1
|
Balague N, Gabriel CS, Hristovski R. Redefining Health-Related Fitness: The Adaptive Ability to Foster Survival Possibilities. SPORTS MEDICINE - OPEN 2025; 11:23. [PMID: 40047983 PMCID: PMC11885681 DOI: 10.1186/s40798-025-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
Fitness has been dominantly defined in terms of physical conditioning components. Under such definition, males tend to outperform females in strength, speed, aerobic or anaerobic capacity when compared at the same age and training status. However, females have a higher life expectancy, which in humans is related to higher biological fitness. Using the paradox of sex differences in fitness-where males have higher physical fitness but do not have a higher life expectancy-the aim of this opinion paper is to (a) highlight the multidimensionality of fitness, and (b) redefine health-related fitness, drawing on key fitness goals in biology: adaptability and survival. The redefinition of health-related fitness as the "adaptive ability to foster survival possibilities" encompasses synergies across physical, mental, psychological, emotional, social and subjective dimensions, while embracing the diversity of human characteristics, including sex, gender, age, somatotype, vital state, disability, disease and wellbeing, among others.
Collapse
Affiliation(s)
- Natalia Balague
- Complex Systems in Sport Research Group, Institut Nacional d'Educació Fisica de Catalunya (INEFC), University of Barcelona (UB), Barcelona, Spain.
| | | | - Robert Hristovski
- Complex Systems in Sport Research Group, Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, 1000, Macedonia
| |
Collapse
|
2
|
Lebron MA, Starling-Smith JM, Hill EC, Stout JR, Fukuda DH. Sex-Based Effects on Muscle Oxygenation During Repeated Maximal Intermittent Handgrip Exercise. Sports (Basel) 2025; 13:42. [PMID: 39997973 PMCID: PMC11860420 DOI: 10.3390/sports13020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND This investigation aimed to examine sex-based differences in deoxy[heme] (HHb), tissue saturation (StO2), and force-deoxygenation ratio (FD) of the forearm flexor muscles during a maximal-effort intermittent fatiguing handgrip protocol. METHODS Thirty-three healthy males (n = 15) and females (n = 18) completed a fatiguing handgrip protocol consisting of 60 4 s contractions separated by a 1 s rest. Near-infrared spectroscopy was used to measure muscle oxygenation before, during, and after the protocol. RESULTS Sex differences in HHb (p = 0.033) and StO2 (p = 0.021) were observed with significantly greater values for females (HHb: 110.204 ± 12.626% of baseline; StO2: 72.091 ± 5.812%) in comparison to males (HHb: 101.153 ± 12.847% of baseline; StO2: 66.978 ± 7.799%). Females (0.199 ± 0.081 AU) also demonstrated significantly (p = 0.001) lower FD in comparison to males (0.216 ± 0.094 AU). However, males (b = -0.023 ± 0.008 AU) demonstrated a significantly (p < 0.001) greater rate of decline in FD in comparison to females (b = -0.017 ± 0.006 AU). CONCLUSIONS Prior to, during, and after a maximal-effort intermittent fatiguing handgrip fatiguing protocol, males demonstrate significantly lower StO2 than females and a faster rate of decline in FD. Moreover, females demonstrate greater HHb values than males when assessed relative to a resting baseline.
Collapse
Affiliation(s)
- Modesto A. Lebron
- Institute of Exercise and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA; (M.A.L.); (J.M.S.-S.); (E.C.H.); (J.R.S.)
| | - Justine M. Starling-Smith
- Institute of Exercise and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA; (M.A.L.); (J.M.S.-S.); (E.C.H.); (J.R.S.)
| | - Ethan C. Hill
- Institute of Exercise and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA; (M.A.L.); (J.M.S.-S.); (E.C.H.); (J.R.S.)
- Florida Space Institute, University of Central Florida, 12354 Research Pkwy, Orlando, FL 32826, USA
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL 32827, USA
| | - Jeffrey R. Stout
- Institute of Exercise and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA; (M.A.L.); (J.M.S.-S.); (E.C.H.); (J.R.S.)
| | - David H. Fukuda
- Institute of Exercise and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA; (M.A.L.); (J.M.S.-S.); (E.C.H.); (J.R.S.)
| |
Collapse
|
3
|
Giuriato G, Barbi C, Laginestra FG, Andani ME, Favaretto T, Martignon C, Pedrinolla A, Vernillo G, Moro T, Franchi M, Romanelli MG, Schena F, Venturelli M. Mitochondrial Influence on Performance Fatigability: Considering Sex Variability. Med Sci Sports Exerc 2025; 57:376-389. [PMID: 39231737 DOI: 10.1249/mss.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Existing literature indicates that females generally demonstrate higher fatigue resistance than males during isometric contractions. However, when it comes to single-limb dynamic exercises, the intricate interplay between performance fatigability (PF), cardiovascular responses, and muscle metabolism in relation to sex differences remains underexplored. PURPOSE This study investigates how sex affects the relationship between muscle oxidative characteristics and the development of PF during dynamic single-leg exercise. METHODS Twenty-four young healthy participants (12 males vs 12 females) performed a constant-load single-leg knee extension task (85% peak power output; 60 rpm) to exhaustion (TTE). Neuromuscular assessments via transcranial magnetic and peripheral stimulations were conducted before and after exercise to evaluate central and peripheral factors of PF. Vastus lateralis muscle biopsies were obtained for mitochondrial respiration and immunohistochemistry analyses. RESULTS Participants performed similar total work (28 ± 7 vs 27 ± 14 kJ, P = 0.81) and TTE (371 ± 139 vs 377 ± 158 s, P = 0.98); after the TTE, females' maximal isometric voluntary contraction (MVIC: -36% ± 13% vs -24% ± 9%, P = 0.006) and resting twitch (RT; -65% ± 9% vs -40% ± 24%, P = 0.004) force declined less. No differences were observed in supraspinal neuromuscular factors ( P > 0.05). During exercise, the cardiovascular responses differed between sexes. Although fiber type composition was similar (type I: 47% ± 13% vs 56% ± 14%, P = 0.11), males had lower mitochondrial net oxidative capacity (61 ± 30 vs 89 ± 37, P = 0.049) and higher Complex II contribution to maximal respiration (CII; 59% ± 8% vs 48% ± 6%, P < 0.001), which correlated with the decline in MVIC ( r = -0.74, P < 0.001) and RT ( r = -0.60, P = 0.002). CONCLUSIONS Females display greater resistance to PF during dynamic contractions, likely due to their superior mitochondrial efficiency and lower dependence on mitochondrial CII activity.
Collapse
Affiliation(s)
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | | | - Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Thomas Favaretto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Camilla Martignon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | | | | | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, ITALY
| | | |
Collapse
|
4
|
Guerrier L, Bacoeur-Ouzillou O, Touron J, Mezher S, Cassagnes L, Vieille-Marchiset A, Chanon S, Pereira B, Pezet D, Pinel A, Gagnière J, Malpuech-Brugère C, Richard R. Mitochondrial respiration in white adipose tissue is dependent on body mass index and tissue location in patients undergoing oncological or parietal digestive surgery. FASEB J 2025; 39:e70350. [PMID: 39856788 DOI: 10.1096/fj.202402243r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Adipose tissue (AT), is a major endocrine organ that plays a key role in health and disease. However, adipose dysfunctions, especially altered energy metabolism, have been under-investigated as white adipocytes have relatively low mitochondrial density. Nevertheless, recent studies suggest that mitochondria could play a major role in AT disorders and that AT mitochondrial activity could depend on adiposity level and location. This clinical study aimed to evaluate mitochondrial respiration and metabolism in human visceral (vAT) and subcutaneous (scAT) AT and their relationship with body mass index (BMI). This clinical study enrolled 67 patients (30 females/37 males) scheduled for digestive surgery without chemotherapy and parietal infection. BMI ranged from 15.4 to 51.9 kg·m-2 and body composition was estimated by computed tomographic images. Mitochondrial respiration was measured in situ in digitonin-permeabilized AT using high-resolution respirometry and a substrate/inhibitor titration approach. Protein levels of mitochondrial and lipid metabolism key elements were evaluated by Western blot. Maximal mitochondrial respiration correlated negatively with BMI (p < .01) and AT area (p < .001) regardless of the anatomical location. However, oxidative phosphorylation respiration was significantly higher in vAT (2.22 ± 0.15 pmol·sec-1·mg-1) than scAT (1.79 ± 0.17 pmol·sec-1·mg-1) (p < 0.001). In line with oxygraphy results, there were higher levels of mitochondrial respiratory chain complexes in low-BMI patients and vAT. Mitochondrial respiration decreased with increasing BMI in both scAT and vAT, without sex-associated difference. Mitochondrial respiration appeared to be higher in vAT than scAT. These differences were both qualitative and quantitative. Clinical Trials Registration IDNCT05417581.
Collapse
Affiliation(s)
- Lisa Guerrier
- INRAe, Human Nutrition Unit, Clermont Auvergne University, Clermont-Ferrand, France
| | - Ophélie Bacoeur-Ouzillou
- INRAe, Human Nutrition Unit, Clermont Auvergne University, Clermont-Ferrand, France
- Department of Digestive and Hepatobiliary Surgery-Liver Transplantation, CHU Estaing, Clermont-Ferrand, France
| | - Julianne Touron
- INRAe, Human Nutrition Unit, Clermont Auvergne University, Clermont-Ferrand, France
| | - Sami Mezher
- Department of Radiology, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Lucie Cassagnes
- Department of Radiology, CHU Gabriel Montpied, Clermont-Ferrand, France
| | | | - Stéphanie Chanon
- INRAe, INSERM, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Bruno Pereira
- Biostatistics Unit, Clinical Research and Innovation Division, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Denis Pezet
- Department of Digestive and Hepatobiliary Surgery-Liver Transplantation, CHU Estaing, Clermont-Ferrand, France
| | - Alexandre Pinel
- INRAe, Human Nutrition Unit, Clermont Auvergne University, Clermont-Ferrand, France
| | - Johan Gagnière
- Department of Digestive and Hepatobiliary Surgery-Liver Transplantation, CHU Estaing, Clermont-Ferrand, France
| | | | - Ruddy Richard
- INRAe, Human Nutrition Unit, Clermont Auvergne University, Clermont-Ferrand, France
- Nutrition Exploration Unit, Human Nutrition Research Centre (CRNH) Auvergne, Clermont-Ferrand, France
- Department of Sport Medicine and Functional Explorations, CHU Gabriel Montpied, Clermont-Ferrand, France
| |
Collapse
|
5
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr Pain Headache Rep 2025; 29:11. [PMID: 39760955 DOI: 10.1007/s11916-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed. RECENT FINDINGS The imbalance between energy production and demand in the brain susceptible to migraine is an important element of migraine pathogenesis. Mitochondria are the main energy source in the brain and mitochondrial impairment is reported in both migraine patients and animal models of human migraine. However, it is not known whether the observed changes are consequences of primary disturbance of mitochondrial homeostasis or are secondary to the migraine-affected hyperexcitable brain. Sex hormones regulate mitochondrial homeostasis, and several reports suggest that the female hormones may act protectively against mitochondrial impairment, contributing to more effective energy production in females, which may be utilized in the mechanisms responsible for migraine progression. Migraine is characterized by several comorbidities that are characterized by sex dimorphism in their prevalence and impairments in mitochondrial functions. Mitochondria may play a major role in sexual dimorphism in migraine through the involvement in energy production, the dependence on sex hormones, and the involvement in sex-dependent comorbidities. Studies on the role of mitochondria in sex dimorphism in migraine may contribute to precise personal therapeutic strategies.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
| |
Collapse
|
6
|
Kwak M, Succi PJ, Benitez B, Mitchinson CJ, Bergstrom HC. The effects of sex and contraction intensity on fatigability and muscle oxygenation in trained individuals. Appl Physiol Nutr Metab 2025; 50:1-12. [PMID: 39298792 DOI: 10.1139/apnm-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Fatigability varies depending on sex and contraction intensity during sustained exercise. This study examined the responses of time to task failure (TTF), performance fatigability (PF), and muscle oxygenation (SmO2) in males and females during isometric handgrip holds to failure (HTF) at 30% and 60% maximum voluntary isometric contraction (MVIC). Males (n = 12) and females (n = 12) performed a pre-MVIC, handgrip HTF at randomly ordered percentages of MVIC (either 30% or 60%), followed by a post-MVIC on the dominant arm. During the HTF testing, the TTF and SmO2 responses were recorded, and PF was determined from the pre- to post-MVICs. TTF for 30% MVIC HTF was greater than 60% MVIC HTF (p < 0.001), but was not different between males and females (p = 0.117). PF exhibited an inverse relationship with intensity for each sex, while males demonstrated greater PF than females for both 30% and 60% MVIC HTF. For the 60% MVIC HTF, males demonstrated greater desaturation than females (CI95% = [-28.1, -2.6%], p = 0.021, d = 0.621), but not for the 30% MVIC HTF (CI95% = [-12.2, 7.9%], p = 0.315, d = 0.621). Sex differences in PF and SmO2 may be attributed to the differences in muscle mass, absolute strength, contractile properties, and muscle metabolism between males and females. However, these proposed differences between males and females may not fully inform exercise performance (e.g., TTF). Sex-specific fatigue responses may be affected by complex physio-psychological mechanisms, and therefore, additional investigations under diverse exercise conditions are required to better prescribe exercise for both males and females.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Pérez-López A, Garriga-Alonso L, Montalvo-Alonso JJ, Val-Manzano MD, Valades D, Vila H, Ferragut C. Sex differences in the acute effect of caffeine on repeated sprint performance: A randomized controlled trial. Eur J Sport Sci 2025; 25:e12233. [PMID: 39662990 DOI: 10.1002/ejsc.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to examine sex differences in acute caffeine intake on repeated sprint performance. Fifty-two resistance-trained individuals (age: 24.6 ± 4.5 years and sex (female/male): 26/26) participated in a randomized, triple-blind, cross-over, and placebo-controlled study. Participants ingested 3 mg/kg caffeine or placebo and, after 60 min, performed 4 Wingate tests (Wt), consisting of a 30 s all-out lower-body sprint against an individualized resisted load, with 90 s rest periods between sprints. Mean (Wmean) and peak (Wpeak) power showed an interaction between sprint and supplement (P = 0.038, ηp 2 = 0.095 and P < 0.001, ηp 2 = 0.157, respectively), but only Wpeak reported a supplement and sex interaction (P = 0.049 and ηp 2 = 0.166). Caffeine increased Wmean in Wt3 (3.5%, P = 0.004, and g = 1.059) and Wt4 (3.9%, P = 0.012, and g = 1.091) compared to placebo. Whereas, for Wpeak, caffeine increased Wpeak in the Wt1 (2.9%, P = 0.050 and g = 1.01) and Wt2 (3.2%, P = 0.050, and g = 1.01) in males and in Wt3 (5.2%, P = 0.008, and g = 1.79) and Wt4 (8.1%, P = 0.004, and g = 2.27) in female participants compared to placebo. No statistically significant sex differences were found in time to reach Wpeak, fatigue index. Acute caffeine intake stimulated a similar ergogenic effect on repeated sprint performance in men and women, except in peak power output, where caffeine increased performance during the first sprints in males and the last sprints in female participants.
Collapse
Affiliation(s)
- Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Madrid, España
| | - Laura Garriga-Alonso
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Madrid, España
| | - Juan Jesús Montalvo-Alonso
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Madrid, España
| | - Marta Del Val-Manzano
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Madrid, España
| | - David Valades
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Madrid, España
| | - Helena Vila
- Department of Special Didactics, Faculty of Education and Sport Sciences, University of Vigo, Pontevedra, Spain
| | - Carmen Ferragut
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Madrid, España
| |
Collapse
|
8
|
Zhu YJ, Fu WR, Lu WJ, Wang XL, Wang X, Shan YG, Zheng XL, Li R, Peng M, Pan L, Qiu J, Qin XF, Sun GJ, Wang L, Dong JZ, Xiao LL, Qiu CG. Non-exercise Estimated Cardiorespiratory Fitness and Mortality Among Adults With Hypertension. Am J Hypertens 2024; 38:63-71. [PMID: 39396103 DOI: 10.1093/ajh/hpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The non-exercise estimated cardiorespiratory fitness (eCRF) has been recognized as an important predictor of mortality among the general population. This study sought to evaluate the relationship between eCRF and mortality from all causes, cardiovascular disease (CVD), and cancer in hypertensive adults. METHODS We included 27,437 adults with hypertension from the National Health and Nutrition Examination Survey (NHANES) III and 10 NHANES cycles from 1999 to 2018. Multivariate Cox proportional hazard models were used to assess the hazard ratios and 95% confidence intervals (CIs) of eCRF for mortality. RESULTS A total of 8,023 deaths were recorded throughout a median 8.6-year follow-up, including 2,338 from CVD, and 1,761 from cancer. The eCRF with per 1 metabolic equivalent increase was linked to decreased risk of all-cause (adjusted HR 0.78, 95% CI: 0.75-0.81) and CVD mortality (adjusted HR 0.79, 95% CI: 0.74-0.84), rather than cancer mortality (adjusted HR 0.94, 95% CI: 0.86-1.03). Moreover, a stronger protective effect of eCRF was observed for females (HR 0.66 (95% CI: 0.62-0.72) versus HR 0.78 (95% CI: 0.73-0.83), Pinteraction < 0.001 for all-cause mortality; HR 0.70 (95% CI: 0.61-0.80;) versus HR 0.82 (95% CI: 0.73-0.92), Pinteraction = 0.026 for CVD mortality) compared with males. Findings did not significantly differ in subgroup analyses and sensitivity analyses. CONCLUSIONS Among adults with hypertension, eCRF was inversely related to all-cause and CVD mortality, but not cancer mortality. A significant interaction effect existed between sex and eCRF. Further studies are needed to verify this association in different populations.
Collapse
Affiliation(s)
- Yong-Jian Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan-Rong Fu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Jie Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu-Le Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Guang Shan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Lin Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Peng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Pan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Fei Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Ju Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Wang
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Zeng Dong
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Li Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun-Guang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Perlet MR, Traylor MK, Ransom KV, Batman GB, Hill EC, Weir JP, Keller JL. Contributions to forearm desaturation during transient ischemia in healthy adult males and females across the lifespan. Appl Physiol Nutr Metab 2024; 49:1740-1748. [PMID: 39321471 DOI: 10.1139/apnm-2024-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study investigated skeletal muscle tissue oxygenation (StO2) desaturation in males and females across the adult lifespan. One hundred-two individuals (51 females) of 41 young, 34 midlife, and 27 older adults completed a vascular occlusion test with near-infrared spectroscopy (NIRS + VOT). This included five minutes of arterial occlusion, inducing transient ischemia in the forearm flexor muscle group while recording StO2. The magnitude of desaturation (StO2mag) was quantified as the difference between baseline StO2 and the minimum StO2 value observed during ischemia. The rate of desaturation was also examined. Forearm adipose tissue thickness (ATT), forearm lean mass, and handgrip muscular strength were measured. A p ≤ 0.05 was considered significant. Two-way between factor Analysis of variance (ANOVAs) indicated that males exhibited significantly (p < 0.001) less ATT than females (collapsed across age) and that forearm lean mass (p < 0.001) and muscular strength (p < 0.001) decreased across the lifespan independent of sex. Bivariate analyses revealed significant (p < 0.05) associations for sex, age, ATT, forearm lean mass, and muscular strength with the desaturation metrics. The ATT values demonstrated the strongest relations with StO2mag and desaturation rate (r = -0.620 and 0.618). Using a model comparison approach, ATT plus age offered the best predictive power for StO2mag and desaturation rate (R2 = 0.456 and 0.438) such that the inclusion of sex did not improve the models. These findings suggested differences in desaturation were primarily explained by variations in ATT and, to a lesser extent, age, but biological sex had no meaningful effect. Future studies must determine what other factors influence desaturation during ischemia.
Collapse
Affiliation(s)
- Michael R Perlet
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
| | - Miranda K Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
| | - Kyndall V Ransom
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
- Chemistry Department, College of Arts and Sciences, University of South Alabama, Mobile, AL, USA
| | - Genevieve B Batman
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
| | - Ethan C Hill
- School of Kinesiology & Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
- Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, FL, USA
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Sciences, The University of Kansas, Lawrence, KS, USA
| | - Joshua L Keller
- Applied Physiology Lab, Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, USA
| |
Collapse
|
10
|
Qadir MMF, Elgamal RM, Song K, Kudtarkar P, Sakamuri SSVP, Katakam PV, El-Dahr SS, Kolls JK, Gaulton KJ, Mauvais-Jarvis F. Sex-specific regulatory architecture of pancreatic islets from subjects with and without type 2 diabetes. EMBO J 2024; 43:6364-6382. [PMID: 39567827 PMCID: PMC11649919 DOI: 10.1038/s44318-024-00313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Patients with type 2 and type 1 diabetes (T2D and T1D) exhibit sex-specific differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-sequencing (scRNA-seq) and single nucleus ATAC-sequencing (snATAC-seq) with assays probing hormone secretion and bioenergetics. In non-diabetic (ND) donors, sex differences in islet cell chromatin accessibility and gene expression predominantly involved sex chromosomes. In contrast, islets from T2D donors exhibited similar sex differences in sex chromosome-encoded differentially expressed genes (DEGs) as ND donors, but also exhibited sex differences in autosomal genes. Comparing β cells from T2D and ND donors, gene enrichment of female β cells showed suppression in mitochondrial respiration, while male β cells exhibited suppressed insulin secretion, suggesting a role for mitochondrial failure in females in the transition to T2D. We finally performed cell type-specific, sex stratified, GWAS restricted to differentially accessible chromatin peaks across T2D, fasting glucose, and fasting insulin traits. We identified that differentially accessible regions overlap with T2D-associated variants in a sex- and cell type-specific manner.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Precision Medicine, New Orleans, LA, USA
| | - Ruth M Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Precision Medicine, New Orleans, LA, USA.
| |
Collapse
|
11
|
Nokoff NJ, Nemkov T, Bothwell S, Cree MG, Fuller KNZ, Keller AC, Kelsey MM, Nadeau KJ, Moreau KL. Differences in cardiorespiratory fitness by gonadotropin-releasing hormone agonist treatment before and after testosterone in transgender adolescents. J Appl Physiol (1985) 2024; 137:1470-1483. [PMID: 39417821 PMCID: PMC11573275 DOI: 10.1152/japplphysiol.00629.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
There are known sex differences in cardiorespiratory fitness (CRF). Little is known about the impact of pubertal blockade with a gonadotropin-releasing hormone agonist (GnRHa) followed by hormone therapy on CRF for transgender adolescents. We aimed to 1) determine the effect of GnRHa monotherapy on CRF and mitochondrial function and associations with metabolomic profiles and 2) evaluate changes after 1 and 12 mo of testosterone therapy among transgender adolescents. Participants assigned female at birth (n = 19, baseline age of 15.0 ± 1.0 yr) from two groups: GnRHa+ (n = 8) and GnRHa- (n = 11) were examined at baseline and 1- and 12-mo post-testosterone therapy in a longitudinal observational study to assess cardiorespiratory fitness, mitochondrial respiration, and metabolic profile. Fasted morning labs included assessment of metabolomics and peripheral blood mononuclear cell mitochondrial respiration and degree of mitochondrial coupling (respiratory control ratio, RCR). A graded cycle ergometer test was performed. Baseline differences were evaluated between groups. Changes were compared with mixed linear regression models evaluating time (baseline, 1 mo, and 12 mo), group (GnRHa treatment yes/no), and their interaction. At baseline GnRHa+ individuals had higher relative V̇o2peak (30.1 ± 4.83 vs. 25.24 ± 4.47 mL/kg/min, P = 0.042) than GnRHa- individuals. In regression models, GnRHa+ individuals had a significant increase in peak watts (P = 0.011) and total exercise time (P = 0.005) after 12 mo of testosterone (P = 0.012) but not GnRHa- individuals. GnRHa+ individuals have significantly higher RCR under carbohydrate (P = 0.0007) and lipid (P = 0.0002) conditions than GnRHa+ individuals. Pretreatment with GnRHa positively influences peak CRF and mitochondrial respiration in adolescent transgender males undergoing testosterone therapy.NEW & NOTEWORTHY This study demonstrates differences in exercise capacity and mitochondrial respiration at baseline based on whether or not individuals had feminizing puberty blocked. Individuals who had puberty blocked had greater improvements in cardiopulmonary exercise testing parameters after 12 mo of testosterone than those who went through feminizing puberty.
Collapse
Affiliation(s)
- Natalie J Nokoff
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Samantha Bothwell
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Melanie G Cree
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Amy C Keller
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Veterans Affairs Eastern Colorado, Aurora, Colorado, United States
| | - Megan M Kelsey
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kristen J Nadeau
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Ludeman Family Center for Women's Health, Aurora, Colorado, United States
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
12
|
Gay EL, Coen PM, Harrison S, Garcia RE, Qiao YS, Goodpaster BH, Forman DE, Toledo FGS, Distefano G, Kramer PA, Ramos SV, Molina AJA, Nicklas BJ, Cummings SR, Cawthon PM, Hepple RT, Newman AB, Glynn NW. Sex differences in the association between skeletal muscle energetics and perceived physical fatigability: the Study of Muscle, Mobility and Aging (SOMMA). GeroScience 2024:10.1007/s11357-024-01373-z. [PMID: 39436549 DOI: 10.1007/s11357-024-01373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Greater perceived physical fatigability and lower skeletal muscle energetics are both predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations of in vivo (maximal ATP production, ATPmax) and ex vivo (maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher = greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher = greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N = 873) were 76.3 ± 5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (both in vivo and ex vivo) were associated with lower perceived physical fatigability, all p < 0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE Fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS ≥ 25, RPE Fatigability ≥ 12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p < 0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not the ex vivo measures (p < 0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.
Collapse
Affiliation(s)
- Emma L Gay
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Stephanie Harrison
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, 94143, USA
| | - Reagan E Garcia
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Yujia Susanna Qiao
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, 94143, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Daniel E Forman
- Department of Medicine (Geriatrics and Cardiology), University of Pittsburgh, and Geriatrics, Research, Education, and Clinical Center (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27109, USA
| | - Sofhia V Ramos
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Anthony J A Molina
- University of California San Diego, School of Medicine, Division of Geriatrics, Gerontology, and Palliative Care, La Jolla, CA, 92093, USA
| | - Barbara J Nicklas
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27109, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, 94143, USA
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, 94143, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Nancy W Glynn
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
13
|
Piperi A, Warnier G, VAN Doorslaer DE Ten Ryen S, Benoit N, Antoine N, Copine S, Francaux M, Deldicque L. Repeated Sprint Training in Hypoxia Improves Repeated Sprint Ability to Exhaustion Similarly in Active Males and Females. Med Sci Sports Exerc 2024; 56:1988-1999. [PMID: 38767990 DOI: 10.1249/mss.0000000000003485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE The aim of this study was to compare the physiological adaptations of males and females to repeated sprint training in hypoxia (RSH). METHODS Active males and females completed 7 wk of repeated sprint training in normoxia (RSN; F i O 2 = 0.209, males: n = 11, females: n = 8) or RSH (F i O 2 = 0.146, males: n = 12, females: n = 10). Before (Pre-) and after (Post-) training, a repeated sprint ability (RSA) test was performed (10-s cycle sprints with 20-s recovery between sprints, until exhaustion), and aerobic and anaerobic qualities were evaluated in normoxia. RESULTS The number of sprints during RSA increased after training in HYP from 11 to 21 in males and from 8 to 14 in females ( P < 0.001, 95% confidence interval = 5-11), without significant changes after RSN (10 vs 14 and 8 vs 10 in males and females, respectively). No improvements in mean or peak power output were found in either group. Total work during RSA improved after training in all groups (+9 ± 2 kJ, P < 0.001). Tissue saturation index during the repeated sprints was higher in females than males (+10% ± 2%, P < 0.001). The difference in tissue saturation index between the recovery and sprint phases remained unchanged after training. O 2 peak during an incremental exercise test increased in all groups (+3 ± 1 mL·kg -1 ·min -1 , P = 0.039). Mean power output during a Wingate test also increased in both males and females in RSN and RSH (+0.38 ± 0.18 W·kg -1 , P = 0.036). No changes were observed in hematological parameters after training. CONCLUSIONS Seven weeks of RSH further increased the number of repeated sprints performed to exhaustion compared with RSN in females, in the same order of magnitude as in males.
Collapse
Affiliation(s)
- Anna Piperi
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, BELGIUM
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Youm EB, Shipman KE, Albalawy WN, Vandevender AM, Sipula IJ, Rbaibi Y, Marciszyn AE, Lashway JA, Brown EE, Bondi CB, Boyd-Shiwarski CR, Tan RJ, Jurczak MJ, Weisz OA. Megalin Knockout Reduces SGLT2 Expression and Sensitizes to Western Diet-induced Kidney Injury. FUNCTION 2024; 5:zqae026. [PMID: 38984983 PMCID: PMC11237895 DOI: 10.1093/function/zqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
Megalin (Lrp2) is a multiligand receptor that drives endocytic flux in the kidney proximal tubule (PT) and is necessary for the recovery of albumin and other filtered proteins that escape the glomerular filtration barrier. Studies in our lab have shown that knockout (KO) of Lrp2 in opossum PT cells leads to a dramatic reduction in sodium-glucose co-transporter 2 (SGLT2) transcript and protein levels, as well as differential expression of genes involved in mitochondrial and metabolic function. SGLT2 transcript levels are reduced more modestly in Lrp2 KO mice. Here, we investigated the effects of Lrp2 KO on kidney function and health in mice fed regular chow (RC) or a Western-style diet (WD) high in fat and refined sugar. Despite a modest reduction in SGLT2 expression, Lrp2 KO mice on either diet showed increased glucose tolerance compared to control mice. Moreover, Lrp2 KO mice were protected against WD-induced fat gain. Surprisingly, renal function in male Lrp2 KO mice on WD was compromised, and the mice exhibited significant kidney injury compared with control mice on WD. Female Lrp2 KO mice were less susceptible to WD-induced kidney injury than male Lrp2 KO. Together, our findings reveal both positive and negative contributions of megalin expression to metabolic health, and highlight a megalin-mediated sex-dependent response to injury following WD.
Collapse
Affiliation(s)
- Elynna B Youm
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Katherine E Shipman
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wafaa N Albalawy
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Amber M Vandevender
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ian J Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Youssef Rbaibi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allison E Marciszyn
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jared A Lashway
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Emma E Brown
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Corry B Bondi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Qadir MMF, Elgamal RM, Song K, Kudtarkar P, Sakamuri SS, Katakam PV, El-Dahr SS, Kolls JK, Gaulton KJ, Mauvais-Jarvis F. Single cell regulatory architecture of human pancreatic islets suggests sex differences in β cell function and the pathogenesis of type 2 diabetes. RESEARCH SQUARE 2024:rs.3.rs-4607352. [PMID: 39011095 PMCID: PMC11247939 DOI: 10.21203/rs.3.rs-4607352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Type 2 and type 1 diabetes (T2D, T1D) exhibit sex differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), hormone secretion, and bioenergetics. In nondiabetic (ND) donors, sex differences in islet cells gene accessibility and expression predominantly involved sex chromosomes. Islets from T2D donors exhibited similar sex differences in sex chromosomes differentially expressed genes (DEGs), but also exhibited sex differences in autosomal genes. Comparing β cells from T2D vs. ND donors, gene enrichment of female β cells showed suppression in mitochondrial respiration, while male β cells exhibited suppressed insulin secretion. Thus, although sex differences in gene accessibility and expression of ND β cells predominantly affect sex chromosomes, the transition to T2D reveals sex differences in autosomes highlighting mitochondrial failure in females.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Ruth M. Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Keijing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Siva S.V.P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir S. El-Dahr
- Department of Pediatrics, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| |
Collapse
|
16
|
Caswell AM, Tripp TR, Kontro H, Edgett BA, Wiley JP, Lun V, MacInnis MJ. The influence of sex, hemoglobin mass, and skeletal muscle characteristics on cycling critical power. J Appl Physiol (1985) 2024; 137:10-22. [PMID: 38779761 DOI: 10.1152/japplphysiol.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Critical power (CP) represents an important threshold for exercise performance and fatiguability. We sought to determine the extent to which sex, hemoglobin mass (Hbmass), and skeletal muscle characteristics influence CP. Before CP determination (i.e., 3-5 constant work rate trials to task failure), Hbmass and skeletal muscle oxidative capacity (τ) were measured and vastus lateralis (VL) muscle biopsy samples were collected from 12 females and 12 males matched for aerobic fitness relative to fat-free mass (FFM) [means (SD); V̇o2max: 59.2 (7.7) vs. 59.5 (7.1) mL·kg·FFM-1·min-1, respectively]. Males had a significantly greater CP than females in absolute units [225 (28) vs. 170 (43) W; P = 0.001] but not relative to body mass [3.0 (0.6) vs. 2.7 (0.6) W·kg·BM-1; P = 0.267] or FFM [3.6 (0.7) vs. 3.7 (0.8) W·kg·FFM-1; P = 0.622]. Males had significantly greater W' (P ≤ 0.030) and greater Hbmass (P ≤ 0.016) than females, regardless of the normalization approach; however, there were no differences in mitochondrial protein content (P = 0.375), τ (P = 0.603), or MHC I proportionality (P = 0.574) between males and females. Whether it was expressed in absolute or relative units, CP was positively correlated with Hbmass (0.444 ≤ r ≤ 0.695; P < 0.05), mitochondrial protein content (0.413 ≤ r ≤ 0.708; P < 0.05), and MHC I proportionality (0.506 ≤ r ≤ 0.585; P < 0.05), and negatively correlated with τ when expressed in relative units only (-0.588 ≤ r ≤ -0.527; P < 0.05). Overall, CP was independent of sex, but variability in CP was related to Hbmass and skeletal muscle characteristics. The extent to which manipulations in these physiological parameters influence CP warrants further investigation to better understand the factors underpinning CP.NEW & NOTEWORTHY In males and females matched for aerobic fitness [maximal oxygen uptake normalized to fat-free mass (FFM)], absolute critical power (CP) was greater in males, but relative CP (per kilogram body mass or FFM) was similar between sexes. CP correlated with hemoglobin mass, mitochondrial protein content, myosin heavy chain type I proportion, and skeletal muscle oxidative capacity. These findings demonstrate the importance of matching sexes for aerobic fitness, but further experiments are needed to determine causality.
Collapse
Affiliation(s)
- Allison M Caswell
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Hilkka Kontro
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brittany A Edgett
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Victor Lun
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Qadir MMF, Elgamal RM, Song K, Kudtarkar P, Sakamuri SS, Katakam PV, El-Dahr S, Kolls J, Gaulton KJ, Mauvais-Jarvis F. Single cell regulatory architecture of human pancreatic islets suggests sex differences in β cell function and the pathogenesis of type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589096. [PMID: 38645001 PMCID: PMC11030320 DOI: 10.1101/2024.04.11.589096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Biological sex affects the pathogenesis of type 2 and type 1 diabetes (T2D, T1D) including the development of β cell failure observed more often in males. The mechanisms that drive sex differences in β cell failure is unknown. Studying sex differences in islet regulation and function represent a unique avenue to understand the sex-specific heterogeneity in β cell failure in diabetes. Here, we examined sex and race differences in human pancreatic islets from up to 52 donors with and without T2D (including 37 donors from the Human Pancreas Analysis Program [HPAP] dataset) using an orthogonal series of experiments including single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), dynamic hormone secretion, and bioenergetics. In cultured islets from nondiabetic (ND) donors, in the absence of the in vivo hormonal environment, sex differences in islet cell type gene accessibility and expression predominantly involved sex chromosomes. Of particular interest were sex differences in the X-linked KDM6A and Y-linked KDM5D chromatin remodelers in female and male islet cells respectively. Islets from T2D donors exhibited similar sex differences in differentially expressed genes (DEGs) from sex chromosomes. However, in contrast to islets from ND donors, islets from T2D donors exhibited major sex differences in DEGs from autosomes. Comparing β cells from T2D and ND donors revealed that females had more DEGs from autosomes compared to male β cells. Gene set enrichment analysis of female β cell DEGs showed a suppression of oxidative phosphorylation and electron transport chain pathways, while male β cell had suppressed insulin secretion pathways. Thus, although sex-specific differences in gene accessibility and expression of cultured ND human islets predominantly affect sex chromosome genes, major differences in autosomal gene expression between sexes appear during the transition to T2D and which highlight mitochondrial failure in female β cells.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Ruth M. Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Keijing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Siva S.V.P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir El-Dahr
- Department of Pediatrics, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| |
Collapse
|
18
|
Traylor MK, Batman GB, Sears KN, Ransom KV, Hammer SM, Keller JL. Sex-specific microvascular and hemodynamic responses to passive limb heating in young adults. Microcirculation 2024; 31:e12848. [PMID: 38281244 DOI: 10.1111/micc.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE We examined sex-specific microvascular reactivity and hemodynamic responses under conditions of augmented resting blood flow induced by passive heating compared to normal blood flow. METHODS Thirty-eight adults (19 females) completed a vascular occlusion test (VOT) on two occasions preceded by rest with or without passive heating in a randomized, counterbalanced order. Skeletal muscle tissue oxygenation (StO2, %) was assessed with near-infrared spectroscopy (NIRS), and the rate of desaturation and resaturation as well as maximal StO2 (StO2max) and prolonged hypersaturation (area under the curve, StO2AUC) were quantified. Before the VOT, brachial artery blood flow (BABF), vascular conductance, and relative BABF (BABF normalized to forearm lean mass) were determined. Sex × condition ANOVAs were used. A p-value ≤.05 was considered statistically significant. RESULTS Twenty minutes of heating increased BABF compared to the control (102.9 ± 28.3 vs. 36.0 ± 20.9 mL min-1; p < .01). Males demonstrated greater BABF than females (91.9 ± 34.0 vs. 47.0 ± 19.1 mL min-1; p < .01). There was no sex difference in normalized BABF. There were no significant interactions for NIRS-VOT outcomes, but heat did increase the rate of desaturation (-0.140 ± 0.02 vs. -0.119 ± 0.03% s-1; p < .01), whereas regardless of condition, males exhibited greater rates of resaturation and StO2max than females. CONCLUSIONS These results suggest that blood flow is not the primary factor causing sex differences in NIRS-VOT outcomes.
Collapse
Affiliation(s)
- Miranda K Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Genevieve B Batman
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Kylie N Sears
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kyndall V Ransom
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
- Chemistry Department, College of Arts and Science, University of South Alabama, Mobile, Alabama, USA
| | - Shane M Hammer
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology & Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
19
|
King DE, Sparling AC, Joyce AS, Ryde IT, DeSouza B, Ferguson PL, Murphy SK, Meyer JN. Lack of detectable sex differences in the mitochondrial function of Caenorhabditis elegans. BMC Ecol Evol 2024; 24:55. [PMID: 38664688 PMCID: PMC11046947 DOI: 10.1186/s12862-024-02238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.
Collapse
Affiliation(s)
- Dillon E King
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - A Clare Sparling
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Ian T Ryde
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
| | - Beverly DeSouza
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Susan K Murphy
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of Environment, Duke University, 308 Research Drive, A304, Durham, NC, 27708, USA.
| |
Collapse
|
20
|
Saner NJ, Lee MJC, Pitchford NW, Broatch JR, Roach GD, Bishop DJ, Bartlett JD. The effect of sleep restriction, with or without high-intensity interval exercise, on behavioural alertness and mood state in young healthy males. J Sleep Res 2024; 33:e13987. [PMID: 37434366 DOI: 10.1111/jsr.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Mood state and alertness are negatively affected by sleep loss, and can be positively influenced by exercise. However, the potential mitigating effects of exercise on sleep-loss-induced changes in mood state and alertness have not been studied comprehensively. Twenty-four healthy young males were matched into one of three, 5-night sleep interventions: normal sleep (NS; total sleep time (TST) per night = 449 ± 22 min), sleep restriction (SR; TST = 230 ± 5 min), or sleep restriction and exercise (SR + EX; TST = 235 ± 5 min, plus three sessions of high-intensity interval exercise (HIIE)). Mood state was assessed using the profile of mood states (POMS) and a daily well-being questionnaire. Alertness was assessed using psychomotor vigilance testing (PVT). Following the intervention, POMS total mood disturbance scores significantly increased for both the SR and SR + EX groups, and were greater than the NS group (SR vs NS; 31.0 ± 10.7 A.U., [4.4-57.7 A.U.], p = 0.020; SR + EX vs NS; 38.6 ± 14.9 A.U., [11.1-66.1 A.U.], p = 0.004). The PVT reaction times increased in the SR (p = 0.049) and SR + EX groups (p = 0.033) and the daily well-being questionnaire revealed increased levels of fatigue in both groups (SR; p = 0.041, SR + EX; p = 0.026) during the intervention. Despite previously demonstrated physiological benefits of performing three sessions of HIIE during five nights of sleep restriction, the detriments to mood, wellness, and alertness were not mitigated by exercise in this study. Whether alternatively timed exercise sessions or other exercise protocols could promote more positive outcomes on these factors during sleep restriction requires further research.
Collapse
Affiliation(s)
- Nicholas J Saner
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Nathan W Pitchford
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James R Broatch
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Greg D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Jonathan D Bartlett
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| |
Collapse
|
21
|
Kramer PA, Coen PM, Cawthon PM, Distefano G, Cummings SR, Goodpaster BH, Hepple RT, Kritchevsky SB, Shankland EG, Marcinek DJ, Toledo FGS, Duchowny KA, Ramos SV, Harrison S, Newman AB, Molina AJA. Skeletal Muscle Energetics Explain the Sex Disparity in Mobility Impairment in the Study of Muscle, Mobility and Aging. J Gerontol A Biol Sci Med Sci 2024; 79:glad283. [PMID: 38150179 PMCID: PMC10960628 DOI: 10.1093/gerona/glad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 12/28/2023] Open
Abstract
The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Paul M Coen
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Peggy M Cawthon
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | | | - Steven R Cummings
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Bret H Goodpaster
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Frederico G S Toledo
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kate A Duchowny
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Sofhia V Ramos
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Stephanie Harrison
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J A Molina
- Department of Medicine-Division of Geriatrics, Gerontology, and Palliative Care, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
22
|
Karuppannan M, Muthanna FMS, Mohd Fauzi F. Breaking Down Cachexia: A Narrative Review on the Prevalence of Cachexia in Cancer Patients and Its Associated Risk Factors. Nutr Cancer 2024; 76:404-418. [PMID: 38546174 DOI: 10.1080/01635581.2024.2321654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/16/2024] [Indexed: 10/01/2024]
Abstract
Cachexia is an irreversible condition that involves a significant loss of body weight, muscle mass, and adipose tissue. It is a complex condition that involves a variety of metabolic, hormonal, and immune-related factors, with the precise mechanisms not yet fully understood. In this review, the prevalence of cachexia in different types of cancer as well as the potential risk factors was evaluated from literature retrieved from databases such as ScienceDirect, PubMed and Scopus. Potential risk factors evaluated here include tumor-related factors such as location, and stage of the cancer, as well as patient-related factors such as age, gender, and comorbidities. Several findings were observed where cachexia is more prevalent in male cancer patients than females, with higher incidences of weight loss and poorer outcomes. This may be due to the different muscle compositions between gender. Additionally, cachexia is more prevalent at the later stages, which may be brought about by the late-stage diagnosis of certain cancers. The anatomical location of certain cancers such as the pancreas and stomach may play a significant factor in their high prevalence of cachexia. These are sites of the synthesis of digestive enzymes and hormones regulating appetite. Cachexia is an issue faced by cancer patients which could affect their recovery. However, it is poorly understood, which limit therapeutic options. Hence, understanding this disease from different perspectives (clinical and pre-clinical), and bridging those findings could further improve our comprehension and consequently improve therapeutic options.
Collapse
Affiliation(s)
- Mahmathi Karuppannan
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
- Cardiology Therapeutics Research Initiative Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
| | - Fares M S Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
- Centre for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
23
|
Beato M, Madsen EE, Clubb J, Emmonds S, Krustrup P. Monitoring Readiness to Train and Perform in Female Football: Current Evidence and Recommendations for Practitioners. Int J Sports Physiol Perform 2024; 19:223-231. [PMID: 38307011 DOI: 10.1123/ijspp.2023-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE Monitoring player readiness to train and perform is an important practical concept in football. Despite an abundance of research in this area in the male game, to date, research is limited in female football. The aims of this study were, first, to summarize the current literature on the monitoring of readiness in female football; second, to summarize the current evidence regarding the monitoring of the menstrual cycle and its potential impact on physical preparation and performance in female footballers; and third, to offer practical recommendations based on the current evidence for practitioners working with female football players. CONCLUSIONS Practitioners should include both objective (eg, heart rate and countermovement jump) and subjective measures (eg, athlete-reported outcome measures) in their monitoring practices. This would allow them to have a better picture of female players' readiness. Practitioners should assess the reliability of their monitoring (objective and subjective) tools before adopting them with their players. The use of athlete-reported outcome measures could play a key role in contexts where technology is not available (eg, in semiprofessional and amateur clubs); however, practitioners need to be aware that many single-item athlete-reported outcome measures instruments have not been properly validated. Finally, tracking the menstrual cycle can identify menstrual dysfunction (eg, infrequent or irregular menstruation) that can indicate a state of low energy availability or an underlying gynecological issue, both of which warrant further investigation by medical practitioners.
Collapse
Affiliation(s)
- Marco Beato
- School of Allied Health Sciences, University of Suffolk, Ipswich, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Esben Elholm Madsen
- Department of Sports Science and Clinical Biomechanics, Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Jo Clubb
- Global Performance Insights Ltd, London, United Kingdom
| | - Stacey Emmonds
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Greaves LM, Zaleski KS, Matias AA, Gyampo AO, Giuriato G, Lynch M, Lora B, Tomasi T, Basso E, Finegan E, Schickler J, Venturelli M, DeBlauw JA, Shostak E, Blum OE, Ives SJ. Limb, sex, but not acute dietary capsaicin, modulate the near-infrared spectroscopy-vascular occlusion test estimate of muscle metabolism. Physiol Rep 2024; 12:e15988. [PMID: 38537943 PMCID: PMC10972678 DOI: 10.14814/phy2.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
The downward slope during the near-infrared spectroscopy (NIRS)-vascular occlusion test (NIRS-VOT) is purported as a simplified estimate of metabolism. Whether or not the NIRS-VOT exhibits sex- or limb-specificity or may be acutely altered remains to be elucidated. Thus, we investigated if there is limb- or sex specificity in tissue desaturation rates (DeO2) during a NIRS-VOT, and if acute dietary capsaicin may alter this estimate of muscle metabolism. Young healthy men (n = 25, 21 ± 4 years) and women (n = 20, 20 ± 1 years) ingested either placebo or capsaicin, in a counterbalanced, single-blind, crossover design after which a simplified NIRS-VOT was conducted to determine the DeO2 (%/s), as an estimate of oxidative muscle metabolism, in both the forearm (flexors) and thigh (vastus lateralis). There was a significant limb effect with the quadriceps having a greater DeO2 than the forearm (-2.31 ± 1.34 vs. -1.78 ± 1.22%/s, p = 0.007, ηp 2 = 0.19). There was a significant effect of sex on DeO2 (p = 0.005, ηp 2 = 0.203) with men exhibiting a lesser DeO2 than women (-1.73 ± 1.03 vs. -2.36 ± 1.32%/s, respectively). This manifested in significant interactions of limb*capsaicin (p = 0.001, ηp 2 = 0.26) as well as limb*capsaicin*sex on DeO2 (p = 0.013, ηp 2 = 0.16) being observed. Capsaicin does not clearly alter O2-dependent muscle metabolism, but there was apparent limb and sex specificity, interacting with capsaicin in this NIRS-derived assessment.
Collapse
Affiliation(s)
- Lauren M. Greaves
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Kendall S. Zaleski
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Alexs A. Matias
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Abena O. Gyampo
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Gaia Giuriato
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Meaghan Lynch
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Brian Lora
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Tawn Tomasi
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Emma Basso
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Emma Finegan
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Jack Schickler
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Justin A. DeBlauw
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Elena Shostak
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Oliver E. Blum
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Stephen J. Ives
- Health and Human Physiological Sciences DepartmentSkidmore CollegeSaratoga SpringsNew YorkUSA
| |
Collapse
|
25
|
Solleiro Pons M, Bernert L, Hume E, Hughes L, Williams ZJ, Burnley M, Ansdell P. No sex differences in oxygen uptake or extraction kinetics in the moderate or heavy exercise intensity domains. J Appl Physiol (1985) 2024; 136:472-481. [PMID: 38205552 PMCID: PMC11213575 DOI: 10.1152/japplphysiol.00429.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
The integrative response to exercise differs between sexes, with oxidative energy contribution purported as a potential mechanism. The present study investigated whether this difference was evident in the kinetics of oxygen uptake (V̇o2) and extraction (HHb + Mb) during exercise. Sixteen adults (8 males, 8 females, age: 27 ± 5 yr) completed three experimental visits. Incremental exercise testing was performed to obtain lactate threshold and V̇o2peak. Subsequent visits involved three 6-min cycling bouts at 80% of lactate threshold and one 30-min bout at a work rate of 30% between the lactate threshold and power at V̇o2peak. Pulmonary gas exchange and near-infrared spectroscopy of the vastus lateralis were used to continuously sample V̇o2 and HHb + Mb, respectively. The phase II V̇o2 kinetics were quantified using monoexponential curves during moderate and heavy exercise. Slow component amplitudes were also quantified for the heavy-intensity domain. Relative V̇o2peak values were not different between sexes (P = 0.111). Males achieved ∼30% greater power outputs (P = 0.002). In the moderate- and heavy-intensity domains, the relative amplitude of the phase II transition was not different between sexes for V̇o2 (∼24 and ∼40% V̇o2peak, P ≥ 0.179) and HHb + Mb (∼20 and ∼32% ischemia, P ≥ 0.193). Similarly, there were no sex differences in the time constants for V̇o2 (∼28 s, P ≥ 0.385) or HHb + Mb (∼10 s, P ≥ 0.274). In the heavy-intensity domain, neither V̇o2 (P ≥ 0.686) or HHb + Mb (P ≥ 0.432) slow component amplitudes were different between sexes. The oxidative response to moderate- and heavy-intensity exercises did not differ between males and females, suggesting similar dynamic responses of oxidative metabolism during intensity-matched exercise.NEW & NOTEWORTHY This study demonstrated no sex differences in the oxidative response to moderate- and heavy-intensity cycling exercise. The change in oxygen uptake and deoxyhemoglobin were modeled with monoexponential curve fitting, which revealed no differences in the rate of oxidative energy provision between sexes. This provides insight into previously reported sex differences in the integrative response to exercise.
Collapse
Affiliation(s)
- Maria Solleiro Pons
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lina Bernert
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Zander J Williams
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Mark Burnley
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Gonzalez-Armenta JL, Bergstrom J, Lee J, Furdui CM, Nicklas BJ, Molina AJA. Serum factors mediate changes in mitochondrial bioenergetics associated with diet and exercise interventions. GeroScience 2024; 46:349-365. [PMID: 37368157 PMCID: PMC10828137 DOI: 10.1007/s11357-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA
| | - Jingyun Lee
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Section On Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara J Nicklas
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA.
| |
Collapse
|
28
|
Schytz CT, Ørtenblad N, Lundby AKM, Jacobs RA, Nielsen J, Lundby C. Skeletal muscle mitochondria demonstrate similar respiration per cristae surface area independent of training status and sex in healthy humans. J Physiol 2024; 602:129-151. [PMID: 38051639 DOI: 10.1113/jp285091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The impact of training status and sex on intrinsic skeletal muscle mitochondrial respiratory capacity remains unclear. We examined this by analysing human skeletal muscle mitochondrial respiration relative to mitochondrial volume and cristae density across training statuses and sexes. Mitochondrial cristae density was estimated in skeletal muscle biopsies originating from previous independent studies. Participants included females (n = 12) and males (n = 41) across training statuses ranging from untrained (UT, n = 8), recreationally active (RA, n = 9), active-to-elite runners (RUN, n = 27) and cross-country skiers (XC, n = 9). The XC and RUN groups demonstrated higher mitochondrial volume density than the RA and UT groups while all active groups (RA, RUN and XC) displayed higher mass-specific capacity of oxidative phosphorylation (OXPHOS) and mitochondrial cristae density than UT. Differences in OXPHOS diminished between active groups and UT when normalising to mitochondrial volume density and were lost when normalising to muscle cristae surface area density. Moreover, active females (n = 6-9) and males (n = 15-18) did not differ in mitochondrial volume and cristae density, OXPHOS, or when normalising OXPHOS to mitochondrial volume density and muscle cristae surface area density. These findings demonstrate: (1) differences in OXPHOS between active and untrained individuals may be explained by both higher mitochondrial volume and cristae density in active individuals, with no difference in intrinsic mitochondrial respiratory capacity (OXPHOS per muscle cristae surface area density); and (2) no sex differences in mitochondrial volume and cristae density or mass-specific and normalised OXPHOS. This highlights the importance of normalising OXPHOS to muscle cristae surface area density when studying skeletal muscle mitochondrial biology. KEY POINTS: Oxidative phosphorylation is the mitochondrial process by which ATP is produced, governed by the electrochemical gradient across the inner mitochondrial membrane with infoldings named cristae. In human skeletal muscle, the mass-specific capacity of oxidative phosphorylation (OXPHOS) can change independently of shifts in mitochondrial volume density, which may be attributed to variations in cristae density. We demonstrate that differences in skeletal muscle OXPHOS between healthy females and males, ranging from untrained to elite endurance athletes, are matched by differences in cristae density. This suggests that higher OXPHOS in skeletal muscles of active individuals is attributable to an increase in the density of cristae. These findings broaden our understanding of the variability in human skeletal muscle OXPHOS and highlight the significance of cristae, specific to mitochondrial respiration.
Collapse
Affiliation(s)
- Camilla Tvede Schytz
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anne-Kristine Meinild Lundby
- Xlab, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Acton Jacobs
- Department of Human Physiology & Nutrition, University of Colorado Colorado Springs (UCCS), Colorado Springs, Colorado, USA
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carsten Lundby
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Department of Health and Exercise Physiology, Inland Norway University of Applied Science, Lillehammer, Norway
| |
Collapse
|
29
|
McDougall RM, Tripp TR, Frankish BP, Doyle-Baker PK, Lun V, Wiley JP, Aboodarda SJ, MacInnis MJ. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans. J Physiol 2023; 601:5295-5316. [PMID: 37902588 DOI: 10.1113/jp284958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Critical torque (CT) represents the highest oxidative steady state for intermittent knee extensor exercise, but the extent to which it is influenced by skeletal muscle mitochondria and sex is unclear. Vastus lateralis muscle biopsy samples were collected from 12 females and 12 males -matched for relative maximal oxygen uptake normalized to fat-free mass (FFM) (F: 57.3 (7.5) ml (kg FFM)-1 min-1 ; M: 56.8 (7.6) ml (kg FFM)-1 min-1 ; P = 0.856) - prior to CT determination and performance fatiguability trials. Males had a lower proportion of myosin heavy chain (MHC) I isoform (40.6 (18.4)%) compared to females (59.5 (18.9)%; P = 0.021), but MHC IIa and IIx isoform distributions and protein markers of mitochondrial content were not different between sexes (P > 0.05). When normalized to maximum voluntary contraction (MVC), the relative CT (F: 42.9 (8.3)%; M: 37.9 (9.0)%; P = 0.172) and curvature constant, W' (F: 26.6 (11.0) N m s (N m)-1 ; M: 26.4 (6.5) N m s (N m)-1 ; P = 0.962) were not significantly different between sexes. All protein biomarkers of skeletal muscle mitochondrial content, as well as the proportion of MHC I isoform, positively correlated with relative CT (0.48 < r < 0.70; P < 0.05), and the proportion of MHC IIx isoform correlated positively with relative W' (r = 0.57; P = 0.007). Indices of performance fatiguability were not different between males and females for MVC- and CT-controlled trials (P > 0.05). Greater mitochondrial protein abundance was associated with attenuated declines in potentiated twitch torque for exercise at 60% MVC (P < 0.05); however, the influence of mitochondrial protein abundance on performance fatiguability was reduced when exercise was prescribed relative to CT. Whether these findings translate to whole-body exercise requires additional research. KEY POINTS: The quadriceps critical torque represents the highest intensity of intermittent knee extensor exercise for which an oxidative steady state is attainable, but its relationship with skeletal muscle mitochondrial protein abundance is unknown. Matching males and females for maximal oxygen uptake relative to fat-free mass facilitates investigations of sex differences in exercise physiology, but studies that have compared critical torque and performance fatiguability during intermittent knee extensor exercise have not ensured equal aerobic fitness between sexes. Skeletal muscle mitochondrial protein abundance was correlated with critical torque and fatigue resistance for exercise prescribed relative to maximum voluntary contraction but not for exercise performed relative to the critical torque. Differences between sexes in critical torque, skeletal muscle mitochondrial protein abundance and performance fatiguability were not statistically significant. Our results suggest that skeletal muscle mitochondrial protein abundance may contribute to fatigue resistance by influencing the critical intensity of exercise.
Collapse
Affiliation(s)
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - S Jalal Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Mikosiński J, Mikosiński P, Kwapisz A, Katarzynska J, Gebicki J. Conclusions from an Observational Study of Patients with Vascular Diseases Using the FMSF Technique. Vasc Health Risk Manag 2023; 19:755-764. [PMID: 38025516 PMCID: PMC10676726 DOI: 10.2147/vhrm.s442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose There is great demand for a diagnostic tool for non-invasive assessment of vascular circulation and metabolic regulation. Assessing both these functions is crucial, as each can have a distinct response to hypoxia. Patients and Methods The Flow Mediated Skin Fluorescence (FMSF) technique appears uniquely suitable for analysis of vascular circulation and metabolic regulation. In this observational study, the FMSF technique was used to diagnose patients with various vascular diseases. The study group consisted of 482 patients (264 females and 218 males) between the ages of 40-94 years with various vascular problems (arterial hypertension, cardiovascular disease, diabetes, hypercholesterolemia, and chronic venous disease). Results Three major FMSF parameters were used: Ischemic Response (IRmax), Hyperemic Response (HRmax), and Reactive Hyperemia Response (RHR). All three parameters were found to decrease with age with a distinguishable kinetics. The IRmax parameter was used for characterization of metabolic reaction to transient hypoxia and HRmax was used for characterization of macrocirculatory function. Both were sex-dependent. Conclusion Females were metabolically less adaptive to transient hypoxia than males. However, macrocirculatory function was better in females than among males. Microcirculatory function decreases gradually with age, while macrocirculatory function decreases much more slowly with age, with a tendency to stabilize after 70 years of age.
Collapse
Affiliation(s)
| | | | | | | | - Jerzy Gebicki
- Angionica Ltd, Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
31
|
Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, García-Gonzalez E, Gelabert-Rebato M, Ponce-Gonzalez JG, Larsen S, Morales-Alamo D, Losa-Reyna J, Perez-Suarez I, Dorado C, Perez-Valera M, Holmberg HC, Boushel R, de Pablos Velasco P, Helge JW, Martin-Rincon M, Calbet JAL. Antioxidant enzymes and Nrf2/Keap1 in human skeletal muscle: Influence of age, sex, adiposity and aerobic fitness. Free Radic Biol Med 2023; 209:282-291. [PMID: 37858747 DOI: 10.1016/j.freeradbiomed.2023.10.393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Ageing, a sedentary lifestyle, and obesity are associated with increased oxidative stress, while regular exercise is associated with an increased antioxidant capacity in trained skeletal muscles. Whether a higher aerobic fitness is associated with increased expression of antioxidant enzymes and their regulatory factors in skeletal muscle remains unknown. Although oestrogens could promote a higher antioxidant capacity in females, it remains unknown whether a sex dimorphism exists in humans regarding the antioxidant capacity of skeletal muscle. Thus, the aim was to determine the protein expression levels of the antioxidant enzymes SOD1, SOD2, catalase and glutathione reductase (GR) and their regulatory factors Nrf2 and Keap1 in 189 volunteers (120 males and 69 females) to establish whether sex differences exist and how age, VO2max and adiposity influence these. For this purpose, vastus lateralis muscle biopsies were obtained in all participants under resting and unstressed conditions. No significant sex differences in Nrf2, Keap1, SOD1, SOD2, catalase and GR protein expression levels were observed after accounting for VO2max, age and adiposity differences. Multiple regression analysis indicates that the VO2max in mL.kg LLM-1.min-1can be predicted from the levels of SOD2, Total Nrf2 and Keap1 (R = 0.58, P < 0.001), with SOD2 being the main predictor explaining 28 % of variance in VO2max, while Nrf2 and Keap1 explained each around 3 % of the variance. SOD1 protein expression increased with ageing in the whole group after accounting for differences in VO2max and body fat percentage. Overweight and obesity were associated with increased pSer40-Nrf2, pSer40-Nrf2/Total Nrf2 ratio and SOD1 protein expression levels after accounting for differences in age and VO2max. Overall, at the population level, higher aerobic fitness is associated with increased basal expression of muscle antioxidant enzymes, which may explain some of the benefits of regular exercise.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo García-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jesus Gustavo Ponce-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Steen Larsen
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose Losa-Reyna
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Ismael Perez-Suarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Hans-Christer Holmberg
- Department of Health Sciences, Luleå University of Technology, Sweden; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Pedro de Pablos Velasco
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Endocrinology and Nutrition, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Jorn Wulff Helge
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
32
|
Kramer PA, Coen PM, Cawthon PM, Distefano G, Cummings SR, Goodpaster BH, Hepple RT, Kritchevsky SB, Shankland EG, Marcinek DJ, Toledo FGS, Duchowny KA, Ramos SV, Harrison S, Newman AB, Molina AJA. Skeletal muscle energetics explain the sex disparity in mobility impairment in the Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298271. [PMID: 37987007 PMCID: PMC10659490 DOI: 10.1101/2023.11.08.23298271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery score ≤ 8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (e.g. Maximal Complex I&II OXPHOS: Women=55.06 +/- 15.95; Men=65.80 +/- 19.74; p<0.001) and in individuals with mobility impairment compared to those without (e.g., Maximal Complex I&II OXPHOS in women: SPPB≥9=56.59 +/- 16.22; SPPB≤8=47.37 +/- 11.85; p<0.001). Muscle energetics were negatively associated with age only in men (e.g., Maximal ETS capacity: R=-0.15, p=0.02; age/sex interaction, p=0.04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, OR age-adjusted =1.78, 95% CI=1.03, 3.08, p=0.038; 80+ age group, OR age-adjusted =1.05, 95% CI=0.52, 2.15, p=0.89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.
Collapse
|
33
|
Whytock KL, Pino MF, Sun Y, Yu G, De Carvalho FG, Yeo RX, Vega RB, Parmar G, Divoux A, Kapoor N, Yi F, Cornnell H, Patten DA, Harper ME, Gardell SJ, Smith SR, Walsh MJ, Sparks LM. Comprehensive interrogation of human skeletal muscle reveals a dissociation between insulin resistance and mitochondrial capacity. Am J Physiol Endocrinol Metab 2023; 325:E291-E302. [PMID: 37584609 DOI: 10.1152/ajpendo.00143.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.
Collapse
Affiliation(s)
- Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - GongXin Yu
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | | | - Reichelle X Yeo
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Gaganvir Parmar
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Fancaho Yi
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Heather Cornnell
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - David A Patten
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| |
Collapse
|
34
|
Batterson PM, McGowan EM, Borowik AK, Kinter MT, Miller BF, Newsom SA, Robinson MM. High-fat diet increases electron transfer flavoprotein synthesis and lipid respiration in skeletal muscle during exercise training in female mice. Physiol Rep 2023; 11:e15840. [PMID: 37857571 PMCID: PMC10587055 DOI: 10.14814/phy2.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from β-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFβ, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFβ (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFβ and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.
Collapse
Affiliation(s)
- Philip M. Batterson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Erin M. McGowan
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael T. Kinter
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VAOklahoma CityOklahomaUSA
| | - Sean A. Newsom
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
35
|
Nagwani AK, Budka A, Łacka A, Kaczmarek Ł, Kmita H. The effect of hypomagnetic field on survival and mitochondrial functionality of active Paramacrobiotus experimentalis females and males of different age. Front Physiol 2023; 14:1253483. [PMID: 37745239 PMCID: PMC10514487 DOI: 10.3389/fphys.2023.1253483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Even for tardigrades, often called the toughest animals on Earth, a hypomagnetic field (HMF) is an extreme environment. However, studies on the effect of HMF on tardigrades and other invertebrates are scarce. Mitochondria play an important role in an organism's response to extreme conditions. The effect of HMF on the mitochondrial inner membrane potential (Δψ), a well-known marker of mitochondria functionality, shows that mitochondria are very sensitive to HMF. To measure the HMF effect on Paramacrobiotus experimentalis, we calculated the tardigrade survival rate and Δψ level after HMF treatments of different durations. We also estimated the relationship between the age and sex of the tardigrade and the HMF effect. We observed age- and sex-related differences in Δψ and found that Δψ changes after HMF treatment were dependent on its duration as well as the animal's age and sex. Furthermore, active P. experimentalis individuals displayed a high survival rate after HMF treatment. The data may contribute to the understanding of tardigrade aging and their resistance to extreme conditions including HMF, which in turn may be useful for future space explorations.
Collapse
Affiliation(s)
- Amit Kumar Nagwani
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Agnieszka Łacka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
36
|
Musci RV, Andrie KM, Walsh MA, Valenti ZJ, Linden MA, Afzali MF, Bork S, Campbell M, Johnson T, Kail TE, Martinez R, Nguyen T, Sanford J, Wist S, Murrell MD, McCord JM, Hybertson BM, Zhang Q, Javors MA, Santangelo KS, Hamilton KL. Phytochemical compound PB125 attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a model of musculoskeletal decline. J Physiol 2023; 601:2189-2216. [PMID: 35924591 PMCID: PMC9898472 DOI: 10.1113/jp282273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.
Collapse
Affiliation(s)
- Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Kendra M. Andrie
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maureen A. Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Zackary J. Valenti
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melissa A. Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sydney Bork
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Margaret Campbell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Taylor Johnson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Thomas E. Kail
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Richard Martinez
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tessa Nguyen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Joseph Sanford
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sara Wist
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Joe M. McCord
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | | | - Kelly S. Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
37
|
Weggen JB, Hogwood AC, Decker KP, Darling AM, Chiu A, Richardson J, Garten RS. Vascular Responses to Passive and Active Movement in Premenopausal Females: Comparisons across Sex and Menstrual Cycle Phase. Med Sci Sports Exerc 2023; 55:900-910. [PMID: 36728956 DOI: 10.1249/mss.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adequate, robust vascular responses to passive and active movement represent two distinct components linked to normal, healthy cardiovascular function. Currently, limited research exists determining if these vascular responses are altered in premenopausal females (PMF) when compared across sex or menstrual cycle phase. METHODS Vascular responses to passive leg movement (PLM) and handgrip (HG) exercise were assessed in PMF ( n = 21) and age-matched men ( n = 21). A subset of PMF subjects ( n = 11) completed both assessments during the early and late follicular phase of their menstrual cycle. Microvascular function was assessed during PLM via changes in leg blood flow, and during HG exercise, via steady-state arm vascular conductance. Macrovascular (brachial artery [BA]) function was assessed during HG exercise via BA dilation responses as well as BA shear rate-dilation slopes. RESULTS Leg microvascular function, determined by PLM, was not different between sexes or across menstrual cycle phase. However, arm microvascular function, demonstrated by arm vascular conductance, was lower in PMF compared with men at rest and during HG exercise. Macrovascular function was not different between sexes or across menstrual cycle phase. CONCLUSIONS This study identified similar vascular function across sex and menstrual cycle phase seen in microvasculature of the leg and macrovascular (BA) of the arm. Although arm microvascular function was unaltered by menstrual cycle phase in PMF, it was revealed to be significantly lower when compared with age-matched men highlighting a sex difference in vascular/blood flow regulation during small muscle mass exercise.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | - Kevin P Decker
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Jacob Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
38
|
Understanding the female athlete: molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol 2023; 123:423-450. [PMID: 36402915 DOI: 10.1007/s00421-022-05090-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Research should equitably reflect responses in men and women. Including women in research, however, necessitates an understanding of the ovarian hormones and menstrual phase variations in both cellular and systems physiology. This review outlines recent advances in the multiplicity of ovarian hormone molecular signaling that elucidates the mechanisms for menstrual phase variability in exercise metabolism. The prominent endogenous estrogen, 17-β-estradiol (E2), molecular structure is bioactive in stabilizing plasma membranes and quenching free radicals and both E2 and progesterone (P4) promote the expression of antioxidant enzymes attenuating exercise-induced muscle damage in the late follicular (LF) and mid-luteal (ML) phases. E2 and P4 bind nuclear hormone receptors and membrane-bound receptors to regulate gene expression directly or indirectly, which importantly includes cross-regulated expression of their own receptors. Activation of membrane-bound receptors also regulates kinases causing rapid cellular responses. Careful analysis of these signaling pathways explains menstrual phase-specific differences. Namely, E2-promoted plasma glucose uptake during exercise, via GLUT4 expression and kinases, is nullified by E2-dominant suppression of gluconeogenic gene expression in LF and ML phases, ameliorated by carbohydrate ingestion. E2 signaling maximizes fat oxidation capacity in LF and ML phases, pending low-moderate exercise intensities, restricted nutrient availability, and high E2:P4 ratios. P4 increases protein catabolism during the luteal phase by indeterminate mechanisms. Satellite cell function supported by E2-targeted gene expression is countered by P4, explaining greater muscle strengthening from follicular phase-based training. In totality, this integrative review provides causative effects, supported by meta-analyses for quantitative actuality, highlighting research opportunities and evidence-based relevance for female athletes.
Collapse
|
39
|
Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023; 24:ijms24054651. [PMID: 36902081 PMCID: PMC10003083 DOI: 10.3390/ijms24054651] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.
Collapse
Affiliation(s)
- Chiara Della Peruta
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Bari, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Viviana Moresi
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, 00185 Roma, Italy
| | - Carles Sanchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Marina Bouché
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Correspondence:
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
40
|
Corral-Pérez J, Alcala M, Velázquez-Díaz D, Perez-Bey A, Vázquez-Sánchez MÁ, Calderon-Dominguez M, Casals C, Ponce-González JG. Sex-Specific Relationships of Physical Activity and Sedentary Behaviour with Oxidative Stress and Inflammatory Markers in Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:899. [PMID: 36673654 PMCID: PMC9859474 DOI: 10.3390/ijerph20020899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
This study aims to analyse sex-specific associations of physical activity and sedentary behaviour with oxidative stress and inflammatory markers in a young-adult population. Sixty participants (21 women, 22.63 ± 4.62 years old) wore a hip accelerometer for 7 consecutive days to estimate their physical activity and sedentarism. Oxidative stress (catalase, superoxide dismutase, glutathione peroxidase, glutathione, malondialdehyde, and advanced oxidation protein products) and inflammatory (tumour necrosis factor-alpha and interleukin-6) markers were measured. Student t-tests and single linear regressions were applied. The women presented higher catalase activity and glutathione concentrations, and lower levels of advanced protein-oxidation products, tumour necrosis factor-alpha, and interleukin-6 than the men (p < 0.05). In the men, longer sedentary time was associated with lower catalase activity (β = −0.315, p = 0.04), and longer sedentary breaks and higher physical-activity expenditures were associated with malondialdehyde (β = −0.308, p = 0.04). Vigorous physical activity was related to inflammatory markers in the women (tumour necrosis factor-alpha, β = 0.437, p = 0.02) and men (interleukin−6, β = 0.528, p < 0.01). In conclusion, the women presented a better redox and inflammatory status than the men; however, oxidative-stress markers were associated with physical activity and sedentary behaviours only in the men. In light of this, women could have better protection against the deleterious effect of sedentarism but a worse adaptation to daily physical activity.
Collapse
Affiliation(s)
- Juan Corral-Pérez
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28003 Madrid, Spain
| | - Daniel Velázquez-Díaz
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Advent Health Research Institute, Neuroscience Institute, Orlando, FL 32803, USA
| | - Alejandro Perez-Bey
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- GALENO Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
| | - María Á. Vázquez-Sánchez
- Department of Nursing, Faculty of Health Sciences, PASOS Research Group and UMA REDIAS Network of Law and Artificial Intelligence applied to Health and Biotechnology, University of Malaga, 29071 Malaga, Spain
| | - Maria Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain
| | - Cristina Casals
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Jesús G. Ponce-González
- ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, 11519 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| |
Collapse
|
41
|
Fuller KNZ, McCoin CS, Stierwalt H, Allen J, Gandhi S, Perry CGR, Jambal P, Shankar K, Thyfault JP. Oral combined contraceptives induce liver mitochondrial reactive oxygen species and whole-body metabolic adaptations in female mice. J Physiol 2022; 600:5215-5245. [PMID: 36326014 DOI: 10.1113/jp283733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Compared to age-matched men, pre-menopausal women show greater resilience against cardiovascular disease (CVD), hepatic steatosis, diabetes and obesity - findings that are widely attributed to oestrogen. However, meta-analysis data suggest that current use of oral combined contraceptives (OC) is a risk factor for myocardial infarction, and OC use further compounds with metabolic disease risk factors to increase CVD susceptibility. While mitochondrial function in tissues such as the liver and skeletal muscle is an emerging mechanism by which oestrogen may confer its protection, effects of OC use on mitochondria and metabolism in the context of disease risk remain unexplored. To answer this question, female C57Bl/6J mice were fed a high fat diet and treated with vehicle or OCs for 3, 12 or 20 weeks (n = 6 to 12 per group) at a dose and ratio that mimic the human condition of cycle cessation in the low oestrogen, high progesterone stage. Liver and skeletal muscle mitochondrial function (respiratory capacity, H2 O2 , coupling) was measured along with clinical outcomes of cardiometabolic disease such as obesity, glucose tolerance, hepatic steatosis and aortic atherosclerosis. The main findings indicate that regardless of treatment duration, OCs robustly increase hepatic mitochondrial H2 O2 levels, likely due to diminished antioxidant capacity, but have no impact on muscle mitochondrial H2 O2 . Furthermore, OC-treated mice had lower adiposity and hepatic triglyceride content compared to control mice despite reduced wheel running, spontaneous physical activity and total energy expenditure. Together, these studies describe tissue-specific effects of OC use on mitochondria as well as variable impacts on markers of metabolic disease susceptibility. KEY POINTS: Oestrogen loss in women increases risk for cardiometabolic diseases, a link that has been partially attributed to negative impacts on mitochondria and energy metabolism. To study the effect of oral combined contraceptives (OCs) on hepatic and skeletal muscle mitochondria and whole-body energy metabolism, we used an animal model of OCs which mimics the human condition of cessation of hormonal cycling in the low oestrogen, high progesterone state. OC-treated mice have increased hepatic mitochondrial oxidative stress and decreased physical activity and energy expenditure, despite displaying lower adiposity and liver fat at this time point. These pre-clinical data reveal tissue-specific effects of OCs that likely underlie the clinical findings of increased cardiometabolic disease in women who use OCs compared to non-users, when matched for obesity.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Colin S McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA
| | - Harrison Stierwalt
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
42
|
King DE, Sparling AC, Lloyd D, Satusky MJ, Martinez M, Grenier C, Bergemann CM, Maguire R, Hoyo C, Meyer JN, Murphy SK. Sex-specific DNA methylation and associations with in utero tobacco smoke exposure at nuclear-encoded mitochondrial genes. Epigenetics 2022; 17:1573-1589. [PMID: 35238269 PMCID: PMC9620986 DOI: 10.1080/15592294.2022.2043591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sex-linked differences in mitochondrial ATP production, enzyme activities, and reactive oxygen species generation have been reported in multiple tissue and cell types. While the effects of reproductive hormones underlie many of these differences, regulation of sexually dimorphic mitochondrial function has not been fully characterized. We hypothesized that sex-specific DNA methylation contributes to sex-specific expression of nuclear genes that influence mitochondrial function. Herein, we analysed DNA methylation data specifically focused on nuclear-encoded mitochondrial genes in 191 males and 190 females. We found 596 differentially methylated sites (DMSs) (FDR p < 0.05), corresponding to 324 genes, with at least a 1% difference in methylation between sexes. To investigate the potential functional significance, we utilized gene expression microarray data. Of the 324 genes containing DMSs, 17 showed differences in gene expression by sex. Particularly striking was that ATP5G2, encoding subunit C of ATP synthase, contains seven DMSs and exhibits a sex difference in expression (p = 0.04). Finally, we also found that alterations in DNA methylation associated with in utero tobacco smoke exposure were sex-specific in these nuclear-encoded mitochondrial genes. Interestingly, the level of sex differences in DNA methylation at nuclear-encoded mitochondrial genes and the level of methylation changes associated with smoke exposure were less prominent than that of other genes. This suggests more conservative regulation of DNA methylation at these nuclear-encoded mitochondrial genes as compared to others. Overall, our findings suggest that sex-specific DNA methylation may help establish sex differences in expression and function and that sex-specific alterations in DNA methylation in response to exposures could contribute to sex-variable toxicological responses.
Collapse
Affiliation(s)
- Dillon E. King
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Anna Clare Sparling
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Dillon Lloyd
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew Joseph Satusky
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie Martinez
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Joel Newman Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Susan K. Murphy
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA,CONTACT Susan K. Murphy 701 W. Main Street, Suite 510, Durham, NC27701, USA Department of Obstetrics and Gynecology, Duke University Medical Center
| |
Collapse
|
43
|
McGowan EM, Ehrlicher SE, Stierwalt HD, Robinson MM, Newsom SA. Impact of 4 weeks of western diet and aerobic exercise training on whole-body phenotype and skeletal muscle mitochondrial respiration in male and female mice. Physiol Rep 2022; 10:e15543. [PMID: 36541261 PMCID: PMC9768729 DOI: 10.14814/phy2.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
High dietary fat intake induces significant whole-body and skeletal muscle adaptations in mice, including increased capacity for fat oxidation and mitochondrial biogenesis. The impact of a diet that is high in fat and simple sugars (i.e., western diet [WD]), particularly on regulation of skeletal muscle mitochondrial function, is less understood. The purpose of the current study was to determine physiologic adaptations in mitochondrial respiratory capacity in skeletal muscle during short-term consumption of WD, including if adaptive responses to WD-feeding are modified by concurrent exercise training or may be sex-specific. Male and female C57BL/6J mice were randomized to consume low-fat diet (LFD) or WD for 4 weeks, with some WD-fed mice also performing concurrent treadmill training (WD + Ex). Group sizes were n = 4-7. Whole-body metabolism was measured using in-cage assessment of food intake and energy expenditure, DXA body composition analysis and insulin tolerance testing. High-resolution respirometry of mitochondria isolated from quadriceps muscle was used to determine skeletal muscle mitochondrial respiratory function. Male mice fed WD gained mass (p < 0.001), due to increased fat mass (p < 0.001), and displayed greater respiratory capacity for both lipid and non-lipid substrates compared with LFD mice (p < 0.05). There was no effect of concurrent treadmill training on maximal respiration (WD + Ex vs. WD). Female mice had non-significant changes in body mass and composition as a function of the interventions, and no differences in skeletal muscle mitochondrial oxidative capacity. These findings indicate 4 weeks of WD feeding can increase skeletal muscle mitochondrial oxidative capacity among male mice; whereas WD, with or without exercise, had minimal impact on mass gain and skeletal muscle respiratory capacity among female mice. The translational relevance is that mitochondrial adaptation to increases in dietary fat intake that model WD may be related to differences in weight gain among male and female mice.
Collapse
Affiliation(s)
- Erin M. McGowan
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Sarah E. Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Harrison D. Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Sean A. Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
44
|
Halsey LG, Careau V, Pontzer H, Ainslie PN, Andersen LF, Anderson LJ, Arab L, Baddou I, Bedu-Addo K, Blaak EE, Blanc S, Bonomi AG, Bouten CVC, Bovet P, Buchowski MS, Butte NF, Camps SGJA, Close GL, Cooper JA, Das SK, Cooper R, Dugas LR, Ekelund U, Entringer S, Forrester T, Fudge BW, Goris AH, Gurven M, Hambly C, Hamdouchi AE, Hoos MB, Hu S, Joonas N, Joosen AM, Katzmarzyk P, Kempen KP, Kimura M, Kraus WE, Kushner RF, Lambert EV, Leonard WR, Lessan N, Martin CK, Medin AC, Meijer EP, Morehen JC, Morton JP, Neuhouser ML, Nicklas TA, Ojiambo RM, Pietiläinen KH, Pitsiladis YP, Plange-Rhule J, Plasqui G, Prentice RL, Rabinovich RA, Racette SB, Raichlen DA, Ravussin E, Reynolds RM, Roberts SB, Schuit AJ, Sjödin AM, Stice E, Urlacher SS, Valenti G, Van Etten LM, Van Mil EA, Wilson G, Wood BM, Yanovski J, Yoshida T, Zhang X, Murphy-Alford AJ, Loechl CU, Luke AH, Rood J, Sagayama H, Schoeller DA, Westerterp KR, Wong WW, Yamada Y, Speakman JR. Variability in energy expenditure is much greater in males than females. J Hum Evol 2022; 171:103229. [PMID: 36115145 PMCID: PMC9791915 DOI: 10.1016/j.jhevol.2022.103229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/24/2022]
Abstract
In mammals, trait variation is often reported to be greater among males than females. However, to date, mainly only morphological traits have been studied. Energy expenditure represents the metabolic costs of multiple physical, physiological, and behavioral traits. Energy expenditure could exhibit particularly high greater male variation through a cumulative effect if those traits mostly exhibit greater male variation, or a lack of greater male variation if many of them do not. Sex differences in energy expenditure variation have been little explored. We analyzed a large database on energy expenditure in adult humans (1494 males and 3108 females) to investigate whether humans have evolved sex differences in the degree of interindividual variation in energy expenditure. We found that, even when statistically comparing males and females of the same age, height, and body composition, there is much more variation in total, activity, and basal energy expenditure among males. However, with aging, variation in total energy expenditure decreases, and because this happens more rapidly in males, the magnitude of greater male variation, though still large, is attenuated in older age groups. Considerably greater male variation in both total and activity energy expenditure could be explained by greater male variation in levels of daily activity. The considerably greater male variation in basal energy expenditure is remarkable and may be explained, at least in part, by greater male variation in the size of energy-demanding organs. If energy expenditure is a trait that is of indirect interest to females when choosing a sexual partner, this would suggest that energy expenditure is under sexual selection. However, we present a novel energetics model demonstrating that it is also possible that females have been under stabilizing selection pressure for an intermediate basal energy expenditure to maximize energy available for reproduction.
Collapse
Affiliation(s)
- Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Philip N Ainslie
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lene F Andersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Liam J Anderson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Lenore Arab
- David Geffen School of Medicine, University of California, Los Angeles
| | - Issad Baddou
- Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN-Université Ibn Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA, Rabat, Morocco
| | - Kweku Bedu-Addo
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Stephane Blanc
- Nutritional Sciences, University of Wisconsin, Madison, WI, USA; Institut Pluridisciplinaire Hubert Curien, CNRS Université de Strasbourg, UMR7178, France
| | | | - Carlijn V C Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven Unversity of Technology, Eindhoven, The Netherlands
| | - Pascal Bovet
- Pascal Bovet, University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland & Ministry of Health, Republic of Seychelles
| | - Maciej S Buchowski
- Division of Gastroenterology, Hepatology and Nutritiion, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Nancy F Butte
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | - Stefan G J A Camps
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands; Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jamie A Cooper
- Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St., Boston, MA, USA
| | - Richard Cooper
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA; Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Ulf Ekelund
- Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany; Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Terrence Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | | | - Annelies H Goris
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Asmaa El Hamdouchi
- Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN-Université Ibn Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA, Rabat, Morocco
| | - Marije B Hoos
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Sumei Hu
- Beijing Technology and Business University, Beijing, China; State Key Laboratory of Molecular developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Noorjehan Joonas
- Central Health Laboratory, Ministry of Health and Wellness, Mauritius
| | - Annemiek M Joosen
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Peter Katzmarzyk
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Kitty P Kempen
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Misaka Kimura
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - William E Kraus
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Robert F Kushner
- Department of Anthropology, Northwestern University, Chicago, IL, USA
| | - Estelle V Lambert
- Research Centre for Health through Physical Activity, Lifestyle and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Nader Lessan
- Imperial College London, London, United Kingdom, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Anine C Medin
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; Department of Nutrition and Public Health, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway
| | - Erwin P Meijer
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - James C Morehen
- The FA Group, Burton-Upon-Trent, Staffordshire, UK; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Marian L Neuhouser
- Fred Hutchinson Cancer Center and School of Public Health, University of WA, Seattle, WA, USA
| | - Theresa A Nicklas
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | - Robert M Ojiambo
- Moi University, Eldoret, Kenya; University of Global Health Equity, Rwanda
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland, and Obesity Center, Abdominal Center, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Jacob Plange-Rhule
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ross L Prentice
- Fred Hutchinson Cancer Center and School of Public Health, University of WA, Seattle, WA, USA
| | | | - Susan B Racette
- Program in Physical Therapy and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David A Raichlen
- Biological Sciences and Anthropology, University of Southern California, California, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Rebecca M Reynolds
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susan B Roberts
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St., Boston, MA, USA
| | | | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA; Child and Brain Development, CIFAR, Toronto, Canada
| | - Giulio Valenti
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands; Phillips Research, Eindhoven, The Netherlands
| | - Ludo M Van Etten
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Edgar A Van Mil
- Faculty of Science and Engineering, Maastricht University, Brightlands Campus Greenport Venlo and Lifestyle Medicine Center for Children, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - George Wilson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Brian M Wood
- Department of Anthropology University of California Los Angeles, Los Angeles, USA; Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology, and Culture
| | - Jack Yanovski
- Growth and Obesity, Division of Intramural Research, NIH, Bethesda, MD, USA
| | - Tsukasa Yoshida
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Xueying Zhang
- State Key Laboratory of Molecular developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Alexia J Murphy-Alford
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Cornelia U Loechl
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Amy H Luke
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA.
| | - Jennifer Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | - Hiroyuki Sagayama
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.
| | - Dale A Schoeller
- Biotech Center and Nutritional Sciences University of Wisconsin, Madison, Wisconsin, USA.
| | - Klaas R Westerterp
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
| | - William W Wong
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA.
| | - Yosuke Yamada
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan, and Institute for Active Health, Kyoto University of Advanced Science, Kyoto, Japan.
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK; State Key Laboratory of Molecular developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China.
| |
Collapse
|
45
|
Garrabou G, García-García FJ, Presmanes RE, Feu M, Chiva-Blanch G. Relevance of sex-differenced analyses in bioenergetics and nutritional studies. Front Nutr 2022; 9:936929. [PMID: 36245509 PMCID: PMC9562369 DOI: 10.3389/fnut.2022.936929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-biased analyses still remain as one of the biggest limitations to obtain universal conclusions. In biomedicine, the majority of experimental analyses and a significant amount of patient-derived cohort studies exclusively included males. In nutritional and molecular medicine, sex-influence is also frequently underrated, even considering maternal-inherited organelles such as mitochondria. We herein illustrate with in-house original data examples of how sex influences mitochondrial homeostasis, review these topics and highlight the consequences of biasing scientific analyses excluding females as differentiated entities from males.
Collapse
Affiliation(s)
- Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Internal Medicine Department-Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Glòria Garrabou
| | - Francesc Josep García-García
- Muscle Research and Mitochondrial Function Laboratory, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Internal Medicine Department-Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Elvira Presmanes
- Muscle Research and Mitochondrial Function Laboratory, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Internal Medicine Department-Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Feu
- Muscle Research and Mitochondrial Function Laboratory, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Internal Medicine Department-Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gemma Chiva-Blanch
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute–IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Obesity and Nutrition Physiopathology (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Gemma Chiva-Blanch
| |
Collapse
|
46
|
O'Bryan SM, Connor KR, Drummer DJ, Lavin KM, Bamman MM. Considerations for Sex-Cognizant Research in Exercise Biology and Medicine. Front Sports Act Living 2022; 4:903992. [PMID: 35721874 PMCID: PMC9204149 DOI: 10.3389/fspor.2022.903992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
As the fields of kinesiology, exercise science, and human movement developed, the majority of the research focused on male physiology and extrapolated findings to females. In the medical sphere, basing practice on data developed in only males resulted in the removal of drugs from the market in the late 1990s due to severe side effects (some life-threatening) in females that were not observed in males. In response to substantial evidence demonstrating exercise-induced health benefits, exercise is often promoted as a key modality in disease prevention, management, and rehabilitation. However, much like the early days of drug development, a historical literature knowledge base of predominantly male studies may leave the exercise field vulnerable to overlooking potentially key biological differences in males and females that may be important to consider in prescribing exercise (e.g., how exercise responses may differ between sexes and whether there are optimal approaches to consider for females that differ from conventional approaches that are based on male physiology). Thus, this review will discuss anatomical, physiological, and skeletal muscle molecular differences that may contribute to sex differences in exercise responses, as well as clinical considerations based on this knowledge in athletic and general populations over the continuum of age. Finally, this review summarizes the current gaps in knowledge, highlights the areas ripe for future research, and considerations for sex-cognizant research in exercise fields.
Collapse
Affiliation(s)
- Samia M. O'Bryan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kathleen R. Connor
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Devin J. Drummer
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaleen M. Lavin
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- *Correspondence: Marcas M. Bamman
| |
Collapse
|
47
|
Goulart KNO, Coimbra CC, Campos HO, Drummond LR, Ogando PHM, Brown G, Couto BP, Duffield R, Wanner SP. Fatigue and Recovery Time Course After Female Soccer Matches: A Systematic Review And Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:72. [PMID: 35657571 PMCID: PMC9166924 DOI: 10.1186/s40798-022-00466-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/13/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND This study aimed to analyze the extent of fatigue responses after female soccer matches and the ensuing recovery time course of performance, physiological, and perceptual responses. METHODS Three databases (PubMed, Web of Science, and SPORTDiscus) were searched in October 2020 and updated in November 2021. Studies were included when participants were female soccer players, regardless of their ability level. Further, the intervention was an official soccer match with performance, physiological, or perceptual parameters collected pre- and post-match (immediately, 12 h, 24 h, 48 h, or 72 h-post). RESULTS A total of 26 studies (n = 465 players) were included for meta-analysis. Most performance parameters showed some immediate post-match reduction (effect size [ES] = - 0.72 to - 1.80), apart from countermovement jump (CMJ; ES = - 0.04). Reduced CMJ performance occurred at 12 h (ES = - 0.38) and 24 h (ES = - 0.42) and sprint at 48 h post-match (ES = - 0.75). Inflammatory and immunological parameters responded acutely with moderate-to-large increases (ES = 0.58-2.75) immediately post-match. Creatine kinase and lactate dehydrogenase alterations persisted at 72 h post-match (ES = 3.79 and 7.46, respectively). Small-to-moderate effects were observed for increased cortisol (ES = 0.75) and reduced testosterone/cortisol ratio (ES = -0.47) immediately post-match, while negligible to small effects existed for testosterone (ES = 0.14) and estradiol (ES = 0.34). Large effects were observed for perceptual variables, with increased fatigue (ES = 1.79) and reduced vigor (ES = - 0.97) at 12 h post-match, while muscle soreness was increased immediately post (ES = 1.63) and at 24 h post-match (ES = 1.00). CONCLUSIONS Acute fatigue exists following female soccer matches, and the performance, physiological, and perceptual parameters showed distinctive recovery timelines. Importantly, physical performance was recovered at 72 h post-match, whereas muscle damage markers were still increased at this time point. These timelines should be considered when planning training and match schedules. However, some caution should be advised given the small number of studies available on this population. REGISTRATION The protocol for this systematic review was pre-registered on the International Prospective Register of Systematic Reviews (PROSPERO, Registration Number: CRD42021237857).
Collapse
Affiliation(s)
- Karine Naves Oliveira Goulart
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627. Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia.
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helton Oliveira Campos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biological Sciences, Universidade do Estado de Minas Gerais - Unidade Carangola, Carangola, MG, Brazil
| | - Lucas Rios Drummond
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Henrique Madureira Ogando
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627. Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Georgia Brown
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia
| | - Bruno Pena Couto
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Rob Duffield
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia
- Medical Department, Sydney, Football Australia, Australia
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627. Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
48
|
The Performance, Physiology and Morphology of Female and Male Olympic-Distance Triathletes. Healthcare (Basel) 2022; 10:healthcare10050797. [PMID: 35627934 PMCID: PMC9140916 DOI: 10.3390/healthcare10050797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sex differences in triathlon performance have been decreasing in recent decades and little information is available to explain it. Thirty-nine male and eighteen female amateur triathletes were evaluated for fat mass, lean mass, maximal oxygen uptake (VO2 max), ventilatory threshold (VT), respiratory compensation point (RCP), and performance in a national Olympic triathlon race. Female athletes presented higher fat mass (p = 0.02, d = 0.84, power = 0.78) and lower lean mass (p < 0.01, d = 3.11, power = 0.99). VO2 max (p < 0.01, d = 1.46, power = 0.99), maximal aerobic velocity (MAV) (p < 0.01, d = 2.05, power = 0.99), velocities in VT (p < 0.01, d = 1.26, power = 0.97), and RCP (p < 0.01, d = 1.53, power = 0.99) were significantly worse in the female group. VT (%VO2 max) (p = 0.012, d = 0.73, power = 0.58) and RCP (%VO2 max) (p = 0.005, d = 0.85, power = 0.89) were higher in the female group. Female athletes presented lower VO2 max value, lower lean mass, and higher fat mass. However, females presented higher values of aerobic endurance (%VO2 max), which can attenuate sex differences in triathlon performance. Coaches and athletes should consider that female athletes can maintain a higher percentage of MAV values than males during the running split to prescribe individual training.
Collapse
|
49
|
Díaz-Resendiz KJG, Benitez-Trinidad AB, Covantes-Rosales CE, Toledo-Ibarra GA, Ortiz-Lazareno PC, Girón-Pérez DA, Bueno-Durán AY, Pérez-Díaz DA, Barcelos-García RG, Girón-Pérez MI. Loss of mitochondrial membrane potential (ΔΨ m ) in leucocytes as post-COVID-19 sequelae. J Leukoc Biol 2022; 112:23-29. [PMID: 35355308 PMCID: PMC9088601 DOI: 10.1002/jlb.3ma0322-279rrr] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial membrane potential (ΔΨm) is a parameter often used to determine mitochondrial function; therefore, it can be used to determine the integrity and functionality of cells. A decrement of ΔΨm is implicated in several inflammatory‐related pathologies, such phenomena can be related to COVID‐19 infection. The present work aimed to compare the ΔΨm in leucocytes (human PBMCs; HPBMC) isolated from healthy control (HC) subjects, patients with COVID‐19 (C‐19), recovered subjects at 40 ± 13 (R1) and 335 ± 20 (R2) days after infection (dai). Obtained data showed that ΔΨm decreased in HPBMC of subjects with C‐19, R1, and R2 compared with HC. When analyzing the ΔΨm data by sex, in females, a significant decrease was observed in R1 and R2 groups versus HC. Regarding men, a significant decrease of ΔΨm was observed in R1, with respect to HC, contrary to R2 group, who reestablished this parameter. Obtained results suggest that the loss of ΔΨm could be related to the long‐COVID.
Collapse
Affiliation(s)
| | - Alma Betsaida Benitez-Trinidad
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica de Occidente (CIBO), Guadalajara, Jalisco, Mexico
| | - Daniel Alberto Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Adela Yolanda Bueno-Durán
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Daniela Alejandra Pérez-Díaz
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Rocío Guadalupe Barcelos-García
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional de Investigación para la Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Universidad Autónoma de Nayarit, Nayarit, Mexico
| |
Collapse
|
50
|
Diaz-Canestro C, Pentz B, Sehgal A, Montero D. Differences in Cardiac Output and Aerobic Capacity Between Sexes Are Explained by Blood Volume and Oxygen Carrying Capacity. Front Physiol 2022; 13:747903. [PMID: 35370780 PMCID: PMC8970825 DOI: 10.3389/fphys.2022.747903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
Whether average sex differences in cardiorespiratory fitness can be mainly explained by blood inequalities in the healthy circulatory system remains unresolved. This study evaluated the contribution of blood volume (BV) and oxygen (O2) carrying capacity to the sex gap in cardiac and aerobic capacities in healthy young individuals. Healthy young women and men (n = 28, age range = 20–43 years) were matched by age and physical activity. Echocardiography, blood pressures, and O2 uptake were measured during incremental exercise. Left ventricular end-diastolic volume (LVEDV), stroke volume (SV), cardiac output (Q), peak O2 uptake (VO2peak), and BV were assessed with precise methods. The test was repeated in men after blood withdrawal and reduction of O2 carrying capacity, reaching women’s levels. Before blood normalization, exercise cardiac volumes and output (LVEDV, SV, Q) adjusted by body size and VO2peak (42 ± 9 vs. 50 ± 11 ml⋅min–1⋅kg–1, P < 0.05) were lower in women relative to men. Blood normalization abolished sex differences in cardiac volumes and output during exercise (P ≥ 0.100). Likewise, VO2peak was similar between women and men after blood normalization (42 ± 9 vs. 40 ± 8 ml⋅min–1⋅kg–1, P = 0.416). In conclusion, sex differences in cardiac output and aerobic capacity are not present in experimental conditions matching BV and O2 carrying capacity between healthy young women and men.
Collapse
Affiliation(s)
- Candela Diaz-Canestro
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Brandon Pentz
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Arshia Sehgal
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - David Montero
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Calgary, AB, Canada
- *Correspondence: David Montero, ;
| |
Collapse
|