s41598-021-95243-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Salinity is challenging threats to the agricultural system and leading cause of crop loss. Salicylic acid (SA) is an important endogenous signal molecule, which by regulating growth and physiological processes improves the plant ability to tolerate salt stress. Considering the prime importance of Gladiolus grandiflorus (L.) in the world's cut-flower market, the research work was undertaken to elucidate salinity tolerance in G. grandiflorus by exogenous application of SA irrigated with saline water. Results revealed that increasing salinity (EC: 2, 4 and 6 dS m-1) considerably altered morpho-growth indices (corm morphology and plant biomass) in plants through increasing key antioxidants including proline content and enzymes activity (superoxide dismutase, catalase and peroxidase), while negatively affected the total phenolic along with activity of defense-related enzymes (phenylalanine ammonia lyase, and polyphenol oxidase activity). SA application (50-200 ppm) in non-saline control or saline conditions improved morpho-physiological traits in concentration-dependent manners. In saline conditions, SA minimized salt-stress by enhancing chlorophyll content, accumulating organic osmolytes (glycine betaine and proline content), total phenolic, and boosting activity of antioxidant and defense-related enzymes. Principle component analysis based on all 16 morphological and physiological variables generated useful information regarding the classification of salt tolerant treatment according to their response to SA. These results suggest SA (100 or 150 ppm) could be used as an effective, economic, easily available and safe phenolic agent against salinity stress in G. grandiflorus.
Collapse
|
34
|
Lobato AKDS, Barbosa MAM, Alsahli AA, Lima EJA, Silva BRSD. Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. PHYSIOLOGIA PLANTARUM 2021; 172:869-884. [PMID: 33421143 DOI: 10.1111/ppl.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/30/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is an interesting messenger in plant metabolism that modulates multiple pathways, including the antioxidant defence pathway, and stimulates anatomical structures essential to carbon dioxide fixation during the photosynthetic process. The aim of this research was to determine whether pre-treatment with exogenous SA can alleviate the deleterious effects induced by water deficit on production components, biomass and gas exchange, measuring reactive oxygen species, antioxidant enzymes, variables connected to photosynthetic machinery, anatomical responses, and agro-morphological traits in tomato plants under water deficit. The experiment used a factorial design with four treatments, including two water conditions (control and water deficit) and two salicylic acid concentrations (0 and 0.1 mM salicylic acid). Water deficit negatively impacted the biomass and fruit number of tomato plants. Pre-treatment using 0.1 mM SA in plants submitted to water restriction induced increments in fruit number, weight, and biomass. These results were related to the protective role triggered by this substance, stimulating superoxide dismutase (27.07%), catalase (17.81%), ascorbate peroxidase (50.52%), and peroxidase (10.81%) as well as reducing the cell damage (malondialdehyde and electrolyte leakage) caused by superoxide and hydrogen peroxide. Simultaneously, application of SA improved the net photosynthetic rate (84.55%) and water-use efficiency (65.00%) of stressed plants in which these factors are connected to anatomical benefits, as verified by stomatal density, palisade and spongy parenchyma, combined with improved performance linked to photosystem II.
Collapse
Affiliation(s)
| | | | | | - Emily Juliane Alvino Lima
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | | |
Collapse
|
35
|
Abdel Razik ES, Alharbi BM, Pirzadah TB, Alnusairi GSH, Soliman MH, Hakeem KR. γ-Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus L.) by regulating its physiological, biochemical and molecular pathways. PHYSIOLOGIA PLANTARUM 2021; 172:505-527. [PMID: 32979274 DOI: 10.1111/ppl.13216] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 05/22/2023]
Abstract
Drought and heat stress are two dominant abiotic stress factors that often occur simultaneously in nature causing oxidative damage in plants and thus decline in yield. The present study was conducted to examine the γ-aminobutyric acid (GABA)-induced heat and drought tolerance in sunflower through physiological, biochemical and molecular analysis. The results showed that drought and heat stress triggered oxidative stress as revealed by enhanced level in hydrogen peroxide, malondialdehyde and electrolyte leakage. Moreover, the photosynthetic attributes such as photosynthetic rate, stomatal conductance and quantum efficiency declined when subjected to drought and heat stress. In this study, GABA treatment effectively alleviated the drought and heat-induced stress as reflected by significantly higher levels of proline, soluble sugar and total protein content. Besides, the data also revealed the direct relationship between antioxidant enzyme activities (superoxide dismutase, peroxidase, glutathione reductase, monodehydroascorbate peroxidase, ascorbate peroxidase) and the relative expression of genes (Heat Shock Proteins, Dehydrin, Osmotin, Aquaporin, Leaf Embryogenesis Protein), under drought and heat stress. Moreover, a significant increase in gene expression was observed upon GABA treatment with respect to control. This data suggest that GABA-induced drought and heat tolerance in sunflower could involve the improvement in osmolyte metabolism, gene expression and antioxidant enzyme activities and thus a rise in the GABA shunt which in turn provides intermediates during long-term drought and heat stress, thus maintaining homeostasis.
Collapse
Affiliation(s)
- Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, Alexandria, 21934, Egypt
| | - Basmah M Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Tanveer Bilal Pirzadah
- University Centre for Research and Development (UCRD), Chandigarh University, Mohali, 140301, India
| | - Ghalia S H Alnusairi
- Department of Biology, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21577, Saudi Arabia
| |
Collapse
|
36
|
Soba D, Aranjuelo I, Gakière B, Gilard F, Pérez-López U, Mena-Petite A, Muñoz-Rueda A, Lacuesta M, Sanz-Saez A. Soybean Inoculated With One Bradyrhizobium Strain Isolated at Elevated [CO 2] Show an Impaired C and N Metabolism When Grown at Ambient [CO 2]. FRONTIERS IN PLANT SCIENCE 2021; 12:656961. [PMID: 34093614 PMCID: PMC8173217 DOI: 10.3389/fpls.2021.656961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 05/27/2023]
Abstract
Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.
Collapse
Affiliation(s)
- David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Amaia Mena-Petite
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alberto Muñoz-Rueda
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alvaro Sanz-Saez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
37
|
Azimi A, Siahi-Shadbad MR, Monajjemzadeh F. The Effect of Azelaic Acid and Vitamin C on the Stability of Hydroquinone in Extemporaneous Topical Preparations: an Evidence-Based In Vitro Research. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Ghassemi-Golezani K, Abdoli S. Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. PLANT CELL REPORTS 2021; 40:559-573. [PMID: 33403499 DOI: 10.1007/s00299-020-02652-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Salicylic acid and iron-oxide nanoparticles alleviated salt toxicity and improved plant growth by stimulating the activities of H+-ATPase and H+-PPase and preventing nutrient imbalance. Two factorial experiments were undertaken in a greenhouse during 2018 and 2019, to evaluate the impacts of SA (1 mM) and nano-Fe2O3 (3 mM) sprays at 7 leaves and flowering stages on vacuolar H+-pumps, growth and essential oil of salt-subjected (0, 4, 8 and 12 dS m-1 NaCl) ajowan plants. Measurements of plant traits were started at about 12 days after the last foliar spray and continued up to maturity. The H+-ATPase and H+-PPase activities and root ATP content were enhanced under low salinity, but higher salinities reduced these parameters. Rising salinity enhanced Na uptake and translocation, endogenous SA and DPPH activity, while reduced K+/Na+ ratio and nutrients uptake, leading to a reduction in plant biomass. Treatment with SA, nano-Fe2O3 and their combination improved H+-pumps activities and ATP content in roots and leaves. The SA-related treatments caused the highest activities of H+-pumps in roots, but Fe-related treatments resulted in the highest activities of these pumps in leaves. Increasing H+-pumps activities reduced sodium uptake and translocation and enhanced nutrients uptake. Foliar treatments, especially SA + nano-Fe2O3 augmented endogenous SA, DPPH activity, and plant growth in salt-stressed plants. Essential oil contents of vegetative and inflorescence organs under severe salinity and seeds under moderate and severe salinities were enhanced. Maximum essential oil was obtained from seeds of SA + nano-Fe2O3-treated plants, which was strongly correlated with endogenous SA and DPPH. Nevertheless, the SA + nano-Fe2O3 was the best treatment for diminishing salt toxicity and improving ajowan plant growth and essential oil production.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Soheila Abdoli
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
39
|
Salicylic acid and kaolin effects on pomological, physiological, and phytochemical characters of hazelnut (Corylus avellana) at warm summer condition. Sci Rep 2021; 11:4568. [PMID: 33633151 PMCID: PMC7907359 DOI: 10.1038/s41598-021-83790-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Climate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.
Collapse
|
40
|
Sako K, Nguyen HM, Seki M. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants. PLANT & CELL PHYSIOLOGY 2021; 61:1995-2003. [PMID: 32966567 DOI: 10.1093/pcp/pcaa119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/07/2020] [Indexed: 05/23/2023]
Abstract
Abiotic stress is considered a major factor limiting crop yield and quality. The development of effective strategies that mitigate abiotic stress is essential for sustainable agriculture and food security, especially with continuing global population growth. Recent studies have demonstrated that exogenous treatment of plants with chemical compounds can enhance abiotic stress tolerance by inducing molecular and physiological defense mechanisms, a process known as chemical priming. Chemical priming is believed to represent a promising strategy for mitigating abiotic stress in crop plants. Plants biosynthesize various compounds, such as phytohormones and other metabolites, to adapt to adverse environments. Research on artificially synthesized compounds has also resulted in the identification of novel compounds that improve abiotic stress tolerance. In this review, we summarize current knowledge of both naturally synthesized and artificial priming agents that have been shown to increase the abiotic stress tolerance of plants.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 631-8505 Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Huong Mai Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| |
Collapse
|
41
|
El-Hady NAAA, ElSayed AI, El-saadany SS, Deligios PA, Ledda L. Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010074. [PMID: 33401405 PMCID: PMC7823993 DOI: 10.3390/plants10010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/14/2023]
Abstract
Salicylic acid (SA) and propolis (PR) are known to regulate the physiological process and to have a relevant role in bioactive compounds content. Our experiment was designed to evaluate the effect of SA and PR application on the growth, yield, and quality parameters of tomato grown for the fresh market in field conditions in Egypt. We studied the effect of twelve treatments where SA (0.50, 1.00, 1.50, 2.00, and 2.50 mM) and PR (1, 2, 10, 20, and 100 mg propolis mL-1) were applied at increasing doses as a sole agent or combined each other (1.50 mM + 10 mg mL-1 for SA and PR, respectively). An untreated control was also considered. Tomato plants treated with SA (0.50, 1.00, and 1.50 mM) showed a significant effect in all traits especially SA1 (0.50 mM) in growth parameters and SA2 (1.00 mM) in pigment and antioxidant content. Propolis foliar application was more effective than SA as it revealed that raising the concentration of aqueous extract enhanced the growth parameters and pigment in tomato. The best result was obtained by the 10 mg mL-1 treatment. The effect of propolis on antioxidant enzymes varied as the 10 mg mL-1 treatment was effective on peroxidases and superoxide dismutase, while 100 mg mL-1 was more effective on catalase. Salicylic acid and propolis have a positive effect on both preserving tomato plants and on nutrient supply, so the mixed intermediate concentration (1.50 mM + 10 mg mL-1) is considered very effective and results in an improvement of all plant traits.
Collapse
Affiliation(s)
- Nouran Ahmed Abdo Abd El-Hady
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt; (N.A.A.A.E.-H.); (A.I.E.); (S.S.E.-s.)
| | - Abdelaleim Ismail ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt; (N.A.A.A.E.-H.); (A.I.E.); (S.S.E.-s.)
| | - Sayed Soliman El-saadany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt; (N.A.A.A.E.-H.); (A.I.E.); (S.S.E.-s.)
| | - Paola A. Deligios
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Luigi Ledda
- Department of Crop, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
- Correspondence:
| |
Collapse
|
42
|
Guha T, Gopal G, Chatterjee R, Mukherjee A, Kundu R. Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111104. [PMID: 32791360 DOI: 10.1016/j.ecoenv.2020.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Since development of antioxidant defence system is high energy demanding event, innate defence system and stress tolerance of plant is strictly governed by plant age. This study is aimed towards evaluating variation of tolerance in germinating seeds and seedlings of Oryza sativa L. cv. Swarna against nano-scale zero valent iron (nZVI). A comparative study of several physiological and biochemical parameters have been carried out among 2 distinct plant groups, Group I treated with variable concentrations of nZVI (50, 100, 150 and 200 mg L-1) during germination and Group II treated with similar nZVI doses on 7th day after germination. Upon treatment with higher nZVI concentrations, Group I seedlings showed susceptibility towards oxidative stress while Group II seedlings showed tolerance against these higher doses of nZVI. Significant growth enhancement was observed upon treatment with 50-150 mg L-1 nZVI, since up-regulation of plant's endogenous antioxidant system protected relatively aged Group II seedlings from oxidative damages. Hierarchical clustering based on overall physiological, biochemical and stress parameters confirmed that in Group I seedlings 100-200 mg L-1 nZVI treatments were toxic where as in Group II seedlings 50-150 mg L-1 nZVI treatments showed growth promoting effects. This differential response is due to developmental stage related resistance in plants.
Collapse
Affiliation(s)
- Titir Guha
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rohan Chatterjee
- St. Xavier's College, 30 Mother Teresa Sarani, Kolkata, 16, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rita Kundu
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India.
| |
Collapse
|
43
|
Daniel D, de Alkimin GD, Nunes B. Single and combined effects of the drugs salicylic acid and acetazolamide: Adverse changes in physiological parameters of the freshwater macrophyte, Lemna gibba. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103431. [PMID: 32479818 DOI: 10.1016/j.etap.2020.103431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical drugs are among the most used chemicals, for human and veterinary medicines, aquaculture and agriculture. Pharmaceuticals are biologically active molecules, having also environmental persistence, thereby exerting biological effects on non-target species. Among the most used pharmaceuticals, one may find salicylic acid (SA), a non-steroid anti-inflammatory drugs (NSAIDs), and acetazolamide (ACZ), a diuretic drug that acts by inhibiting the activity of carbonic anhydrase (CA). In this work, single and combined effects of SA and ACZ were assessed in the aquatic macrophyte Lemna gibba L., focusing on physiological parameters, namely photosynthetic pigments, (chlorophyll a, b and total (Chl a, b and TChl) as well as carotenoids (Car)). In addition, chemical biomarkers, namely, glutathione S-transferases (GSTs), catalase (CAT) and carbonic anhydrase (CA) activities, were also determined. The highest concentrations of ACZ, caused a decrease in the contents of all chlorophylls; this effect was however reverted by SA exposure. Both ACZ and SA levels caused a decrease in CA activity. Nevertheless, when in combination, this inhibition was not observed in plants exposed to the lowest concentration of these drugs. In conclusion, both pharmaceuticals have the capacity to cause alterations in L. gibba enzymatic activity and photosynthetic pigments content. Additionally, SA seems to exert a protective effect on this species against deleterious effects caused by ACZ.
Collapse
Affiliation(s)
- David Daniel
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal; Centro De Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento De Biologia, Universidade De Aveiro, Campusde Santiago, 3810-193 Aveiro, Portugal; Centro De Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
44
|
Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00571-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Saudi Rosmarinus officinalis and Ocimum basilicum L. Polyphenols and Biological Activities. Processes (Basel) 2020. [DOI: 10.3390/pr8040446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigating the polyphenolic profile of natural Rosmarinus officinalis and Ocimum basilicum populations may reveal essential compounds that have biological activities. Natural populations of R. officinalis and O. basilicum in Northern Riyadh were investigated by HPLC-DAD analyses. Several polyphenols, including rosmarinic acid, gentisic acid, 3,4-dihydroxyphenylacetic acid, rutoside, and others, out of 38 screened were confirmed. Rosmarinic acid was the major polyphenol in both of R. officinalis and O. basilicum. R. officinalis methanolic leaf extracts contained other phenols such as gentisic acid while O. basilicum contained also 3,4-dihydroxyphenylacetic acid and rutoside as well as others. R. officinalis showed higher antioxidant activities than O. basilicum using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and β-carotene bleaching assays. These higher activities are associated with a higher composition of rosmarinic acid in leaf extracts. The antioxidant activities of O. basilicum were attributed to identified phenols of rosmarinic acid, 3,4-dihydroxyphenylacetic acid, and rutoside. There were antiproliferative and cytotoxic activities of leaf extracts, as well as identified polyphenols, against several cancer cells. These activities were attributed to the accumulation of necrotic and apoptotic cells in treated cancer cells with leaf extracts as well as identified polyphenols. The antibacterial and antifungal activities of leaf extracts were mainly attributed to 3,4-dihydroxyphenylacetic acid and rutoside in O. basilicum and rosmarinic acid and caffeic acid in R. officinalis. This study proved that R. officinalis and O. basilicum natural populations might be considered as promising sources of natural polyphenols with biological activities.
Collapse
|
46
|
Ahmed W, Imran M, Yaseen M, Haq TU, Jamshaid MU, Rukh S, Ikram RM, Ali M, Ali A, Maqbool M, Arif M, Khan MA. Role of salicylic acid in regulating ethylene and physiological characteristics for alleviating salinity stress on germination, growth and yield of sweet pepper. PeerJ 2020; 8:e8475. [PMID: 32257630 PMCID: PMC7104718 DOI: 10.7717/peerj.8475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/27/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND During a preliminary study, effects of 0, 20, 40, and 60 mM NaCl salinity were assessed on germination rate in relation to electrolyte leakage (EL) in sweet pepper. Results explored significant rises in ethylene evolution from seeds having more EL. It was, therefore, hypothesized that excessive ethylene biosynthesis in plants due to salinity stress might be a root cause of low crop productivity. As salicylic acid is one of the potent ethylene inhibitors, thus SA was used to combat effects of ethylene produced under salinity stress of 60 mM NaCl on different physiological and morphological characteristics of sweet pepper. METHODOLOGY The effect of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mM SA was evaluated on seed germination, growth and yield of sweet pepper cv. Yolo wonder at salinity stress on 60 mM NaCl. Seeds were primed with SA concentrations and incubated till 312 h in an incubator to study germination. Same SA concentrations were sprayed on foliage of plants grown in saline soil (60 mM NaCl). RESULTS Seeds primed by 0.2 to 0.3 mM SA improved germination rate by 33% due to suppression of ethylene from 3.19 (control) to 2.23-2.70 mg plate-1. Electrolyte leakage reduced to 20.8-21.3% in seeds treated by 0.2-0.3 mM SA compared to 39.9% in untreated seeds. Results also explored that seed priming by 0.3 mM improved TSS, SOD and chlorophyll contents from 13.7 to 15.0 mg g-1 FW, 4.64 to 5.38 activity h-1 100 mg-1 and 89 to 102 ug g-1 compared to untreated seeds, respectively. Results also explore that SA up to 0.2 mM SA applied on plant foliage improved LAI (5-13%), photosynthesis (4-27%), WUE (11-57%), dry weight (5-20%), SOD activity (4-20%) and finally fruit yield (4-20%) compared to untreated plants by ameliorating effect of 60 mM NaCl. Foliar application of SA also caused significant increase in nutrient use efficiency due to significant variations in POD and SOD activities. CONCLUSION Salicylic acid suppressed ethylene evolution from germinating seeds up to 30% under stress of 60 mM NaCl due to elevated levels of TSS and SOD activity. Foliar application of SA upgraded SOD by lowering POD activity to improve NUE particularly K use efficiency at salinity stress of 60 mM NaCl. Application of 0.2 and 0.3 mM SA emerged as the most effective concentrations of SA for mitigating 60 mM NaCl stress on different physiological and morphological characteristics of sweet pepper.
Collapse
Affiliation(s)
- Wazir Ahmed
- Department of Soil and Environmental Sciences, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Muhammad Imran
- Department of Soil and Environmental Sciences, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Muhammad Yaseen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tanveer ul Haq
- Department of Soil and Environmental Sciences, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Muhammad Usman Jamshaid
- Department of Soil and Environmental Sciences, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Shah Rukh
- Department of Soil and Environmental Sciences, MNS-University of Agriculture, Multan, Multan, Pakistan
- Department of Environmental Geosciences National Centre of Excellence in Geology University of Peshawar, Peshawar, Pakistan
| | - Rao Muhammad Ikram
- Department of Agronomy, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Anser Ali
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Mudassar Maqbool
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS-University of Agriculture, Multan, Multan, Pakistan
| | - Mahmood Alam Khan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| |
Collapse
|
47
|
Shah FA, Wei X, Wang Q, Liu W, Wang D, Yao Y, Hu H, Chen X, Huang S, Hou J, Lu R, Liu C, Ni J, Wu L. Karrikin Improves Osmotic and Salt Stress Tolerance via the Regulation of the Redox Homeostasis in the Oil Plant Sapium sebiferum. FRONTIERS IN PLANT SCIENCE 2020; 11:216. [PMID: 32265947 PMCID: PMC7105677 DOI: 10.3389/fpls.2020.00216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
Karrikins are reported to stimulate seed germination, regulate seedling growth, and increase the seedling vigor in abiotic stress conditions in plants. Nevertheless, how karrikins alleviate abiotic stress remains largely elusive. In this study, we found that karrikin (KAR1) could significantly alleviate both drought and salt stress in the important oil plant Sapium sebiferum. KAR1 supplementation in growth medium at a nanomolar (nM) concentration was enough to recover seed germination under salt and osmotic stress conditions. One nanomolar of KAR1 improved seedling biomass, increased the taproot length, and increased the number of lateral roots under abiotic stresses, suggesting that KAR1 is a potent alleviator of abiotic stresses in plants. Under abiotic stresses, KAR1-treated seedlings had a higher activity of the key antioxidative enzymes, such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, in comparison with the control, which leads to a lower level of hydrogen peroxide, malondialdehyde, and electrolyte leakage. Moreover, the metabolome analysis showed that KAR1 treatment significantly increased the level of organic acids and amino acids, which played important roles in redox homeostasis under stresses, suggesting that karrikins might alleviate abiotic stresses via the regulation of redox homeostasis. Under abiotic stresses, applications of karrikins did not increase the endogenous abscisic acid level but altered the expression of several ABA signaling genes, such as SNF1-RELATED PROTEIN KINASE2.3, SNF1-RELATED PROTEIN KINASE2.6, ABI3, and ABI5, suggesting potential interactions between karrikins and ABA signaling in the stress responses. Conclusively, we not only provided the physiological and molecular evidence to clarify the mechanism of karrikins in the regulation of stress adaptation in S. sebiferum but also showed the potential value of karrikins in agricultural practices, which will lay a foundation for further studies about the role of karrikins in abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xiao Wei
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qiaojian Wang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenbo Liu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongdong Wang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yuanyuan Yao
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xue Chen
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengwei Huang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinyan Hou
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Ni
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lifang Wu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Taihe Experimental Station, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Taihe, China
| |
Collapse
|
48
|
Wassie M, Zhang W, Zhang Q, Ji K, Cao L, Chen L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110206. [PMID: 31954923 DOI: 10.1016/j.ecoenv.2020.110206] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/02/2020] [Accepted: 01/11/2020] [Indexed: 05/11/2023]
Abstract
Heat stress is found to be a detrimental factor for growth and development of alfalfa (Medicago sativa L.) which is tremendously invaluable forage due to its high feed value and yield potential. Salicylic acid (SA) has been reported to play a pivotal role in the regulation of plants biotic and abiotic stress response. However, the role of exogenous SA in protecting alfalfa from heat-induced damage has rarely been studied. In this study, four-week-old alfalfa seedlings were treated with 0.25 mM or 0.5 mM SA five days prior to high stress treatment (three day), and various growth and physiological traits were measured. The results showed that exogenous SA pretreatment could improve leaf morphology, plant height, biomass, chlorophyll content, and photosynthetic efficiency of alfalfa under heat stress. Meanwhile, SA could alleviate heat-induced membrane damage by reducing electrolyte leakage (EL) and malondialdehyde (MDA) content, and regulate the activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). The results revealed that exogenous SA application enhanced alfalfa heat tolerance by modulating various morphological and physiological characteristics under heat stress, with more prominent effect at lower concentration (0.25 mM). Overall, this study provides fundamental insights into the SA-mediated physiological adaptation of alfalfa plants to heat stress, which could have useful implication in managing other plants which are suffering global warming.
Collapse
Affiliation(s)
- Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Weihong Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Qiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Kang Ji
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
49
|
Napoli E, Siracusa L, Ruberto G. New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family. Chem Biodivers 2020; 17:e1900677. [PMID: 31967708 DOI: 10.1002/cbdv.201900677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lamiaceae is one of the largest families of flowering plants comprising about 250 genera and over 7,000 species. Most of the plants of this family are aromatic and therefore important source of essential oils. Lamiaceae are widely used as culinary herbs and reported as medicinal plants in several folk traditions. In the Mediterranean area oregano, sage, rosemary, thyme and lavender stand out for geographical diffusion and variety of uses. The aim of this review is to provide recent data dealing with the phytochemical and pharmacological studies, and the more recent applications of the essential oils and the non-volatile phytocomplexes. This literature survey suggests how the deeper understanding of biomolecular processes in the health and food sectors as per as pest control bioremediation of cultural heritage, or interaction with human microbiome, fields, leads to the rediscovery and new potential applications of well-known plants.
Collapse
Affiliation(s)
- Edoardo Napoli
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Laura Siracusa
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Giuseppe Ruberto
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| |
Collapse
|
50
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:10-20. [PMID: 31837556 DOI: 10.1016/j.plaphy.2019.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 05/24/2023]
Abstract
An experimentation was carried out to appraise whether or not nitric oxide (NO) contributes to salicylic acid (SA)-induced salinity tolerance particularly by regulating ascorbate-glutathione (AsA-GSH) cycle. Before starting salinity stress (SS), SA (0.5 mM) was sprayed to the foliage of plants once every other day for a week and then seedlings were grown under control or SS (100 mM NaCl), for five weeks. Salinity stress enhanced the AsA-GSH cycle-related enzymes, glutathione reductase (GR), ascorbate peroxidase (APX), and dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR). Furthermore, SS caused substantial decreases in plant physiological-related traits such as leaf potassium (K) contents, K+/Na+ ratio, the ratios of reduced ascorbate/dehydroascorbic acid (AsA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG), but in contrast, significant increases occurred in leaf hydrogen peroxide, malondialdehyde, electron leakage, proline, the premier antioxidant enzymes' activities, Na+ and NO. SA reduced leaf Na+ content and oxidative stress-related traits, but improved all earlier-mentioned traits compared with those in plants treated with SS alone. All positive effects of SA were eliminated by NO scavenger, 0.1 mM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide (c-PTIO) by reducing NO, suggesting that NO produced by SA up-regulated the activities of AsA-GSH cycle and antioxidant enzymes, so it could play a central function as a signal molecule in salt tolerance of pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|