1
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Roesch HJ, Banwell H, Jones M, Saunders S, Milanese S. An exploration of the acute response of the asymptomatic Achilles tendon to exercise using diagnostic ultrasound. A systematic review of cohort studies. J Sci Med Sport 2024:S1440-2440(24)00560-7. [PMID: 39638681 DOI: 10.1016/j.jsams.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES To describe the acute effects of exercise on the morphology, mechanical properties and blood flow of the Achilles tendon, as measured with ultrasound. DESIGN Systematic review of cohort studies. METHODS Seven electronic research databases were systematically searched for exercise intervention-based studies reporting morphology, mechanical properties and blood flow of the Achilles tendon, as measured with ultrasound. RESULTS Searches revealed 2460 possible articles and 35 satisfied the inclusion criteria. There is evidence that eccentric heel drops resulted in a reduction in the diameter and cross-sectional area of the tendon whilst running/stretch-shortening cycle activities did not result in a change. The latter did not affect tendon mechanical properties. Tendon blood flow was consistently increased in response to exercise. CONCLUSIONS The acute response of the Achilles tendon to exercise showed an increase in blood flow and a reduction in diameter following heel drop exercises. Exercise modes were relevant since eccentric and isometric loading resulted in a greater response in the tendon. Activities like running and hopping placing specific demands on the tendon's spring function resulted in a minimal change in tendon morphology and no change in mechanical properties.
Collapse
Affiliation(s)
- Harry J Roesch
- Allied Health and Human Performance Unit, University of South Australia, Australia; Innovation, IMPlementation And Clinical Translation in Health (IIMPACT), University of South Australia, Australia.
| | - Helen Banwell
- Allied Health and Human Performance Unit, University of South Australia, Australia; Innovation, IMPlementation And Clinical Translation in Health (IIMPACT), University of South Australia, Australia. https://twitter.com/helenbanwell
| | - Mark Jones
- Allied Health and Human Performance Unit, University of South Australia, Australia
| | - Steve Saunders
- Allied Health and Human Performance Unit, University of South Australia, Australia; Saunders Physiotherapy, Australia; Geelong Football Club, Australia. https://twitter.com/stevesaunders33
| | - Steve Milanese
- Allied Health and Human Performance Unit, University of South Australia, Australia; School of Health Sciences, Swinburne University of Technology, Australia
| |
Collapse
|
3
|
Bischof K, Moitzi AM, Stafilidis S, König D. Impact of Collagen Peptide Supplementation in Combination with Long-Term Physical Training on Strength, Musculotendinous Remodeling, Functional Recovery, and Body Composition in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 2024; 54:2865-2888. [PMID: 39060741 PMCID: PMC11561013 DOI: 10.1007/s40279-024-02079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Over the past decade, collagen peptide (CP) supplements have received considerable attention in sports nutrition research. These supplements have shown promising results in improving personal health, enhancing athletic performance, and preventing injuries in some but not all studies. OBJECTIVE A systematic review and meta-analysis of randomized controlled trials (RCTs) has been conducted to investigate the effects of long-term daily collagen peptide (CP) supplementation on strength, musculotendinous adaptation, functional recovery, and body composition in healthy adults, both with and without concurrent exercise interventions over several weeks. METHODS The PRISMA with PERSiST guidelines were followed for this systematic literature review, which was conducted in December 2023 using PubMed, Scopus, CINAHL, and SPORTDiscus databases. Eligible studies included healthy, normal to overweight adults over 17 years of age who engaged in exercise and daily collagen peptide (CP) supplementation for a minimum of 8 weeks (except one 3-week trial only included for maximal strength). Studies examining recovery-related outcomes were also eligible if they included a 1-week supplementation period without exercise. Methodological study quality was assessed using the PEDro scale. A random-effects model with standardized mean differences (SMD) of change scores was chosen to calculate overall effect sizes. RESULTS Nineteen studies comprising 768 participants were included in both the systematic review and meta-analysis. Results indicate statistically significant effects in favor of long-term CP intake regarding fat-free mass (FFM) (SMD 0.48, p < 0.01), tendon morphology (SMD 0.67, p < 0.01), muscle architecture (SMD 0.39, p < 0.01), maximal strength (SMD 0.19, p < 0.01), and 48 h recovery in reactive strength following exercise-induced muscle damage (SMD 0.43, p = 0.045). The GRADE approach revealed a moderate certainty of evidence for body composition, a very low certainty for tendon morphology and mechanical properties, and a low certainty for the remaining. CONCLUSION This systematic review and meta-analysis represents the first comprehensive investigation into the effects of long-term CP supplementation combined with regular physical training on various aspects of musculoskeletal health in adults. The findings indicate significant, though of low to moderate certainty, evidence of improvements in fat-free mass (FFM), tendon morphology, muscle mass, maximal strength, and recovery in reactive strength following exercise-induced muscle damage. However, further research is required to fully understand the mechanisms underlying these effects, particularly regarding tendon mechanical properties and short-term adaptations to collagen peptide (CP) intake without exercise, as observed in recovery outcomes. Overall, CP supplementation appears promising as a beneficial adjunct to physical training for enhancing musculoskeletal performance in adults. Open Science Framework (Registration DOI: https://doi.org/10.17605/OSF.IO/WCF4Y ).
Collapse
Affiliation(s)
- Kevin Bischof
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria.
| | - Anna Maria Moitzi
- Section for Nutrition, Exercise and Health, Department for Nutrition, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Department for Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | - Daniel König
- Section for Nutrition, Exercise and Health, Department for Nutrition, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Behm DG, Konrad A, Nakamura M, Alizadeh S, Culleton R, Hadjizadeh Anvar S, Pearson LT, Ramirez-Campillo R, Sale DG. A narrative review of velocity-based training best practice: the importance of contraction intent versus movement speed. Appl Physiol Nutr Metab 2024. [PMID: 39366003 DOI: 10.1139/apnm-2024-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Explosive movements requiring high force and power outputs are integral to many sports, posing distinct challenges for the neuromuscular system. Traditional resistance training can improve muscle strength, power, endurance, and range of motion; however, evidence regarding its effects on athletic performance, such as sprint speed, agility, and jump height, remains conflicting. The specificity of resistance training movements, including velocity, contraction type, and joint angles affects performance outcomes, demonstrates advantages when matching training modalities with targeted sports activities. However, independent of movement speed, the intent to contract explosively (ballistic) has also demonstrated high velocity-specific training adaptations. The purpose of this narrative review was to assess the impact of explosive or ballistic contraction intent on velocity-specific training adaptations. Such movement intent may predominantly elicit motor efferent neural adaptations, including motor unit recruitment and rate coding enhancements. Plyometrics, which utilize rapid stretch-shortening cycle movements, may augment high-speed movement efficiency and muscle activation, possibly leading to improved motor control through adaptations like faster eccentric force absorption, reduced amortization periods, and quicker transitions to explosive concentric contractions. An optimal training paradigm for power and performance enhancement might involve a combination of maximal explosive intent training with heavier loads and plyometric exercises with lighter loads at high velocities. This narrative review synthesizes key literature to answer whether contraction intent or movement speed is more critical for athletic performance enhancement, ultimately advocating for an integrative approach to resistance training tailored for sports-specific explosive action.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, NishiKyushu University, 4490-9 Ozaki, Kanzaki, Saga 842-8585, Japan
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robyn Culleton
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Liam T Pearson
- Department of Sport, Exercise and Rehabilitation; Northumbria University, Newcastle Upon Tyne, UK
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile
| | - Digby G Sale
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Cordes CMA, Leonardis JM, Samet J, Schnorenberg AJ, England M, Mukherjee S, Vogel LC, Seitz AL, Slavens BA. Handrim kinetics and quantitative ultrasound parameters for assessment of subacromial impingement in wheelchair users with pediatric-onset spinal cord injury. Gait Posture 2024; 113:561-569. [PMID: 39182433 PMCID: PMC11388546 DOI: 10.1016/j.gaitpost.2024.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Most manual wheelchair users with pediatric-onset spinal cord injury (SCI) will experience shoulder pain or pathology at some point in their life. However, guidelines for preservation of the upper limb in children with SCI are limited. RESEARCH QUESTION What are the relationships between manual wheelchair handrim kinetics and quantitative ultrasound parameters related to subacromial impingement in individuals with pediatric-onset SCI? METHODS Subacromial impingement risk factors including supraspinatus tendon thickness (SST), acromiohumeral distance (AHD), and occupation ratio (OR; SST/AHD) were measured with ultrasound in 11 manual wheelchair users with pediatric-onset SCI. Handrim kinetics were acquired during the stroke cycle, including peak resultant force (FR), peak rate of rise of resultant force (ROR) and fractional effective force (FEF). Variability of handrim kinetics was computed using the coefficient of variation and linear regression was performed to assess correlations between handrim metrics and quantitative ultrasound parameters. RESULTS Peak resultant force significantly increased 1.4 % and variability of FEF significantly decreased 8.0 % for every 0.1 cm increase in AHD. FEF decreased 3.5 % for every 0.1 cm increase in SST. Variability of peak resultant force significantly increased 3.6 % and variability of peak ROR of resultant force significantly increased 7.3 % for every 0.1 cm increase in SST. FEF variability significantly decreased 11.6 % for every 0.1 cm increase in SST. Peak ROR significantly decreased 1.54 % with every 10 % increase in OR. FEF variability significantly decreased 1.5 % with every 10 % increase in OR. SIGNIFICANCE This is the first study to investigate relationships among handrim kinetics and shoulder structure in manual wheelchair users with pediatric-onset SCI. Associations were identified between subacromial impingement risk factors and magnitude and variability of wheelchair handrim kinetics. These results indicate the critical need to further explore the relationships among wheelchair handrim kinetics, shoulder joint dynamics, and shoulder pathology in manual wheelchair users with pediatric-onset SCI.
Collapse
Affiliation(s)
- Caleb M A Cordes
- University of Wisconsin-Milwaukee, Department of Rehabilitation Sciences and Technology, Milwaukee, WI 53211, USA; University of Wisconsin-Milwaukee, Department of Mechanical Engineering, Milwaukee, WI 53211, USA.
| | - Joshua M Leonardis
- University of Wisconsin-Milwaukee, Department of Rehabilitation Sciences and Technology, Milwaukee, WI 53211, USA; University of Illinois Urbana-Champaign, College of Applied Health Sciences, Urbana, IL 61801, USA; University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
| | - Jonathan Samet
- Ann and Robert H. Lurie Children's Hospital, Department of Medical Imaging, Chicago, IL 60611, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alyssa J Schnorenberg
- University of Wisconsin-Milwaukee, Department of Mechanical Engineering, Milwaukee, WI 53211, USA
| | - Mark England
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shubhra Mukherjee
- Shriners Children's Chicago, Chicago, IL 60707, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Amee L Seitz
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brooke A Slavens
- University of Wisconsin-Milwaukee, Department of Rehabilitation Sciences and Technology, Milwaukee, WI 53211, USA; University of Wisconsin-Milwaukee, Department of Mechanical Engineering, Milwaukee, WI 53211, USA
| |
Collapse
|
6
|
Jakubowski KL, Ludvig D, Lee SSM, Perreault EJ. Aging Does Not Alter Ankle, Muscle, and Tendon Stiffness at Low Loads Relevant to Stance. Ann Biomed Eng 2024; 52:2556-2568. [PMID: 38816561 PMCID: PMC11647747 DOI: 10.1007/s10439-024-03547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, there has been limited investigation into age-dependent changes in muscle stiffness. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads relevant to standing and the stance phase of walking, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p > 0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p = 0.008), muscle (37%; p = 0.02), and tendon stiffness (22%; p = 0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p = 0.004). Together, these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.
Collapse
Affiliation(s)
- Kristen L Jakubowski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, USA.
- Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA.
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sabrina S M Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Hanimann J, Fitze DP, Götschi T, Fröhlich S, Frey WO, de Bruin ED, Sutter R, Spörri J. Changes in patellar tendon complaints and shear wave velocity patterns among competitive alpine skiers during a 4-year post-growth spurt follow-up. Front Physiol 2024; 15:1401632. [PMID: 39040077 PMCID: PMC11261000 DOI: 10.3389/fphys.2024.1401632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/24/2024] Open
Abstract
Patellar tendon (PT) complaints are frequent in competitive alpine skiers and such complaints are characterized by a long-lasting affection. Since PTs are subject to maturation up to 1-2 years after growth spurt, this early career stage may be decisive for the further course of complaints. The aim of this study was to investigate the evolution of PT complaints and shear wave velocity patterns among competitive alpine skiers during a 4-year post-growth spurt follow-up. The PT complaints and SWV patterns of forty-seven skiers were analysed at baseline (i.e., immediately after their peak height growth at 13-15 years of age) and were re-analysed at 4-year follow-up. The PTs were scanned via three-dimensional SWE. Symptomatic skiers were identified based on pain sensation under loading and pressure-induced pain around the PT. The prevalence of PT complaints decreased from 29.8% at baseline to 12.8% at follow-up (Pearson's χ2 = 9.429; p = 0.002). SWV decreased from the baseline assessment to the follow-up in the proximal and distal regions (p < 0.05). SWV coefficient of variation (CV) in the distal and mid-portion regions was greater at baseline than at follow-up (p < 0.05). At the follow-up assessment, compared to "healthy" skiers, "healed" skiers who recovered from PT complaints had lower SWVs in the proximal region (p = 0.020) and greater SWV CVs in the proximal region (p = 0.028). Moreover, symptomatic skiers had significantly greater SWV CVs in the mid-portion region than did "healthy" subjects with no history of PT complaints (p = 0.020). The average SWV was negatively correlated with the SWV (proximal: r = -0.74, p < 0.001; mid-portion: r = -0.37 p = 0.011; and distal: r = -0.58, p < 0.001). The occurrence of PT complaints decreased over a 4-year post-growth spurt follow-up. "Healed" skiers who were symptomatic at baseline had an even greater average decrease in the proximal and mid-portion SWV than "healthy" skiers with no history of PT complaints. This may lead to the hypothesis that PT complaints in adolescent skiers are not self-eliminating towards the end of adolescence, as at least structural irregularities appear to persist for several years after the onset of initial symptoms. Furthermore, "healed" and symptomatic tendons exhibited increased SWV variability, supporting the hypothesis that SWV CV may provide additional valuable information on the mechanical properties of PTs affected by overuse-related complaints.
Collapse
Affiliation(s)
- Jonas Hanimann
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Daniel P. Fitze
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Tobias Götschi
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Orthopaedic Biomechanics Laboratory, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Stefan Fröhlich
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Walter O. Frey
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Department of Health, OST—Eastern Swiss University of Applied Sciences, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Sanchez-Sanchez J, Rodriguez-Fernandez A, Granacher U, Afonso J, Ramirez-Campillo R. Plyometric Jump Training Effects on Maximal Strength in Soccer Players: A Systematic Review with Meta-analysis of Randomized-Controlled Studies. SPORTS MEDICINE - OPEN 2024; 10:52. [PMID: 38727944 PMCID: PMC11087442 DOI: 10.1186/s40798-024-00720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Maximal strength may contribute to soccer players' performance. Several resistance training modalities offer the potential to improve maximal strength. During recent years, a large number of plyometric jump training (PJT) studies showed evidence for maximal strength improvements in soccer players. However, a comprehensive summary of the available data is lacking. OBJECTIVE To examine the effects of PJT compared with active, passive or intervention controls on the maximal strength of soccer players, irrespective of age, sex or competitive level. METHODS To perform a systematic review with meta-analysis following PRISMA 2020. Three electronic databases (PubMed, Web of Science, and SCOPUS) were systematically searched. Studies published from inception until March 2023 were included. A PICOS approach was used to rate studies for eligibility. The PEDro scale was used to assess risk of bias. Meta-analyses were performed using the DerSimonian and Laird random-effects model if ≥ 3 studies were available. Moderator and sensitivity analyses were performed, and meta-regression was conducted when ≥ 10 studies were available for a given comparison. We rated the certainty of evidence using GRADE. RESULTS The search identified 13,029 documents, and from these 30 studies were eligible for the systematic review, and 27 for the meta-analyses. Overall, 1,274 soccer players aged 10.7-25.0 years participated in the included studies. Only one study recruited females. The PJT interventions lasted between 5 and 40 weeks (median = 8 weeks), with 1-3 weekly sessions. Compared to controls, PJT improved maximal dynamic strength (18 studies, 632 participants [7 females], aged 12.7-24.5 y; effect size [ES] = 0.43, 95% confidence interval [CI] = 0.08-0.78, p = 0.017, impact of statistical heterogeneity [I2] = 77.9%), isometric strength (7 studies; 245 participants, males, aged 11.1-22.5 y; ES = 0.58, 95% CI = 0.28-0.87, p < 0.001, I2 = 17.7%), and isokinetic peak torque (5 studies; 183 participants, males, aged 12.6-25.0 y; ES = 0.51, 95% CI = 0.22-0.80, p = 0.001, I2 = 0.0%). The PJT-induced maximal dynamic strength changes were independent of participants' age (median = 18.0 y), weeks of intervention (median = 8 weeks), and total number of training sessions (median = 16 sessions). The certainty of evidence was considered low to very low for the main analyses. CONCLUSIONS Interventions involving PJT are more effective to improve maximal strength in soccer players compared to control conditions involving traditional sport-specific training. Trial Registration The trial registration protocol was published on the Open Science Framework (OSF) platform in December 2022, with the following links to the project ( https://osf.io/rpxjk ) and to the registration ( https://osf.io/3ruyj ).
Collapse
Affiliation(s)
- Javier Sanchez-Sanchez
- Research Group Planning and Assessment of Training and Athletic Performance, Universidad Pontificia de Salamanca, 37007, Salamanca, Spain
| | - Alejandro Rodriguez-Fernandez
- Faculty of Physical Activity and Sports Sciences, VALFIS Research Group, Institute of Biomedicine (IBIOMED), Universidad de León, 24071, León, Spain
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, 79102, Freiburg, Germany.
| | - José Afonso
- Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| |
Collapse
|
9
|
Chang K, Albright JA, Quinn M, Khatri S, Zhao L, Byrne RA, Daniels AH, Owens BD. A Diagnosis of Vitamin D Deficiency Is Associated With Increased Rates of Primary Patellar Instability and Need for Recurrent Surgical Stabilization. Sports Health 2024; 16:465-472. [PMID: 37208906 PMCID: PMC11025508 DOI: 10.1177/19417381231172726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vitamin D has been proven experimentally to affect musculoskeletal health. The purpose of this study was to identify the relationship between vitamin D deficiency and patellar instability. HYPOTHESIS Vitamin D deficiency is associated with an increased risk of experiencing primary patellar instability and recurrent patellar dislocation after primary surgical stabilization. STUDY DESIGN Retrospective comparative study. LEVEL OF EVIDENCE Level 3. METHODS A 1:1 matched retrospective study of 328,011 patients diagnosed with vitamin D deficiency was performed using the PearlDiver database. Incidence of primary patellar instability was calculated according to sex and age. Rates of primary patellar instability and surgical stabilization for recurrent dislocation were calculated with sex- and age-specific stratifications. Multivariable logistic regression was used to compare the rates of primary injury and recurrent stabilization while controlling for demographics and medical comorbidities. RESULTS A total of 656,022 patients were analyzed. The overall 1-year incidence rate of patellar instability in patients with vitamin D deficiency was 82.6 per 100,000 person-years (95% CI, 73.2-92.9), compared with 48.5 (95% CI, 41.4-56.5) in the matched control. Women were significantly more likely to experience primary patellar instability within 1 (adjusted odds ratio [aOR] = 1.45; 95% CI, 1.12-1.88) and 2 years (aOR, 1.31; 95% CI, 1.07-1.59) of hypovitaminosis D diagnosis. Patients aged 10 to 25 years with hypovitaminosis D were at greater risk of requiring recurrent patellar stabilization for both men (aOR, 2.48; 95% CI, 1.06-5.80) and women (aOR, 1.77; 95% CI, 1.04-3.02). CONCLUSION Patients diagnosed with vitamin D deficiency experienced higher rates of primary patellar instability and have greater risk of requiring recurrent surgical stabilization for subsequent dislocations. CLINICAL RELEVANCE These results suggest that monitoring and proactively treating vitamin D deficiency in the physically active patient may lower the risk of suffering primary patellar instability or recurrence after surgical stabilization.
Collapse
Affiliation(s)
- Kenny Chang
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - J. Alex Albright
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Matthew Quinn
- Warren Alpert Medical School of Brown University, Department of Orthopaedic Surgery, Providence, Rhode Island
| | - Surya Khatri
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Leon Zhao
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Rory A. Byrne
- Warren Alpert Medical School of Brown University, Department of Orthopaedic Surgery, Providence, Rhode Island
| | - Alan H. Daniels
- Warren Alpert Medical School of Brown University, Department of Orthopaedic Surgery, Providence, Rhode Island
| | - Brett D. Owens
- Warren Alpert Medical School of Brown University, Department of Orthopaedic Surgery, Providence, Rhode Island
| |
Collapse
|
10
|
Lambrianides Y, Epro G, Arampatzis A, Karamanidis K. Evidence of different sensitivity of muscle and tendon to mechano-metabolic stimuli. Scand J Med Sci Sports 2024; 34:e14638. [PMID: 38671559 DOI: 10.1111/sms.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.
Collapse
Affiliation(s)
- Yiannis Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Gaspar Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
- Department of Sport Science, Faculty for Mathematics and Natural Sciences, University of Koblenz, Koblenz, Germany
| |
Collapse
|
11
|
Obst SJ, Peterson B, Heales LJ. Maximal Lower Limb Strength in Patellar Tendinopathy: A Systematic Review With Meta-Analysis. J Athl Train 2024; 59:159-172. [PMID: 37071550 PMCID: PMC10895401 DOI: 10.4085/1062-6050-0662.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
OBJECTIVE To investigate whether lower limb strength is reduced in people with patellar tendinopathy (PT) compared with asymptomatic control individuals or the asymptomatic contralateral limb. DATA SOURCES MEDLINE, PubMed, Scopus, and Web of Science. STUDY SELECTION To be included in the systematic review and meta-analysis, studies were required to be peer reviewed, published in the English language, and case control investigations; include participants with a clinical diagnosis of PT and an asymptomatic control or contralateral limb group; and include an objective measure of lower limb maximal strength. DATA EXTRACTION We extracted descriptive statistics for maximal strength for the symptomatic and asymptomatic limbs of individuals with PT and the limb(s) of the asymptomatic control group, inferential statistics for between-groups differences, participant characteristics, and details of the strength-testing protocol. The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tool for analytical cross-sectional studies. DATA SYNTHESIS Of the 23 included studies, 21 reported knee strength, 3 reported hip strength, and 1 reported ankle strength. Random-effects models (Hedges g) were used to calculate the pooled effect sizes (ESs) of muscle strength according to the direction of joint movement and type of contraction. The pooled ESs (95% CI) for maximal voluntary isometric contraction knee-extension strength, concentric knee-extension strength, and concentric knee-flexion strength were 0.54 (0.27, 0.80), 0.78 (0.30, 1.33), and 0.41 (0.04, 0.78), respectively, with all favoring greater strength in the asymptomatic control group. Researchers of 2 studies described maximal eccentric knee-extensor strength with no differences between the PT and asymptomatic control groups. In 3 studies, researchers measured maximal hip strength (abduction, extension, and external rotation), and all within-study ESs favored greater strength in the asymptomatic control group. CONCLUSIONS Isometric and concentric knee-extensor strength are reduced in people with PT compared with asymptomatic control individuals. In contrast, evidence for reduced eccentric knee-extension strength in people with PT compared with asymptomatic control individuals is limited and inconsistent. Although evidence is emerging that both knee-flexion and hip strength may be reduced in people with PT, more examination is needed to confirm this observation.
Collapse
Affiliation(s)
- Steven J. Obst
- Musculoskeletal Health and Rehabilitation Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia
| | - Benjamin Peterson
- Musculoskeletal Health and Rehabilitation Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Luke J. Heales
- Musculoskeletal Health and Rehabilitation Research Group, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
12
|
Van Hooren B, van Rengs L, Meijer K. Per-step and cumulative load at three common running injury locations: The effect of speed, surface gradient, and cadence. Scand J Med Sci Sports 2024; 34:e14570. [PMID: 38389144 DOI: 10.1111/sms.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Understanding how loading and damage on common running injury locations changes across speeds, surface gradients, and step frequencies may inform training programs and help guide progression/rehabilitation after injuries. However, research investigating tissue loading and damage in running is limited and fragmented across different studies, thereby impairing comparison between conditions and injury locations. This study examined per-step peak load and impulse, cumulative impulse, and cumulative weighted impulse (hereafter referred to as cumulative damage) on three common injury locations (patellofemoral joint, tibia, and Achilles tendon) across different speeds, surface gradients, and cadences. We also explored how cumulative damage in the different tissues changed across conditions relative to each other. Nineteen runners ran at five speeds (2.78, 3.0, 3.33, 4.0, 5.0 m s-1 ), and four gradients (-6, -3, +3, +6°), and three cadences (preferred, ±10 steps min-1 ) each at one speed. Patellofemoral, tibial, and Achilles tendon loading and damage were estimated from kinematic and kinetic data and compared between conditions using a linear mixed model. Increases in running speed increased patellofemoral cumulative damage, with nonsignificant increases for the tibia and Achilles tendon. Increases in cadence reduced damage to all tissues. Uphill running increased tibial and Achilles tendon, but decreased patellofemoral damage, while downhill running showed the reverse pattern. Per-step and cumulative loading, and cumulative loading and cumulative damage indices diverged across conditions. Moreover, changes in running speed, surface gradient, and step frequency lead to disproportional changes in relative cumulative damage on different structures. Methodological and practical implications for researchers and practitioners are discussed.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lars van Rengs
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Caballero I, Dueñas L, Balasch-Bernat M, Fernández-Matías R, Bresó-Parra L, Gallego-Terres C, Aroca Navarro JE, Navarro-Bosch M, Lewis J, Lluch Girbés E. Effectiveness of non-surgical management in rotator cuff calcific tendinopathy (the effect trial): protocol for a randomised clinical trial. BMJ Open 2024; 14:e074949. [PMID: 38176875 PMCID: PMC10773347 DOI: 10.1136/bmjopen-2023-074949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
INTRODUCTION Rotator cuff calcific tendinopathy (RCCT) involves calcific deposits in the rotator cuff. Non-surgical interventions such as extracorporeal shockwave therapy (ESWT) and ultrasound-guided percutaneous irrigation of calcific tendinopathy (US-PICT) are recommended for its early management. Exercise therapy (ET) has shown to be an effective intervention for people with rotator cuff tendinopathy, but it has not been formally tested in RCCT. The main objective of this study is to compare the effectiveness of an ET programme with ESWT and US-PICT in people with RCCT. As a secondary aim, this study aims to describe the natural history of RCCT. METHODS AND ANALYSIS A randomised, single-blinded four-group clinical trial will be conducted. Adults from 30 to 75 years diagnosed with RCCT who accomplish eligibility criteria will be recruited. Participants (n=116) will be randomised into four groups: ET group will receive a 12-week rehabilitation programme; ESWT group will receive four sessions with 1 week rest between sessions during 1 month; US-PICT group will receive two sessions with 3 months of rest between sessions; and (actual) wait-and-see group will not receive any intervention during the 12-month follow-up. The primary outcome will be shoulder pain assessed with the Shoulder Pain and Disability Index at baseline, 2 weeks, 4 months, 6 months and 12 months from baseline. The primary analysis will be performed at 12 months from baseline. Secondary outcomes will include pain, range of motion, patient satisfaction and imaging-related variables. Moreover, the following psychosocial questionnaires with their corresponding outcome measure will be assessed: Central Sensitization Inventory (symptoms related to central sensitization); Pain Catastrophizing Scale (pain catastrophizing); Tampa Scale for Kinesiophobia 11 items (fear of movement); Fear Avoidance Belief Questionnaire (fear avoidance behaviour); Hospital Anxiety and Depression Scale (anxiety and depression); Pittsburgh Sleep Quality Index (sleep quality); and the EuroQol-5D (quality of life). An intention-to-treat analysis will be performed to reduce the risk of bias using a worst-case and best-case scenario analysis. ETHICS AND DISSEMINATION Ethics committee approval for this study has been obtained (reference number: 1718862). The results of the main trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT05478902.
Collapse
Affiliation(s)
- Iván Caballero
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Lirios Dueñas
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Mercè Balasch-Bernat
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | - Luis Bresó-Parra
- Department of Radiology, Lluis Alcanyis Hospital of Xativa, Xativa, Spain
| | | | | | - Marta Navarro-Bosch
- Shoulder and Elbow Unit, University and Polytechnic Hospital, Valencia, Spain
| | - Jeremy Lewis
- Consultant Physiotherapist, Therapy Department, Central London Community Healthcare National Health Service Trust, Finchley Memorial Hospital, London N12 0JE, UK
- Professor of Musculoskeletal Research, School of Health Sciences, University of Nottingham, Nottingham, UK
| | - Enrique Lluch Girbés
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
14
|
Domroes T, Weidlich K, Bohm S, Mersmann F, Arampatzis A. Personalized tendon loading reduces muscle-tendon imbalances in male adolescent elite athletes. Scand J Med Sci Sports 2024; 34:e14555. [PMID: 38268075 DOI: 10.1111/sms.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
An imbalanced adaptation of muscle strength and tendon stiffness in response to training may increase tendon strain (i.e., the mechanical demand on the tendon) and consequently tendon injury risk. This study investigated if personalized tendon loading inducing tendon strain within the effective range for adaptation (4.5%-6.5%) can reduce musculotendinous imbalances in male adolescent handball athletes (15-16 years). At four measurement time points during a competitive season, we assessed knee extensor muscle strength and patellar tendon mechanical properties using dynamometry and ultrasonography and estimated the tendon's structural integrity with a peak spatial frequency (PSF) analysis of proximal tendon ultrasound scans. A control group (n = 13) followed their usual training routine, an intervention group (n = 13) integrated tendon exercises into their training (3x/week for ~31 weeks) with a personalized intensity corresponding to an average of ~6.2% tendon strain. We found a significant time by group interaction (p < 0.005) for knee extensor muscle strength and normalized patellar tendon stiffness with significant increases over time only in the intervention group (p < 0.001). There were no group differences or time-dependent changes in patellar tendon strain during maximum voluntary contractions or PSF. At the individual level, the intervention group demonstrated lower fluctuations of maximum patellar tendon strain during the season (p = 0.005) and a descriptively lower frequency of athletes with high-level tendon strain (≥9%). The findings suggest that the personalized tendon loading program reduced muscle-tendon imbalances in male adolescent athletes, which may provide new opportunities for tendon injury prevention.
Collapse
Affiliation(s)
- Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kolja Weidlich
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Basas C, Ito N, Grävare Silbernagel K, Reyes-Gil F, Basas Á. The Basas Spanish Squat: Superimposition of Electrical Stimulation to Optimize Patellar Tendon Strain: A Case Series. Int J Sports Phys Ther 2023; 18:1299-1307. [PMID: 38050553 PMCID: PMC10693482 DOI: 10.26603/001c.89267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2023] [Indexed: 12/06/2023] Open
Abstract
Background The Basas Spanish Squat with electrical stimulation (E-stim) has shown promising results as a potential key exercise in treatment of athletes with patellar tendinopathy. Gold standard exercise therapy for tendon injuries consists of tendon loading exercises, or exercises that appropriately applies high levels of mechanical strain to the tendon. The theoretical pathway in which the Basas Spanish Squat with E-stim improves tendinopathy has been speculated to be the additional strain applied through the patellar tendon during superimposition of E-stim. This theory, however, has yet to be confirmed. Purpose The purpose of this case series was to compare patellar tendon strain, during the Basas Spanish Squat with, and without E-stim, and open kinetic chain knee extension. Methods Four healthy participants performed the three exercises while a physical therapist collected simultaneous unilateral ultrasound images from the patellar tendon. Strain was calculated as the change in patellar tendon length during contraction divided by the resting length. Results Amongst all participants, patellar tendon strain was smallest during the Basas Spanish Squat without E-stim, followed by the open kinetic chain knee extension at 60% maximum voluntary isometric contraction. The Basas Spanish Squat with E-stim yielded approximately double or more strain compared to the without E-stim condition and demonstrated higher level of strain compared to open kinetic chain knee extension in all participants. Conclusion The findings reflect a clear trend of increased strain through the patellar tendon when E-stim was superimposed. The results support the theory that the Basas Spanish Squat with E-stim increases patellar tendon strain and could explain the reported clinical benefits in individuals with patellar tendinopathy. Level of Evidence 4, Case series.
Collapse
Affiliation(s)
- Carlos Basas
- Department of Physical Therapy Real Federacion Española de Atletismo
| | - Naoaki Ito
- Department of Physical Therapy University of Delaware
- Biomechanics and Movement Science Program University of Delaware
| | - Karin Grävare Silbernagel
- Department of Physical Therapy University of Delaware
- Biomechanics and Movement Science Program University of Delaware
| | | | - Ángel Basas
- Department of Physical Therapy Real Federacion Española de Atletismo
- Department of Physical Therapy University of Delaware
- Biomechanics and Movement Science Program University of Delaware
- Department of Physical Therapy and Sport Science Olympia Medical Center
| |
Collapse
|
16
|
Jerger S, Centner C, Lauber B, Seynnes O, Friedrich T, Lolli D, Gollhofer A, König D. Specific collagen peptides increase adaptions of patellar tendon morphology following 14-weeks of high-load resistance training: A randomized-controlled trial. Eur J Sport Sci 2023; 23:2329-2339. [PMID: 37424319 DOI: 10.1080/17461391.2023.2232758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
ABSTRACTThe purpose of this study was to investigate the effect of a supplementation with specific collagen peptides (SCP) combined with resistance training (RT) on changes in structural properties of the patellar tendon. Furthermore, tendon stiffness as well as maximal voluntary knee extension strength and cross-sectional area (CSA) of the rectus femoris muscle were assessed. In a randomized, placebo-controlled study, 50 healthy, moderately active male participants completed a 14-week resistance training program with three weekly sessions (70-85% of 1 repetition maximum [1RM]) for the knee extensors. While the SCP group received 5g of specific collagen peptides daily, the other group received the same amount of a placebo (PLA) supplement. The SCP supplementation led to a significant greater (p < 0.05) increase in patellar tendon CSA compared with the PLA group at 60% and 70% of the patellar tendon length starting from the proximal insertion. Both groups increased tendon stiffness (p < 0.01), muscle CSA (p < 0.05) and muscular strength (p < 0.001) throughout the intervention without significant differences between the groups. The current study shows that in healthy, moderately active men, supplementation of SCP in combination with RT leads to greater increase in patellar tendon CSA than RT alone. Since underlying mechanisms of tendon hypertrophy are currently unknown, further studies should investigate potential mechanisms causing the increased morphology adaptions following SCP supplementation.Trial registration: German Clinical Trials Register identifier: DRKS00029244..
Collapse
Key Words
- 1RM, one repetition maximum
- CSA, cross-sectional area
- ECM, extracellular matrix
- FOV, field of view
- MRI, magnetic resonance imaging
- MVC, maximal voluntary contraction
- Magnetic resonance imaging
- PLA, placebo
- RT, resistance training
- SCP, specific collagen peptides
- SEM, standard error of the mean
- cross sectional area
- supplementation
- tendon properties
- ultrasound
Collapse
Affiliation(s)
- Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Till Friedrich
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - David Lolli
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel König
- Centre of Sport, Science and University Sports, Department of Sports Science, Division for Nutrition, Exercise and Health, University of Vienna, Wien 1150, Austria
- Faculty of Life Sciences, Department of Nutritional Sciences, Division for Nutrition, Exercise and Health, University of Vienna, Wien 1090, Austria
| |
Collapse
|
17
|
Vermeulen S, De Bleecker C, Spanhove V, Segers V, Willems T, Roosen P, Vanrenterghem J, De Ridder R. The effect of fatigue on spike jump biomechanics in view of patellar tendon loading in volleyball. Scand J Med Sci Sports 2023; 33:2208-2218. [PMID: 37522308 DOI: 10.1111/sms.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Patellar tendinopathy (PT) is a highly prevalent overuse injury in volleyball and is often linked with overloading of the patellar tendon. Little is known, however, about whether and how patellar tendon loading is affected by fatigue during the most challenging jump activity in volleyball. Therefore, this study investigates the effect of a high-intensity, intermittent fatigue protocol on movement alterations in terms of patellar tendon loading during a volleyball spike jump. METHODS Forty-three male volleyball players participated in this study. Three-dimensional full-body kinematics and kinetics were collected when performing a spike jump before and after the fatigue protocol. Sagittal plane joint angles, joint work and patellar tendon loading were calculated and analyzed with curve analyses using paired sample t-tests to investigate fatigue effects (p < 0.05). RESULTS Fatigue induced a stiffer lower extremity landing strategy together with prolonged pelvis-trunk flexion compared to baseline (p = 0.001-0.005). Decreased patellar tendon forces (p = 0.001-0.010) and less eccentric knee joint work (-5%, p < 0.001) were observed after the fatigue protocol compared to baseline. CONCLUSION Protective strategies seem to be utilized in a fatigued state to avoid additional tensile forces acting on the patellar tendon, including proximal compensations and stiff lower extremity landings. We hypothesize that players might be more prone for developing PT if eccentric patellar tendon loads are high in the non-fatigued state and/or these loads are somehow not decreased after fatigue.
Collapse
Affiliation(s)
- Stefan Vermeulen
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Camilla De Bleecker
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Veerle Segers
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Tine Willems
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Philip Roosen
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | | - Roel De Ridder
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Dietvorst M, van der Steen MCM, van den Besselaar M, Janssen RP. Height is a predictor of hamstring tendon length and ACL graft characteristics in adolescents. BMC Musculoskelet Disord 2023; 24:563. [PMID: 37434191 DOI: 10.1186/s12891-023-06705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Knowing the potential hamstring tendon length is relevant for planning ligament reconstructions in children and adolescents, as it is not uncommon to encounter small hamstring tendons intraoperatively. The aim of this study is to predict semitendinosus and gracilis tendon length based on anthropometric values in children and adolescents. The secondary aim is to analyse hamstring tendon autograft characteristics in a closed socket anterior cruciate ligament reconstructions and to evaluate the relationship with anthropometric variables. The hypothesis of this study was that height is predictor of hamstring tendon length and thereby graft characteristics. METHODS This observational study included two cohorts of adolescents undergoing ligament reconstructions between 2007-2014 and 2017-2020. Age, sex, height and weight were recorded preoperatively. Semitendinosus and gracilis tendon length and graft characteristics were measured intraoperatively. Regression analysis was performed on tendon length and anthropometric values. Subgroup analyses of the closed socket ACL reconstruction were performed and the relation between anthropometric values and graft characteristics were analysed. RESULTS The population consisted of 171 adolescents from 13 to 17 years of age, with a median age of 16 years [IQR 16-17]. The median semitendinosus tendon length was 29 cm [IQR 26-30] and gracilis tendon length was 27 cm [IQR 25-29]. Height was a significant predictor of semitendinosus and gracilis tendon length. Subgroup analysis of the closed socket ACL reconstructions showed that in 75% of the procedure, the semitendinosus tendon alone was sufficient to create a graft with a minimum diameter of 8.0 mm. CONCLUSIONS Height is a significant predictor of semitendinosus and gracilis tendon length in adolescents between 13 and 17 years of age and outcomes are similar to data in adults. In 75% of the closed socket ACL reconstructions, the semitendinosus tendon alone is sufficient to create an adequate graft with a minimum diameter of 8 mm. Additional use of the gracilis tendon is more often necessary in females and shorter patients. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Martijn Dietvorst
- Department of Orthopaedic Surgery and Trauma, Máxima MC, Eindhoven, the Netherlands.
| | - M C Marieke van der Steen
- Department of Orthopaedic Surgery and Trauma, Máxima MC, Eindhoven, the Netherlands
- Department of Orthopaedic Surgery and Trauma, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | | | - Rob Pa Janssen
- Department of Orthopaedic Surgery and Trauma, Máxima MC, Eindhoven, the Netherlands
- Dept. of Paramedical Sciences, Chair Value-Based Health Care, Fontys University of Applied Sciences, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
19
|
Jakubowski KL, Ludvig D, Perreault EJ, Lee SSM. Non-linear properties of the Achilles tendon determine ankle impedance over a broad range of activations in humans. J Exp Biol 2023; 226:jeb244863. [PMID: 37350252 PMCID: PMC10399991 DOI: 10.1242/jeb.244863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Regulating ankle mechanics is essential for controlled interactions with the environment and rejecting unexpected disturbances. Ankle mechanics can be quantified by impedance, the dynamic relationship between an imposed displacement and the torque generated in response. Ankle impedance in the sagittal plane depends strongly on the triceps surae and Achilles tendon, but their relative contributions remain unknown. It is commonly assumed that ankle impedance is controlled by changing muscle activation and, thereby, muscle impedance, but this ignores that tendon impedance also changes with activation-induced loading. Thus, we sought to determine the relative contributions from the triceps surae and Achilles tendon during conditions relevant to postural control. We used a novel technique that combines B-mode ultrasound imaging with joint-level perturbations to quantify ankle, muscle and tendon impedance simultaneously across activation levels from 0% to 30% of maximum voluntary contraction. We found that muscle and tendon stiffness, the static component of impedance, increased with voluntary plantarflexion contractions, but that muscle stiffness exceeded tendon stiffness at very low loads (21±7 N). Above these loads, corresponding to 1.3% of maximal strength for an average participant in our study, ankle stiffness was determined predominately by Achilles tendon stiffness. At approximately 20% MVC for an average participant, ankle stiffness was 4 times more sensitive to changes in tendon stiffness than to changes in muscle stiffness. We provide the first empirical evidence demonstrating that the nervous system, through changes in muscle activations, leverages the non-linear properties of the Achilles tendon to increase ankle stiffness during postural conditions.
Collapse
Affiliation(s)
- Kristen L. Jakubowski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA 30322, USA
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Eric J. Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - Sabrina S. M. Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
20
|
DeJong Lempke AF, Willwerth SB, Hunt DL, Meehan WP, Whitney KE. Adolescent Marathon Training: Prospective Evaluation of Musculotendinous Changes During a 6-Month Endurance Running Program. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:977-987. [PMID: 36173135 DOI: 10.1002/jum.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Assess changes in lower extremity musculotendinous thickness, tissue echogenicity, and muscle pennation angles among adolescent runners enrolled in a 6-month distance running program. METHODS We conducted prospective evaluations of adolescent runners' lower extremity musculotendinous changes at three timepoints (baseline, 3 months, and 6 months) throughout a progressive marathon training program. Two experienced researchers used an established protocol to obtain short- and long-axis ultrasound images of the medial gastrocnemius, tibialis anterior, flexor digitorum brevis, abductor hallicus, and Achilles and patellar tendons. ImageJ software was used to calculate musculotendinous thickness and echogenicity for all structures, and fiber pennation angles for the ankle extrinsic muscles. Repeated measures within-subject analyses of variance were conducted to assess the effect of endurance training on ultrasound-derived measures. RESULTS We assessed 11 runners (40.7% of eligible runners; 6F, 5M; age: 16 ± 1 years; running experience: 3 ± 2 years) who remained injury-free and completed all ultrasound evaluation timepoints. Medial gastrocnemius muscle (F2,20 = 3.48, P = .05), tibialis anterior muscle (F2,20 = 7.36, P = .004), and Achilles tendon (F2,20 = 3.58, P = .05) thickness significantly increased over time. Echogenicity measures significantly decreased in all muscles (P-range: <.001-.004), and increased for the patellar tendon (P < .001) during training. Muscle fiber pennation angles significantly increased for ankle extrinsic muscles (P < .001). CONCLUSIONS Adolescent runners' extrinsic foot and ankle muscles increased in volume and decreased in echogenicity, attributed to favorable distance training adaptations across the 6-month timeframe. We noted tendon thickening without concomitantly increased echogenicity, signaling intrasubstance tendon remodeling in response to escalating distance.
Collapse
Affiliation(s)
- Alexandra F DeJong Lempke
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Sarah B Willwerth
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Danielle L Hunt
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - William P Meehan
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kristin E Whitney
- Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Ramirez-Campillo R, Sortwell A, Moran J, Afonso J, Clemente FM, Lloyd RS, Oliver JL, Pedley J, Granacher U. Plyometric-Jump Training Effects on Physical Fitness and Sport-Specific Performance According to Maturity: A Systematic Review with Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:23. [PMID: 37036542 PMCID: PMC10086091 DOI: 10.1186/s40798-023-00568-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/26/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Among youth, plyometric-jump training (PJT) may provide a safe, accessible, and time-efficient training method. Less is known on PJT effectiveness according to the maturity status. OBJECTIVE This systematic review with meta-analysis set out to analyse the body of peer-reviewed articles assessing the effects of PJT on measures of physical fitness [i.e., maximal dynamic strength; change of direction (COD) speed; linear sprint speed; horizontal and vertical jump performance; reactive strength index] and sport-specific performance (i.e., soccer ball kicking and dribbling velocity) according to the participants' maturity status. METHODS Systematic searches were conducted in three electronic databases using the following inclusion criteria: (i) Population: healthy participants aged < 18 years; (ii) Intervention: PJT program including unilateral and/or bilateral jumps; (iii) Comparator: groups of different maturity status with control groups; (iv) Outcomes: at least one measure of physical fitness and/or sport-specific performance before and after PJT; (v) experimental design with an active or passive control group, and two or more maturity groups exposed to the same PJT. The DerSimonian and Laird random-effects models were used to compute the meta-analysis. The methodological quality of the studies was assessed using the PEDro checklist. GRADE was applied to assess certainty of evidence. RESULTS From 11,028 initially identified studies across three electronic databases, 11 studies were finally eligible to be meta-analysed (n total = 744; seven studies recruited males; four studies recruited females). Three studies were rated as high quality (6 points), and eight studies were of moderate quality (5 points). Seven studies reported the maturity status using age at peak height velocity (PHV; pre-PHV values up to - 2.3; post-PHV up to 2.5). Another four studies used Tanner staging (from Tanner I to V). The training programmes ranged from 4 to 36 weeks, using 1-3 weekly training sessions. When compared to controls, pre-PHV and post-PHV participants obtained small-to-moderate improvements (ES = 0.35 - 0.80, all p < 0.05) in most outcomes (i.e., sport-specific performance; maximal dynamic strength; linear sprint; horizontal jump; reactive strength index) after PJT. The contrast of pre-PHV with post-PHV youth revealed that PJT was similarly effective in both maturity groups, in most outcome measures except for COD speed (in favour of pre-PHV). PJT induces similar physical fitness and sport-specific performance benefits in males and females, with a minimal exercise dosage of 4 weeks (8 intervention sessions), and 92 weekly jumps. Results of this meta-analysis are based on low study heterogeneity, and low to very low certainty of evidence (GRADE analysis) for all outcomes. CONCLUSION Compared to control participants, PJT resulted in improved maximal dynamic strength, linear sprint speed, horizontal jump performance, reactive strength index, and sport-specific performance (i.e., soccer ball kicking and dribbling velocity). These effects seem to occur independently of the maturity status, as both pre-PHV and post-PHV participants achieved similar improvements after PJT interventions for most outcomes. However, several methodological issues (e.g., low sample sizes and the pooling of maturity categories) preclude the attainment of more robust recommendations at the current time. To address this issue, consistency in maturity status reporting strategies must be improved in future studies with the general youth population and youth athletes.
Collapse
Affiliation(s)
- Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Andrew Sortwell
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Sydney, Australia
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, CO43SQ, UK
| | - José Afonso
- Centre of Research, Education, Innovation, and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320, Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001, Lisbon, Portugal
| | - Rhodri S Lloyd
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF23 6XD, UK
| | - Jon L Oliver
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF23 6XD, UK
| | - Jason Pedley
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF23 6XD, UK
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Sandfangweg 4, 79102, Freiburg, Germany.
| |
Collapse
|
22
|
Moran J, Liew B, Ramirez-Campillo R, Granacher U, Negra Y, Chaabene H. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: A meta-analytical comparison. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:236-245. [PMID: 34033984 PMCID: PMC10105022 DOI: 10.1016/j.jshs.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 05/09/2023]
Abstract
PURPOSE This study aimed to examine the effects of plyometric jump training (PJT) on lower-limb stiffness. METHODS Systematic searches were conducted in PubMed, Web of Science, and Scopus. Study participants included healthy males and females who undertook a PJT programme isolated from any other training type. RESULTS There was a small effect size (ES) of PJT on lower-limb stiffness (ES = 0.33, 95% confidence interval (95%CI): 0.07-0.60, z = 2.47, p = 0.01). Untrained individuals exhibited a larger ES (ES = 0.46, 95%CI: 0.08-0.84, p = 0.02) than trained individuals (ES = 0.15, 95%CI: ‒0.23 to 0.53, p = 0.45). Interventions lasting a greater number of weeks (>7 weeks) had a larger ES (ES = 0.47, 95%CI: 0.06-0.88, p = 0.03) than those lasting fewer weeks (ES = 0.22, 95%CI: ‒0.12 to 0.55, p = 0.20). Programmes with ≤2 sessions per week exhibited a larger ES (ES = 0.39, 95%CI: 0.01-0.77, p = 0.04) than programmes that incorporated >2 sessions per week (ES = 0.20, 95%CI: -0.10 to 0.50, p = 0.18). Programmes with <250 jumps per week (ES = 0.50, 95%CI: 0.02-0.97, p = 0.04) showed a larger effect than programmes with 250-500 jumps per week (ES = 0.36, 95%CI: 0.00-0.72, p = 0.05). Programmes with >500 jumps per week had negative effects (ES = -0.22, 95%CI: -1.10 to 0.67, p = 0.63). Programmes with >7.5 jumps per set showed larger effect sizes (ES = 0.55, 95%CI: 0.02-1.08, p = 0.04) than those with <7.5 jumps per set (ES = 0.32, 95%CI: 0.01-0.62, p = 0.04). CONCLUSION PJT enhances lower-body stiffness, which can be optimised with lower volumes (<250 jumps per week) over a relatively long period of time (>7 weeks).
Collapse
Affiliation(s)
- Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex CO43SQ, UK.
| | - Bernard Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex CO43SQ, UK
| | | | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam 14469, Germany
| | - Yassine Negra
- Higher Institute of Sport and Physical Education of Ksar Saïd University of Manouba, Tunis 2037, Tunisia
| | - Helmi Chaabene
- Division of Training and Movement Science, University of Potsdam, Potsdam 14469, Germany; High Institute of Sports and Physical Education of Kef, University of Jendouba, Jendouba 8189 , Tunisia
| |
Collapse
|
23
|
Radovanović G, Bohm S, Peper KK, Arampatzis A, Legerlotz K. Evidence-Based High-Loading Tendon Exercise for 12 Weeks Leads to Increased Tendon Stiffness and Cross-Sectional Area in Achilles Tendinopathy: A Controlled Clinical Trial. SPORTS MEDICINE - OPEN 2022; 8:149. [PMID: 36538166 PMCID: PMC9768072 DOI: 10.1186/s40798-022-00545-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Assuming that the mechanisms inducing adaptation in healthy tendons yield similar responses in tendinopathic tendons, we hypothesized that a high-loading exercise protocol that increases tendon stiffness and cross-sectional area in male healthy Achilles tendons may also induce comparable beneficial adaptations in male tendinopathic Achilles tendons in addition to improving pain and function. OBJECTIVES We investigated the effectiveness of high-loading exercise in Achilles tendinopathy in terms of inducing mechanical (tendon stiffness, maximum strain), material (Young's modulus), morphological (tendon cross-sectional area (CSA)), maximum voluntary isometric plantar flexor strength (MVC) as well as clinical adaptations (Victorian Institute of Sports Assessment-Achilles (VISA-A) score and pain (numerical rating scale (NRS))) as the primary outcomes. As secondary outcomes, drop (DJ) and counter-movement jump (CMJ) height and intratendinous vascularity were assessed. METHODS We conducted a controlled clinical trial with a 3-month intervention phase. Eligibility criteria were assessed by researchers and medical doctors. Inclusion criteria were male sex, aged between 20 and 55 years, chronic Achilles tendinopathy confirmed by a medical doctor via ultrasound-assisted assessment, and a severity level of less than 80 points on the VISA-A score. Thirty-nine patients were assigned by sequential allocation to one of three parallel arms: a high-loading intervention (training at ~ 90% of the MVC) (n = 15), eccentric exercise (according to the Alfredson protocol) as the standard therapy (n = 15) and passive therapy (n = 14). Parameters were assessed pre- and-post-intervention. Data analysis was blinded. RESULTS Primary outcomes: Plantar flexor MVC, tendon stiffness, mean CSA and maximum tendon strain improved only in the high-loading intervention group by 7.2 ± 9.9% (p = 0.045), 20.1 ± 20.5% (p = 0.049), 8.98 ± 5.8% (p < 0.001) and -12.4 ± 10.3% (p = 0.001), respectively. Stiffness decreased in the passive therapy group (-7.7 ± 21.2%; p = 0.042). There was no change in Young's modulus in either group (p > 0.05). The VISA-A score increased in all groups on average by 19.8 ± 15.3 points (p < 0.001), while pain (NRS) dropped by -0.55 ± 0.9 points (p < 0.001). SECONDARY OUTCOMES CMJ height decreased for all groups (-0.63 ± 4.07 cm; p = 0.005). There was no change in DJ height and vascularity (p > 0.05) in either group. CONCLUSION Despite an overall clinical improvement, it was exclusively the high-loading intervention that induced significant mechanical and morphological adaptations of the plantar flexor muscle-tendon unit. This might contribute to protecting the tendon from strain-induced injury. Thus, we recommend the high-loading intervention as an effective (alternative) therapeutic protocol in Achilles tendinopathy rehabilitation management in males. CLINICAL TRIALS REGISTRATION NUMBER NCT02732782.
Collapse
Affiliation(s)
- Goran Radovanović
- grid.7468.d0000 0001 2248 7639Institute of Sports Sciences, Movement Biomechanics, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany ,grid.11500.350000 0000 8919 8412Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, Faculty of Health Sciences, University of Applied Sciences and Medical University, 20457 Hamburg, Germany ,grid.11500.350000 0000 8919 8412Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, University of Applied Sciences and Medical University, 20457 Hamburg, Germany
| | - Sebastian Bohm
- grid.7468.d0000 0001 2248 7639Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Kim Kristin Peper
- grid.6936.a0000000123222966Munich Institute of Robotics and Machine Intelligence, Technische Universität München, 80992 Munich, Germany
| | - Adamantios Arampatzis
- grid.7468.d0000 0001 2248 7639Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Kirsten Legerlotz
- grid.7468.d0000 0001 2248 7639Institute of Sports Sciences, Movement Biomechanics, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
24
|
Jerger S, Centner C, Lauber B, Seynnes O, Sohnius T, Jendricke P, Oesser S, Gollhofer A, König D. Effects of specific collagen peptide supplementation combined with resistance training on Achilles tendon properties. Scand J Med Sci Sports 2022; 32:1131-1141. [PMID: 35403756 DOI: 10.1111/sms.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the effect of specific collagen peptides (SCP) combined with resistance training (RT) on changes in tendinous and muscular properties. In a randomized, placebo-controlled study, 40 healthy male volunteers (age: 26.3 ± 4.0 years) completed a 14 weeks high-load resistance training program. One group received a daily dosage of 5g SCP while the other group received 5g of a placebo (PLA) supplement. Changes in Achilles tendon cross-sectional area (CSA), tendon stiffness, muscular strength, and thickness of the plantar flexors were measured. The SCP supplementation led to a significantly (p = 0.002) greater increase in tendon CSA (+11.0%) compared with the PLA group (+4.7%). Moreover, the statistical analysis revealed a significantly (p = 0.014) greater increase in muscle thickness in the SCP group (+7.3%) compared with the PLA group (+2.7%). Finally, tendon stiffness and muscle strength increased in both groups, with no statistical difference between the groups. In conclusion, the current study shows that the supplementation of specific collagen peptides combined with RT is associated with a greater hypertrophy in tendinous and muscular structures than RT alone in young physically active men. These effects might play a role in reducing tendon stress (i.e., deposition of collagen in load-bearing structures) during daily activities.
Collapse
Affiliation(s)
- Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Praxisklinik Rennbahn, Muttenz, Switzerland
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Tim Sohnius
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Patrick Jendricke
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Daniel König
- Department for Nutrition, Exercise and Health, Centre of Sports Science, University of Vienna, Vienna, Austria.,Department for Nutrition, Exercise and Health, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Analysis of the lncRNA-Associated Competing Endogenous RNA (ceRNA) Network for Tendinopathy. Genet Res (Camb) 2022; 2022:9792913. [PMID: 35645614 PMCID: PMC9119753 DOI: 10.1155/2022/9792913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background We aimed to construct the lncRNA-associated competing endogenous RNA (ceRNA) network and distinguish feature lncRNAs associated with tendinopathy. Methods We downloaded the gene profile of GSE26051 from the Gene Expression Omnibus (GEO), including 23 normal samples and 23 diseased tendons. Differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) were identified, and functional and pathway enrichment analyses were performed. Protein-protein interaction (PPI) network was constructed and further analyzed by module mining. Moreover, a ceRNA regulatory network was constructed based on the identified lncRNA–mRNA coexpression relationship pairs and miRNA–mRNA regulation pairs. Results We identified 1117 DEmRNAs and 57 DElncRNAs from the GEO data. The downregulated DEmRNAs were particularly associated with muscle contraction and muscle filament, while the upregulated ones were linked to extracellular matrix organization and cell adhesion. From the PPI network, 11 modules were extracted. Genes in MCODE 2 (such as TPM4) were significantly involved in cardiomyopathy, and genes in MCODE 4 (such as COL4A3 and COL4A4) were involved in focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling pathway. The ceRNA network contained 7 lncRNAs (MIR133A1HG, LINC01405, PRKCQ-AS1, C10orf71-AS1, MBNL1-AS1, HOTAIRM1, and DNM3OS), 63 mRNAs, and 41 miRNAs. Downregulated lncRNA MIR133A1HG could competitively bind with hsa-miR-659-3p and hsa-miR-218-1-3p to regulate the TPM3. Meanwhile, MIR133A1HG could competitively bind with hsa-miR-1179 to regulate the COL4A3. Downregulated C10orf71-AS1 could competitively bind with hsa-miR-130a-5p to regulate the COL4A4. Conclusions Seven important lncRNAs, particularly MIR133A1HG and C10orf71-AS1, were found associated with tendinopathy according to the lncRNA-associated ceRNA network.
Collapse
|
26
|
Johansson F, Cools A, Gabbett T, Fernandez-Fernandez J, Skillgate E. Association Between Spikes in External Training Load and Shoulder Injuries in Competitive Adolescent Tennis Players: The SMASH Cohort Study. Sports Health 2022; 14:103-110. [PMID: 34693828 PMCID: PMC8655479 DOI: 10.1177/19417381211051643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Few studies have examined the association between the acute:chronic workload ratio (ACWR) and complaints/injuries in young tennis players. Primary aims of this study were to investigate if accumulated external workload "spikes" in ACWR of tennis training, match play, and fitness training, and to see if high or low workload/age ratio were associated with the rate of shoulder complaints/injuries in competitive adolescent tennis players. Additional aims were to report the incidence of complaints/injuries stratified by sex and level of play and to describe shoulder injury characteristics. HYPOTHESIS Rapid increases in external workload are associated with the incidence of shoulder complaints and injuries. STUDY DESIGN A cohort study. LEVEL OF EVIDENCE Level 3. METHODS At baseline, 301 adolescent competitive tennis players, 13 to 19 years, were screened and followed weekly for 52 weeks with questionnaires, in the years 2018 to 2019. Information about time-varying accumulated external workload spikes (uncoupled ACWR >1.3), and workload/age ratio, in 252 uninjured players were used in Cox regression analyses with the outcomes shoulder complaints (≥20) and injuries (≥40) (Oslo Sports Trauma Research Center Overuse Injury Questionnaire). RESULTS For each additional workload spike in tennis training/match play, the hazard rate ratio (HRR) was 1.26 (95% CI, 1.13-1.40) for a shoulder complaint and 1.26 (95% CI, 1.15-1.39) for a shoulder injury. The HRR for fitness training was 1.11 (95% CI, 1.02-1.20) for a shoulder complaint and 1.18 (95% CI, 1.09-1.27) for a shoulder injury. Workload/age ratio was not associated with the rate of shoulder complaints or injuries. CONCLUSION Accumulated external workload spikes of tennis training, match play, and/or fitness training are associated with a higher rate of shoulder complaints and shoulder injuries in competitive adolescent tennis players. CLINICAL RELEVANCE Consistency in training load on a weekly basis is most likely more beneficial for adolescent tennis players regarding shoulder complaints/injuries than a training schedule comprising rapid increases (ie, spikes) in workload.
Collapse
Affiliation(s)
- Fredrik Johansson
- Tennis Research and Performance Group, MUSIC, Department of Health Promotion Sciences, Sophiahemmet University, Stockholm, Sweden
- Unit of Intervention and Implementation Research for Worker Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Naprapathögskolan–Scandinavian College of Naprapathic Manual Medicine, Stockholm, Sweden
| | - Ann Cools
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Tim Gabbett
- Gabbett Performance Solutions, Brisbane, Clayfield, Queensland, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, Queensland, Australia
| | | | - Eva Skillgate
- Tennis Research and Performance Group, MUSIC, Department of Health Promotion Sciences, Sophiahemmet University, Stockholm, Sweden
- Unit of Intervention and Implementation Research for Worker Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Kruse A, Rivares C, Weide G, Tilp M, Jaspers RT. Stimuli for Adaptations in Muscle Length and the Length Range of Active Force Exertion-A Narrative Review. Front Physiol 2021; 12:742034. [PMID: 34690815 PMCID: PMC8531727 DOI: 10.3389/fphys.2021.742034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Treatment strategies and training regimens, which induce longitudinal muscle growth and increase the muscles’ length range of active force exertion, are important to improve muscle function and to reduce muscle strain injuries in clinical populations and in athletes with limited muscle extensibility. Animal studies have shown several specific loading strategies resulting in longitudinal muscle fiber growth by addition of sarcomeres in series. Currently, such strategies are also applied to humans in order to induce similar adaptations. However, there is no clear scientific evidence that specific strategies result in longitudinal growth of human muscles. Therefore, the question remains what triggers longitudinal muscle growth in humans. The aim of this review was to identify strategies that induce longitudinal human muscle growth. For this purpose, literature was reviewed and summarized with regard to the following topics: (1) Key determinants of typical muscle length and the length range of active force exertion; (2) Information on typical muscle growth and the effects of mechanical loading on growth and adaptation of muscle and tendinous tissues in healthy animals and humans; (3) The current knowledge and research gaps on the regulation of longitudinal muscle growth; and (4) Potential strategies to induce longitudinal muscle growth. The following potential strategies and important aspects that may positively affect longitudinal muscle growth were deduced: (1) Muscle length at which the loading is performed seems to be decisive, i.e., greater elongations after active or passive mechanical loading at long muscle length are expected; (2) Concentric, isometric and eccentric exercises may induce longitudinal muscle growth by stimulating different muscular adaptations (i.e., increases in fiber cross-sectional area and/or fiber length). Mechanical loading intensity also plays an important role. All three training strategies may increase tendon stiffness, but whether and how these changes may influence muscle growth remains to be elucidated. (3) The approach to combine stretching with activation seems promising (e.g., static stretching and electrical stimulation, loaded inter-set stretching) and warrants further research. Finally, our work shows the need for detailed investigation of the mechanisms of growth of pennate muscles, as those may longitudinally grow by both trophy and addition of sarcomeres in series.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training, and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Cintia Rivares
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Guido Weide
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands.,Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, University Hospital Leuven, Leuven, Belgium
| | - Markus Tilp
- Department of Biomechanics, Training, and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
28
|
McSweeney SC, Grävare Silbernagel K, Gruber AH, Heiderscheit BC, Krabak BJ, Rauh MJ, Tenforde AS, Wearing SC, Zech A, Hollander K. Adolescent Running Biomechanics - Implications for Injury Prevention and Rehabilitation. Front Sports Act Living 2021; 3:689846. [PMID: 34514384 PMCID: PMC8432296 DOI: 10.3389/fspor.2021.689846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Global participation in running continues to increase, especially amongst adolescents. Consequently, the number of running-related injuries (RRI) in adolescents is rising. Emerging evidence now suggests that overuse type injuries involving growing bone (e.g., bone stress injuries) and soft tissues (e.g., tendinopathies) predominate in adolescents that participate in running-related sports. Associations between running biomechanics and overuse injuries have been widely studied in adults, however, relatively little research has comparatively targeted running biomechanics in adolescents. Moreover, available literature on injury prevention and rehabilitation for adolescent runners is limited, and there is a tendency to generalize adult literature to adolescent populations despite pertinent considerations regarding growth-related changes unique to these athletes. This perspective article provides commentary and expert opinion surrounding the state of knowledge and future directions for research in adolescent running biomechanics, injury prevention and supplemental training.
Collapse
Affiliation(s)
- Simon C. McSweeney
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Allison H. Gruber
- Department of Kinesiology, School of Public Health – Bloomington, Indiana University, Bloomington, IN, United States
| | - Bryan C. Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, United States
| | - Brian J. Krabak
- Department of Rehabilitation, Orthopedics and Sports Medicine, University of Washington and Seattle Childrens Hospital, Seattle, WA, United States
| | - Mitchell J. Rauh
- Doctor of Physical Therapy Program, San Diego State University, San Diego, CA, United States
| | - Adam S. Tenforde
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Scott C. Wearing
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Astrid Zech
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Jena, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Faculty of Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Burton I. Autoregulation in Resistance Training for Lower Limb Tendinopathy: A Potential Method for Addressing Individual Factors, Intervention Issues, and Inadequate Outcomes. Front Physiol 2021; 12:704306. [PMID: 34421641 PMCID: PMC8375597 DOI: 10.3389/fphys.2021.704306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
Musculoskeletal disorders, such as tendinopathy, are placing an increasing burden on society and health systems. Tendinopathy accounts for up to 30% of musculoskeletal disorders, with a high incidence in athletes and the general population. Although resistance training has shown short-term effectiveness in the treatment of lower limb tendinopathy, more comprehensive exercise protocols and progression methods are required due to poor long-term outcomes. The most common resistance training protocols are predetermined and standardized, which presents significant limitations. Current standardized protocols do not adhere to scientific resistance training principles, consider individual factors, or take the importance of individualized training into account. Resistance training programs in case of tendinopathy are currently not achieving the required intensity and dosage, leading to high recurrence rates. Therefore, better methods for individualizing and progressing resistance training are required to improve outcomes. One potential method is autoregulation, which allows individuals to progress training at their own rate, taking individual factors into account. Despite the finding of their effectiveness in increasing the strength of healthy athletes, autoregulation methods have not been investigated in case of tendinopathy. The purpose of this narrative review was 3-fold: firstly, to give an overview and a critical analysis of the individual factors involved in tendinopathy and current resistance training protocols and their limitations. Secondly, to give an overview of the history, methods, and application of autoregulation strategies both in sports performance and physiotherapy. Finally, a theoretical adaptation of a current tendinopathy resistance training protocol using autoregulation methods is presented, providing an example of how the method could be implemented in clinical practice or future research.
Collapse
Affiliation(s)
- Ian Burton
- National Health Service (NHS) Grampian, Aberdeen, United Kingdom
| |
Collapse
|
30
|
Radovanović G, Kunz J, Bohm S, Arampatzis A, Legerlotz K. Reliable and effective novel home-based training set-up for application of an evidence-based high-loading stimulus to improve triceps surae function. J Sports Sci 2021; 39:2786-2795. [PMID: 34378493 DOI: 10.1080/02640414.2021.1959981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High-loading interventions aiming for muscle-tendon adaptations were so far implemented in on-site facilities. To make this evidence-based stimulus more accessible, we developed an easy-to-use sling-based training set-up for home-based Achilles tendon and triceps surae muscle strength training and assessed its reliability and effectiveness in healthy men. To assess reliability (n=11), intra-class correlation (ICC) and root mean square (RMS) differences of isometric maximum voluntary contraction (MVC) of the plantar flexors were used. Effectiveness was tested in a controlled intervention trial (n=12), applying one-legged high-loading intervention for 3 months with our mobile set-up, while the contralateral/untrained leg served as control, and assessing plantar flexor MVC, drop (DJ) and countermovement jump (CMJ) height. Reliability was excellent between (ICCB=0.935) and within session (ICCWs=0.940-0.967). The mean RMS difference between and within sessions was 5.3% and 4.7%, respectively. MVCs of the trained/intervention leg increased by 10.2±7% (P=0.004) (dynamometry) and 30.2±22.5% (mobile set-up) (P=0.012). MVC of the untrained/control leg did not change (P>0.05). DJ height increased (P=0.025; Dz=2.13) by 2.37±2.9cm. CMJ height (P>0.05) did not change. We recommend the evidence-based high-loading application with our novel home-based training set-up as reliable and effective improving strength and jump performance of the plantar flexor muscle-tendon unit.
Collapse
Affiliation(s)
- Goran Radovanović
- Humboldt-Universität Zu Berlin, Institute of Sport Sciences, Movement Biomechanics, Berlin, Germany.,Medical School Hamburg - University of Applied Sciences and Medical University, Faculty of Health Sciences, Department Performance, Neuroscience, Therapy and Health, Hamburg, Germany
| | - Jona Kunz
- Humboldt-Universität zu Berlin, Institute of Sport Sciences, Department of Training and Movement Sciences, Berlin, Germany
| | - Sebastian Bohm
- Humboldt-Universität zu Berlin, Institute of Sport Sciences, Department of Training and Movement Sciences, Berlin, Germany
| | - Adamantios Arampatzis
- Humboldt-Universität zu Berlin, Institute of Sport Sciences, Department of Training and Movement Sciences, Berlin, Germany
| | - Kirsten Legerlotz
- Humboldt-Universität Zu Berlin, Institute of Sport Sciences, Movement Biomechanics, Berlin, Germany
| |
Collapse
|
31
|
Palma-Muñoz I, Ramírez-Campillo R, Azocar-Gallardo J, Álvarez C, Asadi A, Moran J, Chaabene H. Effects of Progressed and Nonprogressed Volume-Based Overload Plyometric Training on Components of Physical Fitness and Body Composition Variables in Youth Male Basketball Players. J Strength Cond Res 2021; 35:1642-1649. [PMID: 34027922 DOI: 10.1519/jsc.0000000000002950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Palma-Muñoz, I, Ramírez-Campillo, R, Azocar-Gallardo, J, Álvarez, C, Asadi, A, Moran, J, and Chaabene, H. Effects of progressed and nonprogressed volume-based overload plyometric training on components of physical fitness and body composition variables in youth male basketball players. J Strength Cond Res 35(6): 1642-1649, 2021-This study examined the effect of 6 weeks of progressed and nonprogressed volume-based overload plyometric training (PT) on components of physical fitness and body composition measures in young male basketball players, compared with an active control group. Subjects were randomly assigned to a progressed PT (PPT, n = 7; age = 14.6 ± 1.1 years), a non-PPT (NPPT, n = 8, age = 13.8 ± 2.0 years), or a control group (CG, n = 7, age = 14.0 ± 2.0 years). Before and after training, body composition measures (muscle mass and fat mass), countermovement jump with arms (CMJA) and countermovement jump without arms (CMJ), horizontal bilateral (HCMJ) and unilateral jump with right leg (RJ) and left leg (LJ), 20-cm drop jump (DJ20), sprint speed (10 m sprint), and change of direction speed (CODS [i.e., T-test]) were tested. Significant effects of time were observed for muscle and fat mass, all jump measures, and CODS (all p < 0.01; d = 0.37-0.83). Significant training group × time interactions were observed for all jump measures (all p < 0.05; d = 0.24-0.41). Post hoc analyses revealed significant pre-post performance improvements for the PPT (RJ and LJ: ∆18.6%, d = 0.8 and ∆22.7%, d = 0.9, respectively; HCMJ: ∆16.4%, d = 0.8; CMJ: ∆22.4%, d = 0.7; CMJA: ∆23.3%, d = 0.7; and DJ20: ∆39.7%, d = 1.1) and for the NPPT group (LJ: ∆14.1%, d = 0.4; DJ20: ∆32.9%, d = 0.8) with greater changes after PPT compared with NPPT for all jump measures (all p < 0.05; d = 0.21-0.81). The training efficiency was greater (p < 0.05; d = 0.22) after PPT (0.015% per jump) compared with NPPT (0.0053% per-jump). The PPT induced larger performance improvements on measures of physical fitness as compared to NPPT. Therefore, in-season progressive volume-based overload PT in young male basketball players is recommended.
Collapse
Affiliation(s)
- Ignacio Palma-Muñoz
- Quality of Life and Wellness Research Group, Laboratory of Measurement and Assessment in Sport, Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, University of Los Lagos, Osorno, Chile
| | - Rodrigo Ramírez-Campillo
- Quality of Life and Wellness Research Group, Laboratory of Measurement and Assessment in Sport, Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, University of Los Lagos, Osorno, Chile
| | - Jairo Azocar-Gallardo
- Quality of Life and Wellness Research Group, Laboratory of Measurement and Assessment in Sport, Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, University of Los Lagos, Osorno, Chile
| | - Cristian Álvarez
- Quality of Life and Wellness Research Group, Laboratory of Measurement and Assessment in Sport, Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, University of Los Lagos, Osorno, Chile
| | - Abbas Asadi
- Department of Physical Education and Sport Sciences, Payame Noor University, Tehran, Iran
| | - Jason Moran
- Department of Sport, Hartpury University, Gloucestershire, United Kingdom; and
| | - Helmi Chaabene
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Mersmann F, Domroes T, Pentidis N, Tsai MS, Bohm S, Schroll A, Arampatzis A. Prevention of strain-induced impairments of patellar tendon micromorphology in adolescent athletes. Scand J Med Sci Sports 2021; 31:1708-1718. [PMID: 33909297 DOI: 10.1111/sms.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023]
Abstract
High-level patellar tendon strain may cause impairments of the tendon's micromorphological integrity in growing athletes and increase the risk for tendinopathy. This study investigated if an evidence-based tendon exercise intervention prevents high-level patellar tendon strain, impairments of micromorphology and pain in adolescent basketball players (male, 13-15 years). At three time points over a season (M1-3), tendon mechanical properties were measured using ultrasound and dynamometry, proximal tendon micromorphology with a spatial frequency analysis and pain and disability using VISA-P scores. The control group (CON, n = 19) followed the usual strength training plan, including sprint and change-of-direction drills. In the intervention group (INT, n = 14), three sessions per week with functional exercises were integrated into the training, providing repetitive high-magnitude tendon loading for at least 3 s per repetition. The frequency of high-level strain (ie, ≥9%) continuously decreased in INT, while tending to increase in CON since tendon force increased in both (p < 0.001), yet tendon stiffness only in INT (p = 0.004). In CON, tendon strain was inversely associated with tendon peak spatial frequency at all time points (p < 0.05), indicating impairments of tendon micromorphological integrity with higher strain, but not at M2 and M3 in INT. Descriptively, the fraction of asymptomatic athletes at baseline was similar in both groups (~70%) and increased to 100% in M3 in INT, while remaining unchanged in CON. We suggest that functional high-load tendon exercises could reduce the prevalence of high-level patellar tendon strain and associated impairments of its micromorphology in adolescent athletes, providing new opportunities for tendinopathy prevention.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng-Shiuan Tsai
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Quantifying mechanical loading and elastic strain energy of the human Achilles tendon during walking and running. Sci Rep 2021; 11:5830. [PMID: 33712639 PMCID: PMC7955091 DOI: 10.1038/s41598-021-84847-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
The purpose of the current study was to assess in vivo Achilles tendon (AT) mechanical loading and strain energy during locomotion. We measured AT length considering its curve-path shape. Eleven participants walked at 1.4 m/s and ran at 2.5 m/s and 3.5 m/s on a treadmill. The AT length was defined as the distance between its origin at the gastrocnemius medialis myotendinous junction (MTJ) and the calcaneal insertion. The MTJ was tracked using ultrasonography and projected to the reconstructed skin surface to account for its misalignment. Skin-to-bone displacements were assessed during a passive rotation (5°/s) of the ankle joint. Force and strain energy of the AT during locomotion were calculated by fitting a quadratic function to the experimentally measured tendon force-length curve obtained from maximum voluntary isometric contractions. The maximum AT strain and force were affected by speed (p < 0.05, ranging from 4.0 to 4.9% strain and 1.989 to 2.556 kN), yet insufficient in magnitude to be considered as an effective stimulus for tendon adaptation. Besides the important tendon energy recoil during the propulsion phase (7.8 to 11.3 J), we found a recoil of elastic strain energy at the beginning of the stance phase of running (70-77 ms after touch down) between 1.7 ± 0.6 and 1.9 ± 1.1 J, which might be functionally relevant for running efficiency.
Collapse
|
34
|
Mersmann F, Laube G, Marzilger R, Bohm S, Schroll A, Arampatzis A. A Functional High-Load Exercise Intervention for the Patellar Tendon Reduces Tendon Pain Prevalence During a Competitive Season in Adolescent Handball Players. Front Physiol 2021; 12:626225. [PMID: 33776790 PMCID: PMC7987778 DOI: 10.3389/fphys.2021.626225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Imbalances of muscle strength and tendon stiffness may increase the risk for patellar tendinopathy in growing athletes. The present study investigated if a functional high-load exercise intervention, designed to facilitate tendon adaptation and reduce muscle-tendon imbalances, may prevent patellar tendon pain in adolescent male handball players (12–14 years). Tendon pain prevalence (using VISA-P scores), knee extensor strength, vastus lateralis (VL) architecture and patellar tendon mechanical properties were measured at four measurement time points (M1–M4) over a season. The control group (CON; n = 18; age 13.1 ± 0.7 yrs, height 170 ± 8 cm, mass 58 ± 10 kg) followed the usual strength training plan, including muscular endurance and explosive strength components. In the experimental group (EXP; n = 16; 13.1 ± 0.6 yrs, 169 ± 11 cm, 58 ± 16 kg), two sessions per week with functional high-load exercises for the patellar tendon were integrated in the strength training schedule, aiming to provide repetitive high-intensity loading of at least 3 s loading duration per repetition. While in the control group 30% of the athletes reported a clinically significant aggravation of symptoms, all players in the experimental group remained or became pain-free at M2 until the end of the season. There was a similar increase of strength (normalized to body mass; CON: 3.1%, d = 0.22; EXP: 6.8%, d = 0.47; p = 0.04) and VL thickness (CON: 4.8%, d = 0.28; EXP: 5.7%, d = 0.32; p < 0.001) in both groups, but no significant changes of tendon stiffness or maximum tendon strain. Further, both groups demonstrated similar fluctuations of tendon strain over time. We conclude that functional high-load exercises can reduce the prevalence of patellar tendon pain in adolescent athletes even without a reduction of tendon strain.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Laube
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Marzilger
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
35
|
Maestroni L, Read P, Bishop C, Papadopoulos K, Suchomel TJ, Comfort P, Turner A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med 2021; 50:1431-1450. [PMID: 32564299 DOI: 10.1007/s40279-020-01309-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies.
Collapse
Affiliation(s)
- Luca Maestroni
- Smuoviti, Viale Giulio Cesare, 29, 24121, Bergamo, BG, Italy. .,StudioErre, Via della Badia, 18, 25127, Brescia, BS, Italy. .,London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK.
| | - Paul Read
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Konstantinos Papadopoulos
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA.,Directorate of Psychology and Sport, University of Salford, Frederick Road, Salford, Greater Manchester, UK
| | - Paul Comfort
- Directorate of Psychology and Sport, University of Salford, Frederick Road, Salford, Greater Manchester, UK.,Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.,Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Anthony Turner
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| |
Collapse
|
36
|
Epro G, König M, James D, Lambrianides Y, Werth J, Hunter S, Karamanidis K. Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters. J Biomech 2021; 120:110364. [PMID: 33743395 DOI: 10.1016/j.jbiomech.2021.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Differences in the adaptation processes between muscle and tendon in response to mechanical loading can lead to non-uniform mechanical properties within the muscle-tendon unit (MTU), potentially increasing injury risk. The current study analysed the mechanical properties of the triceps surae (TS) MTU in 10 young (YS; 22 ± 3 yrs) and 10 older (OS; age 65 ± 8 yrs; i.e. master) (inter)national level sprinters and 11 young recreationally active adults (YC; 23 ± 3 yrs) to detect possible non-uniformities in muscle and tendon adaptation due to habitual mechanical loading and ageing. Triceps surae muscle strength, tendon stiffness and maximal tendon strain were assessed in both legs during maximal voluntary isometric plantarflexion contractions via dynamometry and ultrasonography. Irrespective of the leg, OS and YC in comparison to YS demonstrated significantly (P < 0.05) lower TS muscle strength and tendon stiffness, with no differences between OS and YC. Furthermore, no group differences were detected in the maximal tendon strain (average of both legs: OS 3.7 ± 0.8%, YC 4.4 ± 0.8% and YS 4.3 ± 0.9%) as well as in the inter-limb symmetry indexes in muscle strength, tendon stiffness and maximal tendon strain (range across groups: -5.8 to 4.9%; negative value reflects higher value for the non-preferred leg). Thus, the findings provide no clear evidence for a disruption in the TS MTU uniformity in master sprinters, demonstrating that ageing tendons can maintain their integrity to meet the increased functional demand due to elite sports.
Collapse
Affiliation(s)
- G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom.
| | - M König
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - D James
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - Y Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - J Werth
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - S Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| |
Collapse
|
37
|
Drury B, Clarke H, Moran J, Fernandes JFT, Henry G, Behm DG. Eccentric Resistance Training in Youth: A Survey of Perceptions and Current Practices by Strength and Conditioning Coaches. J Funct Morphol Kinesiol 2021; 6:21. [PMID: 33670687 PMCID: PMC8006255 DOI: 10.3390/jfmk6010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Eccentric resistance training (ERT) in youth is advocated for aiding performance and injury risk. However, research investigating the applied practices of ERT in youth is in its infancy. In this study, we surveyed the perceptions and practices of practitioners utilizing ERT in youth to provide an understanding of its current application in practice. METHODS Sixty-four strength and conditioning coaches completed an online survey reporting their current use of ERT in youth using both open and closed questions. RESULTS Coaches deemed the inclusion of ERT important in youth with its inclusion based upon factors such as maturation status, training age and strength levels. Coaches also displayed an awareness of the physiological responses to eccentric exercise in youth compared to adults. ERT was primarily used for injury prevention, with the majority of coaches using body-weight and tempo exercises. Furthermore, utilizing eccentric hamstrings exercises was reported as highly important. The frequency of ERT tended to increase in older age groups and coaches mainly prescribed self-selected rest intervals. Finally, the need for further research into the training guidelines of ERT in youth was highlighted, in which coaches require more information on how maturation influences training adaptations and the fatigue-recovery responses. CONCLUSION Coaches emphasized the importance of including ERT for both performance and injury prevention factors in youth although further research is required to generate practical guidelines for coaches in order to support its inclusion within practice.
Collapse
Affiliation(s)
- Benjamin Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire GL19 3BE, UK; (H.C.); (J.F.T.F.); (G.H.)
| | - Hannah Clarke
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire GL19 3BE, UK; (H.C.); (J.F.T.F.); (G.H.)
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3SQ, UK;
| | - John F. T. Fernandes
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire GL19 3BE, UK; (H.C.); (J.F.T.F.); (G.H.)
| | - Greg Henry
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire GL19 3BE, UK; (H.C.); (J.F.T.F.); (G.H.)
| | - David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| |
Collapse
|
38
|
Brage K, Juul-Kristensen B, Hjarbaek J, Boyle E, Kjaer P, Ingwersen KG. Strain Elastography and Tendon Response to an Exercise Program in Patients With Supraspinatus Tendinopathy: An Exploratory Study. Orthop J Sports Med 2021; 8:2325967120965185. [PMID: 33403207 PMCID: PMC7747122 DOI: 10.1177/2325967120965185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background Shoulder pain is common, with a lifetime prevalence of up to 67%. Evidence is conflicting in relation to imaging findings and pain in the shoulder. Sonoelastography can be used to estimate tissue stiffness and may be a clinically relevant technique for diagnosing and monitoring tendon healing. Purpose To evaluate changes in supraspinatus tendon stiffness using strain elastography (SEL) and associations with changes in patient-reported outcomes, supraspinatus tendon thickness, and grade of tendinopathy after 12 weeks of unilateral shoulder exercises in patients with supraspinatus tendinopathy. Study Design Controlled laboratory study. Methods A total of 23 patients with unilateral clinical supraspinatus tendinopathy performed 12 weeks of "standard care" exercises. At baseline and follow-up, supraspinatus tendon stiffness was measured bilaterally using SEL and compared with tendinopathy grading on magnetic resonance imaging scans and tendon thickness measured using conventional ultrasound. Patient-reported outcome measures included physical function and symptoms from the Disabilities of the Arm, Shoulder and Hand questionnaire and pain rating (visual analog scale). Results No significant changes in SEL within or between groups (asymptomatic vs symptomatic tendon) were seen. All patient-reported outcomes showed significant improvement from baseline to follow-up, but with no change in tendinopathy grading and tendon thickness. No significant differences in the proportion of patients changing above the minimal detectable change in SEL and PROM were seen, except for discomfort while sleeping. Conclusion Despite no significant within-group or between-group changes in SEL, significant improvements were found in patient-reported outcomes. An acceptable agreement between patients changing above the minimal detectable change in SEL and patient-reported outcome measure was seen. Further studies should explore the use of SEL to detect changes after tendon repair and long-term training potentially in subgroups of different tendinopathy phases. Clinical Relevance In the short term, structural changes in supraspinatus tendons could not be visualized using SEL, indicating that a longer time span should be expected in order to observe structural changes, which should be considered before return to sports. Subgrouping based on stage of tendinopathy may also be important in order to evaluate changes over time with SEL among patients with supraspinatus tendinopathy. Registration NCT03425357 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Karen Brage
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Health Sciences Research Centre, UCL University College, Odense, Denmark
| | - Birgit Juul-Kristensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - John Hjarbaek
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | - Eleanor Boyle
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Kjaer
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Health Sciences Research Centre, UCL University College, Odense, Denmark
| | - Kim Gordon Ingwersen
- Research Unit in Physio- and Occupational Therapy, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Porter KN, Talpey S, Pascoe D, Blanch PD, Walker HM, Shield AJ. The effect of swimming volume and intensity on changes in supraspinatus tendon thickness. Phys Ther Sport 2020; 47:173-177. [PMID: 33310584 DOI: 10.1016/j.ptsp.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To compare the change in supraspinatus tendon thickness (STT) following a high volume (HV) and high intensity (HI) swimming practice in shoulders of elite swimmers. DESIGN Cohort Study. SETTING Non-clinical, state swim team training facility. PARTICIPANTS A convenience sample of eight non-injured state and national level swimmers from a regional swim team were recruited for this study. MAIN OUTCOME MEASURES Ultrasound measures of STT were collected in response to the two swimming practice sessions. Measures were taken prior to each swim practice; immediately after practice; 6-hours post practice and 24-hours post practice. RESULTS A significant increase in STT resulted from both the HI and HV (p < 0.05) practice immediately post practice. For the HI practice, the STT remained significantly thicker than pre-practice measures at the 6-hour post practice test (p < 0.05) however no longer significant 24-hours post practice. The difference in the change in STT between the HI and HV practice was significantly different immediately post practice and 6-hours post practice (p < 0.05) however no longer significant 24-hour post practice. CONCLUSION Ultrasound measures of STT following different swimming volumes and intensities may provide information on shoulder tendon loads.
Collapse
Affiliation(s)
- Kirsten N Porter
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia; School of Allied Health, Australian Catholic University, Ballarat, Australia.
| | - Scott Talpey
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Deborah Pascoe
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Peter D Blanch
- School of Allied Health Sciences, Brisbane Lions Football Club, Woolloongabba, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| | - Helen M Walker
- School of Exercise and Nutrition Science, Physio4athletes, Melbourne, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
40
|
Astolfi RS, de Novaes RCT, Dias Leite JA, Temoteo Ribeiro HC, Godoy Santos AL, Lopes JR. Foot structures and their correlations with body height. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2020. [DOI: 10.1016/j.fsir.2020.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Pentidis N, Mersmann F, Bohm S, Giannakou E, Aggelousis N, Arampatzis A. Effects of long-term athletic training on muscle morphology and tendon stiffness in preadolescence: association with jump performance. Eur J Appl Physiol 2020; 120:2715-2727. [PMID: 32930859 PMCID: PMC7674345 DOI: 10.1007/s00421-020-04490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.
Collapse
Affiliation(s)
- Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erasmia Giannakou
- Department of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Nickos Aggelousis
- Department of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany. .,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Katugam K, Cox SM, Salzano MQ, De Boef A, Hast MW, Neuberger T, Ryan TM, Piazza SJ, Rubenson J. Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model. Front Bioeng Biotechnol 2020; 8:994. [PMID: 32984280 PMCID: PMC7492247 DOI: 10.3389/fbioe.2020.00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Tendon mechanical properties respond to altered load in adults, but how load history during growth affects adult tendon properties remains unclear. To address this question, we adopted an avian model in which we altered the mechanical load environment across the growth span. Animals were divided at 2 weeks of age into three groups: (1) an exercise control group given the opportunity to perform high-acceleration movements (EXE, n = 8); (2) a sedentary group restricted from high-intensity exercise (RES, n = 8); and (3) a sedentary group also restricted from high-intensity exercise and in which the gastrocnemius muscles were partially paralyzed using repeated bouts of botulinum toxin-A injections (RES-BTX, n = 8). Video analysis of bird movement confirmed the restrictions eliminated high-intensity exercise and did not alter time spent walking and sitting between groups. At skeletal maturity (33-35 weeks) animals were sacrificed for analysis, consisting of high-field MRI and material load testing, of both the entire free Achilles tendon and the tendon at the bone-tendon junction. Free tendon stiffness, modulus, and hysteresis were unaffected by variation in load environment. Further, the bone-tendon junction cross-sectional area, stress, and strain were also unaffected by variations in load environment. These results suggest that: (a) a baseline level of low-intensity activity (standing and walking) may be sufficient to maintain tendon growth; and (b) if this lower threshold of tendon load is met, non-mechanical mediated tendon growth may override the load-induced mechanotransduction signal attributed to tendon remodeling in adults of the same species. These results are important for understanding of musculoskeletal function and tendon health in growing individuals.
Collapse
Affiliation(s)
- Kavya Katugam
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Suzanne M. Cox
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Matthew Q. Salzano
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Adam De Boef
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Michael W. Hast
- Biedermann Lab for Orthopaedic Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Timothy M. Ryan
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Stephen J. Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
43
|
Mersmann F, Laube G, Bohm S, Arampatzis A. Muscle and Tendon Morphology in Early-Adolescent Athletes and Untrained Peers. Front Physiol 2020; 11:1029. [PMID: 32973557 PMCID: PMC7472460 DOI: 10.3389/fphys.2020.01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Adolescent athletes can feature significantly greater muscle strength and tendon stiffness compared to untrained peers. However, to date, it is widely unclear if radial muscle and tendon hypertrophy may contribute to loading-induced adaptation at this stage of maturation. The present study compares the morphology of the vastus lateralis (VL) and the patellar tendon between early-adolescent athletes and untrained peers. In 14 male elite athletes (A) and 10 untrained controls (UC; 12–14 years of age), the VL was reconstructed from full muscle segmentations of magnetic resonance imaging (MRI) sequences and ultrasound imaging was used to measure VL fascicle length and pennation angle. The physiological cross-sectional area (PCSA) of the VL was calculated by dividing muscle volume by fascicle length. The cross-sectional area (CSA) of the patellar tendon was measured over its length based on MRI segmentations as well. Considering body mass as covariate in the analysis, there were no significant differences between groups considering the VL anatomical cross-sectional area (ACSA) over its length or maximum ACSA (UC: 24.0 ± 8.3 cm2, A: 28.1 ± 5.3 cm2, p > 0.05), yet athletes had significantly greater VL volume (UC: 440 ± 147 cm3, A: 589 ± 121 cm3), PCSA (UC: 31 ± 9 cm2, A: 46 ± 9 cm2), pennation angle (UC: 8.2 ± 1.4°, A: 10.1 ± 1.3°), and average patellar tendon CSA (UC: 1.01 ± 0.18 cm2, A: 1.21 ± 0.18 cm2) compared to the untrained peers (p < 0.05). However, the ratio of average tendon CSA to VL PCSA was significantly lower in athletes (UC: 3.4 ± 0.1%, A: 2.7 ± 0.5%; p < 0.05). When inferring effects of athletic training based on the observed differences between groups, these results suggest that both muscle and tendon of the knee extensors respond to athletic training with radial growth. However, the effect seems to be stronger in the muscle compared to the tendon, with an increase of pennation angle contributing to the marked increase of muscle PCSA. A disproportionate response to athletic training might be associated with imbalances of muscle strength and tendon stiffness and could have implications for the disposition towards tendon overuse injury.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Laube
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
44
|
Maestroni L, Read P, Bishop C, Turner A. Strength and Power Training in Rehabilitation: Underpinning Principles and Practical Strategies to Return Athletes to High Performance. Sports Med 2020; 50:239-252. [PMID: 31559567 DOI: 10.1007/s40279-019-01195-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injuries have a detrimental impact on team and individual athletic performance. Deficits in maximal strength, rate of force development (RFD), and reactive strength are commonly reported following several musculoskeletal injuries. This article first examines the available literature to identify common deficits in fundamental physical qualities following injury, specifically strength, rate of force development and reactive strength. Secondly, evidence-based strategies to target a resolution of these residual deficits will be discussed to reduce the risk of future injury. Examples to enhance practical application and training programmes have also been provided to show how these can be addressed.
Collapse
Affiliation(s)
- Luca Maestroni
- Smuoviti, Viale Giulio Cesare, 29, 24121, Bergamo, BG, Italy.
- StudioErre, Via della Badia, 18, 25127, Brescia, BS, Italy.
| | - Paul Read
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Anthony Turner
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| |
Collapse
|
45
|
Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low-load strength training: A randomized controlled trial. PLoS One 2020; 15:e0235377. [PMID: 32603351 PMCID: PMC7326162 DOI: 10.1371/journal.pone.0235377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to investigate whether a six-week, twice weekly resistance training (4 sets at 30% 1-RM until failure) with practical blood flow restriction (BFR) using 7cm wide cuffs with a twist lock placed below the patella is superior to training without BFR (NoBFR) concerning muscle mass and strength gains in calf muscles. A two-group (BFR n = 12, mean age 27.33 (7.0) years, training experience 7.3 (7.0) years; NoBFR n = 9, mean age 28.9 (7.4) years, training experience 7.1 (6.6) years) randomized matched pair design based on initial 1-RM was used to assess the effects on structural and functional adaptations in healthy males (Perometer calf volume [CV], gastrocnemius muscle thickness using ultrasound [MT], 7-maximal hopping test for leg stiffness [LS], 1-RM smith machine calf raise [1-RM], and visual analogue scale as a measure of pain intensity [VAS]). The mean number of repetitions completed per training session across the intervention period was higher in the NoBFR group compared to the BFR group (70 (16) vs. 52 (9), p = 0.002). VAS measured during the first session increased similarly in both groups from first to fourth set (p<0.001). No group effects or time×group interactions were found for CV, MT, LS, and 1-RM. However, there were significant time effects for MT (BFR +0.07 cm; NoBFR +0.04; p = 0.008), and 1-RM (BFR +40 kg; NoBFR +34 kg; p<0.001). LS and CV remained unchanged through training. VAS in both groups were similar, and BFR and NoBFR were equally effective for increasing 1-RM and MT in trained males. However, BFR was more time efficient, due to lesser repetition per training session.
Collapse
|
46
|
Arampatzis A, Mersmann F, Bohm S. Individualized Muscle-Tendon Assessment and Training. Front Physiol 2020; 11:723. [PMID: 32670094 PMCID: PMC7332733 DOI: 10.3389/fphys.2020.00723] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023] Open
Abstract
The interaction of muscle and tendon is of major importance for movement performance and a balanced development of muscle strength and tendon stiffness could protect athletes from overuse injury. However, muscle and tendon do not necessarily adapt in a uniform manner during a training process. The development of a diagnostic routine to assess both the strength capacity of muscle and the mechanical properties of tendons would enable the detection of muscle-tendon imbalances, indicate if the training should target muscle strength or tendon stiffness development and allow for the precise prescription of training loads to optimize tendon adaptation. This perspective article discusses a framework of individualized muscle-tendon assessment and training and outlines a methodological approach for the patellar tendon.
Collapse
Affiliation(s)
- Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Hakim H, Puel F, Bertucci W. Injury assessment in circus student-artists population; preliminary study. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Drury B, Ratel S, Clark CC, Fernandes JF, Moran J, Behm DG. Eccentric Resistance Training in Youth: Perspectives for Long-Term Athletic Development. J Funct Morphol Kinesiol 2019; 4:E70. [PMID: 33467385 PMCID: PMC7739302 DOI: 10.3390/jfmk4040070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this narrative review is to discuss the role of eccentric resistance training in youth and how this training modality can be utilized within long-term physical development. Current literature on responses to eccentric exercise in youth has demonstrated that potential concerns, such as fatigue and muscle damage, compared to adults are not supported. Considering the importance of resistance training for youth athletes and the benefits of eccentric training in enhancing strength, power, speed, and resistance to injury, its inclusion throughout youth may be warranted. In this review we provide a brief overview of the physiological responses to exercise in youth with specific reference to the different responses to eccentric resistance training between children, adolescents, and adults. Thereafter, we discuss the importance of ensuring that force absorption qualities are trained throughout youth and how these may be influenced by growth and maturation. In particular, we propose practical methods on how eccentric resistance training methods can be implemented in youth via the inclusion of efficient landing mechanics, eccentric hamstrings strengthening and flywheel inertia training. This article proposes that the use of eccentric resistance training in youth should be considered a necessity to help develop both physical qualities that underpin sporting performance, as well as reducing injury risk. However, as with any other training modality implemented within youth, careful consideration should be given in accordance with an individual's maturity status, training history and technical competency as well as being underpinned by current long-term physical development guidelines.
Collapse
Affiliation(s)
- Benjamin Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire GL19 3BE, England, UK;
| | - Sébastien Ratel
- Laboratoire des Adaptations Métaboliques à l’Exercice en conditions Physiologiques et Pathologiques (AME2P, EA 3533), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Cain C.T. Clark
- Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5RW, England, UK;
| | - John F.T. Fernandes
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire GL19 3BE, England, UK;
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3WA, UK;
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s Newfoundland and Labrador, A1C 5S7C, Canada;
| |
Collapse
|
49
|
Centner C, Lauber B, Seynnes OR, Jerger S, Sohnius T, Gollhofer A, König D. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. J Appl Physiol (1985) 2019; 127:1660-1667. [PMID: 31725362 DOI: 10.1152/japplphysiol.00602.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low-load blood flow restriction (LL-BFR) training has gained increasing interest in the scientific community by demonstrating that increases in muscle mass and strength are comparable to conventional high-load (HL) resistance training. Although adaptations on the muscular level are well documented, there is little evidence on how LL-BFR training affects human myotendinous properties. Therefore, the aim of the present study was to investigate morphological and mechanical Achilles tendon adaptations after 14 wk of strength training. Fifty-five male volunteers (27.9 ± 5.1 yr) were randomly allocated into the following three groups: LL-BFR [20-35% of one-repetition maximum (1RM)], HL (70-85% 1RM), or a nonexercising control (CON) group. The LL-BFR and HL groups completed a resistance training program for 14 wk, and tendon morphology, mechanical as well as material properties, and muscle cross-sectional area (CSA) and isometric strength were assessed before and after the intervention. Both HL (+40.7%) and LL-BFR (+36.1%) training induced significant increases in tendon stiffness (P < 0.05) as well as tendon CSA (HL: +4.6%, LL-BFR: +7.8%, P < 0.001). These changes were comparable between groups without significant changes in Young's modulus. Furthermore, gastrocnemius medialis muscle CSA and plantar flexor strength significantly increased in both training groups (P < 0.05), whereas the CON group did not show significant changes in any of the evaluated parameters. In conclusion, the adaptive change in Achilles tendon properties following low-load resistance training with partial vascular occlusion appears comparable to that evoked by high-load resistance training.NEW & NOTEWORTHY Low-load blood flow restriction (LL-BFR) training has been shown to induce beneficial adaptations at the muscular level. However, studies examining the effects on human tendon properties are rare. The findings provide first evidence that LL-BFR can increase Achilles tendon mechanical and morphological properties to a similar extent as conventional high-load resistance training. This is of particular importance for individuals who may not tolerate heavy training loads but still aim for improvements in myotendinous function.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, Université de Fribourg, Fribourg, Switzerland
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Tim Sohnius
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Daniel König
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Charcharis G, Mersmann F, Bohm S, Arampatzis A. Morphological and Mechanical Properties of the Quadriceps Femoris Muscle-Tendon Unit From Adolescence to Adulthood: Effects of Age and Athletic Training. Front Physiol 2019; 10:1082. [PMID: 31507446 PMCID: PMC6718516 DOI: 10.3389/fphys.2019.01082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
The combined effects of mechanical loading and maturation during adolescence are still not well understood. The purpose of the study was to investigate the development of the quadriceps femoris muscle-tendon unit from early adolescence (EA), late adolescence (LA) to young adulthood (YA), and examine how it is influenced by athletic training in a cross-sectional design. Forty-one male athletes and forty male non-athletes from three different age groups (EA: 12-14 years, n = 29; LA: 16-18 years, n = 27; and YA: 20-35 years, n = 25) participated in the present study. Maximum strength of the knee extensor muscles, architecture of the vastus lateralis (VL) muscle and patellar tendon stiffness were examined using dynamometry, motion capture, electromyography, and ultrasonography. Muscle strength and tendon stiffness significantly increased (p < 0.001) from EA to LA without any further alterations (p > 0.05) from LA to YA. Athletes compared to non-athletes showed significantly greater (p < 0.001) absolute muscle strength (EA: 3.52 ± 0.75 vs. 3.20 ± 0.42 Nm/kg; LA: 4.47 ± 0.61 vs. 3.83 ± 0.56 Nm/kg; and YA: 4.61 ± 0.55 vs. 3.60 ± 0.53), tendon stiffness (EA: 990 ± 317 vs. 814 ± 299 N/mm; LA: 1266 ± 275 vs. 1110 ± 255 N/mm; and YA: 1487 ± 354 vs. 1257 ± 328), and VL thickness (EA: 19.7 ± 3.2 vs. 16.2 ± 3.4 mm; LA: 23.0 ± 4.2 vs. 20.1 ± 3.3 mm; and YA: 25.5 ± 4.2 vs. 23.9 ± 3.9 mm). Athletes were more likely to reach strain magnitudes higher than 9% strain compared to non-athlete controls (EA: 28 vs. 15%; LA: 46 vs. 16%; and YA: 66 vs. 33%) indicating an increased mechanical demand for the tendon. Although the properties of the quadriceps femoris muscle-tendon unit are enhanced by athletic training, their development from early-adolescence to adulthood remain similar in athletes and non-athletes with the major alterations between early and LA. However, both age and athletic training was associated with a higher prevalence of imbalances within the muscle-tendon unit and a resultant increased mechanical demand for the patellar tendon.
Collapse
Affiliation(s)
- Georgios Charcharis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|